WO2009024162A1 - Hybridantriebssystem mit zwei teilgetrieben - Google Patents

Hybridantriebssystem mit zwei teilgetrieben Download PDF

Info

Publication number
WO2009024162A1
WO2009024162A1 PCT/EP2007/007315 EP2007007315W WO2009024162A1 WO 2009024162 A1 WO2009024162 A1 WO 2009024162A1 EP 2007007315 W EP2007007315 W EP 2007007315W WO 2009024162 A1 WO2009024162 A1 WO 2009024162A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
shaft
drive
electric machine
transmission
Prior art date
Application number
PCT/EP2007/007315
Other languages
English (en)
French (fr)
Inventor
Werner Leufgen
Original Assignee
Fev Motortechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fev Motortechnik Gmbh filed Critical Fev Motortechnik Gmbh
Priority to PCT/EP2007/007315 priority Critical patent/WO2009024162A1/de
Priority to DE112007003564T priority patent/DE112007003564A5/de
Publication of WO2009024162A1 publication Critical patent/WO2009024162A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • F16H2037/0873Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft with switching, e.g. to change ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0056Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising seven forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/006Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion power being selectively transmitted by either one of the parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/12Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches
    • F16H3/126Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with means for synchronisation not incorporated in the clutches using an electric drive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Structure Of Transmissions (AREA)

Abstract

Hybridantriebssystem mit einer ersten Antriebsmaschine (10) - insbesondere einem Verbrennungsmotor - und zwei weiteren Antriebsmaschinen (11) - insbesondere zwei elektrischen Maschinen - für ein Kraftfahrzeug, umfassend ein erstes Gangschaltteilgetriebe (15) mit einer Eingangswelle (17) und einer Abtriebswelle (23) und einer ersten Gruppe von Gangschaltzahnradpaaren mit jeweils einem mit seiner Welle drehfest verbundenen Zahnrad und einem schaltbar mit seiner Welle koppelbaren Schaltrad, ein zweites Gangschaltteilgetriebe (16) mit einer Eingangswelle (18) und einer Abtriebswelle (24) und einer zweiten Gruppe von Gangschaltzahnradpaaren mit jeweils einem mit seiner Welle drehfest verbundenen Zahnrad und einem schaltbar mit seiner Welle koppelbaren Schaltrad, wobei die Gangschaltzahnradpaare in der Gangfolge jeweils abwechselnd einem der Gangschaltteilgetriebe (15, 16) zugeordnet sind, wobei die erste Antriebsmaschine (10), die erste Eingangswelle (17) und die zweite Eingangswelle (18) jeweils mit einem der Glieder eines Planetengetriebes (61) - Planetenträger (62), Sonnenrad 64, Hohlrad (65) -antriebsverbunden sind und die weiteren Antriebsmaschinen (11, 12) jeweils mit einer der Eingangswellen (17, 18 )starr antriebsverbunden sind.

