WO2009013496A1 - Diagnosing fetal chromosomal aneuploidy using genomic sequencing - Google Patents

Diagnosing fetal chromosomal aneuploidy using genomic sequencing Download PDF

Info

Publication number
WO2009013496A1
WO2009013496A1 PCT/GB2008/002530 GB2008002530W WO2009013496A1 WO 2009013496 A1 WO2009013496 A1 WO 2009013496A1 GB 2008002530 W GB2008002530 W GB 2008002530W WO 2009013496 A1 WO2009013496 A1 WO 2009013496A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromosome
biological sample
sequences
nucleic acid
sequencing
Prior art date
Application number
PCT/GB2008/002530
Other languages
French (fr)
Inventor
Yuk-Ming Dennis Lo
Rossa Wai Kwun Chiu
Kwan Chee Chan
Original Assignee
The Chinese University Of Hong Kong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39798126&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009013496(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to EP12173422.2A priority Critical patent/EP2527471B1/en
Priority to SI200831133T priority patent/SI2183693T2/en
Priority to CA2693081A priority patent/CA2693081C/en
Priority to JP2010517481A priority patent/JP5736170B2/en
Priority to BRPI0814670A priority patent/BRPI0814670B8/en
Priority to EP19215726.1A priority patent/EP3656870A1/en
Priority to EP19153260.5A priority patent/EP3540739A1/en
Priority to NZ582702A priority patent/NZ582702A/en
Priority to CN200880108377A priority patent/CN101849236A/en
Priority to KR1020177032673A priority patent/KR101966262B1/en
Priority to KR1020237025635A priority patent/KR20230117256A/en
Priority to KR1020167005386A priority patent/KR101972994B1/en
Priority to EP08776043.5A priority patent/EP2183693B2/en
Priority to MX2010000846A priority patent/MX2010000846A/en
Priority to MX2014006501A priority patent/MX346069B/en
Priority to EA201000231A priority patent/EA017966B1/en
Priority to ES08776043T priority patent/ES2441807T5/en
Priority to MX2014006579A priority patent/MX341573B/en
Priority to AU2008278843A priority patent/AU2008278843B2/en
Priority to KR1020207023505A priority patent/KR102339760B1/en
Priority to PL08776043T priority patent/PL2183693T5/en
Priority to DK08776043.5T priority patent/DK2183693T5/en
Priority to KR1020217034197A priority patent/KR102561664B1/en
Priority to KR1020107003969A priority patent/KR101916456B1/en
Application filed by The Chinese University Of Hong Kong filed Critical The Chinese University Of Hong Kong
Publication of WO2009013496A1 publication Critical patent/WO2009013496A1/en
Priority to IL203311A priority patent/IL203311A/en
Priority to ZA2010/00524A priority patent/ZA201000524B/en
Priority to HK10110583.0A priority patent/HK1144024A1/en
Priority to HRP20140009TT priority patent/HRP20140009T4/en
Priority to IL233261A priority patent/IL233261A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6809Methods for determination or identification of nucleic acids involving differential detection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/10Ploidy or copy number detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations
    • G16B20/20Allele or variant detection, e.g. single nucleotide polymorphism [SNP] detection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B30/00ICT specially adapted for sequence analysis involving nucleotides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/154Methylation markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/38Pediatrics
    • G01N2800/385Congenital anomalies
    • G01N2800/387Down syndrome; Trisomy 18; Trisomy 13
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • This invention generally relates to the diagnostic testing of fetal chromosomal aneuploidy by determining imbalances between different nucleic acid sequences, and more particularly to the identification of trisomy 21 (Down syndrome) and other chromosomal aneuploidies via testing a maternal sample (e.g. blood).
  • a maternal sample e.g. blood
  • Fetal chromosomal aneuploidy results from the presence of abnormal dose(s) of a chromosome or chromosomal region.
  • the abnormal dose(s) can be abnormally high, e.g. the presence of an extra chromosome 21 or chromosomal region in trisomy 21; or abnormally low, e.g. the absence of a copy of chromosome X in Turner syndrome.
  • fetal chromosomal aneuploidy e.g., trisomy 21
  • invasive procedures such as amniocentesis or chorionic villus sampling, which pose a finite risk of fetal loss.
  • Noninvasive procedures such as screening by ultrasonography and biochemical markers, have been used to risk-stratify pregnant women prior to definitive invasive diagnostic procedures.
  • these screening methods typically measure epiphenomena that are associated with the chromosomal aneuploidy, e.g., trisomy 21, instead of the core chromosomal abnormality, and thus have suboptimal diagnostic accuracy and other disadvantages, such as being highly influenced by gestational age.
  • fetal nucleic acids co-exist in maternal plasma with a high background of nucleic acids of maternal origin that can often interfere with the analysis of fetal nucleic acids (Lo, YMD et al. 1998 Am J Hum Genet 62, 768-775).
  • Second, fetal nucleic acids circulate in maternal plasma predominantly in a cell-free form, making it difficult to derive dosage information of genes or chromosomes within the fetal genome.
  • Dhallan et al (Dhallan, R, et al. 2007, supra Dhallan, R, et al. 2007 Lancet 369, 474-481) described an alternative strategy of enriching the proportion of circulating fetal DNA by adding formaldehyde to maternal plasma.
  • the proportion of chromosome 21 sequences contributed by the fetus in maternal plasma was determined by assessing the ratio of paternally-inherited fetal-specific alleles to non-fetal-specific alleles for single nucleotide polymorphisms (SNPs) on chromosome 21. SNP ratios were similarly computed for a reference chromosome.
  • SNPs single nucleotide polymorphisms
  • Digital PCR has been developed for the detection of allelic ratio skewing in nucleic acid samples (Chang, HW et al. 2002 J Natl Cancer Inst 94, 1697-1703).
  • Digital PCR is an amplification based nucleic acid analysis technique which requires the distribution of a specimen containing nucleic acids into a multitude of discrete samples where each sample containing on average not more than about one target sequence per sample.
  • Specific nucleic acid targets are amplified with sequence-specific primers to generate specific amplicons by digital PCR.
  • the nucleic acid loci to be targeted and the species of or panel of sequence- specific primers to be included in the reactions are determined or selected prior to nucleic acid analysis.
  • Embodiments of this invention provide methods, systems, and apparatus for determining whether a nucleic acid sequence imbalance (e.g., chromosome imbalance) exists within a biological sample obtained from a pregnant female. This determination may be done by using a parameter of an amount of a clinically-relevant chromosomal region in relation to other non-clinically-relevant chromosomal regions (background regions) within a biological sample.
  • an amount of chromosomes is determined from a sequencing of nucleic acid molecules in a maternal sample, such as urine, plasma, serum, and other suitable biological samples. Nucleic acid molecules of the biological sample are sequenced, such that a fraction of the genome is sequenced.
  • One or more cutoff values are chosen for determining whether a change compared to a reference quantity exists (i.e. an imbalance), for example, with regards to the ratio of amounts of two chromosomal regions (or sets of regions).
  • a biological sample received from a pregnant female is analyzed to perform a prenatal diagnosis of a fetal chromosomal aneuploidy.
  • the biological sample includes nucleic acid molecules. A portion of the nucleic acid molecules contained in the biological sample are sequenced. In one aspect, the amount of genetic information obtained is sufficient for accurate diagnosis yet not overly excessive so as to contain costs and the amount of input biological sample required.
  • a first amount of a first chromosome is determined from sequences identified as originating from the first chromosome.
  • a second amount of one or more second chromosomes is determined from sequences identified as originating from one of the second chromosomes.
  • a parameter from the first amount and the second amount is then compared to one or more cutoff values. Based on the comparison, a classification of whether a fetal chromosomal aneuploidy exists for the first chromosome is determined.
  • the sequencing advantageously maximizes the amount of genetic information that could be inferred from the limited amount of fetal nucleic acids which exist as a minor population in a biological sample containing maternal background nucleic acids.
  • a biological sample received from a pregnant female is analyzed to perform a prenatal diagnosis of a fetal chromosomal aneuploidy.
  • the biological sample includes nucleic acid molecules.
  • a percentage of fetal DNA in the biological sample is identified.
  • a number N of sequences to be analyzed based on a desired accuracy is calculated based on the percentage.
  • At least N of the nucleic acid molecules contained in the biological sample are randomly sequenced.
  • a first amount of a first chromosome is determined from sequences identified as originating from the first chromosome.
  • a second amount of one or more second chromosomes is determined from sequences identified as originating from one of the second chromosomes.
  • a parameter from the first amount and the second amount is then compared to one or more cutoff values. Based on the comparison, a classification of whether a fetal chromosomal aneuploidy exists for the first chromosome is determined.
  • the random sequencing advantageously maximizes the amount of genetic information that could be inferred from the limited amount of fetal nucleic acids which exist as a minor population in a biological sample containing maternal background nucleic acids.
  • FIG. 1 is a flowchart of a method 100 for performing prenatal diagnosis of a fetal chromosomal aneuploidy in a biological sample obtained from a pregnant female subject according to an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method 200 for performing prenatal diagnosis of a fetal chromosomal aneuploidy using random sequencing according to an embodiment of the present invention.
  • FIG. 3 A shows a plot of percentage representation of chromosome 21 sequences in maternal plasma samples involving trisomy 21 or euploid fetuses according to an embodiment of the present invention.
  • FIG. 3B shows a correlation between maternal plasma fractional fetal DNA concentrations determined by massively parallel sequencing and microfluidics digital PCR according to an embodiment of the present invention.
  • FIG. 4A shows a plot of percentage representation of aligned sequences per chromosome according to an embodiment of the present invention.
  • FIG. 4B shows a plot of difference (%) in percentage representation per chromosome between the trisomy 21 case and euploid case shown in FIG. 4 A.
  • FIG. 5 shows a correlation between degree of over-representation in chromosome 21 sequences and the fractional fetal DNA concentrations in maternal plasma involving trisomy 21 fetuses according to an embodiment of the present invention.
  • FIG. 6 shows a table of a portion of human genome that was analyzed according to an embodiment of the present invention.
  • T21 denote a sample obtained from a pregnancy involving a trisomy 21 fetus.
  • FIG. 7 shows a table of a number of sequences required to differentiate euploid from trisomy 21 fetuses according to an embodiment of the present invention.
  • FIG. 8 A shows a table of top ten starting positions of sequenced tags aligned to chromosome 21 according to an embodiment of the present invention.
