WO2009024292A1 - Générateur d'hydrogène et procédé de production d'hydrogène - Google Patents

Générateur d'hydrogène et procédé de production d'hydrogène Download PDF

Info

Publication number
WO2009024292A1
WO2009024292A1 PCT/EP2008/006705 EP2008006705W WO2009024292A1 WO 2009024292 A1 WO2009024292 A1 WO 2009024292A1 EP 2008006705 W EP2008006705 W EP 2008006705W WO 2009024292 A1 WO2009024292 A1 WO 2009024292A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
reactor
containing compound
solvent
hydrogen generator
Prior art date
Application number
PCT/EP2008/006705
Other languages
German (de)
English (en)
Inventor
Felix Baitalow
Florian Mertens
Robert Szolak
Tom Smolinka
Original Assignee
Fraunhofer-Gesellschaft Zür Förderung Der Angewandten Forschung E.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft Zür Förderung Der Angewandten Forschung E.V. filed Critical Fraunhofer-Gesellschaft Zür Förderung Der Angewandten Forschung E.V.
Publication of WO2009024292A1 publication Critical patent/WO2009024292A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a process for the generation of hydrogen and to a hydrogen generator based on a hydrogen-containing compound and a solvent in which the hydrogen release takes place in a separate storage / storage reactor, the latter having a dissolved in the solvent hydrogen. containing compound is supplied continuously or discontinuously.
  • the solvent is used solely for the purpose of transporting the hydrogen-containing compound from the storage location to the reactor and is not consumed during the hydrogen release.
  • the hydrogen generator can be operated with a comparatively small amount of solvent circulating in the circulation.
  • the object of the present invention is to provide a process for the production of hydrogen from hydrogen-containing compounds, which is easy to carry out and requires little maintenance. Likewise, it is the object of the present invention to provide a device for carrying out the method, namely a hydrogen generator.
  • the invention thus provides a process for producing hydrogen from hydrogen-containing compounds, in which at least one hydrogen-containing compound is obtained by means of a liquid
  • Transport medium is transferred from a reservoir provided for the hydrogen-containing compound in a spatially separated from the reservoir reactor and the hydrogen-containing compound is reacted in the reactor to hydrogen and other reaction products, wherein the liquid transport medium is not involved in the reaction in the reactor reactively and so during the reaction is not consumed.
  • the advantage of this invention over the previous systems is the use of a solvent which dosed the hydrogen-containing compound into the reactor and is not consumed during the reaction. As a result, very high storage densities can be achieved and the system can be easily controlled by the selected flow rate.
  • the transport medium is preferably a solvent for the at least one hydrogen-containing compound.
  • the boron-containing solvents may be, for example, a boron-containing Lewis acid, in particular B (OCH 3 ) 3 , B (OC 2 H 5 ) 3 or B [N (CH 3 J 2 ] 3 , and / or a boron-containing acid-base complex , in particular B (OCH 3 ) 3 NH 3 / B (OC 2 Hs) 3 NH 3 , BH 3 Py or BH 3 N (C 2 H 5 ) 3
  • the ionic liquids for example, nitrogen-containing ammonium-based, imidazolium -based or pyridinium-based compounds, in particular is used as imidazolium-based compound 1-butyl-3-methylimidazolium tetrafluoroborat use.
  • the hydrogen-containing compounds are selected from the group consisting of complex hydrides, in particular borohydrides or alanates, or adducts thereof, metal hydrides and / or boron-nitrogen compounds, in particular borazane or substituted borazane.
  • the hydrogen-containing compound may be in solid, liquid or paste form in the reservoir.
  • the concentration of the at least one hydrogen-containing compound in the liquid transport medium is preferably between 10 and 90% by weight, preferably between 20 and 60% by weight, especially preferred. Taken between 30 and 50 wt .-% set.
  • the activation of the decomposition reaction takes place in principle thermally, especially at temperatures between see 20 and 160 0 C, preferably between 25 and
  • the hydrogen release is an exothermic process process, for example, decomposition of borazane
  • the supply of heat just during the start phase is required. Due to the heat of reaction, the process then independently maintains the working temperature.
  • the activation of the decomposition reaction can be carried out, for example, thermally at elevated temperature without catalyst, or at lower temperatures with catalyst. Of course, it is also conceivable that the catalyst allows the decomposition reaction only at higher temperatures.