Description

Hybridantriebssystem mit zwei Teilgetrieben
Beschreibung
Die Erfindung betrifft ein Hybridantriebssystem mit einer ersten Antriebsmaschine, insbesondere einem Verbrennungsmotor, und zwei weiteren Antriebsmaschinen, insbesondere zwei elektrischen Maschinen, für ein Kraftfahrzeug. Andere Typen der Antriebsmaschinen sind nicht ausgeschlossen. Beispielsweise können drei elektrische Maschinen als erste Haupt- und weitere Antriebsmaschinen vorgesehen sein oder neben einem Verbrennungsmotor als erster Antriebsmaschine eine elektrische und eine hy-draulische Maschine als weitere Antriebsmaschinen.
Fahrzeuge mit Hybridantrieb in den unterschiedlichsten Ausführungen haben bei bestimmten Fahrzyklen ein günstigeres Abgasverhalten und einen geringeren Kraftstoffverbrauch als Fahrzeuge, die ausschließlich verbrennungsmotorisch angetrieben werden. Sie gewinnen daher am Markt zunehmende Bedeutung.
Werden elektrische Maschinen als weitere Antriebsmaschinen verwendet, können diese als Motor und Generator verwendet werden. In der Motorfunktion, die die Versorgung durch eine Batterie bedingt, ist ein Anlassen eines Verbrennungsmotors mit der elektrischen Maschine oder eine Verwendung der elektrischen Maschine als Fahrantriebsmotor möglich. In der Verwendung als Generator dient die elektrische Maschine zum Aufladen der Batterie, wobei die Energie von einem Verbrennungsmotor oder aus der Rückgewinnung der kinetischen Fahrzeugenergie (Rekuperation) bezogen werden kann. Hybridantriebssysteme sind beispielsweise in der WO 2005/073005 A1 , der DE 100 49 514 A1 und der DE 198 18 108 A1 beschrieben.
Aus der DE 199 60 621 A1 ist ein Hybridantrieb für Fahrzeuge mit einem schaltbaren Getriebe bekannt, das ein erstes schaltbares Teilgetriebe enthält, das wahlweise mit einem Brennstoffmotor und/oder einer elektrischen Maschine antriebsmäßig verbindbar ist, und ein zweites schaltbares Teilgetriebe enthält, das antriebsmäßig mit der elektrischen Maschine verbunden ist, welche als Elektromotor oder Generator betreibbar ist. Das erste Teilgetriebe umfaßt eine erste Vorgelegewelle und eine Abtriebswelle und weist sechs Gangstufen auf; das zweite Teilgetriebe umfaßt eine zweite Vorgelegewelle und die gleiche Abtriebswelle und weist drei Gangstufen auf.
Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Hybridantriebssystem bereitzustellen, das sich durch einen vereinfachten Aufbau im Verhältnis zur Zahl der Gangstufen, die zur Verfügung stehen, auszeichnet. Hierbei soll insbesondere auch eine kompakte Bauweise für den Quereinbau in Kraftfahrzeugen möglich sein.
Die Lösung liegt in einem Hybridantriebssystem mit einer ersten Antriebsmaschine - insbesondere einem Verbrennungsmotor - und zwei weiteren Antriebsmaschinen - insbesondere zwei elektrischen Maschinen - für ein Kraftfahrzeug, umfassend ein erstes Gangschaltteilgetriebe mit einer Eingangswelle und einer Abtriebswelle und einer ersten Gruppe von Gangschaltzahnradpaaren mit jeweils einem mit seiner Welle drehfest verbundenen Zahnrad und einem schaltbar mit seiner Welle koppelbaren Schaltrad, ein zweites Gangschaltteilgetriebe mit einer Eingangswelle und einer Abtriebswelle und einer zweiten Gruppe von Gangschaltzahnradpaaren mit jeweils einem mit seiner Welle drehfest verbundenen Zahnrad und einem schaltbar mit seiner Welle koppelbaren Schaltrad, wobei die Gangschaltzahnradpaare in der Gangfolge jeweils abwechselnd einem der Gangschaltteilgetriebe zugeordnet sind, wobei die erste Antriebsmaschine, die erste Eingangswelle und die zweite Eingangswelle jeweils mit einem der Glieder eines Planetengetriebes - Planetenträger, Sonnenrad, Hohlrad - antriebsverbunden sind und die weiteren Antriebsmaschinen jeweils mit einer der Eingangswellen starr antriebsverbunden sind.
Der wesentliche Lösungsansatz liegt in der Darstellung des verwendeten Getriebes durch zwei Teilgetriebe, deren Gangstufen wechselweise verteilt sind, also erster, dritter, fünfter und gegebenenfalls siebter Gang werden dem ersten Teilgetriebe zugeordnet, dessen Eingangswelle fest mit der zweiten der weiteren Antriebsmaschinen verbunden ist, und die Gangstufen zweiter, vierter und sechster Gang werden dem zweiten Teilgetriebe zugeordnet, dessen Eingangswelle starr mit der ersten der weitren Antriebsmaschinen verbunden ist.
Hierbei ist es möglich, daß im Betrieb ein Gangwechsel zwischen zwei in der Gangfolge benachbarten Gängen jeweils durch einen Wechsel des Drehmomentflusses von einem Gangschaltteilgetriebe zum anderen Gangschaltteilgetriebe verwirklicht wird. Hiermit ist es möglich, die Zahl der Gangschaltzahnradpaare in beiden Gangschaltteilgetrieben zusammen auf die Zahl der erforderlichen Gangstufen zu beschränken.
Um eine kompakte Bauweise zu ermöglichen wird vorgeschlagen, daß die erste Eingangswelle eine Innenwelle und die zweite Eingangswelle eine zu dieser koaxiale Hohlwelle ist.
Eine günstige Zuordnung der drei Antriebsmaschinen zu den Gliedern des Planetengetriebes liegt darin, daß die erste Antriebsmaschine, bevorzugt ein Verbrennungsmotor mit dem Planetenträger, die erste weitere Antriebsmaschine mit dem Hohlrad und die zweite weitere Antriebsmaschine mit dem Sonnenrad des Planetengetriebes starr gekoppelt sind.
Um die Möglichkeiten der Getriebeanordnung mit geringem Energieaufwand auszuschöpfen, ist weiterhin vorgesehen, daß Feststellbremsen für die mit den Eingangswellen verbundenen Glieder des Planetenträgergetriebes, insbesondere für das Hohlrad und für das Sonnenrad vorgesehen sind. Anstelle der genannten Feststellbremsen können allerdings auch die weiteren Antriebsmaschinen selber zur Erzeu- gung eine Haltemoments für die entsprechenden Glieder des Planetengetriebes eingesetzt werden. Dem geringeren Bauaufwand steht hierbei ein erhöhter Energieaufwand und eine beschleunigte Alterung gegenüber.
Durch eine sinnvolle Reihenfolge des Öffnens und Schließens der beiden Feststellbremsen an den beiden Eingangswellen sowie eines Bestromens und Abschaltens der beiden weiteren Antriebsmaschinen sowie eine daran angepaßte Reihenfolge der Betätigung der Schalteinheiten der verschiedenen Gänge ist ein zugkraftfreies Schalten zwischen den Gängen möglich. Vor dem Betätigen der Schalteinheiten ist hierbei jeweils ein Synchronisieren der Drehzahlen der Schalträder und Wellen sinnvoll. Entscheidend für diese Art der Betätigung ist, daß bei der erfindungsgemäßen Getriebeanordnung das zu schaltende Element (Schalteinheit) stets abgetrennt werden kann, während wenigstens ein Antrieb, entweder eine der weiteren, insbesondere eine der elektrischen Antriebsmaschinen oder die erste Antriebsmaschine, insbesondere ein Verbrennungsmotor, mit dem Getriebeausgang, d.h. einem Abtriebsrad in drehmomentübertragender Verbindung steht. Beim Schalten können die Drehzahlen an den zu schaltenden Elementen durch entsprechende Steuerung der weiteren insbesondere elektrischen Antriebsmaschinen und der ersten insbesondere Verbrennungsmotor ausgelegten Antriebsmaschine angeglichen werden, was als aktive Synchro-nisierung bezeichnet wird.