  • FIG. 8B shows a table of top ten starting positions of sequenced tags aligned to chromosome 22 according to an embodiment of the present invention.
  • FIG. 9 shows a block diagram of an exemplary computer apparatus usable with system and methods according to embodiments of the present invention.
  • biological sample refers to any sample that is taken from a subject ⁇ e.g., a human, such as a pregnant woman) and contains one or more nucleic acid molecule(s) of interest.
  • nucleic acid refers to a deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) and a polymer thereof in either single- or double-stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogs of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions), alleles, orthologs, SNPs, and complementary sequences as well as the sequence explicitly indicated.
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed- base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al, J. Biol. Chem. 260:2605-2608 (1985); and Rossolini et al, MoI. Cell. Probes 8:91-98 (1994)).
  • nucleic acid is used interchangeably with gene, cDNA, mRNA, small noncoding RNA, micro RNA (miRNA), Piwi-interacting RNA, and short hairpin RNA (shRNA) encoded by a gene or locus.
  • the term "gene” means the segment of DNA involved in producing a polypeptide chain. It may include regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons).
  • reaction refers to any process involving a chemical, enzymatic, or physical action that is indicative of the presence or absence of a particular polynucleotide sequence of interest.
  • An example of a “reaction” is an amplification reaction such as a polymerase chain reaction (PCR).
  • PCR polymerase chain reaction
  • Another example of a “reaction” is a sequencing reaction, either by synthesis or by ligation.
  • an “informative reaction” is one that indicates the presence of one or more particular polynucleotide sequence of interest, and in one case where only one sequence of interest is present.
  • the term "well” as used herein refers to a reaction at a predetermined location within a confined structure, e.g., a well-shaped vial, cell, or chamber in a PCR array.
  • clinical relevant nucleic acid sequence can refer to a polynucleotide sequence corresponding to a segment of a larger genomic sequence whose potential imbalance is being tested or to the larger genomic sequence itself.
  • sequence of chromosome 21 is the sequence of chromosome 21.
  • Other examples include chromosome 18, 13, X and Y.
  • Yet other examples include mutated genetic sequences or genetic polymorphisms or copy number variations that a fetus may inherit from one or both of its parents.
  • sequences which are mutated, deleted, or amplified in a malignant tumor e.g. sequences in which loss of heterozygosity or gene duplication occur.
  • multiple clinically relevant nucleic acid sequences can be used to provide data for detecting the imbalance. For instance, data from five non-consecutive sequences on chromosome 21 can be used in an additive fashion for the determination of possible chromosomal 21 imbalance, effectively reducing the need of sample volume to 1/5.
  • background nucleic acid sequence refers to a nucleic acid sequence whose normal ratio to the clinically relevant nucleic acid sequence is known, for instance a 1-to-l ratio.
  • the background nucleic acid sequence and the clinically relevant nucleic acid sequence are two alleles from the same chromosome that are distinct due to heterozygosity.
  • the background nucleic acid sequence is one allele that is heterozygous to another allele that is the clinically relevant nucleic acid sequence.
  • some of each of the background nucleic acid sequence and the clinically relevant nucleic acid sequence may come from different individuals.
  • reference nucleic acid sequence refers to a nucleic acid sequence whose average concentration per reaction is known or equivalently has been measured.
  • nucleic acid sequence refers to the nucleic acid sequence among two sequences of interest (e.g., a clinically relevant sequence and a background sequence) that is in more abundance than the other sequence in a biological sample.
  • based on means “based at least in part on” and refers to one value (or result) being used in the determination of another value, such as occurs in the relationship of an input of a method and the output of that method.
  • derive as used herein also refers to the relationship of an input of a method and the output of that method, such as occurs when the derivation is the calculation of a formula.
  • quantitative data as used herein means data that are obtained from one or more reactions and that provide one or more numerical values. For example, the number of wells that show a fluorescent marker for a particular sequence would be quantitative data.
  • the term "parameter” as used herein means a numerical value that characterizes a quantitative data set and/or a numerical relationship between quantitative data sets. For example, a ratio (or function of a ratio) between a first amount of a first nucleic acid sequence and a second amount of a second nucleic acid sequence is a parameter.
  • the term "cutoffvalue” as used herein means a numerical value whose value is used to arbitrate between two or more states (e.g. diseased and non-diseased) of classification for a biological sample. For example, if a parameter is greater than the cutoffvalue, a first classification of the quantitative data is made (e.g. diseased state); or if the parameter is less than the cutoffvalue, a different classification of the quantitative data is made (e.g. non-diseased state).
  • the term "imbalance” as used herein means any significant deviation as defined by at least one cutoff value in a quantity of the clinically relevant nucleic acid sequence from a reference quantity.
  • the reference quantity could be a ratio of 3/5, and thus an imbalance would occur if the measured ratio is 1:1.
  • chromosomal aneuploidy means a variation in the quantitative amount of a chromosome from that of a diploid genome.
  • the variation may be a gain or a loss. It may involve the whole of one chromosome or a region of a chromosome.
  • random sequencing refers to sequencing whereby the nucleic acid fragments sequenced have not been specifically identified or targeted before the sequencing procedure. Sequence-specific primers to target specific gene loci are not required. The pools of nucleic acids sequenced vary from sample to sample and even from analysis to analysis for the same sample. The identities of the sequenced nucleic acids are only revealed from the sequencing output generated. In some embodiments of the present invention, the random sequencing may be preceded by procedures to enrich a biological sample with particular populations of nucleic acid molecules sharing certain common features. In one embodiment, each of the fragments in the biological sample have an equal probability of being sequenced.
  • fraction of the human genome or "portion of the human genome” as used herein refers to less than 100% of the nucleotide sequences in the human genome which comprises of some 3 billion basepairs of nucleotides. In the context of sequencing, it refers to less than 1-fold coverage of the nucleotide sequences in the human genome.
  • the term may be expressed as a percentage or absolute number of nucleotides/basepairs. As an example of use, the term may be used to refer to the actual amount of sequencing performed. Embodiments may determine the required minimal value for the sequenced fraction of the human genome to obtain an accurate diagnosis. As another example of use, the term may refer to the amount of sequenced data used for deriving a parameter or amount for disease classification.
  • sequenced tag refers to string of nucleotides sequenced from any part or all of a nucleic acid molecule.
  • a sequenced tag may be a short string of nucleotides sequenced from a nucleic acid fragment, a short string of nucleotides at both ends of a nucleic acid fragment, or the sequencing of the entire nucleic acid fragment that exists in the biological sample.
  • a nucleic acid fragment is any part of a larger nucleic acid molecule.
  • a fragment (e.g. a gene) may exist separately (i.e. not connected) to the other parts of the larger nucleic acid molecule.
  • Embodiments of this invention provide methods, systems, and apparatus for determining whether an increase or decrease (diseased state) of a clinically-relevant chromosomal region exists compared to a non-diseased state. This determination may be done by using a parameter of an amount of a clinically-relevant chromosomal region in relation to other non-clinically-relevant chromosomal regions (background regions) within a biological sample. Nucleic acid molecules of the biological sample are sequenced, such that a fraction of the genome is sequenced, and the amount may be determined from results of the sequencing. One or more cutoff values are chosen for determining whether a change compared to a reference quantity exists (i.e. an imbalance), for example, with regards to the ratio of amounts of two chromosomal regions (or sets of regions).
  • the change detected in the reference quantity may be any deviation (upwards or downwards) in the relation of the clinically-relevant nucleic acid sequence to the other non- clinically-relevant sequences.
  • the reference state may be any ratio or other quantity (e.g. other than a 1-1 correspondence), and a measured state signifying a change may be any ratio or other quantity that differs from the reference quantity as determined by the one or more cutoff values.
  • the clinically relevant chromosomal region (also called a clinically relevant nucleic acid sequence) and the background nucleic acid sequence may come from a first type of cells and from one or more second types of cells.
  • fetal nucleic acid sequences originating from fetal/placental cells are present in a biological sample, such as maternal plasma, which contains a background of maternal nucleic acid sequences originating from maternal cells.
  • the cutoff value is determined based at least in part on a percentage of the first type of cells in a biological sample. Note the percentage of fetal sequences in a sample may be determined by any fetal-derived loci and not limited to measuring the clinically-relevant nucleic acid sequences.
  • the cutoff value is determined at least in part on the percentage of tumor sequences in a biological sample, such as plasma, serum, saliva or urine, which contains a background of nucleic acid sequences derived from the non-malignant cells within the body.
  • FIG. 1 is a flowchart of a method 100 for performing prenatal diagnosis of a fetal chromosomal aneuploidy in a biological sample obtained from a pregnant female subject according to an embodiment of the present invention.
  • a biological sample from the pregnant female is received.
  • the biological sample may be plasma, urine, serum, or any other suitable sample.
  • the sample contains nucleic acid molecules from the fetus and the pregnant female.
  • the nucleic acid molecules may be fragments from chromosomes.
  • step 120 at least a portion of a plurality of the nucleic acid molecules contained in the biological sample are sequenced.
  • the portion sequenced represents a fraction of the human genome.
  • the nucleic acid molecules are fragments of respective chromosomes. One end (e.g. 35 basepairs (bp)), both ends, or the entire fragment may be sequenced. All of the nucleic acid molecules in the sample may be sequenced, or just a subset may be sequenced. This subset may be randomly chosen, as will be described in more detail later.
  • the sequencing is done using massively parallel sequencing.
  • Massively parallel sequencing such as that achievable on the 454 platform (Roche) (Margulies, M. et al. 2005 Nature 437, 376-380), Illumina Genome Analyzer (or Solexa platform) or SOLiD System (Applied Biosystems) or the Helicos True Single Molecule DNA sequencing technology (Harris TD et al. 2008 Science, 320, 106-109), the single molecule, real-time (SMRTTM) technology of Pacific Biosciences, and nanopore sequencing (Soni GV and Meller A.
  • SMRTTM single molecule, real-time
  • the haplotype, trascriptome and methylation profiles of the sequenced reads resemble those of the original specimen (Brenner et al Nat Biotech 2000; 18: 630-634; Taylor et al Cancer Res 2007; 67: 8511-8518). Due to the large sampling of sequences from each specimen, the number of identical sequences, such as that generated from the sequencing of a nucleic acid pool at several folds of coverage or high redundancy, is also a good quantitative representation of the count of a particular nucleic acid species or locus in the original sample.
  • a first amount of a first chromosome (e.g. the clinically relevant chromosome) is determined.
