WO2009014197A1 - Rotary machine - Google Patents

Rotary machine Download PDF

Info

Publication number
WO2009014197A1
WO2009014197A1 PCT/JP2008/063342 JP2008063342W WO2009014197A1 WO 2009014197 A1 WO2009014197 A1 WO 2009014197A1 JP 2008063342 W JP2008063342 W JP 2008063342W WO 2009014197 A1 WO2009014197 A1 WO 2009014197A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
hole
rotor core
rotating electrical
electrical machine
Prior art date
Application number
PCT/JP2008/063342
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiharu Aikou
Takayasu Suwama
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2009014197A1 publication Critical patent/WO2009014197A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Definitions

  • the present invention relates to a rotary electric machine, and relates to a rotary electric machine in which a permanent magnet is provided on a rotor.
  • Japanese Patent Application Laid-Open No. 2 005-0 2 0 8 5 5 proposes an electric motor in which the weight of the electric motor is reduced without lowering the electric motor output.
  • a trapezoidal through-hole is formed in a portion of the rotor core located on the inner diameter side from the central portion of the permanent magnet. This increases the area of the through-hole without obstructing the flow of magnetic flux lines, and provides a high-power and lightweight motor.
  • Japanese Patent Laid-Open No. 2 00 2-3 4 5 1 8 8 proposes a rotating electrical machine that efficiently cools a permanent magnet without reducing the output of the rotating electrical machine.
  • the outer peripheral side surface of the permanent magnet is in close contact with the permanent magnet insertion hole, and a cooling passage through which the refrigerant is guided along the permanent magnet insertion hole is formed on the inner side of the permanent magnet.
  • the cooling system including this cooling passage is closed circuit.
  • an upstream side passage formed in an axis of a rotating shaft, a downstream side passage, and these passages and a cooling passage communicate with each other.
  • Japanese Patent Laid-Open No. 2 006-0 2 5 5 4 5 provides a rotating electrical machine that prevents the insulation of the stator windings from being lowered by the cooling liquid splashed from the rotor.
  • a guide path is provided between the rotor shaft and the rotor core and the end plate, and the cooling oil supplied into the rotary shaft by this guide path is based on the rotational centrifugal force. Then, guide it toward the outer surface of the end plate and scatter it toward the end of the stator winding.
  • the present invention has been made in view of the above-described problems, and its object is to provide a rotating electrical machine that is capable of cooling a permanent magnet, reducing the weight of the rotor, and suppressing variations in the weight balance of the rotor. It is to be.
  • a rotating electrical machine includes a ring-shaped stator, a rotor inserted into the stator and rotatably supported, a magnet mounted in a magnet receiving portion formed in the rotor, and a rotor And an end plate provided on the end face in the axial direction.
  • a hole extending in the axial direction of the rotor is formed at a position away from the magnet receiving portion.
  • a path passing from the opening of the hole through the axial end surface of the magnet is defined by at least one of the axial end surface of the rotor and the end plate, and a discharge port communicating with the path is defined by It is formed by at least one of the end face and the end plate.
  • the hole is positioned on the rotation center side of the rotor with respect to the magnet.
  • the discharge port is located at an outer peripheral edge of the rotor.
  • the end plate includes a guide portion capable of guiding the refrigerant supplied into the path from the hole portion to the end surface of the magnet.
  • the end plate closes a part of the opening of the hole,
  • a part of the opening is defined as a flow port through which the refrigerant can flow, and the flow port is provided at a position shifted in the circumferential direction of the rotor with respect to the magnet.
  • the opening of the through hole is formed such that the circumferential length increases from the radially inner side of the rotor toward the radially outer side.
  • the permanent magnet can be cooled, and the weight of the rotor and the weight balance of the rotor can be made uniform.
  • FIG. 1 is a side sectional view of the rotating electrical machine according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line I I—I I shown in FIG.
  • FIG. 3 is an enlarged cross-sectional view of a part of FIG.
  • FIG. 4 is a cross-sectional view showing the rotor of the rotating electrical machine according to the second embodiment of the present invention.
  • Figure 5 is an enlarged view of a part of Figure 4
  • FIG. 6 is a cross-sectional view of the rotor of the rotating electrical machine according to the third embodiment of the present invention.
  • FIG. 7 is an enlarged view of a part of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • a rotating electrical machine 100 according to an embodiment of the present invention will be described with reference to FIGS. Note that the same or corresponding components are denoted by the same reference numerals and description thereof is omitted. Note that in the embodiments described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. In the following embodiments, each component is not necessarily essential for the present invention unless otherwise specified. In addition, when there are a plurality of embodiments below, unless otherwise specified, it is planned from the beginning to appropriately combine the features of each embodiment.
  • FIG. 1 is a side sectional view of rotating electrical machine 100 according to Embodiment 1 of the present invention.
  • the rotating electrical machine has at least one of a function as a motor and a function as a generator, and has a function as a motor generator.
  • the rotating electrical machine 100 is configured to be formed in an annular shape, disposed on a rotating shaft 10 that is rotatably supported, a rotor 20 fixed to the rotating shaft 10, and an outer periphery of the rotor 20. And a stator 1 2.
  • the stator 12 is formed in a ring shape and wound around a stator core 14 formed by laminating a plurality of electromagnetic steel plates, and stator teeth formed on the inner peripheral surface of the stator core 14 at a plurality of intervals.
  • Coil 1 and 3 The coin 13 includes a U-phase coil, a V-phase coil, and a W-phase coil.
  • the rotor 20 includes a rotor core 2 1 in which a plurality of electromagnetic steel plates are laminated, and a rotor core 2
  • the 1 includes a permanent magnet 2 2 attached to 1 and an end plate 2 3 provided at an axial end of the rotor core 21.
  • the rotor core 21 is formed by laminating a plurality of magnetic steel plates.
  • a plurality of permanent magnet accommodation holes 32 extending along the rotation axis O of the rotary shaft 10 are formed at intervals in the circumferential direction.
  • the permanent magnet housing hole 32 is filled with a permanent magnet 22 and a resin that adheres the permanent magnet 22 to the inner wall surface of the rotor core 21 defining the permanent magnet housing hole 32.
  • a plurality of through holes 31 are formed in a portion located radially inward of the rotor core 21 with respect to the permanent magnets 22 and the permanent magnet housing holes 32. As described above, since the rotor core 21 is formed with the plurality of through holes 31, the weight of the rotor core 21 is reduced.
  • An end plate 23 is provided on the end surface of the rotor core 21 in the axial direction.
  • the end plate 23 is formed with a path 33 passing from the opening of the through hole 31 to the axial end surface of the permanent magnet 22.
  • FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG.
  • the permanent magnet receiving hole 3 2 includes a receiving hole 3 2 A inclined inward in the radial direction of the rotor core 21 toward the rotational direction P of the rotor 20, and the receiving hole 3. 2 A with a receiving hole 3 2 B located in the front direction of rotation P with respect to 2 A.
  • the housing hole 3 2 B is formed so as to incline from the radially inner side of the rotor core 21 toward the outer side in the rotational direction P.
  • permanent magnet 2 2 A, 2 2 B is housed in each receiving hole 3 2 A, 3 2 B.
  • the permanent magnets 22 accommodated in the permanent magnet accommodation holes 32 adjacent to each other in the circumferential direction of the rotor core 21 have different magnetic poles arranged toward the outer periphery of the rotor core 21.
  • FIG. 3 is an enlarged cross-sectional view of a part of FIG.
  • the accommodation hole 3 2 A and the accommodation hole 3 2 B of the permanent magnet accommodation hole 32 are slightly separated from each other in the circumferential direction of the rotor core 21.
  • the thin hole portion 36 is defined in the portion located between the accommodation hole 3 2 A and the accommodation hole 3 2 B by the accommodation hole 3 2 A and the accommodation hole 3 2 B.
  • the thin portion 36 extends in the radial direction of the rotor core 21.
  • a thick portion 37 is defined in a portion of the rotor core 21 located between the permanent magnet accommodation holes 3 2.
  • through-holes 3 1 A and 3 1 B are provided in the circumferential direction of the rotor core 21 in the portion located radially inward of the rotor core 21 with respect to the permanent magnet housing hole 3 2. It is formed at intervals.
  • partition walls 70 that partition the through holes 31 are formed between the through holes 3 1.
  • Each through hole 3 1 is located radially inward of the rotor core 21 with respect to the thick portion 37.
  • the thin portion 36 and the partition wall 70 are arranged in the radial direction of the rotor core 21.
  • the partition wall 70 defined between the through holes 31 is positioned radially inward with respect to the thin portion 36.
  • a through hole 31 is formed in a portion located radially inward with respect to the thick portion 37.
  • the through hole 31 is formed in a substantially sector shape so that the size in the circumferential direction of the rotor core 21 increases from the radially inner side to the outer side of the rotor core 21. For this reason, the partition walls 70 located between the through holes 31 are formed so as to extend in the radial direction of the rotor core 21.
  • the portion of the rotor core 21 where the thin portion 36 is located has low rigidity, while the partition wall 70 is located in the radial direction, so that the portion where the thin portion 36 is located.
  • the radial rigidity can be ensured.
  • the thick portion 37 has high rigidity, even if the through hole 31 is formed on the radially inner side with respect to the thick portion 37, the rigidity can be ensured.