  • the decomposition of the hydrogen-containing compounds is catalytically activated.
  • All catalysts known in the art e.g. homogeneous or heterogeneous catalysts, in particular from the group of noble metals, are used.
  • heterogeneous catalysts are preferred because they are reusable. Catalysts are applied to support structures in order to achieve the largest possible specific reaction surface with minimal amount of catalyst, for example on honeycomb structures (monoliths), in the form of coatings and / or as pellets in beds. This prevents that especially the high-quality noble metal catalysts are dissolved in the transport medium and disposed of with this.
  • the decomposition reaction can be accelerated by adding catalytic amounts of water to the reaction mixture.
  • the method is characterized in that the pressure of the resulting hydrogen can preferably be regulated between 1 and 800 bar, more preferably between 1 and 30 bar.
  • the flow rate of the solution is preferably set between 0.1 to 100 ml / min, more preferably between 0.5 and 50 ml / min.
  • the hydrogen generator preferably produces hydrogen in a range of 2 Nl / h to 200 Nl / h (release rate). Based on the lower calorific value of hydrogen, this corresponds to a power of 6 W to 600 W. Preferably, the hydrogen generator 16.7 Nl / h to 84 Nl / h (50 W to 250 W) release hydrogen.
  • the invention also provides a hydrogen generator comprising
  • the reactor is preferably designed as a flow reactor, tubular reactor and / or stirred tank.
  • a container for collecting the further reaction products, in particular solid reaction products is included.
  • the components of the hydrogen generator are arranged in a circulatory system.
  • the hydrogen generator is used for the filling of hydrogen pressure accumulators and metal hydride accumulators as well as for the direct supply of fuel cells.
  • FIG. 1 shows the principal components of a hydrogen generator, wherein the individual components are arranged in a circuit
  • FIG. 2 shows a detailed embodiment of a circular hydrogen reactor with associated removal device for the hydrogen
  • FIG. 3 shows an alternative embodiment of the hydrogen generator, which is designed according to the flow-through principle.
  • the hydrogen-containing compound in a storage container 1, the hydrogen-containing compound is stored in solid or else liquid form, if necessary this hydrogen-containing compound is dissolved in a solvent for transport,
  • the release of hydrogen in this reactor is carried out catalytically or non-catalytically, under ambient conditions or thermally activated,
  • the decomposition products are removed with the residual solution, - the optionally occurring solid reaction products in a spatially separated separator 4 are deposited
  • the reactor is a flow or tubular reactor (plug flow) or stirred tank (mixed flow).
  • the hydrogen release takes place in the reactor according to the following principles:
  • thermal release of hydrogen by supplying heat (eg by electrical heating or use of waste heat) and thus at elevated temperature up to 160 0 C, better between room temperature and 110 0 C, preferably between 70 0 C and
  • heterogeneous catalysts for example precious metals of the Pt group (Pt, Pd) or homogeneous catalysts at temperatures near room temperature.
  • Catalysts are preferably supported on o honeycomb structure (monoliths) o coated tubes, reactor wall o pellets in beds
  • the hydrogen-containing compound may be in solid, liquid or paste form in the reservoir 1.
  • a compound e.g. complex metal hydrides or chemical hydrides are used:
  • metal cations from the first three main groups such as Li + , Mg 2+ , Al 3 + , or adducts consisting of a complex Me-. and hydride-containing base, such as Mg (BH 4 ) 2 * 6NH 3
  • chemical hydrides preferably from the group of boron-nitrogen compounds.
  • Particularly suitable are the boron-ammonia complex BH 3 NH 3 or the borane-methylamine complex BH 3 NH 2 CH 3 ,
  • the solvents used are organic solvents, water or else ionic liquids.
  • the solvent is used several times to minimize the amount used in the circuit. This is possible because the solvent is chosen such that it does not interfere with the release of hydrogen from the hydrogen-containing compound and thus is not consumed during reactor operation.
  • solvents are used, e.g.
  • C 4 H 9 , tert-C 4 H 9 in particular the glyme CH 3 (OCH 2 CH 2 J 2 OCH 3 (diglytn), CH 3 (OCH 2 CH 2 ) 3 OCH 3 , (triglyme), CH 3 ( OCH 2 CH 2 ) 4 OCH 3 (tetraglyme), boron-containing solvents, in particular boron-containing Lewis acids, for example B (OCH 3 ) 3 , B (OC 2 H 5 ) 3 , B [N (CH 3 ) 2 ] 3 , or Boron-containing acid-base complexes, eg BH 3 Py, BH 3 N (C 2 H 5 J 3 , B (OCH 3 ) 3 • NH 3 , B (OC 2 H 5 ) 3 " NH 3 , ionic liquids, preferably from the group of nitrogen-containing ammonium-based, imidazolium-based or pyridinium-based