Aufgrund der gewählten Anordnung der weiteren Antriebsmaschinen/elektrischen Maschinen und der ersten Antriebsmaschine des Verbrennungsmotors kann bei einem Motorbetrieb von erster Antriebsmaschine Verbrennungsmotor und jeder der weiteren Antriebsmaschinen/elektrischen Maschinen eine Drehmomentaddition erfolgen. Wie nachfolgend dargestellt, ist ein Anfahren mit einem der E-Motoren sowie ein Generatorbetrieb mit einer der E-Motoren im Rekuperations-Modus in jedem Gang möglich. Bei von der entsprechenden Feststellbremse freigestelltem Planetengetriebe ist auch ein gleichzeitiger Motorbetrieb aller drei Antriebsmaschinen möglich, die als Verbrennungsmotor ausgestaltete erste Antriebsmaschine durch entsprechende Drehzahlwahl der weiteren elektrischen Antriebsmaschinen in einem verbrauchsgünstigen Betriebspunkt im Motorkennfeld eingestellt und gehalten werden kann. Nach einer ersten günstigen konstruktiven Ausgestaltung, die eine radial kompakte Bauweise ermöglicht, ist vorgesehen, daß die beiden Abtriebswellen in koaxialer Anordnung liegen und miteinander drehfest verbunden sind. Hierbei ist insbesondere vorgesehen, daß die beiden Abtriebswellen einstückig miteinander verbunden sind.
Eine günstige Ergänzung des Antriebssystems besteht darin, daß eine Nebenabtriebsmaschine, insbesondere ein Klimaanlagenkompressor, mit einer der Eingangswellen insbesondere über Zahnräder, die eine Getriebestufe bilden, gekoppelt ist.
Weitere günstige Ausgestaltungen finden sich in den Unteransprüchen, auf die hier inhaltlich Bezug genommen wird.
Verschiedene Bethebszustände, die vorstehend nur angedeutet wurden, ergeben sich detailliert aus der nachfolgenden Zeichnungsbeschreibung.
Ein bevorzugtes Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird nachstehend beschrieben. Hierin zeigen
Figur 1 das Getriebeschema eines erfindungsgemäßen Hybridantriebssystems in Neutralstellung;
Figur 2 das Getriebeschema nach Figur 1 beim Anfahren und Fahren mit der elektrischen Maschine E2;
Figur 3 das Getriebeschema nach Figur 1 beim Anlassen des Verbrennungsmotors CE durch die elektrische Maschine E2 im Fahrzeugstillstand;
Figur 4 das Getriebeschema nach Figur 1 beim Anlassen des Verbrennungsmotors CE durch die elektrische Maschine E2 während des elektrischen Fah- rens mit der elektrischen Maschine E2;
Figur 5a das Getriebeschema nach Figur 1 beim Hochschalten vom fünften Gang in den sechsten Gang in einer ersten Phase; Figur 5b das Getriebeschema nach Figur 1 beim Hochschalten vom fünften Gang in den sechsten Gang in einer zweiten Phase;
Figur 5c das Getriebeschema nach Figur 1 beim Hochschalten vom fünften Gang in den sechsten Gang in einer dritten Phase;
Figur 5d das Getriebeschema nach Figur 1 beim Hochschalten vom fünften Gang in den sechsten Gang in einer vierten Phase;
Figur 6a das Getriebeschema nach Figur 1 beim Herunterschalten vom sechsten Gang in den fünften Gang in einer ersten Phase;
Figur 6b das Getriebeschema nach Figur 1 beim Herunterschalten vom sechsten Gang in den fünften Gang in einer zweiten Phase;
Figur 6c das Getriebeschema nach Figur 1 beim Herunterschalten vom sechsten Gang in den fünften Gang in einer dritten Phase;
Figur 6d das Getriebeschema nach Figur 1 beim Herunterschalten vom sechsten Gang in den fünften Gang in einer vierten Phase;
Figur 7a das Getriebeschema nach Figur 1 im Boost-Modus (erster, dritter oder fünfter Gang);
Figur 7b das Getriebeschema nach Figur 1 im Boost-Modus (zweiter, vierter oder sechster Gang);
Figur 8a das Getriebeschema nach Figur 1 im Rekuperations-Modus (erster, dritter, fünfter oder siebter Gang);
Figur 8b das Getriebeschema nach Figur 1 im Rekuperations-Modus (zweiter, vierter oder sechster Gang); Figur 9 das Getriebeschema nach Figur 1 im Fahrzeugstillstand bei Klimaanlagen-Kompressorantrieb;
In Figur 1 ist das Getriebeschema eines erfindungsgemäßen Hybridantriebssystems in Neutralstellung aller Schalteinheiten dargestellt. Die nachfolgende Beschreibung der Figur 1 gilt grundsätzlich für die Figuren 1 bis 9, die nur unterschiedliche Schaltzustände des Getriebeschemas darstellen.
Es ist ein Hybridantriebssystem dargestellt, das eine erste Antriebsmaschine 10, hier in Form eines Verbrennungsmotors (Combustion Engine CE), eine erste weitere Antriebsmaschine 11 , hier in Form einer ersten elektrischen Maschine (E1), eine zweite weitere Antriebsmaschine 12, hier in Form einer zweiten elektrischen Maschine (E2), und eine Nebenabtriebsmaschine 13, hier in Form eines Kompressors für eine Klimaanlage (Air Conditioning A/C), umfaßt. Der Verbrennungsmotor 10 ist mit einem Planetenradträger 62 eines Planetengetriebes 61 , der mehrere Planetenräder 63 trägt, über ein nicht dargestelltes Zweimassenschwungrad verbunden. Das Sonnenrad 64 des Planetengetriebes 61 ist mit einer als Innenwelle ausgelegten Eingangswelle 17 eines ersten Teilgetriebes 15 fest verbunden, während das Hohlrad 65, das mit dem Läufer der ersten elektrischen Maschine 11 gekoppelt ist, mit einer zur Eingangswelle 17 koaxialen als Hohlwelle ausgelegten Eingangswelle 18 eines zweiten Teilgetriebes 16 fest verbunden ist. Das Getriebe umfaßt somit zwei Gangschaltteilgetriebe 15, 16 (Stufenwechselgetriebe), die sich dadurch auszeichnen, daß sie jeweils eine eigene Eingangswelle 17 und 18 aufweisen. Die Eingangswelle 17 des ersten Teilgetriebes 15 trägt die Zahnräder der Gänge 1 , 3 5 und 7 und des Rückwärtsganges R sowie ein Eingangsrad 19, das über ein Zahnrad 20 mit der zweiten elektrischen Maschine 12 und über ein Zahnrad 21 mit dem Klimaanlagenkompressor 13 in untersetzter Antriebsverbindung ist. Die Eingangswelle 18 des zweiten Teilgetriebes 16 trägt die Zahnräder der Gänge 2, 4 und 6. Das von der ersten elektrischen Maschine 11 direkt angetriebene Hohlrad 65 und damit die Eingangswelle 18 ist von einer ersten Feststellbremse 31 (B1) festsetzbar, das von der zweiten elektrischen Maschine 12 starr über die Eingangwelle 17 angetriebene Sonnenrad 64 ist von einer zweiten Feststellbremse 32 (B2) festsetzbar. Die Abtriebswellen 23, 24 der beiden Teilgetriebe 15, 16 sind fest miteinander verbunden, insbesondere als einteilige Welle ausgebildet. Die Schalträder der einzelnen Gänge sitzen auf den Abtriebswellen 23, 24, wobei eine gemeinsame Schalteinheit 25 für die Gänge 3 und 5, eine weitere gemeinsame Schalteinheit 26 für die Gänge 7 und 2 sowie eine Schalteinheit 27 für die Gänge 4 und 6 vorgesehen ist. Der erste Gang 1 und ein Rückwärtsgang R sind über eine Schalteinheit 29 schaltbar. Ein Umkehrrad 30 auf einer Zwischenwelle bewirkt die Drehrichtungsumkehr für die Rückwärtsfahrt. Die Abtriebswelle 23, 24 wirkt über ein Zahnrad 22 auf ein Abtriebsrad 28 des Antriebssystem ein, von dem Leistung abgenommen werden kann (output).
Die Festräder der Gänge 1 bis 7 und R, die drehfest auf den Eingangswellen 17, 18 angeordnet sind, sind nur in Figur 1 in der Reihenfolge der Gänge mit 41 , 42, 43, 44, 45, 46, 47, 48 bezeichnet, die entsprechenden Schalträder der Gänge, die mit den Abtriebswellen 23, 24 koppelbare Losräder sind, in der Reihenfolge der Gänge mit 51 , 52, 53, 54, 55, 56, 57, 58. Festräder und Losräder könnten zwischen den Wellen auch vertauscht angeordnet sein.
In Figur 2 ist die Schalteinheit 29 in den ersten Gang eingerückt, während die Schalteinheiten 25, 26, 27 in ihrer Neutralstellung stehen. In diesem Schaltzustand ist das elektrische Anfahren mit der zweiten elektrischen Maschine 12 sowie das Fahren mit der zweiten elektrischen Maschine 12 möglich. Mit einer verstärkt gezeichneten Linie ist der Drehmomentfluß von der zweiten elektrischen Maschine 12 zum Abtriebsrad 28 versinnbildlicht.