  • the central portion in the circumferential direction of the rotor core 21 of each through hole 3 1 is the receiving hole 3 2 A, It is located at a position shifted in the circumferential direction with respect to the central portion of 3 2 B in the circumferential direction.
  • a path 3 3 is defined on the axial end face of 2 1.
  • the end plate 23 is formed in a disc-shaped top plate portion 1 2 4 and a peripheral portion of the top plate portion 1 2 4 in the circumferential direction. And peripheral wall portions 1 2 3 formed at intervals.
  • Each peripheral wall portion 1 2 3 is located on the radially outer side of the rotor core 21 with respect to the thin portion 3 6.
  • a path defining portion 1 33 that defines the path 33 is formed on the surface facing the axial end surface of the rotor core 21.
  • the path defining portion 1 3 3 includes an annular portion 1 3 3 B formed in an annular shape so as to cover a portion of the axial end surface of the rotor core 21 located around the rotary shaft 10, and the annular portion 1 3 3 B is provided with protrusions 1 3 3 A that protrude from the peripheral edge of the rotor core 21 toward the radial direction of the rotor core 21 and are formed at intervals in the circumferential direction.
  • a path 33 is defined on the axial end surface of the rotor core 21 by the circumferentially adjacent projecting portion 1 33 3 A and the peripheral wall portion 1 23 3.
  • the circumferentially adjacent protrusions 1 3 3 A communicate with part of the openings of the through holes 3 1 A and 3 1 B adjacent in the circumferential direction, and further toward the radial direction of the rotor core 21.
  • An extended communication path 1 3 4 is defined.
  • each through hole 3 1 A, 3 1 B is positioned as the supply port 1 3 1 A, 1 3 1 B in the communication passage 1 3 4 .
  • the lubricating oil may enter the through hole 31 through the gap between the end plate 2 3 and the axial end surface of the rotor core 21.
  • the lubricating oil and refrigerant in the through hole 31 are routed through the path 3 Since supply ports 1 3 1 A and 1 3 1 B that can be supplied (discharged) in 3 are defined, the lubricant can be discharged from the through hole 3 1.
  • the communication path 1 3 4 extends from the supply ports 1 3 1 A and 1 3 1 B outward in the radial direction of the rotor core 21. Therefore, the lubricating oil or refrigerant that has entered the communication path 1 3 4 from the supply ports 1 3 1 A and 1 3 1 B flows out into the communication path 1 3 4 due to the centrifugal force of the rotor core 21. In this way, the lubricating oil and refrigerant in each through hole 3 1 are routed. 3 Since it can be discharged into the interior of the through hole 31, it is possible to reduce the amount of accumulated lubricating oil and refrigerant in each through-hole 31, and the difference in the amount of lubricating oil stored in each through-hole 31 can be reduced. Can be reduced.
  • the tip of the protrusion 1 3 3 A is located radially inward of the permanent magnet housing hole 3 2 in the axial end surface of the rotor core 21, and the protrusion 1 3 3 A is the peripheral wall 1 2 3 Extends towards the circumferential edge.
  • a discharge path 1 3 5 is defined that extends in a direction that intersects (radial direction).
  • the discharge path 1 3 5 is formed so as to pass on the axial end surfaces of the permanent magnets 2 2 A and 2 2 B.
  • a discharge port 3 3a for discharging the lubricating oil and refrigerant in the discharge passage 1 3 5 to the outside is defined by the peripheral wall portions 1 2 3 adjacent in the circumferential direction of the rotor core 21.
  • the lubricating oil refrigerant or the like that has entered the communication path 1 3 4 flows in the communication path 1 3 4 in the radial direction of the rotor core 2 1. After that, the lubricating oil refrigerant enters the discharge path 1 3 5.
  • the refrigerant or lubricating oil that has entered the discharge path 1 3 5 flows in the circumferential direction of the rotor core 21 while cooling the axial end surfaces of the permanent magnets 2 2 A and 2 2 B. Thereafter, lubricating oil and refrigerant are discharged from the outlet 3 3 a.
  • the discharge port 3 3 a is defined both on the front side in the rotation direction P and on the rear side in the rotation direction P with respect to each communication path 1 3 4.
  • the lubricating oil is discharged from the discharge port 3 3 a 2 located on the rear side in the rotation direction P with respect to the communication path 1 3 4 A.
  • the axial end surface of the permanent magnet 22 A is cooled by the lubricating oil or refrigerant.
  • the refrigerant from the communication path 1 3 4 A is lubricated to the front side in the rotational direction P with respect to the communication path 1 3 4 A.
  • the permanent magnet 2 2 B located on the discharge port 3 3 a 1 side is cooled.
  • the rotating electrical machine accelerates or decelerates, it is discharged from at least one of the discharge ports 3 3 a 1 and 3 3 a 2 and cools the axial end surfaces of the permanent magnets 2 2 A and 2 2 B. can do.
  • the axial end surface of the permanent magnet 22 and the end plate 23 are separated from each other, and the end plate 23 is made of a metal material such as aluminum, for example. In this way, by separating the metal end plate 23 and the permanent magnet 22 from each other, it is possible to suppress the generation of eddy currents generated in the end plate 23 during driving of the rotating electrical machine.
  • One projecting part 1 3 3 A and the projecting part 1 3 3 A adjacent to the projecting part 1 3 3 A in the circumferential direction are connected to each other, and are located at the outer peripheral edge of the annular part 1 3 3 B
  • the root portion 1 3 3 C extends in the circumferential direction of the rotor core 21.
  • the side surfaces 1 3 6 a and 1 3 6 b of the adjacent protrusions 1 3 3 A are arranged so that the circumferential distance of the rotor core 21 increases toward the outer side in the radial direction of the rotor core 21. It is curved smoothly.
  • the lubricating oil or refrigerant that has entered the path 3 3 from the supply ports 1 3 1 A and 1 3 1 B flows through the communication path 1 3 4 and can be discharged from the discharge port 3 3 a. ing.
  • FIG. 1, FIG. 4, and FIG. Note that the same or corresponding components as those shown in FIGS. 1 to 3 are given the same reference numerals and description thereof is omitted.
  • FIG. 4 is a cross-sectional view showing the rotor 20 of the rotating electrical machine according to the second embodiment of the present invention
  • FIG. 5 is an enlarged view of a part of FIG.
  • the end plate 2 3 is formed on the top plate portion 1 2 4 and the top plate portion 1 2 4, formed on the outer peripheral edge portion of the path defining portion 1 4 4 and the top plate portion 1 2 4, and the rotor core 2 1 and a peripheral wall portion 1 2 3 depending on the axial end face.
  • the path defining portion 1 4 4 is located around the rotary shaft 10, and an annular portion 1 4 4 B that contacts the axial end surface of the rotor core 2 1, and this annular portion 1 4 4 B
  • a plurality of protrusions 14 4 A are formed on the outer periphery of the rotor core 21 at intervals, and protrude in the radial direction of the rotor core 21.
  • the projecting portion 14 4 A and the peripheral wall portion 1 2 3 are in contact with the axial end surface of the rotor core 21, so that the lubrication that has entered the through hole 31 in the axial end surface of the rotor core 21 is performed.
  • Routes 43 for discharging oil and refrigerant to the outside are defined.
  • a supply port 14 1 is defined in part by a protruding portion 14 4 A and an annular portion 14 4 B.
  • the protrusion 1 4 4 A is a first side portion 1 4 5 that extends radially outward from a portion of the root of the protrusion 1 4 4 A located on the front side in the rotational direction P. b and an inclined portion 1 4 5 a connected to the end of this first side portion 1 4 5 b and inclined toward the rear side in the rotational direction P as it goes radially outward, and the inclined portion 1 4 5 a and a second side portion 1 4 5 c that extends toward the annular portion 1 4 4 B.
  • the discharge path that inclines radially outward toward the rear side in the rotational direction P and reaches the discharge port 3 3 a 2 1 4 5 is specified.
  • the portion located between the inclined portion 1 4 5 a and the peripheral wall portion 1 2 3 is the permanent magnet 2
  • the lubricating oil refrigerant or the like accumulated in the through hole 3 1 is supplied from the supply port 1 4 1 to the supply port 1 4 1.
  • the direction of rotation P passes through the discharge path 1 4 5 located on the rear side, and the lubricating oil or refrigerant is discharged from the discharge port 3 3 a 2.
  • the axial end face of the permanent magnet 2 2 is cooled when passing through the discharge path 1 4 5.
  • the lubricating oil or refrigerant accumulated in the through hole 3 1 enters the path 4 3 from the supply port 1 4 1 and is guided to the first side 1 4 5 c. And discharged from the outlet 3 3 a 1. Even when discharged in this way, the lubricating oil or refrigerant cools the axial end surface of the permanent magnet 22.
  • Embodiment 3 (Embodiment 3) Embodiment 3 according to the present invention will be described with reference to FIG. 1, FIG. 6, and FIG. Note that the same or corresponding components as those shown in FIGS. 1 to 5 are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 6 is a cross-sectional view of the rotor of the rotating electrical machine according to the third embodiment of the present invention
  • FIG. 7 is an enlarged view of a part of FIG.
  • the end plate 2 3 includes a top plate portion 1 2 4 and a peripheral wall portion 1 that hangs from the peripheral portion of the top plate portion 1 2 4 toward the axial end surface of the rotor core 21. 2 and 3.
  • a path defining portion 15 3 that defines a path 53 on the axial end surface of the rotor core 21 is formed on the side surface of the end plate 23 that faces the axial end surface of the rotor core 21.
  • the path defining portion 15 3 includes an annular portion 15 3 B formed so as to cover a portion of the end surface in the axial direction of the rotor core 21 located around the rotary shaft 10, and the annular portion 15 3 3.
  • a projecting portion 1 5 3 A that is provided continuously with the outer peripheral flange of B and projects outward in the radial direction of the rotor core 21.
  • the protruding portion 15 3 A extends so as to cover the upper surface of the partition wall 70 among the axial end surfaces of the rotor core 21. For this reason, it is possible to suppress the partition wall 70 from being deformed by the stress generated in the partition wall 70 when the rotor 20 is rotating.
  • the end face of the permanent magnet 22 can be cooled when the refrigerant in the through hole 31 is discharged.
  • the present invention is suitable for a rotating electrical machine.