  • the first amount is determined from sequences identified as originating from the first chromosome. For example, a bioinformatics procedure may then be used to locate each of these DNA sequences to the human genome. It is possible that a proportion of such sequences will be discarded from subsequent analysis because they are present in the repeat regions of the human genome, or in regions subjected to inter-individual variations, e.g. copy number variations. An amount of the chromosome of interest and of one or more other chromosomes may thus be determined.
  • a second amount of one or more second chromosomes is determined from sequences identified as originating from one of the second chromosomes.
  • the second chromosomes are all of the other chromosomes besides the first one (i.e. the one being tested).
  • the second chromosome is just a single other chromosome.
  • determining the amounts of the chromosomes including but not limited to counting the number of sequenced tags, the number of sequenced nucleotides (basepairs) or the accumulated lengths of sequenced nucleotides (basepairs) originating from particular chromosome(s) or chromosomal regions.
  • rules may be imposed on the results of the sequencing to determine what gets counted.
  • an amount may be obtained based on a proportion of the sequenced output. For example, sequencing output corresponding to nucleic acid fragments of a specified size range could be selected after the bioinformatics analysis. Examples of the size ranges are about ⁇ 300 bp, ⁇ 200 bp or ⁇ 100 bp.
  • a parameter is determined from the first amount and the second amount.
  • the parameter may be, for example, a simple ratio of the first amount to the second amount, or the first amount to the second amount plus the first amount.
  • each amount could be an argument to a function or separate functions, where a ratio may be then taken of these separate functions.
  • a ratio may be then taken of these separate functions.
  • a parameter e.g. a fractional representation of a chromosome potentially involved in a chromosomal aneuploidy, e.g. chromosome 21 or chromosome 18 or chromosome 13, may then be calculated from the results of the bioinformatics procedure.
  • the fractional representation may be obtained based on an amount of all of the sequences (e.g. some measure of all of the chromosomes including the clinically-relevant chromosome) or a particular subset of chromosomes (e.g. just one other chromosome than the one being tested.)
  • the parameter is compared to one or more cutoff values.
  • the cutoff values may be determined from any number of suitable ways. Such ways include Bayesian-type likelihood method, sequential probability ratio testing (SPRT) 5 false discovery, confidence interval, receiver operating characteristic (ROC). Examples of applications of these methods and sample-specific methods are described in concurrently filed application "DETERMINING A NUCLEIC ACID SEQUENCE IMBALANCE,” (Attorney Docket No. 016285-00521 OUS), which is incorporated by reference.
  • the parameter e.g. the fractional representation of the clinically relevant chromosome
  • a reference range established in pregnancies involving normal (i.e. euploid) fetuses. It is possible that in some variants of the procedure, the reference range (i.e. the cutoff values) would be adjusted in accordance with the fractional concentration of fetal DNA (f) in a particular maternal plasma sample.
  • the value of f can be determined from the sequencing dataset, e.g. using sequences mappable to the Y chromosome if the fetus is male. The value of f may also be determined in a separate analysis, e.g.
  • a classification of whether a fetal chromosomal aneuploidy exists for the first chromosome is determined.
  • the classification is a definitive yes or no.
  • a classification may be unclassifiable or uncertain.
  • the classification may be a score that is to be interpreted at a later date, for example, by a doctor.
  • a proportion of such sequences would be from the chromosome involved in an aneuploidy such as chromosome 21 in this illustrative example. Yet other sequences from such a sequencing exercise would be derived from the other chromosomes.
  • a normalized frequency, within a reference range, of chromosome 21 -specific sequences from such a sequencing exercise If the fetus has trisomy 21, then the normalized frequency of chromosome 21 -derived sequences from such a sequencing exercise will increase, thus allowing the detection of trisomy 21.
  • the degree of change in the normalized frequency will be dependent on the fractional concentration of fetal nucleic acids in the analyzed sample.
  • the Illumina Genome Analyzer sequences clonally-expanded single DNA molecules captured on a solid surface termed a flow cell. Each flow cell has 8 lanes for the sequencing of 8 individual specimens or pools of specimens. Each lane is capable of generating ⁇ 200Mb of sequence which is only a fraction of the 3 billion basepairs of sequences in the human genome. Each genomic DNA or plasma DNA sample was sequenced using one lane of a flow cell.
  • the short sequence tags generated were aligned to the human reference genome sequence and the chromosomal origin was noted.
  • the total number of individual sequenced tags aligned to each chromosome were tabulated and compared with the relative size of each chromosome as expected from the reference human genome or non-disease representative specimens. Chromosome gains or losses were then identified.
  • paired end sequencing allows one to deduce the size of the original nucleic acid fragment, one example is to focus on the counting of the number of paired sequenced tags corresponding to nucleic acid fragments of a specified size, such as ⁇ 300 bp, ⁇ 200bp or ⁇ 100 bp.
  • the fraction of the nucleic acid pool that is sequenced in a run is further sub-selected prior to sequencing.
  • hybridization based techniques such as oligonucleotide array could be used to first sub-select for nucleic acid sequences from certain chromosomes, e.g. a potentially aneuploid chromosome and other chromosome(s) not involved in the aneuploidy tested.
  • a certain sub-population of nucleic acid sequences from the sample pool is sub-selected or enriched prior to sequencing.
  • fetal DNA molecules in maternal plasma are comprised of shorter fragments than the maternal background DNA molecules (Chan et al Clin Chem 2004; 50: 88-92).
  • the fetal nucleic acid portion could be enriched by a method that suppresses the maternal background, such as by the addition of formaldehyde (Dhallan et al JAMA 2004; 291: 1114-9).
  • a portion or subset of the pre-selected pool of nucleic acids is sequenced randomly.
  • tags identified as originating from the potentially aneuploid chromosome i.e. chromosome 21 in this study, are compared quantitatively to all of the sequenced tags or tags originating from one of more chromosomes not involved in the aneuploidy.
  • the relationship between the sequencing output from chromosome 21 and other non-21 chromosomes for a test specimen is compared with cut-off values derived with methods described in the above section to determine if the specimen was obtained from a pregnancy involving a euploid or trisomy 21 fetus.
  • a number of different amounts include but not limited to the following could be derived from the sequenced tags.
  • the number of sequenced tags, i.e. absolute count, aligned to a particular chromosome could be compared to the absolute count of sequenced tags aligned to other chromosomes.
  • the fractional count of the amount of sequenced tags from chromosome 21 with reference to all or some other sequenced tags could be compared to that of other non-aneuploid chromosomes.
  • the number of nucleotides sequenced from a particular chromosome could easily be derived from 36 bp multiplied by the sequenced tag count.
  • each maternal plasma specimen was only sequenced using one flow cell which could only sequence a fraction of the human genome
  • most of the maternal plasma DNA fragment species would only each have been sequenced to generate one sequenced tag count.
  • the nucleic acid fragments present in the maternal plasma specimen were sequenced at less than 1-fold coverage.
  • the total number of sequenced nucleotides for any particular chromosome would mostly correspond to the amount, proportion or length of the part of the said chromosome that has been sequenced.
  • the quantitative determination of the representation of the potentially aneuploid chromosome could be derived from a fraction of the number or equivalent length of nucleotides sequenced from that chromosome with reference to a similarly derived quantity for other chromosomes.
  • the fetal nucleic acid portion could be enriched by a method that suppresses the maternal background, such as by the addition of formaldehyde (Dhallan et al JAMA 2004;
  • sequences originating from a potentially aneuploid chromosome and one or more chromosomes not involved in the aneuploidy could be enriched by hybridization techniques for example onto oligonucelotide microarrays. The enriched pools of nucleic acids would then be subjected to random sequencing. This would allow the reduction in sequencing costs.
  • FIG. 2 is a flowchart of a method 200 for performing prenatal diagnosis of a fetal chromosomal aneuploidy using random sequencing according to an embodiment of the present invention.
  • representative data from all of the chromosomes may be generated at the same time. The origin of a particular fragment is not selected ahead of time. The sequencing is done at random and then a database search may be performed to see where a particular fragment is coming from. This is contrasted from situations when a specific fragment from chromosome 21 and another one from chromosome 1 are amplified.
  • step 210 a biological sample from the pregnant female is received.
  • the number N of sequences to be analyzed is calculated for a desired accuracy.
  • a percentage of fetal DNA in the biological sample is first identified. This may be done by any suitable means as will be known to one skilled in the art. The identification may simply be reading a value that was measured by another entity.
  • the calculation of the number N of sequences to be analyzed is based on the percentage. For example, the number of sequences needed to be analyzed would be increased when the fetal DNA percentage drops, and could be decreased when the fetal DNA rises.
  • the number N may be a fixed number or a relative number, such as a percentage.
  • step 230 at least N of a plurality of the nucleic acid molecules contained in the biological sample are randomly sequenced.
  • the nucleic acids to be sequenced are not specifically identified or targeted before sample analysis, i.e. sequencing. Sequence-specific primers to target specific gene loci are not needed for sequencing.
  • the pools of nucleic acids sequenced vary from sample to sample and even from analysis to analysis for the same sample. Furthermore, from the below descriptions (FIG. 6), the amount of sequencing output required for case diagnosis could vary between the tested specimens and the reference population.
  • random sequencing is performed on DNA fragments that are present in the plasma of a pregnant woman, and one obtains genomic sequences which would originally have come from either the fetus or the mother.
  • Random sequencing involves sampling (sequencing) a random portion of the nucleic acid molecules present in the biological sample.
  • a different subset (fraction) of the nucleic acid molecules may be sequenced in each analysis. Embodiments will work even when this subset varies from sample to sample and from analysis to analysis, which may occur even using the same sample. Examples of the fraction are about 0.1%, 0.5%, 1%, 5%, 10%, 20%, or 30% of the genome. In other embodiments, the fraction is at least any one of these values.
  • sequenced data is sufficient to distinguish trisomy 21 from euploid cases.
  • the subset of sequenced data could be the proportion of sequenced tags that passed certain quality parameters. For example, in example II, sequenced tags that were uniquely aligned to the repeat-masked reference human genome were used.
  • a subset of the sequencing output encompassing sequenced tags generated from nucleic acid fragments corresponding to a specified size window in the original specimen could be sub-selected during the post-sequencing analysis.
  • paired-end sequencing refers to sequencing the two ends of nucleic acid fragments. The sequenced data from each paired-end are then aligned to the reference human genome sequence. The distance or number of nucleotides spanning between the two ends could then be deduced. The whole length of the original nucleic acid fragment could also be deduced.