  • reaction products are obtained in dissolved form or as an insoluble solid and are removed with the solvent from the decomposition site. If they are solid, they are separated from the residual solution in a separator 4. In liquid form, they circulate with the solution in the circulation. In the latter case, the solvent can be chosen such that the dissolved reaction products are the catalyze hydrogen release (autocatalysis).
  • the hydrogen generator 100 can be realized as a pump-around system or as a once-through system.
  • FIG. 1 shows the principal components of the hydrogen generator 100.
  • the hydrogen-containing compound from which the release of hydrogen takes place, in a storage container 1, wherein in the embodiment, as shown in FIG. 1, there is still a separate storage tank 9 for the particular solvent. Circulation in the system is guaranteed by the pump 2, so that the solvent stored in the container 9 is pumped by entry into the storage container 1 for the hydrogen-containing compound and dissolves the hydrogen-containing compound.
  • This solution is introduced into the reactor 3, into which e.g. catalytically and / or by thermal activation hydrogen generation takes place.
  • a separator 4 for example, mechanical means such. Sieve or filter may contain to separate such solids.
  • FIG. 2 shows a pump-around system.
  • the hydrogen-containing compound is in dissolved liquid form in a storage container 1; alternatively, the hydrogen-containing compound is stored in pasty or solid form and, if necessary, dissolved in the solvent during operation.
  • the solution is transported to the reactor 3, in which the hydrogen is released.
  • the solid or dissolved reaction products are removed from the reactor by means of the pump.
  • Solid products are collected in another container 4.
  • a heat exchanger can be integrated into the system. This uses the waste heat of the product to preheat the input material. In addition, the precipitation of the solid reaction products can be facilitated.
  • the solvent is recirculated several times, which minimizes the amount used. This is possible because the solvent is chosen such that it does not interfere with the release of hydrogen from the hydrogen-containing compound and thus is not consumed in the reactor operation.
  • the liquid reaction products circulate in the solution in the circulation. In this case, the solvent can be chosen such that the dissolved reaction products catalyze the further hydrogen release (autocatalysis).
  • a filter 5 is present after the reactor, which separates off, for example, solid particles or droplets entrained by the hydrogen stream.
  • a valve 6 is present after the filter 5, for example, by feedback via a
  • Control 7 e.g. a computer, can be controlled to regulate the pressure in the line 8.
  • the valve 6 Depending on the need of the required pressure, which may for example be between 10 and 800 bar, the valve 6 must be configured as a high or low pressure valve.
  • the hydrogen generator is realized as a one-time system (once-through).
  • the solution is not pumped repeatedly, but from the storage tank 1, which contains the hydrogen-containing compound. as the solvent contains at the same time, only once through the reactor 3 into the collecting container 10 transported.
  • a system for purifying or regulating the pressure of the resulting hydrogen is likewise present here.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne un procédé permettant de produire de l'hydrogène, ainsi qu'un générateur d'hydrogène à base d'un composé contenant de l'hydrogène et d'un solvant, selon lequel la libération de l'hydrogène s'effectue dans un réacteur séparé spatialement du stockage de la conservation. Ledit réacteur est alimenté en continu ou par intermittence avec un composé contenant de l'hydrogène, dissous dans le solvant. Ledit solvant sert exclusivement à assurer le transport du composé à base d'hydrogène entre le point de conservation et le réacteur et n'est pas utilisé pendant la libération de l'hydrogène. Le générateur d'hydrogène peut ainsi est actionné avec des quantités de solvant comparativement réduites, ledit solvant circulant dans le circuit du système.
PCT/EP2008/006705 2007-08-21 2008-08-14 Générateur d'hydrogène et procédé de production d'hydrogène WO2009024292A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007039478.2 2007-08-21
DE102007039478A DE102007039478A1 (de) 2007-08-21 2007-08-21 Wasserstoffgenerator sowie Verfahren zur Erzeugung von Wasserstoff