Abstract

A rotary machine (100) includes: a stator (12); a rotor (20) inserted into the stator (12) and rotatably supported; a magnet reception unit (32) formed in the rotor (20); a permanent magnet (22) mounted in the magnet reception unit (32); a hole (31) arranged apart from the magnet reception unit (32) and extending in the axis direction; an end plate (23) arranged at the end surface of the axial direction of the rotor (20); a channel (33) defined by at least one of the axial direction end surface and the end plate (23) and leading from above the opening of the hole (31) to above the axial direction end surface of the permanent magnet (22); and a discharge exit defined by at least one of the axial direction end surface and the end plate (23) of the rotor (20) so as to communicate with the channel (33).

Description

明細書 回転電機 技術分野  Technical specification
本発明は、 回転電機に関し、 ロータに永久磁石が設けられた回転電機に関する。 背景技術 The present invention relates to a rotary electric machine, and relates to a rotary electric machine in which a permanent magnet is provided on a rotor. Background art
従来から、 電動機や回転電機においては、 永久磁石の冷却および回転子の軽量 化などが図られている。 たとえば、 特開 2 0 0 5— 0 2 0 8 5 5号公報には、 電 動機出力を低下させることなく、 電動機の軽量化が図られた電動機が提案されて いる。 この電動機は、 ロータコアのうち、 永久磁石の中央部より内径側に位置す る部分に、 台形となる貫通孔が形成されている。 これにより、 磁束線の流れを妨 げることなく、 貫通孔に面積を拡大し、 高出力および軽量の電動機を提供する。 また、 特開 2 0 0 2— 3 4 5 1 8 8号公報には、 回転電機の出力を低下させる ことなく、 永久磁石の冷却を効率的に行う回転電機が提案されている。 この回転 電機においては、 永久磁石の外周側面が永久磁石挿入孔に密着し、 永久磁石の内 側には、 永久磁石挿入孔に沿って冷媒が導かれる冷却通路が形成されている。 こ の冷却通路を含めて冷却系が閉回路とされている。 また、 この特開 2 0 0 2— 3 4 5 1 8 8号公報には、 回転軸の軸心に形成された上流側通路と、 下流側通路と、 これらの通路と冷却通路とを連通するようにエンドプレートに形成された分岐通 路とを備えた回転電機が記載されている。  Conventionally, in motors and rotating electrical machines, permanent magnet cooling and rotor weight reduction have been attempted. For example, Japanese Patent Application Laid-Open No. 2 005-0 2 0 8 5 5 proposes an electric motor in which the weight of the electric motor is reduced without lowering the electric motor output. In this electric motor, a trapezoidal through-hole is formed in a portion of the rotor core located on the inner diameter side from the central portion of the permanent magnet. This increases the area of the through-hole without obstructing the flow of magnetic flux lines, and provides a high-power and lightweight motor. In addition, Japanese Patent Laid-Open No. 2 00 2-3 4 5 1 8 8 proposes a rotating electrical machine that efficiently cools a permanent magnet without reducing the output of the rotating electrical machine. In this rotating electrical machine, the outer peripheral side surface of the permanent magnet is in close contact with the permanent magnet insertion hole, and a cooling passage through which the refrigerant is guided along the permanent magnet insertion hole is formed on the inner side of the permanent magnet. The cooling system including this cooling passage is closed circuit. Further, in this Japanese Patent Laid-Open No. 2 0 2-3 4 5 1 8 8, an upstream side passage formed in an axis of a rotating shaft, a downstream side passage, and these passages and a cooling passage communicate with each other. Thus, a rotating electrical machine having a branch passage formed in an end plate is described.
さらに、 特開 2 0 0 6— 0 2 5 5 4 5号公報には、 回転子から飛散される冷却 液体によって固定子巻線の絶縁の低下を防止する回転電機が提供されている。 こ の回転電機においては、 回転子の回転軸および回転子鉄心と、 端板との間に案内 路を設けて、 この案内路により回転軸内に供給された冷却油を回転遠心力に基づ いて、 端板の外周側の外面側に案内して、 固定子卷線の端部に向けて飛散させて レヽる。  Furthermore, Japanese Patent Laid-Open No. 2 006-0 2 5 5 4 5 provides a rotating electrical machine that prevents the insulation of the stator windings from being lowered by the cooling liquid splashed from the rotor. In this rotating electrical machine, a guide path is provided between the rotor shaft and the rotor core and the end plate, and the cooling oil supplied into the rotary shaft by this guide path is based on the rotational centrifugal force. Then, guide it toward the outer surface of the end plate and scatter it toward the end of the stator winding.
し力、し、 特開 2 0 0 5— 0 2 0 8 5 5号公報に記載された電動機においては、 台形状に形成された貫通孔内に、 ロータを冷却するための冷媒や、 軸受の潤滑を 確保するための潤滑油等が入り込み、 ロータの重心バランスが悪くなるという問 題があった。 In the electric motor described in Japanese Patent Laid-Open No. 2 0 0 5-0 2 0 8 5 5, There was a problem that the balance of the center of gravity of the rotor deteriorated because the coolant for cooling the rotor and the lubricating oil for ensuring the lubrication of the bearing entered the through hole formed in the trapezoidal shape.
なお、 特開 2 0 0 2— 3 4 5 1 8 8号公報に記載された回転亀機のうち、 冷却 系回路が形成された回転電機においては、 冷却系回路が閉回路とされており、 冷 却通路内に外部の潤滑油ゃ冷媒等が入り込むと、 ロータの重量バランスが崩れて しまう。 また、 エンドプレートに分岐通路が形成された回転電機においては、 上 方に位置する分岐通路内に供給される供給量よりも、 下方に位置する分岐通路内 に供給される供給量の方が多くなり、 結果として、 ロータのバランスが崩れてし まう。 さらに、 特開 2◦ 0 6— 0 2 5 5 4 5号公報に記載された回転電機におい ては、 永久磁石の冷却効果を得ることができない。 発明の開示  Of the rotary turtle machines described in Japanese Patent Laid-Open No. 2 0 2-3 4 5 1 8 8, in a rotating electrical machine in which a cooling system circuit is formed, the cooling system circuit is a closed circuit, If external lubricating oil or refrigerant enters the cooling passage, the weight balance of the rotor will be lost. In addition, in a rotating electrical machine in which a branch passage is formed in the end plate, the supply amount supplied into the lower branch passage is greater than the supply amount supplied into the upper branch passage. As a result, the rotor is out of balance. Further, in the rotating electrical machine described in Japanese Patent Laid-Open No. 2-06-0625 55 45, the permanent magnet cooling effect cannot be obtained. Disclosure of the invention
本発明は、 上記のような課題に鑑みてなされたものであって、 その目的は、 永 久磁石の冷却、 ロータの軽量化およびロータの重量バランスのばらつきの抑制が 図られた回転電機を提供することである。  The present invention has been made in view of the above-described problems, and its object is to provide a rotating electrical machine that is capable of cooling a permanent magnet, reducing the weight of the rotor, and suppressing variations in the weight balance of the rotor. It is to be.
本発明に係る回転電機は、 環状に形成されたステータと、 ステータ内に挿入さ れ、 回転可能に支持されたロータと、 ロータに形成された磁石受入部内に装着さ れた磁石と、 ロータの軸方向端面に設けられたエンドプレートとを備える。 そし て、 上記ロータのうち、 磁石受入部から離れた位置には、 ロータの軸方向に延び る穴部が形成されている。 さらに、 上記穴部の開口部から磁石の軸方向端面上を 経由する経路が、 ロータの軸方向端面とェンドプレートとの少なくとも一方によ つて規定され、 経路に連通する排出口が、 ロータの軸方向端面とエンドプレート との少なくも一方によって形成されている。  A rotating electrical machine according to the present invention includes a ring-shaped stator, a rotor inserted into the stator and rotatably supported, a magnet mounted in a magnet receiving portion formed in the rotor, and a rotor And an end plate provided on the end face in the axial direction. In the rotor, a hole extending in the axial direction of the rotor is formed at a position away from the magnet receiving portion. Furthermore, a path passing from the opening of the hole through the axial end surface of the magnet is defined by at least one of the axial end surface of the rotor and the end plate, and a discharge port communicating with the path is defined by It is formed by at least one of the end face and the end plate.
好ましくは、 上記穴部は、 前記磁石に対して、 前記ロータの回転中心側に位置 する。 好ましくは、 上記排出口は、 前記ロータの外周縁部に位置する。  Preferably, the hole is positioned on the rotation center side of the rotor with respect to the magnet. Preferably, the discharge port is located at an outer peripheral edge of the rotor.