  • sequencing platforms such as the 454 platform and possibly some single molecule sequencing techniques are able to sequence the full length of short nucleic acid fragments, for example 200 bp. In this manner, the actual length of the nucleic acid fragment would be immediately known from the sequenced data.
  • Such paired-end analysis is also possible using other sequencing platforms, e.g. the Applied Biosystems SOLiD system.
  • sequencing platforms e.g. the Applied Biosystems SOLiD system.
  • Roche 454 platform because of its increased read length compared with other massively parallel sequencing systems, it is also possible to determine the length of a fragment from its complete sequence.
  • the post-sequencing selection of subsets of nucleic acid pools is different from other nucleic acid enrichment strategies which are performed prior to specimen analysis, such as the use gel electrophoresis or size exclusion columns for the selection of nucleic acids of particular sizes, which require the physical separation of the enriched pool from the background pool of nucleic acids.
  • the physical procedures would introduce more experimental steps and may be prone to problems such as contamination.
  • the post- sequencing in silico selection of subsets of sequencing output would also allow one to vary the selection depending on the sensitivity and specificity required for disease determination.
  • the bioinformatics, computational and statistical approaches used to determine if a maternal plasma specimen is obtained from a pregnant woman conceived with a trisomy 21 or euploid fetus could be compiled into a computer program product used to determine parameters from the sequencing output.
  • the operation of the computer program would involve the determining of a quantitative amount from the potentially aneuploid chromosome as well as amount(s) from one or more of the other chromosomes.
  • a parameter would be determined and compared with appropriate cut-off values to determine if a fetal chromosomal aneuploidy exists for the potentially aneuploid chromosome.
  • DNA from each maternal plasma specimen was sequenced by one flow cell. Sequenced reads were compiled using Solexa Analysis Pipeline. All reads were then aligned to the repeat-masked reference human genomic sequence, NCBI 36 assembly (GenBank accession numbers: NCJ)OOOOl to NC_000024), using the Eland application.
  • sequences that have been mapped to a unique location in the repeat-masked human genome reference are further considered.
  • Other subsets of or the entire set of the sequenced data could alternatively be used.
  • the total number of uniquely mappable sequences for each specimen was counted.
  • the number of sequences uniquely aligned to chromosome 21 was expressed as a proportion to the total count of aligned sequences for each specimen.
  • the trisomy 21 fetus would contribute extra sequenced tags originating from chromosome 21 due to the presence of an extra copy of chromosome 21 in the fetal genome.
  • the percentage of chromosome 21 sequences in maternal plasma from a pregnancy carrying a trisomy 21 fetus would be higher than that from a pregnancy with a euploid fetus.
  • the analysis does not require the targeting of fetal-specific sequences. It also does not require the prior physical separation of fetal from maternal nucleic acids. It also does not require the need to distinguish or identify fetal from maternal sequences after sequencing.
  • FIG. 3 A shows the percentage of sequences mapped to chromosome 21 (percentage representation of chromosome 21) for each of the 8 maternal plasma DNA samples.
  • the percentage representation of chromosome 21 was significantly higher in maternal plasma of trisomy 21 pregnancies than in that of euploid pregnancies.
  • FIG. 3 B shows the correlation of the fractional fetal DNA concentrations as inferred by the percentage representation of Y chromosome by sequencing and that determined by ZFYIZFX microfluidics digital PCR. There was a positive correlation between the fractional fetal DNA concentrations in maternal plasma determined by these two methods. The coefficient of correlation (r) was 0.917 in the Pearson correlation analysis.
  • FIG. 4 A The percentages of maternal plasma DNA sequences aligned to each of the 24 chromosomes (22 autosomes and X and Y chromosomes) for two representative cases are shown in FIG. 4 A.
  • One pregnant woman was carrying a trisomy 21 fetus and the other was carrying a euploid fetus.
  • the percentage representation of sequences mapped to chromosome 21 is higher in the pregnant woman carrying a trisomy 21 fetus when compared with the pregnant woman carrying a normal fetus.
  • FIG. 4B The differences (%) of the percentage representation per chromosome between the maternal plasma DNA specimens of the above two cases is shown in FIG. 4B.
  • the percentage difference for a particular chromosome is calculated using the formula below:
  • P 21 percentage of plasma DNA sequences aligned to the particular chromosome in the pregnant woman carrying a trisomy 21 fetus and;
  • P E percentage of plasma DNA sequences aligned to the particular chromosome in the pregnant woman carrying a euploid fetus.
  • FIG. 4B there is an over-representation of chromosome 21 sequences by 11% in the plasma of the pregnant woman carrying a trisomy 21 fetus when compared with the pregnant woman carrying a euploid fetus.
  • the differences between the two cases were within 5%.
  • the percentage representation for chromosome 21 is increased in the trisomy 21 compared with the euploid maternal plasma samples, the difference (%) could be alternatively referred as the degree of over-representation in chromosome 21 sequences.
  • ratios of the counts from test and reference samples could also be calculated and would be indicative of the degree of chromosome 21 over-representation in trisomy 21 compared with euploid samples.
  • the determination of the fractional concentration of fetal DNA in maternal plasma can also be done separate to the sequencing run.
  • the Y chromosome DNA concentration could be pre-determined using real-time PCR, microfluidics PCR or mass spectrometry.
  • FIG. 3 B we have demonstrated in FIG. 3 B that there is good correlation between the fetal DNA concentrations estimated based on the Y-chromosome count generated during the sequencing run and the ZFY/ZFX ratio generated external to the sequencing run.
  • fetal DNA concentration could be determined using loci other than the Y chromosome and applicable to female fetuses.
  • fetal-derived methylated RASSFlA sequences would be detected in the plasma of pregnant women in the background of maternally derived unmethylated RASSFlA sequences (Chan et al, Clin Chem 2006;52:2211-8).
  • the fractional fetal DNA concentration can thus be determined by dividing the amount of methylated RASSFlA sequences by the amount of total RASSFlA (methylated and unmethylated) sequences.
  • maternal plasma would be preferred over maternal serum for practicing our invention because DNA is released from the maternal blood cells during blood clotting.
  • serum it is expected that the fractional concentration of fetal DNA will be lower in maternal plasma than maternal serum.
  • maternal serum it is expected that more sequences would need to be generated for fetal chromosomal aneuploidy to be diagnosed, when compared with a plasma sample obtained from the same pregnant woman at the same time.
  • massively parallel sequencing is not dependent on the detection or analysis of predetermined or a predefined set of DNA sequences.
  • a random representative fraction of DNA molecules from the specimen pool is sequenced.
  • the number of different sequenced tags aligned to various chromosomal regions is compared between specimens containing or not containing the DNA species of interest. Chromosomal aberrations would be revealed by differences in the number (or percentage) of sequences aligned to any given chromosomal region in the specimens.
  • the sequencing technique on plasma cell-free DNA may be used to detect the chromosomal aberrations in the plasma DNA for the detection of a specific cancer.
  • Different cancers have a set of typical chromosomal aberrations. Changes (amplifications and deletions) in multiple chromosomal regions may be used. Thus, there would be an increased proportion of sequences aligned to the amplified regions and a decreased proportion of sequences aligned to decreased regions.
  • the percentage representation per chromosome could be compared with the size for each corresponding chromosome in a reference genome expressed as percentage of genomic representation of any given chromosome in relation to the whole genome. Direct comparisons or comparisons to a reference chromosome may also be used.
  • UO uniquely mappable sequenced tags
  • Eland software only the uniquely mappable sequenced tags, termed UO in nomenclature from the Eland software, were used to demonstrate the presence of over- representation in the amount of chromosome 21 sequences in the maternal plasma specimens from pregnancies each carrying a fetus with trisomy 21, as described in example I above.
  • UO sequences only represent a subset of all the sequenced tags generated from each specimen and further represent an even smaller proportion, some 2%, of the human genome.
  • the sequencing result of the plasma DNA from a pregnant woman carrying a euploid male fetus is used for this analysis.
  • the number of sequenced tags that can be mapped without mismatches to the reference human genome sequence was 1,990,000. Subsets of sequences were randomly chosen from these 1,990,000 tags and the percentage of sequences aligned to chromosome 21 was calculated within each subset. The number of sequences in the subsets was varied from 60,000 to 540,000 sequences. For each subset size, multiple subsets of the same number of sequenced tags were compiled by random selection of the sequenced tags from the total pool until no other combination was possible.
  • the mean percentage of sequences aligned to chromosome 21 and its standard deviation (SD) were then calculated from the multiple subsets within each subset size. These data were compared across different subset sizes to determine the effect of subset size on the distribution of the percentage of sequences aligned to the chromosome 21. The 5 th and 95 f percentiles of the percentages were then calculated according to the mean and SD.
  • the sequenced tags aligned to chromosome 21 should be over-represented in the maternal plasma due to an extra dose of chromosome 21 from the fetus.
  • the degree of over-representation is dependent on the fetal DNA percentage in the maternal plasma DNA sample following the equation below:
  • Per T 2i Per Eu x (1 + f/2) where P er T2i represents the percentage of sequences aligned to chromosome 21 in a woman with a trisomy 21 fetus;
  • PerE u represents the percentage of sequences aligned to chromosome 21 in a woman with a euploid fetus; and f represents the fetal DNA percentage in maternal plasma DNA
  • the SD for the percentages of sequences aligned to chromosome 21 decreases with increasing number of sequences in each subset. Therefore, when the number of sequences in each subset increases, the interval between the 5 th and 95 th percentiles decreases. When the 5%-95% interval for the euploid and trisomy 21 cases do not overlap, then the differentiation between the two groups of cases would be possible with an accuracy of >95%.
  • the minimal subset size for the differentiation of trisomy 21 cases from euploid cases is dependent on the fetal DNA percentage.
  • the minimal subset sizes for differentiating trisomy 21 from euploid cases were 120,000, 180,000 and 540,000 sequences for fetal DNA percentages of 20%, 10% and 5%, respectively.
  • the number of sequences needed to be analyzed would be 120,000 for determining whether a fetus has trisomy 21 when a maternal plasma DNA sample contains 20% fetal DNA.
  • the number of sequences needed to be analyzed would be increased to 540,000 when the fetal DNA percentage drops to 5%.
  • sequenced tags generated from the eight maternal plasma samples analyzed in example I.
  • For each maternal plasma specimen we determined the starting positions in relation to the reference human genome sequence, NCBI assembly 36, of each of the 36 bp sequenced tags that were aligned uniquely to chromosome 21 without mismatches.