Es gelten folgende Schaltzustände
elektrische Maschine E1 ausgeschaltet, Drehmoment von E2, erster Gang eingerückt, Bremsen B1 , B2 offen.
Zum elektrischen Fahren und Anfahren im Rückwärtsgang wäre die Schalteinheit 29 bei im übrigen unveränderten Schaltzuständen nach rechts in den Rückwärtsgang einzurücken.
In Figur 3 ist die zweite elektrische Maschine 12 in Anlasserfunktion dargestellt. Hierzu wird die erste elektrische Maschine 11 erregt oder die Bremse 31 geschlossen , um eine Haltefunktion für das Hohlrad 65 zu bewirken. Sämtliche Gänge sind mittels der Schalteinheiten 25, 26, 27, 29 ausgerückt. Mit einer verstärkt gezeichneten Linie ist der Drehmomentfluß von der elektrischen Maschine 12 zum Verbrennungsmotor 11 versinnbildlicht.
Es gelten folgende Schaltzustände
Haltemoment von elektrischer Maschine E1 oder Bremse B1 geschlossen Drehmoment von elektrischer Maschine E2, alle Gänge ausgerückt, Bremse B2 offen.
In Figur 4 ist das Anlassen des Verbrennungsmotors 10 durch die elektrische Maschine 12 während des elektrischen Fahrbetriebs dargestellt. Hierbei ist mittels der Schalteinheit 29 der erste Gang eingelegt, so daß der Drehmomentfluß von der elektrischen Maschine 12 über das Zahnradpaar des ersten Ganges zum Abtriebsrad 28 des Getriebes fließt, während gleichzeitig die elektrische Maschine 11 erregt wird oder die Bremse 31 geschlossen wird, um ein Haltemoment für das Hohlrad 65 zu erhalten, um über die Eingangswelle 17 den Verbrennungsmotor 10 anzulassen. Durch verdickte Linien ist der Drehmomentfluß von der elektrischen Maschine 12 zum Verbrennungsmotor 10 und zum Abtriebsrad 28 versinnbildlicht.
Es gelten folgende Schaltzustände
Haltemoment von elektrischer Maschine E1 , oder Bremse B1 geschlossen Drehmoment von elektrischer Maschine E2, erster Gang eingerückt, Bremse B2 offen. In den Darstellungen der Figur 5 sind verschiedene Phasen des Hochschaltens vom fünften in den sechsten Gang gezeigt.
In Figur 5a ist die elektrische Maschine 11 erregt oder die Bremse 31 geschlossen, um eine Haltefunktion für das Hohlrad 65 zu bewirken, und die elektrische Maschine 12 ausgeschaltet. Weiterhin ist mittels der Schalteinheit 25 der fünfte Gang eingelegt. Drehmoment fließt vom Verbrennungsmotor 10 über die Eingangswelle 17 und das Zahnradpaar des fünften Ganges auf die Abtriebswelle 23, 24, so daß das Fahrzeug verbrennungsmotorisch angetrieben wird. Durch verdickte Linien ist der Drehmomentfluß vom Verbrennungsmotor 10 zum Abtriebsrad 28 versinnbildlicht.
Die Schaltzustände sind folgende
Haltemoment von elektrischer Maschine E1 oder Bremse 31 geschlossen, Drehmoment vom Verbrennungsmotor CE, elektrische Maschine E2 ausgeschaltet, fünfter Gang eingelegt, Bremse B2 offen.
In Figur 5b ist der fünfte Gang noch eingelegt, jedoch wird die elektrische Maschine 11 ausgeschaltet, um den Verbrennungsmotor 10 von der Eingangswelle 17 antriebsmäßig zu trennen. Gleichzeitig wird die elektrische Maschine 12 eingeschaltet, um das Antriebsmoment für die Eingangswelle 17 ohne Unterbrechung der Zugkraft zu übernehmen. Der Verbrennungsmotor CE kann auf Leerlauf zurückgenommen werden. Durch eine verdickte Linie ist der Drehmomentfluß von der elektrischen Maschine 12 zum Abtriebsrad 28 versinnbildlicht.
Die Schaltzustände sind wie folgt
elektrische Maschine E1 ausgeschaltet, Drehmoment von der elektrischen Maschine E2, fünfter Gang eingelegt, Bremsen B1 , B2 offen. In Figur 5c ist dargestellt, daß der fünfte Gang mittels der Schalteinheit 25 weiter eingelegt bleibt, zugleich jetzt aber mittels der Schalteinheit 27 bereits der sechste Gang eingelegt wird. Mittels der elektrischen Maschine 11 erfolgt zuvor ein Hochdrehen der Antriebswelle, um das Schaltrad 56 auf die Drehzahl der Abtriebswelle 24 zu bringen. Der Hauptdrehmomentfluß erfolgt von der elektrischen Maschine 12 über die Eingangswelle 17 und die Abtriebswelle 23 zum Abtriebsrad 28. Über die Eingangswelle 17 fließt darüber hinaus ein Abstützmoment zum Sonnenrad 64, so daß ein Beschleunigungsmoment von der elektrischen Maschine 11 über das Hohlrad 65 und die Antriebswelle 18 auf die Zahnräder 46/56 ausgeübt werden kann.
Die Schaltzustände sind folgende
aktive Synchronisierung durch die elektrische Maschine E1 , Drehmoment von der elektrischen Maschine E2, fünfter Gang noch eingelegt, sechster Gang wird eingelegt, Bremsen B1 , B2 offen.
In Figur 5d ist dargestellt, wie der Schaltvorgang abgeschlossen wird, indem mittels der Schalteinheit 25 der fünfte Gang herausgenommen wird, während gleichzeitig durch die Zahnräder 46/56 des bereits eingelegten sechsten Ganges der Verbrennungsmotor 10 über die Eingangswelle 18 in den Drehmomentfluß zur Abtriebswelle 24 und zum Abtriebsrad 28 einbezogen wird. Hierfür wird die elektrische Maschine 12 zur Erzeugung eines Haltemoments für das Sonnenrad 64 erregt oder die Bremse 32 geschlossen. Die elektrische Maschine 11 wird ausgeschaltet. Durch eine verdickte Linie ist der Hauptdrehmomentfluß vom Verbrennungsmotor 10 zum Abtriebsrad 28 versinnbildlicht.
Die Schaltzustände sind folgende
Drehmoment vom Verbrennungsmotor CE, elektrische Maschine E1 ausgeschaltet, Haltemoment von elektrischer Maschine E2 oder Bremse B2 geschlossen fünfter Gang herausgenommen, sechster Gang eingelegt, Bremse B1 offen.
In den einzelnen Darstellungen der Figur 6 werden verschiedene Phasen des Herunterschaltens vom sechsten in den fünften Gang dargestellt.
In Figur 6a ist die elektrische Maschine 11 wie zuvor ausgeschaltet und die elektrische Maschine 12 erregt oder die Bremse 32 geschlossen, um ein Haltemoment für das Sonnenrad 64 zu erzeugen. Durch die Schalteinheit 27 ist das Schaltrad des sechsten Ganges mit der Abtriebswelle 23 gekoppelt, d.h. der sechste Gang ist eingelegt. Drehmoment fließt vom Verbrennungsmotor 10 über die Eingangswelle 18 und das Zahnradpaar 46, 56 des sechsten Ganges auf die Abtriebswellen 23, 24 und das Abtriebsrad 28. Durch eine verdickte Linie ist der Drehmomentfluß vom Verbrennungsmotor 10 zum Abtriebsrad 28 versinnbildlicht.
Die Schaltzustände sind folgende
Drehmoment vom Verbrennungsmotor CE, elektrische Maschine E1 ausgeschaltet,
Haltemoment von elektrischer Maschine E2 oder Bremse B2 geschlossen, sechster Gang eingelegt,
Bremse B1 offen.
In Figur 6b ist dargestellt, daß zur Vorbereitung des Gangwechsels die elektrische Maschine 12 ausgeschaltet wird, um den Verbrennungsmotor 10 von der Eingangswelle 18 zu entkoppeln. Gleichzeitig wird von der elektrischen Maschine 11 Drehmoment an die Eingangswelle 18 ohne Unterbrechung der Zugkraft abgegeben. Der Verbrennungsmotor 10 kann auf Leerlauf zurückgenommen werden. Durch eine verdickte Linie ist der Drehmomentfluß von der elektrischen Maschine 11 zum Abtriebsrad 28 versinnbildlicht. Die Schaltzustände sind folgende
Drehmoment von der elektrischen Maschine E1 , elektrische Maschine E2 ausgeschaltet, sechster Gang eingelegt, Bremsen B1 , B2 offen.