好ましくは、 上記エンドプレートは、 穴部から経路内に供給される冷媒を磁石 の端面に案内可能な案内部を含む。  Preferably, the end plate includes a guide portion capable of guiding the refrigerant supplied into the path from the hole portion to the end surface of the magnet.
好ましくは、 上記エンドプレートは、 穴部の開口部の一部を閉塞すると共に、 開口部の一部を冷媒が流通可能な流通口として規定し、 流通口は、 磁石に対して、 ロータの周方向にずれた位置に設けられる。 Preferably, the end plate closes a part of the opening of the hole, A part of the opening is defined as a flow port through which the refrigerant can flow, and the flow port is provided at a position shifted in the circumferential direction of the rotor with respect to the magnet.
好ましくは、 上記貫通孔の開口部は、 ロータの径方向内方から、 径方向外方に 向けて周方向の長さが大きくなるように形成される。  Preferably, the opening of the through hole is formed such that the circumferential length increases from the radially inner side of the rotor toward the radially outer side.
なお、 上記構成は、 必要に応じて適宜組み合わせることは、 出願当初から予定 されている。  It is planned from the beginning of the application to combine the above configurations as necessary.
本発明に係る回転電機によれば、 永久磁石を冷却することができ、 ロータの軽 量化およびロータの重量バランスの均一化を図ることができる。 図面の簡単な説明  According to the rotating electrical machine of the present invention, the permanent magnet can be cooled, and the weight of the rotor and the weight balance of the rotor can be made uniform. Brief Description of Drawings
図 1は、 本発明に係る実施の形態 1の回転電機の側断面図である。  FIG. 1 is a side sectional view of the rotating electrical machine according to the first embodiment of the present invention.
図 2は、 図 1に示す I I— I I線における断面図である。  FIG. 2 is a cross-sectional view taken along the line I I—I I shown in FIG.
図 3は、 図 2の一部を拡大視した断面図である。  FIG. 3 is an enlarged cross-sectional view of a part of FIG.
図 4は、 本発明に係る実施の形態 2の回転電機のロータを示す断面図である。 図 5は、 図 4の一部を拡大視した拡大図である  FIG. 4 is a cross-sectional view showing the rotor of the rotating electrical machine according to the second embodiment of the present invention. Figure 5 is an enlarged view of a part of Figure 4
図 6は、 本発明に係る実施の形態 3の回転電機のロータの断面図である。  FIG. 6 is a cross-sectional view of the rotor of the rotating electrical machine according to the third embodiment of the present invention.
図 7は、 図 6の一部を拡大視した拡大図である。 発明を実施するための最良の形態  FIG. 7 is an enlarged view of a part of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
図 1から図 7を用いて、 本発明の実施の形態に係る回転電機 1 0 0について説 明する。 なお、 同一または相当する構成については、 同一の符号を付してその説 明を省略する。 なお、 以下に説明する実施の形態において、 個数、 量などに言及 する場合、 特に記載がある場合を除き、 本発明の範囲は必ずしもその個数、 量な どに限定されない。 また、 以下の実施の形態において、 各々の構成要素は、 特に 記載がある場合を除き、 本発明にとって必ずしも必須のものではない。 また、 以 下に複数の実施の形態が存在する場合、 特に記載がある場合を除き、 各々の実施 の形態の特徴部分を適宜組合わせることは、 当初から予定されている。  A rotating electrical machine 100 according to an embodiment of the present invention will be described with reference to FIGS. Note that the same or corresponding components are denoted by the same reference numerals and description thereof is omitted. Note that in the embodiments described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified. In the following embodiments, each component is not necessarily essential for the present invention unless otherwise specified. In addition, when there are a plurality of embodiments below, unless otherwise specified, it is planned from the beginning to appropriately combine the features of each embodiment.
(実施の形態 1 )  (Embodiment 1)
図 1は、 本発明の実施の形態 1に係る回転電機 1 0 0の側断面図である。 なお、 回転電機とは、 モータとしての機能と、 発電機としての機能との少なくとも一方 の機能を有しており、 モータジェネレータとしての機能を有している。 FIG. 1 is a side sectional view of rotating electrical machine 100 according to Embodiment 1 of the present invention. In addition, The rotating electrical machine has at least one of a function as a motor and a function as a generator, and has a function as a motor generator.
回転電機 1 0 0は、 回転可能に支持された回転シャフト 1 0と、 この回転シャ フト 1 0に固設されたロータ 2 0と、 このロータ 2 0の外周に配置され、 環状に 形成されたステータ 1 2とを備えている。  The rotating electrical machine 100 is configured to be formed in an annular shape, disposed on a rotating shaft 10 that is rotatably supported, a rotor 20 fixed to the rotating shaft 10, and an outer periphery of the rotor 20. And a stator 1 2.
ステータ 1 2は、 環状に形成され、 複数の電磁鋼板を積層して形成されたステ ータコア 1 4と、 このステータコア 1 4の内周面に複数間隔を隔てて形成された ステータティースに巻回されたコイル 1 3とを備えている。 なお、 コィノレ 1 3は、 U相コイル、 V相コイル、 W相コイルを含む。  The stator 12 is formed in a ring shape and wound around a stator core 14 formed by laminating a plurality of electromagnetic steel plates, and stator teeth formed on the inner peripheral surface of the stator core 14 at a plurality of intervals. Coil 1 and 3. The coin 13 includes a U-phase coil, a V-phase coil, and a W-phase coil.
ロータ 2 0は、 複数の電磁鋼板が積層されたロータコア 2 1と、 ロータコア 2 The rotor 20 includes a rotor core 2 1 in which a plurality of electromagnetic steel plates are laminated, and a rotor core 2
1に装着された永久磁石 2 2と、 ロータコア 2 1の軸方向端部に設けられたェン ドプレート 2 3とを備えている。 ロータコア 2 1は、 複数の磁性鋼板を積層して 形成されている。 このロータコア 2 1には、 回転シャフト 1 0の回転軸線 Oに沿 つて延びる複数の永久磁石収容孔 3 2が周方向に間隔を隔てて形成されている。 この永久磁石収容孔 3 2内に、 永久磁石 2 2と、 永久磁石 2 2を永久磁石収容 孔 3 2を規定するロータコア 2 1の内壁面に接着させる樹脂とが充填されている。 また、 永久磁石 2 2および永久磁石収容孔 3 2に対してロータコア 2 1の径方 向内方に位置する部分には、 複数の貫通孔 3 1が形成されている。 このように、 ロータコア 2 1には、 複数の貫通孔 3 1が形成されているため、 ロータコア 2 1 の軽量化が図られている。 1 includes a permanent magnet 2 2 attached to 1 and an end plate 2 3 provided at an axial end of the rotor core 21. The rotor core 21 is formed by laminating a plurality of magnetic steel plates. In the rotor core 21, a plurality of permanent magnet accommodation holes 32 extending along the rotation axis O of the rotary shaft 10 are formed at intervals in the circumferential direction. The permanent magnet housing hole 32 is filled with a permanent magnet 22 and a resin that adheres the permanent magnet 22 to the inner wall surface of the rotor core 21 defining the permanent magnet housing hole 32. In addition, a plurality of through holes 31 are formed in a portion located radially inward of the rotor core 21 with respect to the permanent magnets 22 and the permanent magnet housing holes 32. As described above, since the rotor core 21 is formed with the plurality of through holes 31, the weight of the rotor core 21 is reduced.
このロータコア 2 1の軸方向端面には、 ェンドプレート 2 3が設けられている。 このエンドプレート 2 3には、 貫通孔 3 1の開口部から、 永久磁石 2 2の軸方向 端面上を経由する経路 3 3が形成されている。  An end plate 23 is provided on the end surface of the rotor core 21 in the axial direction. The end plate 23 is formed with a path 33 passing from the opening of the through hole 31 to the axial end surface of the permanent magnet 22.
図 2は、 この図 1に示す I I— I I線における断面図である。 ここで、 永久磁 石収容孔 3 2は、 ロータ 2 0の回転方向 Pに向けてロータコア 2 1の径方向外方 力 ^内方に向けて傾斜する収容孔 3 2 Aと、 この収容孔 3 2 Aに対して回転方向 P前方側に位置する収容孔 3 2 Bとを備えている。 なお、 収容孔 3 2 Bは、 回転 方向 Pに向けて、 ロータコア 2 1の径方向内方から外方に向けて傾斜するように 形成されている。 各収容孔 3 2 A, 3 2 B内には、 それぞれ、 永久磁石 2 2 A, 2 2 Bが収容されている。 そして、 ロータコア 2 1の周方向に隣り合う各永久磁 石収容孔 3 2内に収容された永久磁石 2 2は、 互いに異なる磁極がロータコア 2 1の外周に向けて配設されている。 FIG. 2 is a cross-sectional view taken along the line II-II shown in FIG. Here, the permanent magnet receiving hole 3 2 includes a receiving hole 3 2 A inclined inward in the radial direction of the rotor core 21 toward the rotational direction P of the rotor 20, and the receiving hole 3. 2 A with a receiving hole 3 2 B located in the front direction of rotation P with respect to 2 A. The housing hole 3 2 B is formed so as to incline from the radially inner side of the rotor core 21 toward the outer side in the rotational direction P. In each receiving hole 3 2 A, 3 2 B, permanent magnet 2 2 A, 2 2 B is housed. The permanent magnets 22 accommodated in the permanent magnet accommodation holes 32 adjacent to each other in the circumferential direction of the rotor core 21 have different magnetic poles arranged toward the outer periphery of the rotor core 21.