  • the top ten starting positions for chromosome 21 and chromosome 22 for each of the maternal plasma specimens are shown in FIGS. 8 A and 8B, respectively.
  • the sequenced pools of DNA fragments were non-identical between samples.
  • any of the software components or functions described in this application may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, Java, C++ or Perl using, for example, conventional or object- oriented techniques.
  • the software code may be stored as a series of instructions, or commands on a computer readable medium for storage and/or transmission, suitable media include random access memory (RAM), a read only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk, or an optical medium such as a compact disk (CD) or DVD (digital versatile disk), flash memory, and the like.
  • RAM random access memory
  • ROM read only memory
  • magnetic medium such as a hard-drive or a floppy disk
  • an optical medium such as a compact disk (CD) or DVD (digital versatile disk), flash memory, and the like.
  • the computer readable medium may be any combination of such storage or transmission devices.
  • Such programs may also be encoded and transmitted using carrier signals adapted for transmission via wired, optical, and/or wireless networks conforming to a variety of protocols, including the Internet.
  • a computer readable medium according to an embodiment of the present invention may be created using a data signal encoded with such programs.
  • Computer readable media encoded with the program code may be packaged with a compatible device or provided separately from other devices (e.g., via Internet download). Any such computer readable medium may reside on or within a single computer program product (e.g. a hard drive or an entire computer system), and may be present on or within different computer program products within a system or network.
  • a computer system may include a monitor, printer, or other suitable display for providing any of the results mentioned herein to a user.
  • FIG. 9 An example of a computer system is shown in FIG. 9.
  • the subsystems shown in FIG. 9 are interconnected via a system bus 975. Additional subsystems such as a printer 974, keyboard 978, fixed disk 979, monitor 976, which is coupled to display adapter 982, and others are shown.
  • Peripherals and input/output (I/O) devices which couple to I/O controller 971, can be connected to the computer system by any number of means known in the art, such as serial port 977.
  • serial port 977 or external interface 981 can be used to connect the computer apparatus to a wide area network such as the Internet, a mouse input device, or a scanner.
  • system bus allows the central processor 973 to communicate with each subsystem and to control the execution of instructions from system memory 972 or the fixed disk 979, as well as the exchange of information between subsystems.
  • the system memory 972 and/or the fixed disk 979 may embody a computer readable medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medical Informatics (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Theoretical Computer Science (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Saccharide Compounds (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Embodiments of this invention provide methods, systems, and apparatus for determining whether a fetal chromosomal aneuploidy exists from a biological sample obtained from a pregnant female. Nucleic acid molecules of the biological sample are sequenced, such that a fraction of the genome is sequenced. Respective amounts of a clinically-relevant chromosome and of background chromosomes are determined from results of the sequencing. A parameter derived from these amounts (e.g. a ratio) is compared to one or more cutoff values, thereby determining a classification of whether a fetal chromosomal aneuploidy exists.

Description

DIAGNOSING FETAL CHROMOSOMAL ANEUPLOID Y USING
GENOMIC SEQUENCING
CLAIM OF PRIORITY
[0001] The present application claims priority from and is a non-provisional application of U.S. Provisional Application No. 60/951438, entitled "DETERMINING A NUCLEIC ACID SEQUENCE IMBALANCE" filed July 23, 2007 (Attorney Docket No. 016285-005200US), the entire contents of which are herein incorporated by reference for all purposes.
CROSS-REFERENCES TO RELATED APPLICATIONS
[0002] The present application is also related to concurrently filed non-provisional application entitled "DETERMINING A NUCLEIC ACID SEQUENCE IMBALANCE," (Attorney Docket No. 016285-005210US) the entire contents of which are herein incorporated by reference for all purposes.
FIELD OF THE INVENTION
[0003] This invention generally relates to the diagnostic testing of fetal chromosomal aneuploidy by determining imbalances between different nucleic acid sequences, and more particularly to the identification of trisomy 21 (Down syndrome) and other chromosomal aneuploidies via testing a maternal sample (e.g. blood).
BACKGROUND
[0004] Fetal chromosomal aneuploidy results from the presence of abnormal dose(s) of a chromosome or chromosomal region. The abnormal dose(s) can be abnormally high, e.g. the presence of an extra chromosome 21 or chromosomal region in trisomy 21; or abnormally low, e.g. the absence of a copy of chromosome X in Turner syndrome.
[0005] Conventional prenatal diagnostic methods of a fetal chromosomal aneuploidy, e.g., trisomy 21, involve the sampling of fetal materials by invasive procedures such as amniocentesis or chorionic villus sampling, which pose a finite risk of fetal loss. Noninvasive procedures, such as screening by ultrasonography and biochemical markers, have been used to risk-stratify pregnant women prior to definitive invasive diagnostic procedures. However, these screening methods typically measure epiphenomena that are associated with the chromosomal aneuploidy, e.g., trisomy 21, instead of the core chromosomal abnormality, and thus have suboptimal diagnostic accuracy and other disadvantages, such as being highly influenced by gestational age. [0006] The discovery of circulating cell-free fetal DNA in maternal plasma in 1997 offered new possibilities for noninvasive prenatal diagnosis (Lo, YMD and Chiu, RWK 2007 Nat Rev Genet 8, 71-77). While this method has been readily applied to the prenatal diagnosis of sex-linked (Costa, JM et al. 2002 N Engl J Med 346, 1502) and certain single gene disorders (Lo, YMD et al. 1998 N Engl J Med 339, 1734-1738), its application to the prenatal detection of fetal chromosomal aneuploidies has represented a considerable challenge (Lo, YMD and Chiu, RWK 2007, supra). First, fetal nucleic acids co-exist in maternal plasma with a high background of nucleic acids of maternal origin that can often interfere with the analysis of fetal nucleic acids (Lo, YMD et al. 1998 Am J Hum Genet 62, 768-775). Second, fetal nucleic acids circulate in maternal plasma predominantly in a cell-free form, making it difficult to derive dosage information of genes or chromosomes within the fetal genome.
[0007] Significant developments overcoming these challenges have recently been made (Benachi, A & Costa, JM 2007 Lancet 369, 440-442). One approach detects fetal-specific nucleic acids in the maternal plasma, thus overcoming the problem of maternal background interference (Lo, YMD and Chiu, RWK 2007, supra). Dosage of chromosome 21 was inferred from the ratios of polymorphic alleles in the placenta-derived DNA/RNA molecules. However, this method is less accurate when samples contain lower amount of the targeted nucleic acid and can only be applied to fetuses who are heterozygous for the targeted polymorphisms, which is only a subset of the population if one polymorphism is used. [0008] Dhallan et al (Dhallan, R, et al. 2007, supra Dhallan, R, et al. 2007 Lancet 369, 474-481) described an alternative strategy of enriching the proportion of circulating fetal DNA by adding formaldehyde to maternal plasma. The proportion of chromosome 21 sequences contributed by the fetus in maternal plasma was determined by assessing the ratio of paternally-inherited fetal-specific alleles to non-fetal-specific alleles for single nucleotide polymorphisms (SNPs) on chromosome 21. SNP ratios were similarly computed for a reference chromosome. An imbalance of fetal chromosome 21 was then inferred by detecting a statistically significant difference between the SNP ratios for chromosome 21 and those of the reference chromosome, where significant is defined using a fixed p-value of < 0.05. To ensure high population coverage, more than 500 SNPs were targeted per chromosome. However, there have been controversies regarding the effectiveness of formaldehyde to enrich fetal DNA to a high proportion (Chung, GTY, et al. 2005 Clin Chem 51, 655-658), and thus the reproducibility of the method needs to be further evaluated. Also, as each fetus and mother would be informative for a different number of SNPs for each chromosome, the 2008/002530 power of the statistical test for SNP ratio comparison would be variable from case to case (Lo5 YMD & Chiu, RWK. 2007 Lancet 369, 1997). Furthermore, since these approaches depend on the detection of genetic polymorphisms, they are limited to fetuses heterozygous for these polymorphisms. [0009] Using polymerase chain reaction (PCR) and DNA quantification of a chromosome 21 locus and a reference locus in amniocyte cultures obtained from trisomy 21 and euploid fetuses, Zimmermann et al (2002 CHn Chem 48, 362-363) were able to distinguish the two groups of fetuses based on the 1.5-fold increase in chromosome 21 DNA sequences in the former. Since a 2-fold difference in DNA template concentration constitutes a difference of only one threshold cycle (Ct), the discrimination of a 1.5-fold difference has been the limit of conventional real-time PCR. To achieve finer degrees of quantitative discrimination, alternative strategies are needed.
[0010] Digital PCR has been developed for the detection of allelic ratio skewing in nucleic acid samples (Chang, HW et al. 2002 J Natl Cancer Inst 94, 1697-1703). Digital PCR is an amplification based nucleic acid analysis technique which requires the distribution of a specimen containing nucleic acids into a multitude of discrete samples where each sample containing on average not more than about one target sequence per sample. Specific nucleic acid targets are amplified with sequence-specific primers to generate specific amplicons by digital PCR. The nucleic acid loci to be targeted and the species of or panel of sequence- specific primers to be included in the reactions are determined or selected prior to nucleic acid analysis.
[0011] Clinically, it has been shown to be useful for the detection of loss of heterozygosity (LOH) in tumor DNA samples (Zhou, W. et al. 2002 Lancet 359, 219-225). For the analysis of digital PCR results, sequential probability ratio testing (SPRT) has been adopted by previous studies to classify the experimental results as being suggestive of the presence of LOH in a sample or not (El Karoui at al. 2006 Stat Med 25, 3124-3133).
[0012] In methods used in the previous studies, the amount of data collected from the digital PCR is quite low. Thus, the accuracy can be compromised due to the small number of data points and typical statistical fluctuations. [0013] It is therefore desirable that noninvasive tests have high sensitivity and specificity to minimize false negatives and false positives, respectively. However, fetal DNA is present in low absolute concentration and represent a minor portion of all DNA sequences in maternal plasma and serum. It is therefore also desirable to have methods that allow the noninvasive detection of fetal chromosomal aneuploidy by maximizing the amount of genetic information that could be inferred from the limited amount of fetal nucleic acids which exist as a minor population in a biological sample containing maternal background nucleic acids.