Publications (1)

Publication Number Publication Date
WO2009024292A1 true WO2009024292A1 (fr) 2009-02-26

Family

ID=40140044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/006705 WO2009024292A1 (fr) 2007-08-21 2008-08-14 Générateur d'hydrogène et procédé de production d'hydrogène

Country Status (2)

Country Link
DE (1) DE102007039478A1 (fr)
WO (1) WO2009024292A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101201A2 (fr) * 2008-02-15 2009-08-20 Chemetall Gmbh Mélanges d'hydrures métalliques et de liquides ioniques et utilisation de ces mélanges
WO2010025921A1 (fr) * 2008-09-03 2010-03-11 Linde Aktiengesellschaft Procédé et système réactionnel pour produire de l'hydrogène
KR20150097558A (ko) * 2012-11-28 2015-08-26 하이드로지니어스 테크놀로지스 게엠베하 액체 화합물 및 이를 수소 저장소로 사용하는 방법
EP2376371B1 (fr) * 2009-01-15 2018-02-21 proionic GmbH Procede d'utilisation d'un liquide ionique dans le stockage d'hydrogene

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009048455A1 (de) * 2009-10-07 2011-04-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Speicherung elektrischer Energie
EP2748885B2 (fr) 2011-08-23 2019-07-24 Hydrogenious Technologies GmbH Système et procédé pour alimenter des bâtiments en énergie
DE102012222560A1 (de) * 2012-12-07 2014-06-12 Bayerische Motoren Werke Aktiengesellschaft Reaktor zur Freisetzung von Wasserstoff

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3346506A (en) * 1963-10-14 1967-10-10 Foote Mineral Co Hydrogen-generating composition and use
WO2002066369A1 (fr) * 1999-05-10 2002-08-29 Safe Hydrogen, Llc Stockage, generation et utilisation d'hydrogene
US20060225350A1 (en) * 2005-01-28 2006-10-12 John Spallone Systems and methods for controlling hydrogen generation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7029517B2 (en) * 2003-11-06 2006-04-18 General Electric Company Devices and methods for hydrogen storage and generation
WO2005032709A2 (fr) * 2003-09-30 2005-04-14 General Electric Company Compositions de stockage d'hydrogene et procedes de production associes
US7175826B2 (en) * 2003-12-29 2007-02-13 General Electric Company Compositions and methods for hydrogen storage and recovery
US7780747B2 (en) * 2003-10-14 2010-08-24 Advanced Technology Materials, Inc. Apparatus and method for hydrogen generation from gaseous hydride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3346506A (en) * 1963-10-14 1967-10-10 Foote Mineral Co Hydrogen-generating composition and use
WO2002066369A1 (fr) * 1999-05-10 2002-08-29 Safe Hydrogen, Llc Stockage, generation et utilisation d'hydrogene
US20060225350A1 (en) * 2005-01-28 2006-10-12 John Spallone Systems and methods for controlling hydrogen generation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BLUHM M E ET AL: "Amineborane-based chemical hydrogen storage : Enhanced ammonia borane dehydrogenation in ionic liquids", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, WASHINGTON, DC, vol. 128, no. 24, 1 January 2006 (2006-01-01), pages 7748 - 4449, XP002506973 *
BREAULT R W ET AL: "HYDROGEN TRANSMISSION/STORAGE WITH A CHEMICAL HYDRIDE/ORGANIC SLURRY", PROCEEDINGS OF CANADIAN HYDROGEN CONFERENCE, XX, XX, vol. SESSION 06, no. 5, 1 January 1999 (1999-01-01), pages 393 - 402, XP009061089 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009101201A2 (fr) * 2008-02-15 2009-08-20 Chemetall Gmbh Mélanges d'hydrures métalliques et de liquides ioniques et utilisation de ces mélanges
WO2009101201A3 (fr) * 2008-02-15 2009-10-29 Chemetall Gmbh Mélanges d'hydrures métalliques et de liquides ioniques et utilisation de ces mélanges
WO2010025921A1 (fr) * 2008-09-03 2010-03-11 Linde Aktiengesellschaft Procédé et système réactionnel pour produire de l'hydrogène
EP2376371B1 (fr) * 2009-01-15 2018-02-21 proionic GmbH Procede d'utilisation d'un liquide ionique dans le stockage d'hydrogene
KR20150097558A (ko) * 2012-11-28 2015-08-26 하이드로지니어스 테크놀로지스 게엠베하 액체 화합물 및 이를 수소 저장소로 사용하는 방법
KR101992255B1 (ko) 2012-11-28 2019-06-24 하이드로지니어스 테크놀로지스 게엠베하 액체 화합물 및 이를 수소 저장소로 사용하는 방법