図 3は、 上記図 2の一部を拡大視した断面図である。 この図 3に示すように、 永久磁石収容孔 3 2の収容孔 3 2 Aと収容孔 3 2 Bとは、 互いに僅かにロータコ ァ 2 1の周方向に離れている。 このため、 収容孔 3 2 Aと収容孔 3 2 Bとによつ て、 収容孔 3 2 Aと収容孔 3 2 Bとの間に位置する部分に薄肉部 3 6が規定され ている。 この薄肉部 3 6は、 ロータコア 2 1の径方向に延びている。  FIG. 3 is an enlarged cross-sectional view of a part of FIG. As shown in FIG. 3, the accommodation hole 3 2 A and the accommodation hole 3 2 B of the permanent magnet accommodation hole 32 are slightly separated from each other in the circumferential direction of the rotor core 21. For this reason, the thin hole portion 36 is defined in the portion located between the accommodation hole 3 2 A and the accommodation hole 3 2 B by the accommodation hole 3 2 A and the accommodation hole 3 2 B. The thin portion 36 extends in the radial direction of the rotor core 21.
そして、 ロータコア 2 1のうち、 永久磁石収容孔 3 2間に位置する部分には、 厚肉部 3 7が規定されている。  A thick portion 37 is defined in a portion of the rotor core 21 located between the permanent magnet accommodation holes 3 2.
ロータコア 2 1のうち、 永久磁石収容孔 3 2に対して、 ロータコア 2 1の径方 向内方に位置する部分には、 貫通孔 3 1 A, 3 1 Bが、 ロータコア 2 1の周方向 に間隔を隔てて形成されている。 そして、 ロータコア 2 1のうち、 各貫通孔 3 1 間には、 各貫通孔 3 1同士を区画する区 ®壁 7 0が形成されている。 各貫通孔 3 1は、 厚肉部 3 7に対して、 ロータコア 2 1の径方向内方に位置している。 すな わち、 薄肉部 3 6と区画壁 7 0とは、 ロータコア 2 1の径方向に配列している。 さらに、 各貫通孔 3 1間に規定された区画壁 7 0は、 薄肉部 3 6に対して、 径 方向内方に位置している。 そして、 厚肉部 3 7に対して径方向内方に位置する部 分に貫通孔 3 1が形成されている。  In the rotor core 21, through-holes 3 1 A and 3 1 B are provided in the circumferential direction of the rotor core 21 in the portion located radially inward of the rotor core 21 with respect to the permanent magnet housing hole 3 2. It is formed at intervals. In the rotor core 21, partition walls 70 that partition the through holes 31 are formed between the through holes 3 1. Each through hole 3 1 is located radially inward of the rotor core 21 with respect to the thick portion 37. In other words, the thin portion 36 and the partition wall 70 are arranged in the radial direction of the rotor core 21. Further, the partition wall 70 defined between the through holes 31 is positioned radially inward with respect to the thin portion 36. A through hole 31 is formed in a portion located radially inward with respect to the thick portion 37.
なお、 貫通孔 3 1は、 ロータコア 2 1の径方向内方から外方に向けてロータコ ァ 2 1の周方向の大きさが大きくなるように略扇形形状に形成されている。 この ため、 各貫通孔 3 1間に位置する区画壁 7 0は、 ロータコア 2 1の径方向に延び るように形成されている。  The through hole 31 is formed in a substantially sector shape so that the size in the circumferential direction of the rotor core 21 increases from the radially inner side to the outer side of the rotor core 21. For this reason, the partition walls 70 located between the through holes 31 are formed so as to extend in the radial direction of the rotor core 21.
このように、 ロータコア 2 1のうち、 薄肉部 3 6が位置する部分は、 剛性が低 い一方で、 区画壁 7 0が径方向に位置することにより、 薄肉部 3 6が位置する部 分において、 径方向の剛性を確保することができる。  As described above, the portion of the rotor core 21 where the thin portion 36 is located has low rigidity, while the partition wall 70 is located in the radial direction, so that the portion where the thin portion 36 is located. The radial rigidity can be ensured.
その一方で、 厚肉部 3 7の剛性は高いため、 この厚肉部 3 7に対して、 径方向 内方側に貫通孔 3 1を形成したとしても、 剛性を確保することができる。  On the other hand, since the thick portion 37 has high rigidity, even if the through hole 31 is formed on the radially inner side with respect to the thick portion 37, the rigidity can be ensured.
このため、 各貫通孔 3 1のロータコア 2 1の周方向中央部は、 収容孔 3 2 A , 3 2 Bの周方向の中央部に対して周方向にずれた位置に位置している。 Therefore, the central portion in the circumferential direction of the rotor core 21 of each through hole 3 1 is the receiving hole 3 2 A, It is located at a position shifted in the circumferential direction with respect to the central portion of 3 2 B in the circumferential direction.
ロータコア 2 1の軸方向端面と、 エンドプレート 2 3とによって、 ロータコア The rotor core 2 1 and the end plate 2 3
2 1の軸方向端面には、 経路 3 3が規定されている。 A path 3 3 is defined on the axial end face of 2 1.
ここで、 図 1および図 3に示すように、 エンドプレート 2 3は、 円板状に形成 された天板部 1 2 4と、 この天板部 1 2 4の周縁部に形成され、 周方向に間隔を 隔てて形成された周壁部 1 2 3とを備えている。  Here, as shown in FIG. 1 and FIG. 3, the end plate 23 is formed in a disc-shaped top plate portion 1 2 4 and a peripheral portion of the top plate portion 1 2 4 in the circumferential direction. And peripheral wall portions 1 2 3 formed at intervals.
そして、 各周壁部 1 2 3は、 薄肉部 3 6に対して、 ロータコア 2 1の径方向外 方に位置している。  Each peripheral wall portion 1 2 3 is located on the radially outer side of the rotor core 21 with respect to the thin portion 3 6.
ここで、 天板部 1 2 4の表面のうち、 ロータコア 2 1の軸方向端面と対向する 表面には、 経路 3 3を規定する経路規定部 1 3 3が形成されている。  Here, among the surfaces of the top plate portion 1 24, a path defining portion 1 33 that defines the path 33 is formed on the surface facing the axial end surface of the rotor core 21.
この経路規定部 1 3 3は、 ロータコア 2 1の軸方向端面のうち、 回転シャフト 1 0の周囲に位置する部分を覆うように環状に形成された環状部 1 3 3 Bと、 環 状部 1 3 3 Bの周縁部から、 ロータコア 2 1の径方向に向けて突出し、 周方向に 間隔を隔てて複数形成された突出部 1 3 3 Aとを備えている。  The path defining portion 1 3 3 includes an annular portion 1 3 3 B formed in an annular shape so as to cover a portion of the axial end surface of the rotor core 21 located around the rotary shaft 10, and the annular portion 1 3 3 B is provided with protrusions 1 3 3 A that protrude from the peripheral edge of the rotor core 21 toward the radial direction of the rotor core 21 and are formed at intervals in the circumferential direction.
そして、 ロータコア 2 1の軸方向端面には、 周方向に隣り合う突出部 1 3 3 A と、 周壁部 1 2 3とによって経路 3 3が規定されている。  A path 33 is defined on the axial end surface of the rotor core 21 by the circumferentially adjacent projecting portion 1 33 3 A and the peripheral wall portion 1 23 3.
ここで、 周方向に隣り合う突出部 1 3 3 Aによって、 周方向に隣り合う貫通孔 3 1 A, 3 1 Bの開口部の一部を連通し、 さらにロータコア 2 1の径方向に向け て延びる連通路 1 3 4が規定されている。  Here, the circumferentially adjacent protrusions 1 3 3 A communicate with part of the openings of the through holes 3 1 A and 3 1 B adjacent in the circumferential direction, and further toward the radial direction of the rotor core 21. An extended communication path 1 3 4 is defined.
そして、 経路規定部 1 3 3によって、 各貫通孔 3 1 A, 3 1 Bの開口部の一部 が連通路 1 3 4内に供給口 1 3 1 A, 1 3 1 Bとして位置している。  And, by the path defining portion 1 3 3, a part of the opening of each through hole 3 1 A, 3 1 B is positioned as the supply port 1 3 1 A, 1 3 1 B in the communication passage 1 3 4 .
このため、 エンドプレート 2 3と、 ロータコア 2 1の軸方向端面との隙間から 冷媒ゃ潤滑油が貫通孔 3 1内に入り込むことがあるが、 貫通孔 3 1内の潤滑油や 冷媒を経路 3 3内に供給 (排出) 可能な供給口 1 3 1 A, 1 3 1 Bが規定されて いるので、 貫通孔 3 1内から冷媒ゃ潤滑油を排出することができる。  For this reason, the lubricating oil may enter the through hole 31 through the gap between the end plate 2 3 and the axial end surface of the rotor core 21. However, the lubricating oil and refrigerant in the through hole 31 are routed through the path 3 Since supply ports 1 3 1 A and 1 3 1 B that can be supplied (discharged) in 3 are defined, the lubricant can be discharged from the through hole 3 1.