BRIEF SUMMARY
[0014] Embodiments of this invention provide methods, systems, and apparatus for determining whether a nucleic acid sequence imbalance (e.g., chromosome imbalance) exists within a biological sample obtained from a pregnant female. This determination may be done by using a parameter of an amount of a clinically-relevant chromosomal region in relation to other non-clinically-relevant chromosomal regions (background regions) within a biological sample. In one aspect, an amount of chromosomes is determined from a sequencing of nucleic acid molecules in a maternal sample, such as urine, plasma, serum, and other suitable biological samples. Nucleic acid molecules of the biological sample are sequenced, such that a fraction of the genome is sequenced. One or more cutoff values are chosen for determining whether a change compared to a reference quantity exists (i.e. an imbalance), for example, with regards to the ratio of amounts of two chromosomal regions (or sets of regions).
[0015] According to one exemplary embodiment, a biological sample received from a pregnant female is analyzed to perform a prenatal diagnosis of a fetal chromosomal aneuploidy. The biological sample includes nucleic acid molecules. A portion of the nucleic acid molecules contained in the biological sample are sequenced. In one aspect, the amount of genetic information obtained is sufficient for accurate diagnosis yet not overly excessive so as to contain costs and the amount of input biological sample required.
[0016] Based on the sequencing, a first amount of a first chromosome is determined from sequences identified as originating from the first chromosome. A second amount of one or more second chromosomes is determined from sequences identified as originating from one of the second chromosomes. A parameter from the first amount and the second amount is then compared to one or more cutoff values. Based on the comparison, a classification of whether a fetal chromosomal aneuploidy exists for the first chromosome is determined. The sequencing advantageously maximizes the amount of genetic information that could be inferred from the limited amount of fetal nucleic acids which exist as a minor population in a biological sample containing maternal background nucleic acids. [0017] According to one exemplary embodiment, a biological sample received from a pregnant female is analyzed to perform a prenatal diagnosis of a fetal chromosomal aneuploidy. The biological sample includes nucleic acid molecules. A percentage of fetal DNA in the biological sample is identified. A number N of sequences to be analyzed based on a desired accuracy is calculated based on the percentage. At least N of the nucleic acid molecules contained in the biological sample are randomly sequenced.
[0018] Based on the random sequencing, a first amount of a first chromosome is determined from sequences identified as originating from the first chromosome. A second amount of one or more second chromosomes is determined from sequences identified as originating from one of the second chromosomes. A parameter from the first amount and the second amount is then compared to one or more cutoff values. Based on the comparison, a classification of whether a fetal chromosomal aneuploidy exists for the first chromosome is determined. The random sequencing advantageously maximizes the amount of genetic information that could be inferred from the limited amount of fetal nucleic acids which exist as a minor population in a biological sample containing maternal background nucleic acids.
[0019] Other embodiments of the invention are directed to systems and computer readable media associated with methods described herein.
[0020] A better understanding of the nature and advantages of the present invention may be gained with reference to the following detailed description and the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
[0021] FIG. 1 is a flowchart of a method 100 for performing prenatal diagnosis of a fetal chromosomal aneuploidy in a biological sample obtained from a pregnant female subject according to an embodiment of the present invention.
[0022] FIG. 2 is a flowchart of a method 200 for performing prenatal diagnosis of a fetal chromosomal aneuploidy using random sequencing according to an embodiment of the present invention.
[0023] FIG. 3 A shows a plot of percentage representation of chromosome 21 sequences in maternal plasma samples involving trisomy 21 or euploid fetuses according to an embodiment of the present invention. B2008/002530
[0024] FIG. 3B shows a correlation between maternal plasma fractional fetal DNA concentrations determined by massively parallel sequencing and microfluidics digital PCR according to an embodiment of the present invention.
[0025] FIG. 4A shows a plot of percentage representation of aligned sequences per chromosome according to an embodiment of the present invention.
[0026] FIG. 4B shows a plot of difference (%) in percentage representation per chromosome between the trisomy 21 case and euploid case shown in FIG. 4 A.
[0027] FIG. 5 shows a correlation between degree of over-representation in chromosome 21 sequences and the fractional fetal DNA concentrations in maternal plasma involving trisomy 21 fetuses according to an embodiment of the present invention.
[0028] FIG. 6 shows a table of a portion of human genome that was analyzed according to an embodiment of the present invention. T21 denote a sample obtained from a pregnancy involving a trisomy 21 fetus.
[0029] FIG. 7 shows a table of a number of sequences required to differentiate euploid from trisomy 21 fetuses according to an embodiment of the present invention.
[0030] FIG. 8 A shows a table of top ten starting positions of sequenced tags aligned to chromosome 21 according to an embodiment of the present invention.
[0031] FIG. 8B shows a table of top ten starting positions of sequenced tags aligned to chromosome 22 according to an embodiment of the present invention. [0032] FIG. 9 shows a block diagram of an exemplary computer apparatus usable with system and methods according to embodiments of the present invention.
DEFINITIONS
[0033] The term "biological sample" as used herein refers to any sample that is taken from a subject {e.g., a human, such as a pregnant woman) and contains one or more nucleic acid molecule(s) of interest.
[0034] The term "nucleic acid" or "polynucleotide" refers to a deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) and a polymer thereof in either single- or double-stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogs of natural nucleotides that have similar binding properties as the reference nucleic acid and are metabolized in a manner similar to naturally occurring nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses conservatively modified variants thereof (e.g., degenerate codon substitutions), alleles, orthologs, SNPs, and complementary sequences as well as the sequence explicitly indicated. Specifically, degenerate codon substitutions may be achieved by generating sequences in which the third position of one or more selected (or all) codons is substituted with mixed- base and/or deoxyinosine residues (Batzer et al., Nucleic Acid Res. 19:5081 (1991); Ohtsuka et al, J. Biol. Chem. 260:2605-2608 (1985); and Rossolini et al, MoI. Cell. Probes 8:91-98 (1994)). The term nucleic acid is used interchangeably with gene, cDNA, mRNA, small noncoding RNA, micro RNA (miRNA), Piwi-interacting RNA, and short hairpin RNA (shRNA) encoded by a gene or locus.
[0035] The term "gene" means the segment of DNA involved in producing a polypeptide chain. It may include regions preceding and following the coding region (leader and trailer) as well as intervening sequences (introns) between individual coding segments (exons). [0036] The term "reaction" as used herein refers to any process involving a chemical, enzymatic, or physical action that is indicative of the presence or absence of a particular polynucleotide sequence of interest. An example of a "reaction" is an amplification reaction such as a polymerase chain reaction (PCR). Another example of a "reaction" is a sequencing reaction, either by synthesis or by ligation. An "informative reaction" is one that indicates the presence of one or more particular polynucleotide sequence of interest, and in one case where only one sequence of interest is present. The term "well" as used herein refers to a reaction at a predetermined location within a confined structure, e.g., a well-shaped vial, cell, or chamber in a PCR array.
[0037] The term "clinically relevant nucleic acid sequence" as used herein can refer to a polynucleotide sequence corresponding to a segment of a larger genomic sequence whose potential imbalance is being tested or to the larger genomic sequence itself. One example is the sequence of chromosome 21. Other examples include chromosome 18, 13, X and Y. Yet other examples include mutated genetic sequences or genetic polymorphisms or copy number variations that a fetus may inherit from one or both of its parents. Yet other examples include sequences which are mutated, deleted, or amplified in a malignant tumor, e.g. sequences in which loss of heterozygosity or gene duplication occur. In some embodiments, multiple clinically relevant nucleic acid sequences, or equivalently multiple makers of the clinically relevant nucleic acid sequence, can be used to provide data for detecting the imbalance. For instance, data from five non-consecutive sequences on chromosome 21 can be used in an additive fashion for the determination of possible chromosomal 21 imbalance, effectively reducing the need of sample volume to 1/5. [0038] The term "background nucleic acid sequence" as used herein refers to a nucleic acid sequence whose normal ratio to the clinically relevant nucleic acid sequence is known, for instance a 1-to-l ratio. As one example, the background nucleic acid sequence and the clinically relevant nucleic acid sequence are two alleles from the same chromosome that are distinct due to heterozygosity. In another example, the background nucleic acid sequence is one allele that is heterozygous to another allele that is the clinically relevant nucleic acid sequence. Moreover, some of each of the background nucleic acid sequence and the clinically relevant nucleic acid sequence may come from different individuals.
[0039] The term "reference nucleic acid sequence" as used herein refers to a nucleic acid sequence whose average concentration per reaction is known or equivalently has been measured.
[0040] The term "overrepresented nucleic acid sequence" as used herein refers to the nucleic acid sequence among two sequences of interest (e.g., a clinically relevant sequence and a background sequence) that is in more abundance than the other sequence in a biological sample. [0041] The term "based on" as used herein means "based at least in part on" and refers to one value (or result) being used in the determination of another value, such as occurs in the relationship of an input of a method and the output of that method. The term "derive" as used herein also refers to the relationship of an input of a method and the output of that method, such as occurs when the derivation is the calculation of a formula. [0042] The term "quantitative data" as used herein means data that are obtained from one or more reactions and that provide one or more numerical values. For example, the number of wells that show a fluorescent marker for a particular sequence would be quantitative data.
[0043] The term "parameter" as used herein means a numerical value that characterizes a quantitative data set and/or a numerical relationship between quantitative data sets. For example, a ratio (or function of a ratio) between a first amount of a first nucleic acid sequence and a second amount of a second nucleic acid sequence is a parameter. [0044] The term "cutoffvalue" as used herein means a numerical value whose value is used to arbitrate between two or more states (e.g. diseased and non-diseased) of classification for a biological sample. For example, if a parameter is greater than the cutoffvalue, a first classification of the quantitative data is made (e.g. diseased state); or if the parameter is less than the cutoffvalue, a different classification of the quantitative data is made (e.g. non-diseased state).
[0045] The term "imbalance" as used herein means any significant deviation as defined by at least one cutoff value in a quantity of the clinically relevant nucleic acid sequence from a reference quantity. For example, the reference quantity could be a ratio of 3/5, and thus an imbalance would occur if the measured ratio is 1:1.
[0046] The term "chromosomal aneuploidy" as used herein means a variation in the quantitative amount of a chromosome from that of a diploid genome. The variation may be a gain or a loss. It may involve the whole of one chromosome or a region of a chromosome.