In Figur 6c ist dargestellt, daß der sechste Gang mittels der Schalteinheit 27 weiter eingelegt bleibt, zugleich aber jetzt mittels der Schalteinheit 25 der fünfte Gang eingelegt wird. Mittels der elektrischen Maschine 12 erfolgt zuvor ein Hochdrehen der Antriebswelle 17, um über die Zahnräder 45/55 das Schaltrad 55 auf die Drehzahl der Abtriebswelle 24 zu bringen. Gleichzeitig wird von der elektrischen Maschine 12 über die Eingangswelle 17 am Sonnenrad ein Abstützmoment für die elektrische Maschine 11 erzeugt. Durch eine verdickte Linie ist der Hauptdrehmomentfluß von der elektrischen Maschine 11 über die Eingangswelle 18 und die Ausgangwelle 24 zum Abtriebsrad 28 versinnbildlicht.
Die Schaltzustände sind folgende
Drehmoment von der elektrischen Maschine E1 , aktive Synchronisierung von der elektrischen Maschine E2, sechster Gang eingelegt, fünfter Gang eingerückt,
Bremsen B1 , B2 offen.
In Figur 6d ist die abschließende Phase des Gangwechsels vom sechsten in den fünften Gang gezeigt, wobei der sechste Gang mittels der Schalteinheit 27 ausgerückt wird. Hierbei wird zwischenzeitlich die elektrische Maschine 11 mit geringem Drehmoment angetrieben, um über die Zahnräder 46/56 die Schalteinheit 27 lastfrei zu setzen. Danach wird die Bremse 31 geschlossen, um ein Haltemoment für das Hohlrad 65 zu erzeugten, so daß wieder Drehmoment vom Verbrennungsmotor 10 über die Eingangswelle 17 und das Zahnradpaar 45/55 des fünften Gangs zum Abtriebsrad 28 fließen kann. Die elektrische Maschine 12 kann gleichzeitig ausgeschal- tet werden. Durch verdickte Linien ist der Drehmomentfluß vom Verbrennungsmotor 10 zum Abtriebsrad 28 versinnbildlicht.
Die Schaltzustände sind folgende
Drehmoment vom Verbrennungsmotor CE,
Haltemoment von der elektrischen Maschine E1 oder Bremse B1 geschlossen, elektrische Maschine E2 ausgeschaltet, sechster Gang ausgerückt, fünfter Gang eingelegt,
Bremse B2 offen.
In Figur 7a ist der Verbrennungsmotor 10 über die Eingangswelle 17 und über die Zahnräder des fünften Ganges, der mittels der Schalteinheit 25 eingelegt ist, mit dem Abtriebsrad 28 gekoppelt. Hierfür ist die elektrische Maschine 11 erregt oder die Bremse 31 geschlossen, um ein Haltemoment am Hohlrad 65 des Planetengetriebes 61 zu erzeugen. Gleichzeitig ist die elektrische Maschine 12, die immer fest mit der Eingangswelle 17 gekoppelt ist, unter Drehmoment und ebenfalls über den fünften Gang mit dem Abtriebsrad 28 gekoppelt. Die Drehmomente des Verbrennungsmotors 10 und der elektrischen Maschine 12 addieren sich. Der hier gezeigt Boost- Zustand kann in gleicher Weise für die Gänge 1 , 3 und 7 eingestellt sein. Der Drehmomentfluß erfolgt vom Verbrennungsmotor 11 über die Wellen 17, 23 zum Abtriebsrad 28 und von der elektrischen Maschine 12 über die Wellen 17, 24 zum Abtriebsrad 28.
Die Schaltzustände sind folgende
Drehmoment vom Verbrennungsmotor CE,
Haltemoment von der elektrischen Maschine E1 oder bremse B1 geschlossen
Drehmoment von der elektrischen Maschine E2, fünfter Gang eingelegt, In Figur 7b ist mittels der Schalteinheit 27 der sechste Gang eingelegt, wobei Drehmoment sowohl von der elektrischen Maschine 11 , als auch vom Verbrennungsmotor
10 in die Eingangswelle 18 eingeleitet und auf die Abtriebswelle 23 übertragen wird. Die elektrische Maschine 12 ist hierfür erregt oder die Bremse 32 geschlossen, um ein Haltemoment am Sonnenrad 64 des Planetengetriebes zu erzeugen. Die Drehmomente des Verbrennungsmotors 10 und der elektrischen Maschine 11 addieren sich. Der hier gezeigte Boost-Zustand kann auch für die Gänge 2 und 4 verwendet werden. Der Drehmomentfluß erfolgt vom Verbrennungsmotor 10 und der elektrischen Maschine 11 über die Wellen 18, 23, 24 zum Abtriebsrad 28.
Die Schaltzustände sind folgende
Drehmoment vom Verbrennungsmotor CE,
Drehmoment von der elektrischen Maschine E1 ,
Haltemoment von der elektrischen Maschine E2 oder Bremse B2 geschlossen, sechster Gang eingelegt,
Bremse B1 offen.
In Figur 8a ist ein Schaltzustand für die Energierekuperation (Rückgewinnung elektrischer Energie) im Schiebebetrieb des Fahrzeugs gezeigt. Die elektrische Maschine
11 ist ausgeschaltet, so daß der Verbrennungsmotor 10 von den Eingangswellen 17, 18 antriebsmäßig entkoppelt ist. Über den eingelegten fünften Gang fließt Drehmoment vom Abtriebsrad 28 über die Abtriebswelle 24 auf die Eingangswelle 17, so daß die elektrische Maschine 12 im Generatorbetrieb läuft. Die Energierückgewinnung mittels der elektrischen Maschine 12 kann entsprechend in den Gängen 1 , 3 und 7 erfolgen. Durch eine verdickte Linie ist der Drehmomentfluß vom Abtriebsrad 28 zur elektrischen Maschine 12 versinnbildlicht.
Die Schaltzustände sind folgende
elektrische Maschine E1 ausgeschaltet, Drehmoment zur elektrischen Maschine E2, Verbrennungsmotor CE im Leerlauf, fünfter Gang eingelegt, Bremsen B1 , B2 offen.
In Figur 8b ist der Schaltzustand im Rekuperations-Modus (Rückgewinnung elektrischer Energie) d.h. im Fahrzeugschiebebetrieb bei Verwendung des sechsten Ganges gezeigt. Hierbei ist das Schaltrad 56 des sechsten Ganges durch die Schalteinheit 27 mit der Abtriebswelle 23 gekoppelt, so daß Drehmoment vom Abtriebsrad 28 auf die Antriebswelle 18 fließt. Aufgrund der unmittelbaren Kopplung des Hohlrades 65 mit der Eingangswelle 18 wird Drehmoment direkt auf die elektrische Maschine 11 übertragen, die im Generatorbetrieb läuft. Die elektrische Maschine 12 bleibt hierbei ausgeschaltet. Die Energierückgewinnung mittels der elektrischen Maschine 11 kann entsprechend in den Gängen 2 und 4 erfolgen. Durch eine verdickte Linie ist der Drehmomentfluß vom Abtriebsrad 28 zur elektrischen Maschine 11 versinnbildlicht.
Die Schaltzustände sind folgende
Drehmoment zur elektrischen Maschine E1 , elektrische Maschine E2 ausgeschaltet, Verbrennungsmotor CE im Leerlauf, sechster Gang eingelegt, Bremsen B1 , B2 offen.
In Figur 9 ist der Betrieb einer Nebenabtriebsmaschine, nämlich des Klimaanlagenkompressors 13 durch die elektrische Maschine 12 im Fahrzeugstillstand gezeigt. Die elektrische Maschine 11 ist ausgeschaltet und erzeugt damit keine Abstützkraft am Planetengetriebe 61. Alle Schalteinheiten 25, 26, 27, 29 sind in Neutralstellung. Durch eine verdickte Linie ist der Drehmomentfluß von der elektrischen Maschine 12 zum Klimaanlagenkompressor 13 versinnbildlicht.
Die Schaltzustände sind folgende
elektrische Maschine E1 ausgeschaltet, Drehmoment von der elektrischen Maschine E2, alle Gänge ausgedrückt, Bremsen B1 , B2 offen.
In den Zeichnungen sind folgende linksstehende Symbole/Begriffe in der jeweils rechts-stehenden Bedeutung verwendet:
Output Leistung
Switched off ausgeschaltet
Operates as Motor arbeitet als Motor
Closed geschlossen
Active Synchrnization aktive Synchronisierung
Energized erregt, bestromt
Operates as Generator arbeitet als Generator
Bezugszeichenliste
10 erste Antriebsmaschine (Verbrennungsmotor)
11 erste weitre Antriebsmaschine (elektrische Maschine 1)
12 zweite weitere Antriebsmaschine (elektrische Maschine 2)
13 Nebenabtriebsmaschine (Klimaanlagenkompressor) 14
15 Gangschaltteilgetriebe
16 Gangschaltteilgetriebe
17 Eingangswelle
18 Eingangswelle
19 Zahnrad
20 Zahnrad
21 Zahnrad
22 Zahnrad
23 Abtriebswelle (15)
24 Abtriebswelle (16)
25 Schalteinheit
26 Schalteinheit
27 Schalteinheit
28 Abtriebsrad
29 Schalteinheit
30 Umkehrrad
41 Zahnrad (Festrad)
47 Zahnrad (Festrad)
48 Zahnrad (Festrad) Schaltrad (Losrad)
Schaltrad (Losrad)
Schaltrad (Losrad)
Schaltrad (Losrad)
Planetengetriebe
Planetenträger
Planetenrad
Sonnenrad
Hohlrad