特に、 連通路 1 3 4は、 供給口 1 3 1 A, 1 3 1 Bからロータコア 2 1の径方 向外方に向けて延びている。 このため、 供給口 1 3 1 A , 1 3 1 Bから連通路 1 3 4内に入り込んだ潤滑油または冷媒などは、 ロータコア 2 1の遠心力によって 連通路 1 3 4内に流れ出す。 このように、 各貫通孔 3 1内の潤滑油や冷媒を経路 3 3内に排出することができるので、 各貫通孔 3 1内に溜まる潤滑油および冷媒 の蓄積量を低減することができ、 各貫通孔 3 1内に溜められた冷媒ゃ潤滑油量の 差を低減することができる。 In particular, the communication path 1 3 4 extends from the supply ports 1 3 1 A and 1 3 1 B outward in the radial direction of the rotor core 21. Therefore, the lubricating oil or refrigerant that has entered the communication path 1 3 4 from the supply ports 1 3 1 A and 1 3 1 B flows out into the communication path 1 3 4 due to the centrifugal force of the rotor core 21. In this way, the lubricating oil and refrigerant in each through hole 3 1 are routed. 3 Since it can be discharged into the interior of the through hole 31, it is possible to reduce the amount of accumulated lubricating oil and refrigerant in each through-hole 31, and the difference in the amount of lubricating oil stored in each through-hole 31 can be reduced. Can be reduced.
このため、 ロータ 2 0内に重量バランスに偏りが生じることを抑制することが できる。 これにより、 回転電機が駆動した際においても、 ロータ 2 0が振動する ことを抑制することができる。  For this reason, it is possible to suppress the occurrence of bias in the weight balance in the rotor 20. Thereby, even when the rotating electrical machine is driven, it is possible to suppress the rotor 20 from vibrating.
突出部 1 3 3 Aの先端部は、 ロータコア 2 1の軸方向端面のうち、 永久磁石収 容孔 3 2より径方向内方に位置しており、 突出部 1 3 3 Aは、 周壁部 1 2 3の周 方向端部に向けて延びている。  The tip of the protrusion 1 3 3 A is located radially inward of the permanent magnet housing hole 3 2 in the axial end surface of the rotor core 21, and the protrusion 1 3 3 A is the peripheral wall 1 2 3 Extends towards the circumferential edge.
このため、 経路 3 3のうち、 突出部 1 3 3 Aに対して、 ロータコア 2 1の径方 向外方側に位置する部分には、 連通路 1 3 4の延在方向 (ロータコア 2 1の径方 向) に対して交差する方向に延びる排出路 1 3 5が規定されている。 この排出路 1 3 5は、 永久磁石 2 2 A, 2 2 Bの軸方向端面上を通るように形成されている。 そして、 ロータコア 2 1の周方向に隣り合う周壁部 1 2 3によって排出路 1 3 5 内の潤滑油や冷媒を外部に排出する排出口 3 3 aが規定されている。  For this reason, in the path 3 3, the extending direction of the communication path 1 3 4 (the rotor core 2 1 of the rotor core 21) A discharge path 1 3 5 is defined that extends in a direction that intersects (radial direction). The discharge path 1 3 5 is formed so as to pass on the axial end surfaces of the permanent magnets 2 2 A and 2 2 B. A discharge port 3 3a for discharging the lubricating oil and refrigerant in the discharge passage 1 3 5 to the outside is defined by the peripheral wall portions 1 2 3 adjacent in the circumferential direction of the rotor core 21.
このため、 連通路 1 3 4内に入り込んだ潤滑油ゃ冷媒などは、 ロータコア 2 1 の径方向に向けて、 連通路 1 3 4内を流れる。 そして、 その後、 潤滑油ゃ冷媒は、 排出路 1 3 5内に入り込む。 排出路 1 3 5内に入り込んだ冷媒ゃ潤滑油は、 永久 磁石 2 2 A, 2 2 Bの軸方向端面を冷却しながら、 ロータコア 2 1の周方向に流 れる。 その後、 排出口 3 3 aから潤滑油や冷媒が排出される。  Therefore, the lubricating oil refrigerant or the like that has entered the communication path 1 3 4 flows in the communication path 1 3 4 in the radial direction of the rotor core 2 1. After that, the lubricating oil refrigerant enters the discharge path 1 3 5. The refrigerant or lubricating oil that has entered the discharge path 1 3 5 flows in the circumferential direction of the rotor core 21 while cooling the axial end surfaces of the permanent magnets 2 2 A and 2 2 B. Thereafter, lubricating oil and refrigerant are discharged from the outlet 3 3 a.
ここで、 排出口 3 3 aは、 各連通路 1 3 4に対して、 回転方向 Pの前方側およ び回転方向 Pの後方側にいずれにも規定されている。  Here, the discharge port 3 3 a is defined both on the front side in the rotation direction P and on the rear side in the rotation direction P with respect to each communication path 1 3 4.
このため、 たとえば、 回転電機の駆動が開始して、 ロータ 2 0が回転方向 Pに 向けて回転し始めるようなときには、 図 3において、 各供給口 1 3 1 A, 1 3 1 Bからの冷媒および潤滑油は、 当該連通路 1 3 4 Aに対して、 回転方向 Pの後方 側に位置する排出口 3 3 a 2から排出される。 この際、 たとえば、 図 3に示す例 においては、 永久磁石 2 2 Aの軸方向端面が、 潤滑油ゃ冷媒によって冷却される。 その一方で、 ロータ 2 0が減速するようなときには、 たとえば、 連通路 1 3 4 Aからの冷媒ゃ潤滑油は、 当該連通路 1 3 4 Aに対して、 回転方向 Pの前方側に 位置する排出口 3 3 a 1から排出される。 この際、 排出口 3 3 a 1側に位置する 永久磁石 2 2 Bが冷却される。 ここで、 回転電機は、 加速したり、 減速したりす るため、 排出口 3 3 a 1 , 3 3 a 2の少なくとも一方から排出され、 永久磁石 2 2 A , 2 2 Bの軸方向端面を冷却することができる。 For this reason, for example, when driving of the rotating electrical machine starts and the rotor 20 starts to rotate in the rotation direction P, the refrigerant from the supply ports 1 3 1 A and 1 3 1 B in FIG. The lubricating oil is discharged from the discharge port 3 3 a 2 located on the rear side in the rotation direction P with respect to the communication path 1 3 4 A. At this time, for example, in the example shown in FIG. 3, the axial end surface of the permanent magnet 22 A is cooled by the lubricating oil or refrigerant. On the other hand, when the rotor 20 decelerates, for example, the refrigerant from the communication path 1 3 4 A is lubricated to the front side in the rotational direction P with respect to the communication path 1 3 4 A. It is discharged from the located outlet 3 3 a 1. At this time, the permanent magnet 2 2 B located on the discharge port 3 3 a 1 side is cooled. Here, since the rotating electrical machine accelerates or decelerates, it is discharged from at least one of the discharge ports 3 3 a 1 and 3 3 a 2 and cools the axial end surfaces of the permanent magnets 2 2 A and 2 2 B. can do.
永久磁石 2 2の軸方向端面と、 エンドプレート 2 3とは互いに離れており、 ェ ンドプレート 2 3は、 たとえば、 アルミニウム等の金属材料から形成されている。 このように、 金属製のエンドプレート 2 3と永久磁石 2 2とを離間させることで、 回転電機の駆動中にエンドプレート 2 3内に生じる渦電流の発生を抑制すること ができる。  The axial end surface of the permanent magnet 22 and the end plate 23 are separated from each other, and the end plate 23 is made of a metal material such as aluminum, for example. In this way, by separating the metal end plate 23 and the permanent magnet 22 from each other, it is possible to suppress the generation of eddy currents generated in the end plate 23 during driving of the rotating electrical machine.
1つの突出部 1 3 3 Aと、 この突出部 1 3 3 Aに対して周方向に隣り合う突出 部 1 3 3 Aとを連設し、 環状部 1 3 3 Bの外周縁部に位置する付根部 1 3 3 Cは、 ロータコア 2 1の周方向に延びている。  One projecting part 1 3 3 A and the projecting part 1 3 3 A adjacent to the projecting part 1 3 3 A in the circumferential direction are connected to each other, and are located at the outer peripheral edge of the annular part 1 3 3 B The root portion 1 3 3 C extends in the circumferential direction of the rotor core 21.
そして、 互いに隣り合う突出部 1 3 3 Aの側面 1 3 6 a, 1 3 6 bは、 ロータ コア 2 1の径方向外方に向けて、 ロータコア 2 1の周方向の距離が互いに大きく なるように滑らかに湾曲している。  Then, the side surfaces 1 3 6 a and 1 3 6 b of the adjacent protrusions 1 3 3 A are arranged so that the circumferential distance of the rotor core 21 increases toward the outer side in the radial direction of the rotor core 21. It is curved smoothly.
このため、 供給口 1 3 1 A, 1 3 1 Bから経路 3 3内に入り込んだ潤滑油また は冷媒は、 良好に連通路 1 3 4内を流れ、 排出口 3 3 aから排出可能となってい る。  Therefore, the lubricating oil or refrigerant that has entered the path 3 3 from the supply ports 1 3 1 A and 1 3 1 B flows through the communication path 1 3 4 and can be discharged from the discharge port 3 3 a. ing.
(実施の形態 2 )  (Embodiment 2)
図 1、 図 4および図 5を用いて、 本発明の実施の形態 2に係る回転電機につい て説明する。 なお、 上記図 1から図 3に示された構成と同一または相当する構成 については、 同一の符号を付してその説明を省略する。  A rotating electrical machine according to the second embodiment of the present invention will be described with reference to FIG. 1, FIG. 4, and FIG. Note that the same or corresponding components as those shown in FIGS. 1 to 3 are given the same reference numerals and description thereof is omitted.
図 4は、 本発明の実施の形態 2に係る回転電機のロータ 2 0を示す断面図であ り、 図 5は、 図 4の一部を拡大視した拡大図である。  FIG. 4 is a cross-sectional view showing the rotor 20 of the rotating electrical machine according to the second embodiment of the present invention, and FIG. 5 is an enlarged view of a part of FIG.