Also Published As

Publication number Publication date
DE102007039478A1 (de) 2009-02-26

Similar Documents

Publication Publication Date Title
WO2009024292A1 (fr) Générateur d'hydrogène et procédé de production d'hydrogène
EP3639314B1 (fr) Dispositif et procédé de production du courant électrique au moyen d'hydrogène et d'un milieu d'accumulation d'hydrogène
DE102008063308B4 (de) Verfahren zur Herstellung von Toluylendiamin durch Hydrierung von Dinitrotoluol
CA2434650A1 (fr) Stockage, generation et utilisation d'hydrogene
EP2237869B1 (fr) Réacteur permettant la mise en oeuvre de réactions sous haute pression, procédé de mise en route et procédé de mise en oeuvre d'une réaction
EP1332789B1 (fr) Procédé d'oxydation d'un gaz, dispositif de recombination permettant la mise en ouvre de ce procédé et systéme comprenant un tel dispositif
EP3221256B1 (fr) Unité de charge/décharge pour de l'hydrogène, système pourvu d'une telle unité de charge/décharge et procédé pour accumuler et libérer de l'énergie
EP3541742B1 (fr) Procédé de stockage de gaz hydrogène, réacteur d'hydrogénation et contenant de transport
WO2013156558A1 (fr) Procédé et dispositif d'électrolyse haute température
DE10147368A1 (de) Mehrstufiger Verbrennungsprozess zum Erhalt eines regelbaren Reformierungstemperaturprofils
EP3894351A1 (fr) Procede et installation pour libérer un gaz d'un milieu liquide
EP2043949B1 (fr) Obtention d'hydrogène et d'énergie par transformation thermique de silanes
EP2047552B1 (fr) Procédé d'alimentation d'une pile à combustible avec de l'hydrogène au moyen de silanes ou de polysilanes
EP0361612B1 (fr) Méthode pour la production d'électricité
DE102005039061B4 (de) Verfahren zur Herstellung von Wasserstoff aus einem komplexen Metallhydrid
WO2023052216A1 (fr) Procédé et appareil de libération d'hydrogène chimiquement lié d'un matériau vecteur
WO2009046471A1 (fr) Suspension pour générateurs d'hydrogène
WO2008017088A2 (fr) Générateur d'hydrogène
WO2019149435A1 (fr) Réacteur tubulaire et son procédé de fonctionnement
DE3515197A1 (de) Verfahren und vorrichtung zur energieerzeugung
DE1592271C (de) Verfahren und Anlage zur Erzeu gung von Wasserstoffgas unter Aus nutzung der bei der Zersetzung von Peroxiden entstehenden Warme
DE102020211407A1 (de) Verfahren und Vorrichtung zur Herstellung von Synthesegas
DE19528681A1 (de) Verfahren und Vorrichtung zur Speicherung und Nutzbarmachung von Solar-, Wind- oder Wasserkraftenergie
EP4229229A1 (fr) Générateur de gaz et accumulateur de courant
WO2022013391A1 (fr) Réacteur de gazéification hydrothermale supercritique de biomasse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08785554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08785554

Country of ref document: EP

Kind code of ref document: A1