Claims

Patentansprüche
1. Hybridantriebssystem mit einer ersten Antriebsmaschine (10) - insbesondere einem Verbrennungsmotor - und zwei weiteren Antriebsmaschinen (11 , 12) - insbesondere zwei elektrischen Maschinen - für ein Kraftfahrzeug, umfassend ein erstes Gangschaltteilgetriebe (15) mit einer Eingangswelle (17) und einer Abtriebswelle (23) und einer ersten Gruppe von Gangschaltzahnradpaaren mit jeweils einem mit seiner Welle drehfest verbundenen Zahnrad und einem schaltbar mit seiner Welle koppelbaren Schaltrad, ein zweites Gangschaltteilgetriebe (16) mit einer Eingangswelle (18) und einer Abtriebswelle (24) und einer zweiten Gruppe von Gangschaltzahnradpaaren mit jeweils einem mit seiner Welle drehfest verbundenen Zahnrad und einem schaltbar mit seiner Welle koppelbaren Schaltrad, wobei die Gangschaltzahnradpaare in der Gangfolge jeweils abwechselnd einem der Gangschaltteilgetriebe (15, 16) zugeordnet sind, wobei die erste Antriebsmaschine (10), die erste Eingangswelle (17) und die zweite Eingangswelle (18) jeweils mit einem der Glieder eines Planetengetriebes (61) - Planetenträger (62), Sonnenrad (64), Hohlrad (65) - antriebsverbunden sind und die weiteren Antriebsmaschinen (11 , 12) jeweils mit einer der Eingangswellen (17, 18) starr antriebsverbunden sind.
2. Hybridantriebssystem nach Anspruch 1
dadurch gekennzeichnet,
daß die erste Eingangswelle (17) eine Innenwelle und die zweite Eingangswelle (18) eine zu dieser koaxiale Hohlwelle ist.
3. Hybridantriebssystem nach einem der Ansprüche 1 und 2,
dadurch gekennzeichnet,
daß die erste Antriebsmaschine (10) mit dem Planetenträger (62), die erste Zusatzantriebsmaschine (11) mit dem Hohlrad (65) und die zweite Zusatzantriebsmaschine (12) mit dem Sonnenrad (64) des Planetengetriebes (61) starr gekoppelt ist.
4. Hybridantriebssystem nach einem der Ansprüche 1 bis3,
dadurch gekennzeichnet,
daß Feststellbremsen (31 , 32) für die mit den Eingangswellen (17,18) verbundenen Glieder des Planetenträgergetriebes (61), insbesondere für das Hohlrad (65) und für das Sonnenrad (64) vorgesehen sind.
5. Hybridantriebssystem nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
daß eine erste der weiteren Antriebsmaschinen (11) eine Ringmaschine ist, die das Hohlrad (65) außen umschließt.
6. Hybridantriebssystem nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß die zweite der weiteren Antriebsmaschinen (12) über ein Zahnrad (20) mit einem auf der zweiten Eingangswelle (18) fest angeordneten Zahnrad (19) gekoppelt ist, wobei die Zahnräder (20, 19) eine Getriebestufe bilden.
7. Hybridantriebssystem nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
daß eine Nebenabtriebsmaschine (13), insbesondere ein Klimaanlagenkompressor, mit einer der Eingangswellen (18) insbesondere Zahnräder (21 , 19), die eine Getriebestufe bilden, gekoppelt ist.
8. Hybridantriebssystem nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
daß die beiden Abtriebswellen (23, 24) einstückig miteinander verbunden sind.
9. Hybridantriebssystem nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
daß das erste Gangschaltteilgetriebe (15) zumindest die Gänge 1 , 3 und 5 umfaßt und das zweite Gangschaltteilgetriebe (16) zumindest die Gänge 2, 4 und 6 umfaßt.
0. Hybridantriebssystem nach Anspruch 9, dadurch gekennzeichnet, daß das erste Gangschaltteilgetriebe (15) einen Rückwärtsgang umfaßt.
PCT/EP2007/007315 2007-08-18 2007-08-18 Hybridantriebssystem mit zwei teilgetrieben WO2009024162A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/EP2007/007315 WO2009024162A1 (de) 2007-08-18 2007-08-18 Hybridantriebssystem mit zwei teilgetrieben
DE112007003564T DE112007003564A5 (de) 2007-08-18 2007-08-18 Hybridantriebssystem mit zwei Teilgetrieben

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/007315 WO2009024162A1 (de) 2007-08-18 2007-08-18 Hybridantriebssystem mit zwei teilgetrieben

Publications (1)

Publication Number Publication Date
WO2009024162A1 true WO2009024162A1 (de) 2009-02-26

Family

ID=39272080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/007315 WO2009024162A1 (de) 2007-08-18 2007-08-18 Hybridantriebssystem mit zwei teilgetrieben

Country Status (2)