ここで、 エンドプレート 2 3は、 天板部 1 2 4と、 天板部 1 2 4に形成され、 経路規定部 1 4 4と、 天板部 1 2 4の外周縁部に形成され、 ロータコア 2 1の軸 方向端面に向けて垂下する周壁部 1 2 3とを備えている。  Here, the end plate 2 3 is formed on the top plate portion 1 2 4 and the top plate portion 1 2 4, formed on the outer peripheral edge portion of the path defining portion 1 4 4 and the top plate portion 1 2 4, and the rotor core 2 1 and a peripheral wall portion 1 2 3 depending on the axial end face.
図 5に示すように、 経路規定部 1 4 4は、 回転シャフト 1 0の周囲に位置し、 ロータコア 2 1の軸方向端面と当接する環状部 1 4 4 Bと、 この環状部 1 4 4 B の外周に間隔を隔てて複数形成され、 ロータコア 2 1の径方向に向けて突出する 突出部 1 4 4 Aとを備えている。 そして、 これら、 突出部 1 4 4 Aと、 周壁部 1 2 3とがロータコア 2 1の軸方向端面と当接することで、 ロータコア 2 1の軸方 向端面に貫通孔 3 1内に入り込んだ潤滑油や冷媒を外部に排出する経路 4 3が規 定される。 As shown in FIG. 5, the path defining portion 1 4 4 is located around the rotary shaft 10, and an annular portion 1 4 4 B that contacts the axial end surface of the rotor core 2 1, and this annular portion 1 4 4 B A plurality of protrusions 14 4 A are formed on the outer periphery of the rotor core 21 at intervals, and protrude in the radial direction of the rotor core 21. Then, the projecting portion 14 4 A and the peripheral wall portion 1 2 3 are in contact with the axial end surface of the rotor core 21, so that the lubrication that has entered the through hole 31 in the axial end surface of the rotor core 21 is performed. Routes 43 for discharging oil and refrigerant to the outside are defined.
ここで、 各貫通孔 3 1の開口部には、 突出部 1 4 4 Aと環状部 1 4 4 Bとによ つて、 その一部に供給口 1 4 1が規定されている。  Here, in the opening of each through hole 31, a supply port 14 1 is defined in part by a protruding portion 14 4 A and an annular portion 14 4 B.
ここで、 突出部 1 4 4 Aは、 突出部 1 4 4 Aの付根部のうち、 回転方向 Pの前 方側に位置する部分から径方向外方に向けて延びる第 1辺部 1 4 5 bと、 この第 1辺部 1 4 5 bの端部に連設され、 径方向外方に向かうにつれて、 回転方向 Pの 後方側に向けて傾斜する傾斜部 1 4 5 aと、 傾斜部 1 4 5 aの端部に連設され、 環状部 1 4 4 Bに向けて延びる第 2辺部 1 4 5 cとを備えている。 そして、 傾斜 部 1 4 5 aと、 周壁部 1 2 3との間には、 回転方向 P後方側に向けて、 径方向外 方に向けて傾斜し、 排出口 3 3 a 2に達する排出路 1 4 5が規定されている。 ここで、 傾斜部 1 4 5 aと周壁部 1 2 3との間に位置する部分は、 永久磁石 2 Here, the protrusion 1 4 4 A is a first side portion 1 4 5 that extends radially outward from a portion of the root of the protrusion 1 4 4 A located on the front side in the rotational direction P. b and an inclined portion 1 4 5 a connected to the end of this first side portion 1 4 5 b and inclined toward the rear side in the rotational direction P as it goes radially outward, and the inclined portion 1 4 5 a and a second side portion 1 4 5 c that extends toward the annular portion 1 4 4 B. And between the inclined portion 1 45 5 a and the peripheral wall portion 1 2 3, the discharge path that inclines radially outward toward the rear side in the rotational direction P and reaches the discharge port 3 3 a 2 1 4 5 is specified. Here, the portion located between the inclined portion 1 4 5 a and the peripheral wall portion 1 2 3 is the permanent magnet 2
2 A, 2 2 Bが配置されている。 2 A and 2 2 B are arranged.
このため、 ロータ 2 0が回転方向 Pに加速する際には、 貫通孔 3 1内に溜まつ た潤滑油ゃ冷媒などは、 供給口 1 4 1から、 この供給口 1 4 1に対して、 回転方 向 P後方側に位置する排出路 1 4 5を通って、 排出口 3 3 a 2から潤滑油ゃ冷媒 が排出される。 この際、 排出路 1 4 5を通る際に、 永久磁石 2 2の軸方向端面を 冷却する。  For this reason, when the rotor 20 accelerates in the rotational direction P, the lubricating oil refrigerant or the like accumulated in the through hole 3 1 is supplied from the supply port 1 4 1 to the supply port 1 4 1. The direction of rotation P passes through the discharge path 1 4 5 located on the rear side, and the lubricating oil or refrigerant is discharged from the discharge port 3 3 a 2. At this time, the axial end face of the permanent magnet 2 2 is cooled when passing through the discharge path 1 4 5.
さらに、 ロータ 2 0が減速する際には、 貫通孔 3 1内に溜まった潤滑油ゃ冷媒 などは、 供給口 1 4 1から経路 4 3内に入り込み、 第 1辺部 1 4 5 cに案内され、 排出口 3 3 a 1から排出される。 このように排出される際においても、 潤滑油や 冷媒は、 永久磁石 2 2の軸方向端面を冷却する。  Further, when the rotor 20 decelerates, the lubricating oil or refrigerant accumulated in the through hole 3 1 enters the path 4 3 from the supply port 1 4 1 and is guided to the first side 1 4 5 c. And discharged from the outlet 3 3 a 1. Even when discharged in this way, the lubricating oil or refrigerant cools the axial end surface of the permanent magnet 22.
このように、 本実施の形態 2に係る回転電機においても、 各貫通孔 3 1内の潤 滑油や冷媒を排出することができるので、 ロータコア 2 1の重量バランスのばら つきの発生を抑制することができる。  Thus, also in the rotating electrical machine according to the second embodiment, since the lubricating oil and refrigerant in each through hole 31 can be discharged, the occurrence of variation in the weight balance of the rotor core 21 can be suppressed. Can do.
(実施の形態 3 ) 図 1、 図 6および図 7を用いて、 本発明に係る実施の形態 3について説明する。 なお、 図 1から図 5に示す構成と同一または相当する構成については、 同一の符 号を付してその説明を省略する。 (Embodiment 3) Embodiment 3 according to the present invention will be described with reference to FIG. 1, FIG. 6, and FIG. Note that the same or corresponding components as those shown in FIGS. 1 to 5 are denoted by the same reference numerals and description thereof is omitted.
図 6は、 本発明の実施の形態 3に係る回転電機のロータの断面図であり、 図 7 は、 図 6の一部を拡大視した拡大図である。  FIG. 6 is a cross-sectional view of the rotor of the rotating electrical machine according to the third embodiment of the present invention, and FIG. 7 is an enlarged view of a part of FIG.
図 1および図 6に示すように、 エンドプレート 2 3は、 天板部 1 2 4と、 この 天板部 1 2 4の周縁部からロータコア 2 1の軸方向端面に向けて垂下する周壁部 1 2 3とを備えている。  As shown in FIGS. 1 and 6, the end plate 2 3 includes a top plate portion 1 2 4 and a peripheral wall portion 1 that hangs from the peripheral portion of the top plate portion 1 2 4 toward the axial end surface of the rotor core 21. 2 and 3.
そして、 エンドプレート 2 3のうち、 ロータコア 2 1の軸方向端面と対向する 側面には、 ロータコア 2 1の軸方向端面に経路 5 3を規定する経路規定部 1 5 3 が形成されている。  A path defining portion 15 3 that defines a path 53 on the axial end surface of the rotor core 21 is formed on the side surface of the end plate 23 that faces the axial end surface of the rotor core 21.
この経路規定部 1 5 3は、 ロータコア 2 1の軸方向端面のうち、 回転シャフト 1 0の周囲に位置する部分を覆うように形成された環状部 1 5 3 Bと、 この環状 部 1 5 3 Bの外周緣部に連設し、 ロータコア 2 1の径方向外方に向けて突出する 突出部 1 5 3 Aとを備えている。  The path defining portion 15 3 includes an annular portion 15 3 B formed so as to cover a portion of the end surface in the axial direction of the rotor core 21 located around the rotary shaft 10, and the annular portion 15 3 3. A projecting portion 1 5 3 A that is provided continuously with the outer peripheral flange of B and projects outward in the radial direction of the rotor core 21.
突出部 1 5 3 Aは、 ロータコア 2 1の軸方向端面のうち、 区画壁 7 0の上面を 覆うように延びている。 このため、 ロータ 2 0が回転している際に、 区画壁 7 0 に生じる応力によって、 区画壁 7 0が変形することを抑制することができる。 なお、 本実施の形態 3に係る回転電機においても、 貫通孔 3 1内の冷媒が排出 される際に、 永久磁石 2 2の端面を冷却することができる。  The protruding portion 15 3 A extends so as to cover the upper surface of the partition wall 70 among the axial end surfaces of the rotor core 21. For this reason, it is possible to suppress the partition wall 70 from being deformed by the stress generated in the partition wall 70 when the rotor 20 is rotating. In the rotating electrical machine according to the third embodiment, the end face of the permanent magnet 22 can be cooled when the refrigerant in the through hole 31 is discharged.
以上のように本発明の実施の形態について説明を行なったが、 今回開示された 実施の形態はすべての点で例示であって制限的なものではないと考えられるべき である。 本発明の範囲は請求の範囲によって示され、 請求の範囲と均等の意味お よび範囲内でのすべての変更が含まれることが意図される。 産業上の利用可能性  As described above, the embodiment of the present invention has been described. However, it should be considered that the embodiment disclosed herein is illustrative and non-restrictive in every respect. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims. Industrial applicability
本発明は、 回転電機に好適である。  The present invention is suitable for a rotating electrical machine.