[0047] The term "random sequencing" as used herein refers to sequencing whereby the nucleic acid fragments sequenced have not been specifically identified or targeted before the sequencing procedure. Sequence-specific primers to target specific gene loci are not required. The pools of nucleic acids sequenced vary from sample to sample and even from analysis to analysis for the same sample. The identities of the sequenced nucleic acids are only revealed from the sequencing output generated. In some embodiments of the present invention, the random sequencing may be preceded by procedures to enrich a biological sample with particular populations of nucleic acid molecules sharing certain common features. In one embodiment, each of the fragments in the biological sample have an equal probability of being sequenced.
[0048] The term "fraction of the human genome" or "portion of the human genome" as used herein refers to less than 100% of the nucleotide sequences in the human genome which comprises of some 3 billion basepairs of nucleotides. In the context of sequencing, it refers to less than 1-fold coverage of the nucleotide sequences in the human genome. The term may be expressed as a percentage or absolute number of nucleotides/basepairs. As an example of use, the term may be used to refer to the actual amount of sequencing performed. Embodiments may determine the required minimal value for the sequenced fraction of the human genome to obtain an accurate diagnosis. As another example of use, the term may refer to the amount of sequenced data used for deriving a parameter or amount for disease classification.
[0049] The term "sequenced tag" as used herein refers to string of nucleotides sequenced from any part or all of a nucleic acid molecule. For example, a sequenced tag may be a short string of nucleotides sequenced from a nucleic acid fragment, a short string of nucleotides at both ends of a nucleic acid fragment, or the sequencing of the entire nucleic acid fragment that exists in the biological sample. A nucleic acid fragment is any part of a larger nucleic acid molecule. A fragment (e.g. a gene) may exist separately (i.e. not connected) to the other parts of the larger nucleic acid molecule.
DETAILED DESCRIPTION
[0050] Embodiments of this invention provide methods, systems, and apparatus for determining whether an increase or decrease (diseased state) of a clinically-relevant chromosomal region exists compared to a non-diseased state. This determination may be done by using a parameter of an amount of a clinically-relevant chromosomal region in relation to other non-clinically-relevant chromosomal regions (background regions) within a biological sample. Nucleic acid molecules of the biological sample are sequenced, such that a fraction of the genome is sequenced, and the amount may be determined from results of the sequencing. One or more cutoff values are chosen for determining whether a change compared to a reference quantity exists (i.e. an imbalance), for example, with regards to the ratio of amounts of two chromosomal regions (or sets of regions).
[0051] The change detected in the reference quantity may be any deviation (upwards or downwards) in the relation of the clinically-relevant nucleic acid sequence to the other non- clinically-relevant sequences. Thus, the reference state may be any ratio or other quantity (e.g. other than a 1-1 correspondence), and a measured state signifying a change may be any ratio or other quantity that differs from the reference quantity as determined by the one or more cutoff values.
[0052] The clinically relevant chromosomal region (also called a clinically relevant nucleic acid sequence) and the background nucleic acid sequence may come from a first type of cells and from one or more second types of cells. For example, fetal nucleic acid sequences originating from fetal/placental cells are present in a biological sample, such as maternal plasma, which contains a background of maternal nucleic acid sequences originating from maternal cells. In one embodiment, the cutoff value is determined based at least in part on a percentage of the first type of cells in a biological sample. Note the percentage of fetal sequences in a sample may be determined by any fetal-derived loci and not limited to measuring the clinically-relevant nucleic acid sequences. In another embodiment, the cutoff value is determined at least in part on the percentage of tumor sequences in a biological sample, such as plasma, serum, saliva or urine, which contains a background of nucleic acid sequences derived from the non-malignant cells within the body.
I. GENERAL METHOD
[0053] FIG. 1 is a flowchart of a method 100 for performing prenatal diagnosis of a fetal chromosomal aneuploidy in a biological sample obtained from a pregnant female subject according to an embodiment of the present invention.
[0054] In step 110, a biological sample from the pregnant female is received. The biological sample may be plasma, urine, serum, or any other suitable sample. The sample contains nucleic acid molecules from the fetus and the pregnant female. For example, the nucleic acid molecules may be fragments from chromosomes.
[0055] In step 120, at least a portion of a plurality of the nucleic acid molecules contained in the biological sample are sequenced. The portion sequenced represents a fraction of the human genome. In one embodiment, the nucleic acid molecules are fragments of respective chromosomes. One end (e.g. 35 basepairs (bp)), both ends, or the entire fragment may be sequenced. All of the nucleic acid molecules in the sample may be sequenced, or just a subset may be sequenced. This subset may be randomly chosen, as will be described in more detail later.
[0056] In one embodiment, the sequencing is done using massively parallel sequencing. Massively parallel sequencing, such as that achievable on the 454 platform (Roche) (Margulies, M. et al. 2005 Nature 437, 376-380), Illumina Genome Analyzer (or Solexa platform) or SOLiD System (Applied Biosystems) or the Helicos True Single Molecule DNA sequencing technology (Harris TD et al. 2008 Science, 320, 106-109), the single molecule, real-time (SMRT™) technology of Pacific Biosciences, and nanopore sequencing (Soni GV and Meller A. 2007 Clin Chem 53: 1996-2001), allow the sequencing of many nucleic acid molecules isolated from a specimen at high orders of multiplexing in a parallel fashion (Dear Brief Funct Genomic Proteomic 2003; 1: 397-416). Each of these platforms sequences clonally expanded or even non-amplified single molecules of nucleic acid fragments. [0057] As a high number of sequencing reads, in the order of hundred thousands to millions or even possibly hundreds of millions or billions, are generated from each sample in each run, the resultant sequenced reads form a representative profile of the mix of nucleic acid species in the original specimen. For example, the haplotype, trascriptome and methylation profiles of the sequenced reads resemble those of the original specimen (Brenner et al Nat Biotech 2000; 18: 630-634; Taylor et al Cancer Res 2007; 67: 8511-8518). Due to the large sampling of sequences from each specimen, the number of identical sequences, such as that generated from the sequencing of a nucleic acid pool at several folds of coverage or high redundancy, is also a good quantitative representation of the count of a particular nucleic acid species or locus in the original sample.
[0058] In step 130, based on the sequencing (e.g. data from the sequencing), a first amount of a first chromosome (e.g. the clinically relevant chromosome) is determined. The first amount is determined from sequences identified as originating from the first chromosome. For example, a bioinformatics procedure may then be used to locate each of these DNA sequences to the human genome. It is possible that a proportion of such sequences will be discarded from subsequent analysis because they are present in the repeat regions of the human genome, or in regions subjected to inter-individual variations, e.g. copy number variations. An amount of the chromosome of interest and of one or more other chromosomes may thus be determined. [0059] In step 140, based on the sequencing, a second amount of one or more second chromosomes is determined from sequences identified as originating from one of the second chromosomes. In one embodiment, the second chromosomes are all of the other chromosomes besides the first one (i.e. the one being tested). In another embodiment, the second chromosome is just a single other chromosome. [0060] There are a number of ways of determining the amounts of the chromosomes, including but not limited to counting the number of sequenced tags, the number of sequenced nucleotides (basepairs) or the accumulated lengths of sequenced nucleotides (basepairs) originating from particular chromosome(s) or chromosomal regions.
[0061] In another embodiment, rules may be imposed on the results of the sequencing to determine what gets counted. In one aspect, an amount may be obtained based on a proportion of the sequenced output. For example, sequencing output corresponding to nucleic acid fragments of a specified size range could be selected after the bioinformatics analysis. Examples of the size ranges are about < 300 bp, < 200 bp or <100 bp.
[0062] In step 150, a parameter is determined from the first amount and the second amount. The parameter may be, for example, a simple ratio of the first amount to the second amount, or the first amount to the second amount plus the first amount. In one aspect, each amount could be an argument to a function or separate functions, where a ratio may be then taken of these separate functions. One skilled in the art will appreciate the number of different suitable parameters.
[0063] In one embodiment, a parameter (e.g. a fractional representation) of a chromosome potentially involved in a chromosomal aneuploidy, e.g. chromosome 21 or chromosome 18 or chromosome 13, may then be calculated from the results of the bioinformatics procedure. The fractional representation may be obtained based on an amount of all of the sequences (e.g. some measure of all of the chromosomes including the clinically-relevant chromosome) or a particular subset of chromosomes (e.g. just one other chromosome than the one being tested.)
[0064] In step 150, the parameter is compared to one or more cutoff values. The cutoff values may be determined from any number of suitable ways. Such ways include Bayesian-type likelihood method, sequential probability ratio testing (SPRT)5 false discovery, confidence interval, receiver operating characteristic (ROC). Examples of applications of these methods and sample-specific methods are described in concurrently filed application "DETERMINING A NUCLEIC ACID SEQUENCE IMBALANCE," (Attorney Docket No. 016285-00521 OUS), which is incorporated by reference.
[0065] In one embodiment, the parameter (e.g. the fractional representation of the clinically relevant chromosome) is then compared to a reference range established in pregnancies involving normal (i.e. euploid) fetuses. It is possible that in some variants of the procedure, the reference range (i.e. the cutoff values) would be adjusted in accordance with the fractional concentration of fetal DNA (f) in a particular maternal plasma sample. The value of f can be determined from the sequencing dataset, e.g. using sequences mappable to the Y chromosome if the fetus is male. The value of f may also be determined in a separate analysis, e.g. using fetal epigenetic markers (Chan KCA et al 2006 Clin Chem 52, 2211-8) or from the analysis of single nucleotide polymorphisms. [0066] In step 160, based on the comparison, a classification of whether a fetal chromosomal aneuploidy exists for the first chromosome is determined. In one embodiment, the classification is a definitive yes or no. In another embodiment, a classification may be unclassifiable or uncertain. In yet another embodiment, the classification may be a score that is to be interpreted at a later date, for example, by a doctor.
H. SEQUENCING, ALIGNING, AND DETERMINING AMOUNTS
[0067] As mentioned above, only a fraction of the genome is sequenced. In one aspect, even when a pool of nucleic acids in a specimen is sequenced at <100% genomic coverage instead of at several folds of coverage, and among the proportion of captured nucleic acid molecules, most of each nucleic acid species is only sequenced once. Also, dosage imbalance of a particular chromosome or chromosomal regions can be quantitatively determined. In other words, the dosage imbalance of the chromosome or chromosomal regions is inferred from the percentage representation of the said locus among other mappable sequenced tags of the specimen. [0068] This is contrasted from situations where the same pool of nucleic acids is sequenced multiple times to achieve high redundancy or several folds of coverage whereby each nucleic acid species is sequenced multiple times. In such situations, the number of times a particular nucleic acid species have been sequenced relative to that of another nucleic acid species correlate with their relative concentrations in the original sample. The sequencing cost increases with the number of fold coverage required to achieve accurate representation of the nucleic acid species.