Country Link
DE (1) DE112007003564A5 (de)
WO (1) WO2009024162A1 (de)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010036510A1 (de) * 2010-07-20 2012-01-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Parallelhybrid-Antriebsstrang und Verfahren zum Betreiben eines Parallelhybrid-Antriebsstrangs
WO2012055527A1 (de) * 2010-10-25 2012-05-03 Magna Powertrain Ag & Co Kg Getriebeeinheit und elektrische ergänzungseinheit
WO2013000829A1 (de) * 2011-06-30 2013-01-03 Avl List Gmbh Antriebsstrang für ein fahrzeug
KR20160133561A (ko) * 2014-03-20 2016-11-22 스카니아 씨브이 악티에볼라그 하이브리드 드라이브 라인의 연소 엔진 시동 방법
KR20160135787A (ko) * 2014-03-20 2016-11-28 스카니아 씨브이 악티에볼라그 하이브리드 드라이브 라인의 연소 엔진 시동 방법
WO2017088856A1 (de) 2015-11-27 2017-06-01 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur lastschaltung von hybridisierten automatgetrieben durch eine doppelkupplungsstrategie mit transformation
WO2017108303A1 (de) * 2015-12-21 2017-06-29 Zf Friedrichshafen Ag Getriebe eines kraftfahrzeugs und verfahren zum betreiben eines kraftfahrzeugs
EP3120009A4 (de) * 2014-03-20 2017-11-29 Scania CV AB Verfahren zum starten eines verbrennungsmotors in einem hybriden antriebsstrang
DE102016111060A1 (de) 2016-06-16 2017-12-21 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Lastschaltung von hybridisierten Automatgetrieben durch eine Doppelkupplungsstrategie mit Transformation
US9944273B2 (en) 2014-03-20 2018-04-17 Scania Cv Ab Method for controlling a hybrid driveline in order to achieve gear change without interruption of torque
US9956952B2 (en) 2014-03-20 2018-05-01 Scania Cv Ab Method for controlling a hybrid driveline in order to optimize torque from a combustion engine arranged at the driveline
US10046754B2 (en) 2014-03-20 2018-08-14 Scania Cv Ab Method for controlling a hybrid vehicle driveline
US10046758B2 (en) 2014-03-20 2018-08-14 Scania Cv Ab Method for starting a combustion engine in a hybrid driveline
US10071728B2 (en) 2014-03-20 2018-09-11 Scania Cv Ab Method for controlling a hybrid vehicle driveline
US10077044B2 (en) 2014-03-20 2018-09-18 Scania Cv Ab Method for controlling a hybrid driveline for reducing electrical losses
US10207701B2 (en) 2014-03-20 2019-02-19 Scania Cv Ab Method for controlling a driveline in order to optimize fuel consumption
US10315642B2 (en) 2014-03-20 2019-06-11 Scania Cv Ab Method for takeoff of a vehicle with a hybrid driveline
WO2019115126A1 (de) * 2017-12-15 2019-06-20 Zf Friedrichshafen Ag Verfahren zum betreiben eines antriebsstrangs eines kraftfahrzeugs, steuergerät und computerprogrammprodukt
US10479350B2 (en) 2014-03-20 2019-11-19 Scania Cv Ab Method for controlling a hybrid vehicle driveline
CN111132866A (zh) * 2017-08-02 2020-05-08 罗伯特·博世有限公司 用于混合动力驱动系统的传动机构、混合动力驱动系统及运行混合动力驱动系统的方法
WO2020256618A1 (en) * 2019-06-18 2020-12-24 Scania Cv Ab A modular transmission platform and a powertrain for a vehicle
SE1951307A1 (en) * 2019-11-13 2021-05-14 Scania Cv Ab A method for driving at least one power consumer connected to a powertrain
US11155265B2 (en) 2014-03-20 2021-10-26 Scania Cv Ab Method for takeoff of a vehicle comprising a hybrid driveline
US11198427B2 (en) 2014-03-20 2021-12-14 Scania CVAB Method for controlling a hybrid driveline
WO2022109644A1 (de) * 2020-11-26 2022-06-02 Avl List Gmbh Antriebsstrang für ein kraftfahrzeug
DE102021000943A1 (de) 2021-02-22 2022-08-25 Mercedes-Benz Group AG Hybridantriebssystem und Fahrzeug
RU2782852C1 (ru) * 2019-06-18 2022-11-03 Сканиа Св Аб Модульная трансмиссионная платформа и силовая цепь для транспортного средства
DE102021205948A1 (de) 2021-06-11 2022-12-15 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018113353A1 (de) 2018-06-05 2018-07-19 FEV Europe GmbH Planetengetriebe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19903936A1 (de) * 1998-11-03 2000-05-04 Bosch Gmbh Robert Getriebe, insbesondere für Kraftfahrzeuge
JP2005155891A (ja) * 2003-11-06 2005-06-16 Toyota Motor Corp ハイブリッド車の駆動装置
US20050227803A1 (en) * 2004-04-07 2005-10-13 Holmes Alan G Compound differential dual power path transmission
US20060142104A1 (en) * 2004-12-28 2006-06-29 Michael Saller Vehicle drive and a control method for a vehicle drive
WO2007110721A1 (en) * 2006-03-29 2007-10-04 Toyota Jidosha Kabushiki Kaisha Hybrid driving apparatus, and control method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19903936A1 (de) * 1998-11-03 2000-05-04 Bosch Gmbh Robert Getriebe, insbesondere für Kraftfahrzeuge
JP2005155891A (ja) * 2003-11-06 2005-06-16 Toyota Motor Corp ハイブリッド車の駆動装置
US20050227803A1 (en) * 2004-04-07 2005-10-13 Holmes Alan G Compound differential dual power path transmission
US20060142104A1 (en) * 2004-12-28 2006-06-29 Michael Saller Vehicle drive and a control method for a vehicle drive
WO2007110721A1 (en) * 2006-03-29 2007-10-04 Toyota Jidosha Kabushiki Kaisha Hybrid driving apparatus, and control method thereof