Claims

請求の範囲 The scope of the claims
1. 環状に形成されたステータ (1 2) と、 1. Annular stator (1 2),
前記ステータ (12) 内に挿入され、 回転可能に支持されたロータ (20) と、 前記ロータ (20) に形成された磁石受入部内に装着された磁石 (22) と、 前記ロータ (20) の軸方向端面に設けられたエンドプレート (23) と、 を備え、  A rotor (20) inserted into the stator (12) and rotatably supported; a magnet (22) mounted in a magnet receiving portion formed in the rotor (20); and the rotor (20) An end plate (23) provided on the axial end face, and
前記ロータ (20) のうち、 前記磁石受入部から離れた位置には、 前記ロータ (20) の軸方向に延びる穴部 (3 1) が形成され、  A hole portion (31) extending in the axial direction of the rotor (20) is formed at a position away from the magnet receiving portion of the rotor (20),
前記穴部 (3 1) の開口部から前記磁石 (22) の軸方向端面上を経由する経 路 (33) ί 前記ロータ (20) の軸方向端面と前記エンドプレート (23) との少なくとも一方によって規定され、  A path that passes from the opening of the hole (31) to the axial end surface of the magnet (22) (33) ί At least one of the axial end surface of the rotor (20) and the end plate (23) Specified by
前記経路 (33) に連通する排出口が、 前記ロータ (20) の軸方向端面と前 記エンドプレート (23) との少なくも一方によって形成された、 回転電機。  A rotating electrical machine in which a discharge port communicating with the path (33) is formed by at least one of an axial end surface of the rotor (20) and the end plate (23).
2. 前記穴部 (31) は、 前記磁石 (22) に対して、 前記ロータ (20) の回転中心側に位置する、 請求の範囲第 1項に記載の回転電機。  2. The rotating electrical machine according to claim 1, wherein the hole (31) is positioned on a rotation center side of the rotor (20) with respect to the magnet (22).
3. 前記排出口は、 前記ロータ (20) の外周縁部に位置する、 請求の範囲 第 1項に記載の回転電機。  3. The rotating electrical machine according to claim 1, wherein the discharge port is located at an outer peripheral edge portion of the rotor (20).
4. 前記エンドプレート (23) は、 前記穴部 (3 1) から前記経路 (3 3 ) 内に供給される冷媒を前記磁石 (22) の端面に案内可能な案内部 (1 3 4. The end plate (23) includes a guide portion (1 3) capable of guiding the refrigerant supplied from the hole (3 1) into the path (3 3) to the end surface of the magnet (22).
3) を含む、 請求の範囲第 1項に記載の回転電機。 The rotating electrical machine according to claim 1, comprising 3).
5. 前記エンドプレート (23) は、 前記穴部 (31) の開口部の一部を閉 塞すると共に、 前記開口部の一部を前記冷媒が流通可能な流通口として規定し、 前記流通口は、 前記磁石 (22) に対して、 前記ロータ (20) の周方向にず れた位置に設けられた、 請求の範图第 1項に記載の回転電機。  5. The end plate (23) closes a part of the opening of the hole (31) and defines a part of the opening as a circulation port through which the refrigerant can flow. The rotary electric machine according to claim 1, wherein the rotary electric machine is provided at a position shifted in a circumferential direction of the rotor (20) with respect to the magnet (22).
6. 前記穴部の開口部は、 前記ロータ (20) の径方向内方から、 径方向外 方に向けて周方向の長さが大きくなるように形成された、 請求の範囲第 1項に記 載の回転電機。  6. The opening according to claim 1, wherein the opening of the hole is formed so that a length in a circumferential direction increases from a radially inner side of the rotor (20) toward a radially outer side. The rotating electrical machine described.
PCT/JP2008/063342 2007-07-20 2008-07-17 Rotary machine WO2009014197A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007189826A JP4424385B2 (en) 2007-07-20 2007-07-20 Rotating electric machine
JP2007-189826 2007-07-20

Publications (1)

Publication Number Publication Date
WO2009014197A1 true WO2009014197A1 (en) 2009-01-29

Family

ID=40281444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/063342 WO2009014197A1 (en) 2007-07-20 2008-07-17 Rotary machine

Country Status (2)

Country Link
JP (1) JP4424385B2 (en)
WO (1) WO2009014197A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126311A (en) * 2011-12-15 2013-06-24 Toyota Motor Corp Rotary electric machine
WO2023074705A1 (en) * 2021-10-26 2023-05-04 株式会社アイシン Rotary electric machine

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5375647B2 (en) * 2010-02-12 2013-12-25 トヨタ自動車株式会社 Electric motor
JP2015198532A (en) * 2014-04-02 2015-11-09 株式会社豊田自動織機 rotor
JP6332876B2 (en) * 2016-05-16 2018-05-30 本田技研工業株式会社 Rotating electric machine rotor and method of manufacturing rotating electric machine rotor
US10903705B2 (en) 2016-08-09 2021-01-26 Nidec Corporation Motor
DE112017003994T5 (en) 2016-08-09 2019-04-18 Nidec Corporation MOTOR UNIT
DE112017004030T5 (en) 2016-08-09 2019-05-09 Nidec Corporation ENGINE
DE112017003978T5 (en) 2016-08-09 2019-05-02 Nidec Corporation MOTOR UNIT
DE112017004012T5 (en) 2016-08-09 2019-04-25 Nidec Corporation MOTOR UNIT
WO2018030219A1 (en) * 2016-08-09 2018-02-15 日本電産株式会社 Motor
CN109565225B (en) 2016-08-09 2021-02-12 日本电产株式会社 Motor unit
JP7028170B2 (en) * 2016-08-09 2022-03-02 日本電産株式会社 motor
JPWO2018030372A1 (en) 2016-08-09 2019-06-13 日本電産株式会社 Motor unit
WO2018030348A1 (en) 2016-08-09 2018-02-15 日本電産株式会社 Motor unit
WO2018030370A1 (en) * 2016-08-09 2018-02-15 日本電産株式会社 Motor
DE112017004016T5 (en) * 2016-08-09 2019-05-02 Nidec Corporation ENGINE
US10865873B2 (en) 2016-08-09 2020-12-15 Nidec Corporation Motor unit
JP6740940B2 (en) * 2017-03-16 2020-08-19 トヨタ自動車株式会社 Rotating electric machine rotor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182374A (en) * 1995-12-21 1997-07-11 Aisin Aw Co Ltd Cooling circuit of motor
JPH11113202A (en) * 1997-10-01 1999-04-23 Denyo Co Ltd Cooling structure of rotor with permanent magnet
JP2001025209A (en) * 1999-07-05 2001-01-26 Nissan Motor Co Ltd Rotor of motor
JP2002345188A (en) * 2001-05-14 2002-11-29 Nissan Motor Co Ltd Dynamo-electric rotating machine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4356232B2 (en) * 2000-11-22 2009-11-04 株式会社デンソー Rotor center of gravity eccentric type motor
JP2002354766A (en) * 2001-05-28 2002-12-06 Aichi Emerson Electric Co Ltd Permanent magnet motor
JP4660406B2 (en) * 2005-09-07 2011-03-30 株式会社東芝 Rotating electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09182374A (en) * 1995-12-21 1997-07-11 Aisin Aw Co Ltd Cooling circuit of motor
JPH11113202A (en) * 1997-10-01 1999-04-23 Denyo Co Ltd Cooling structure of rotor with permanent magnet
JP2001025209A (en) * 1999-07-05 2001-01-26 Nissan Motor Co Ltd Rotor of motor
JP2002345188A (en) * 2001-05-14 2002-11-29 Nissan Motor Co Ltd Dynamo-electric rotating machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126311A (en) * 2011-12-15 2013-06-24 Toyota Motor Corp Rotary electric machine
WO2023074705A1 (en) * 2021-10-26 2023-05-04 株式会社アイシン Rotary electric machine

Also Published As

Publication number Publication date
JP2009027862A (en) 2009-02-05
JP4424385B2 (en) 2010-03-03

Similar Documents

Publication Publication Date Title
WO2009014197A1 (en) Rotary machine
JP4560067B2 (en) Rotating electric machine
US10734866B2 (en) Rotating electric machine
JP5751065B2 (en) End plate of rotor and rotating electric machine
JP2013183480A (en) Cooling structure of rotor for rotary electric machine and rotary electric machine
JP2013132151A (en) Rotary electric machine and rotary electric machine cooling system
JP5545180B2 (en) Rotating electric machine
JP5188593B2 (en) Generator motor cooling structure and generator motor
WO2013136405A1 (en) Rotating electrical machine
US11205939B2 (en) Rotary electric machine
US9257881B2 (en) Rotating electric machine
JP2013258889A (en) Induction motor
JP6624025B2 (en) Rotating electric machine
JP2013183483A (en) Cooling structure of rotor for rotary electric machine and rotary electric machine
JP2020114135A (en) Rotary electric machine rotor and rotary electric machine
JP5630418B2 (en) Cooling device for rotating electrical machine for vehicle
CN111384798B (en) Rotating electrical machine
CN112018940B (en) Rotary electric machine
JP2013090482A (en) Rotary electric machine
JP2021013286A (en) Rotary electric machine
JP2020120486A (en) Rotary electric machine
CN110289731B (en) Rotating electrical machine and vehicle provided with same
JP5516022B2 (en) Rotating electric machine
WO2023136117A1 (en) Rotary electric machine
JP2021182789A (en) Rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08791592

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08791592

Country of ref document: EP

Kind code of ref document: A1