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010036510A1 (de) * 2010-07-20 2012-01-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Parallelhybrid-Antriebsstrang und Verfahren zum Betreiben eines Parallelhybrid-Antriebsstrangs
DE102010036510B4 (de) 2010-07-20 2023-08-24 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zum Betreiben eines Parallelhybrid-Antriebsstrangs
WO2012055527A1 (de) * 2010-10-25 2012-05-03 Magna Powertrain Ag & Co Kg Getriebeeinheit und elektrische ergänzungseinheit
DE112011103566B4 (de) 2010-10-25 2023-12-14 Magna Pt B.V. & Co. Kg Elektrische Ergänzungseinheit für ein Getriebe
WO2013000829A1 (de) * 2011-06-30 2013-01-03 Avl List Gmbh Antriebsstrang für ein fahrzeug
US10046758B2 (en) 2014-03-20 2018-08-14 Scania Cv Ab Method for starting a combustion engine in a hybrid driveline
US10071728B2 (en) 2014-03-20 2018-09-11 Scania Cv Ab Method for controlling a hybrid vehicle driveline
EP3120010A4 (de) * 2014-03-20 2017-11-29 Scania CV AB Verfahren zum starten eines verbrennungsmotors in einem hybriden antriebsstrang
EP3120011A4 (de) * 2014-03-20 2017-11-29 Scania CV AB Verfahren zum starten eines verbrennungsmotors in einem hybriden antriebsstrang
EP3120009A4 (de) * 2014-03-20 2017-11-29 Scania CV AB Verfahren zum starten eines verbrennungsmotors in einem hybriden antriebsstrang
US11155265B2 (en) 2014-03-20 2021-10-26 Scania Cv Ab Method for takeoff of a vehicle comprising a hybrid driveline
US9944273B2 (en) 2014-03-20 2018-04-17 Scania Cv Ab Method for controlling a hybrid driveline in order to achieve gear change without interruption of torque
US9956952B2 (en) 2014-03-20 2018-05-01 Scania Cv Ab Method for controlling a hybrid driveline in order to optimize torque from a combustion engine arranged at the driveline
US10046754B2 (en) 2014-03-20 2018-08-14 Scania Cv Ab Method for controlling a hybrid vehicle driveline
US10661783B2 (en) 2014-03-20 2020-05-26 Scania Cv Ab Method for starting a combustion engine in a hybrid driveline
KR101890381B1 (ko) 2014-03-20 2018-08-21 스카니아 씨브이 악티에볼라그 하이브리드 드라이브 라인의 연소 엔진 시동 방법
US11198427B2 (en) 2014-03-20 2021-12-14 Scania CVAB Method for controlling a hybrid driveline
US10077044B2 (en) 2014-03-20 2018-09-18 Scania Cv Ab Method for controlling a hybrid driveline for reducing electrical losses
KR101912402B1 (ko) 2014-03-20 2018-10-26 스카니아 씨브이 악티에볼라그 하이브리드 드라이브 라인의 연소 엔진 시동 방법
US10207701B2 (en) 2014-03-20 2019-02-19 Scania Cv Ab Method for controlling a driveline in order to optimize fuel consumption
US10293806B2 (en) 2014-03-20 2019-05-21 Scania Cv Ab Method for starting a combustion engine in a hybrid driveline
US10315642B2 (en) 2014-03-20 2019-06-11 Scania Cv Ab Method for takeoff of a vehicle with a hybrid driveline
KR20160135787A (ko) * 2014-03-20 2016-11-28 스카니아 씨브이 악티에볼라그 하이브리드 드라이브 라인의 연소 엔진 시동 방법
KR20160133561A (ko) * 2014-03-20 2016-11-22 스카니아 씨브이 악티에볼라그 하이브리드 드라이브 라인의 연소 엔진 시동 방법
US10384671B2 (en) 2014-03-20 2019-08-20 Scania Cv Ab Method for starting a combustion engine in a hybrid driveline
US10479350B2 (en) 2014-03-20 2019-11-19 Scania Cv Ab Method for controlling a hybrid vehicle driveline
WO2017088856A1 (de) 2015-11-27 2017-06-01 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur lastschaltung von hybridisierten automatgetrieben durch eine doppelkupplungsstrategie mit transformation
WO2017108303A1 (de) * 2015-12-21 2017-06-29 Zf Friedrichshafen Ag Getriebe eines kraftfahrzeugs und verfahren zum betreiben eines kraftfahrzeugs
US10940749B2 (en) 2015-12-21 2021-03-09 Zf Friedrichshafen Ag Gearbox of a motor vehicle and method for operating a motor vehicle
DE102016111060A1 (de) 2016-06-16 2017-12-21 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Lastschaltung von hybridisierten Automatgetrieben durch eine Doppelkupplungsstrategie mit Transformation
DE102016111060B4 (de) 2016-06-16 2019-08-01 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Verfahren zur Lastschaltung von hybridisierten Automatgetrieben durch eine Doppelkupplungsstrategie mit Transformation
CN111132866A (zh) * 2017-08-02 2020-05-08 罗伯特·博世有限公司 用于混合动力驱动系统的传动机构、混合动力驱动系统及运行混合动力驱动系统的方法
WO2019115126A1 (de) * 2017-12-15 2019-06-20 Zf Friedrichshafen Ag Verfahren zum betreiben eines antriebsstrangs eines kraftfahrzeugs, steuergerät und computerprogrammprodukt
RU2782852C1 (ru) * 2019-06-18 2022-11-03 Сканиа Св Аб Модульная трансмиссионная платформа и силовая цепь для транспортного средства
WO2020256618A1 (en) * 2019-06-18 2020-12-24 Scania Cv Ab A modular transmission platform and a powertrain for a vehicle
RU2793739C1 (ru) * 2019-11-13 2023-04-05 Сканиа Св Аб Способ приведения в действие, по меньшей мере, одного потребителя мощности, соединенного с силовым агрегатом
SE1951307A1 (en) * 2019-11-13 2021-05-14 Scania Cv Ab A method for driving at least one power consumer connected to a powertrain
SE543783C2 (en) * 2019-11-13 2021-07-20 Scania Cv Ab A method for driving at least one power consumer connected to a powertrain
WO2021096407A1 (en) * 2019-11-13 2021-05-20 Scania Cv Ab A method for driving at least one power consumer connected to a powertrain
WO2022109644A1 (de) * 2020-11-26 2022-06-02 Avl List Gmbh Antriebsstrang für ein kraftfahrzeug
DE102021000943A1 (de) 2021-02-22 2022-08-25 Mercedes-Benz Group AG Hybridantriebssystem und Fahrzeug
DE102021205948A1 (de) 2021-06-11 2022-12-15 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug
DE102021205948B4 (de) 2021-06-11 2023-04-27 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug, Kraftfahrzeugantriebsstrang mit einem solchen Getriebe sowie Verfahren zum Betreiben eines solchen Getriebes

Also Published As

Publication number Publication date
DE112007003564A5 (de) 2010-06-24

Similar Documents

Publication Publication Date Title
WO2009024162A1 (de) Hybridantriebssystem mit zwei teilgetrieben
DE102013215114B4 (de) Hybridantrieb eines Kraftfahrzeugs
EP1972481A1 (de) Verfahren zum Betrieb eines Hybridantriebssystems sowie Hybridsantriebssystem mit zwei Teilgetrieben
EP2450215B1 (de) Hybridgetriebe
DE102013221461A1 (de) Hybridantrieb eines Kraftfahrzeugs
EP3689658A1 (de) Hybridantrieb mit einem automatisierten schaltgetriebe und steuerverfahren des selben
EP3246189B1 (de) Hybrid-antriebsstrang
EP2144777A1 (de) Verfahren zum betrieb eines hybridantriebssystems sowie hybridantriebssystem mit zwei teilgetrieben
EP2089639A1 (de) Hybridantriebsstrang eines kraftfahrzeugs
DE102011080068A1 (de) Automatisiertes Gruppengetriebe eines Kraftfahrzeugs und Verfahren zum Betreiben desselben
DE10140424A1 (de) Automatisch schaltbares Fahrzeuggetriebe
DE102015221498A1 (de) Antriebsanordnung für ein Hybridfahrzeug und Antriebsstrang mit einer solchen Antriebsanordnung
DE102019212120A1 (de) Kompaktes lastschaltbares Getriebe
DE102006009296A1 (de) Leistungsverzweigter Hybrid-Antriebsstrang und Schaltverfahren
DE102010048857A1 (de) Getriebe eines Hybridfahrzeugs mit Verbrennungsmotor und elektrodynamischer Vorrichtung
DE102020203774A1 (de) Hybridgetriebe mit zwei Planetenradsätzen
DE102020203195A1 (de) Getriebe für ein Kraftfahrzeug
DE102019212140A1 (de) Kompaktes lastschaltbares Getriebe
DE102019212119A1 (de) Kompaktes lastschaltbares Getriebe
DE102021206520B4 (de) Gangvorwahlfrei lastschaltbares Hybridgetriebe mit einfachem Aufbau
DE102021211237B4 (de) Dreigang-Hybridgetriebe in Planetenbauweise
DE102022201154A1 (de) Dreigang-Hybridgetriebe
DE102022201151A1 (de) Kompaktes Hybridgetriebe
DE102021209702A1 (de) Hybrid-Antriebsstrang in Mischbauweise
DE102021205930A1 (de) Lastschaltbares DHT-Hybridgetriebe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07801755

Country of ref document: EP

Kind code of ref document: A1

REF Corresponds to

Ref document number: 112007003564

Country of ref document: DE

Date of ref document: 20100624

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07801755

Country of ref document: EP

Kind code of ref document: A1