[0069] In one example, a proportion of such sequences would be from the chromosome involved in an aneuploidy such as chromosome 21 in this illustrative example. Yet other sequences from such a sequencing exercise would be derived from the other chromosomes. By taking into account of the relative size of chromosome 21 compared with the other chromosomes, one could obtain a normalized frequency, within a reference range, of chromosome 21 -specific sequences from such a sequencing exercise. If the fetus has trisomy 21, then the normalized frequency of chromosome 21 -derived sequences from such a sequencing exercise will increase, thus allowing the detection of trisomy 21. The degree of change in the normalized frequency will be dependent on the fractional concentration of fetal nucleic acids in the analyzed sample. [0070] In one embodiment, we used the Illumina Genome Analyzer for single-end sequencing of human genomic DNA and human plasma DNA samples. The Illumina Genome Analyzer sequences clonally-expanded single DNA molecules captured on a solid surface termed a flow cell. Each flow cell has 8 lanes for the sequencing of 8 individual specimens or pools of specimens. Each lane is capable of generating ~ 200Mb of sequence which is only a fraction of the 3 billion basepairs of sequences in the human genome. Each genomic DNA or plasma DNA sample was sequenced using one lane of a flow cell. The short sequence tags generated were aligned to the human reference genome sequence and the chromosomal origin was noted. The total number of individual sequenced tags aligned to each chromosome were tabulated and compared with the relative size of each chromosome as expected from the reference human genome or non-disease representative specimens. Chromosome gains or losses were then identified.
[0071] The described approach is only one exemplification of the presently described gene/chromosome dosage strategy. Alternatively, paired end sequencing could be performed. Instead of comparing the length of the sequenced fragments from that expected in the reference genome as described by Campbell et al (Nat Genet 2008; 40: 722-729), the number of aligned sequenced tags were counted and sorted according to chromosomal location. Gains or losses of chromosomal regions or whole chromosomes were determined by comparing the tag counts with the expected chromosome size in the reference genome or that of a non- disease representative specimen. As paired end sequencing allows one to deduce the size of the original nucleic acid fragment, one example is to focus on the counting of the number of paired sequenced tags corresponding to nucleic acid fragments of a specified size, such as < 300 bp, < 200bp or < 100 bp.
[0072] In another embodiment, the fraction of the nucleic acid pool that is sequenced in a run is further sub-selected prior to sequencing. For example, hybridization based techniques such as oligonucleotide array could be used to first sub-select for nucleic acid sequences from certain chromosomes, e.g. a potentially aneuploid chromosome and other chromosome(s) not involved in the aneuploidy tested. Another example is that a certain sub-population of nucleic acid sequences from the sample pool is sub-selected or enriched prior to sequencing. For example, as discussed above, it has been reported that fetal DNA molecules in maternal plasma are comprised of shorter fragments than the maternal background DNA molecules (Chan et al Clin Chem 2004; 50: 88-92). Thus, one may use one or more methods known to those of skill in the art to fractionate the nucleic acid sequences in the sample according to molecule size, e.g. by gel electrophoresis or size exclusion columns or by microfluidics-based approach. Yet, alternatively, in the example of analyzing cell-free fetal DNA in maternal plasma, the fetal nucleic acid portion could be enriched by a method that suppresses the maternal background, such as by the addition of formaldehyde (Dhallan et al JAMA 2004; 291: 1114-9). In one embodiment, a portion or subset of the pre-selected pool of nucleic acids is sequenced randomly.
[0073] Other single molecule sequencing strategies such as that by the Roche 454 platform, the Applied Biosystems SOLiD platform, the the Helicos True Single Molecule DNA sequencing technology, the single molecule, real-time (SMRT™) technology of Pacific Biosciences, and nanopore sequencing could similarly be used in this application.
III. DETERMINING AMOUNTS OF CHROMOSOMES FROM SEQUENCING OUTPUT
[0074] After the massively parallel sequencing, bioinformatics analysis was performed to locate the chromosomal origin of the sequenced tags. After this procedure, tags identified as originating from the potentially aneuploid chromosome, i.e. chromosome 21 in this study, are compared quantitatively to all of the sequenced tags or tags originating from one of more chromosomes not involved in the aneuploidy. The relationship between the sequencing output from chromosome 21 and other non-21 chromosomes for a test specimen is compared with cut-off values derived with methods described in the above section to determine if the specimen was obtained from a pregnancy involving a euploid or trisomy 21 fetus. [0075] A number of different amounts include but not limited to the following could be derived from the sequenced tags. For example, the number of sequenced tags, i.e. absolute count, aligned to a particular chromosome could be compared to the absolute count of sequenced tags aligned to other chromosomes. Alternatively, the fractional count of the amount of sequenced tags from chromosome 21 with reference to all or some other sequenced tags could be compared to that of other non-aneuploid chromosomes. In the present experiment, because 36 bp were sequenced from each DNA fragment, the number of nucleotides sequenced from a particular chromosome could easily be derived from 36 bp multiplied by the sequenced tag count.
[0076] Furthermore, as each maternal plasma specimen was only sequenced using one flow cell which could only sequence a fraction of the human genome, by statistics, most of the maternal plasma DNA fragment species would only each have been sequenced to generate one sequenced tag count. In other words, the nucleic acid fragments present in the maternal plasma specimen were sequenced at less than 1-fold coverage. Thus, the total number of sequenced nucleotides for any particular chromosome would mostly correspond to the amount, proportion or length of the part of the said chromosome that has been sequenced. Hence, the quantitative determination of the representation of the potentially aneuploid chromosome could be derived from a fraction of the number or equivalent length of nucleotides sequenced from that chromosome with reference to a similarly derived quantity for other chromosomes.
IV. ENRICHMENT FOR POOLS OF NUCLEIC ACIDS FOR SEQUENCING
[0077] As mentioned above and established in the example section below, only a portion of the human genome needs to be sequenced to differentiate trisomy 21 from euploid cases. Thus, it would be possible and cost-effective to enrich the pool of nucleic acids to be sequenced prior to random sequencing of a fraction of the enriched pool. For example, fetal DNA molecules in maternal plasma are comprised of shorter fragments than the maternal background DNA molecules (Chan et al Clin Chem 2004; 50: 88-92). Thus, one may use one or more methods known to those of skill in the art to fractionate the nucleic acid sequences in the sample according to molecule size, e.g. by gel electrophoresis or size exclusion columns or by microfluidics-based approach.
[0078] Yet, alternatively, in the example of analyzing cell-free fetal DNA in maternal plasma, the fetal nucleic acid portion could be enriched by a method that suppresses the maternal background, such as by the addition of formaldehyde (Dhallan et al JAMA 2004;
291: 1114-9). The proportion of fetal derived sequences would be enriched in the nucleic acid pool comprised of shorter fragments. According to FIG. 7, the number of sequenced tags required for differentiating euploid from trisomy 21 cases would reduce as the fractional fetal DNA concentration increases. [0079] Alternatively, sequences originating from a potentially aneuploid chromosome and one or more chromosomes not involved in the aneuploidy could be enriched by hybridization techniques for example onto oligonucelotide microarrays. The enriched pools of nucleic acids would then be subjected to random sequencing. This would allow the reduction in sequencing costs. V. RANDOM SEQUENCING
[0080] FIG. 2 is a flowchart of a method 200 for performing prenatal diagnosis of a fetal chromosomal aneuploidy using random sequencing according to an embodiment of the present invention. In one aspect for the massively parallel sequencing approach, representative data from all of the chromosomes may be generated at the same time. The origin of a particular fragment is not selected ahead of time. The sequencing is done at random and then a database search may be performed to see where a particular fragment is coming from. This is contrasted from situations when a specific fragment from chromosome 21 and another one from chromosome 1 are amplified. [0081] In step 210, a biological sample from the pregnant female is received. In step 220, the number N of sequences to be analyzed is calculated for a desired accuracy. In one embodiment, a percentage of fetal DNA in the biological sample is first identified. This may be done by any suitable means as will be known to one skilled in the art. The identification may simply be reading a value that was measured by another entity. In this embodiment, the calculation of the number N of sequences to be analyzed is based on the percentage. For example, the number of sequences needed to be analyzed would be increased when the fetal DNA percentage drops, and could be decreased when the fetal DNA rises. The number N may be a fixed number or a relative number, such as a percentage. In another embodiment, one could sequence a number N that is known to be adequate for accurate disease diagnosis. The number N could be made sufficient even in pregnancies with fetal DNA concentrations that are at the lower end of the normal range.
[0082] In step 230, at least N of a plurality of the nucleic acid molecules contained in the biological sample are randomly sequenced. A feature of this described approach is that the nucleic acids to be sequenced are not specifically identified or targeted before sample analysis, i.e. sequencing. Sequence-specific primers to target specific gene loci are not needed for sequencing. The pools of nucleic acids sequenced vary from sample to sample and even from analysis to analysis for the same sample. Furthermore, from the below descriptions (FIG. 6), the amount of sequencing output required for case diagnosis could vary between the tested specimens and the reference population. These aspects are in marked contrast to most molecular diagnostic approaches, such as those based on fluorescence in situ hybridization, quantitative florescence PCR, quantitative real-time PCR, digital PCR, comparative genomic hybridization, microarray comparative genomic hybridization and so on, where gene loci to be targeted require prior pre-determination, thus requiring the use of locus-specific primers or probe sets or panels of such.
[0083] In one embodiment, random sequencing is performed on DNA fragments that are present in the plasma of a pregnant woman, and one obtains genomic sequences which would originally have come from either the fetus or the mother. Random sequencing involves sampling (sequencing) a random portion of the nucleic acid molecules present in the biological sample. As the sequencing is random, a different subset (fraction) of the nucleic acid molecules (and thus the genome) may be sequenced in each analysis. Embodiments will work even when this subset varies from sample to sample and from analysis to analysis, which may occur even using the same sample. Examples of the fraction are about 0.1%, 0.5%, 1%, 5%, 10%, 20%, or 30% of the genome. In other embodiments, the fraction is at least any one of these values.
[0084] The rest of the steps 240-270 may proceed in a similar manner as method 100. VI. POST-SEQUENCING SELECTION OF POOLS OF SEOUENCED TAGS [0085] As described in examples II and III below, a subset of the sequenced data is sufficient to distinguish trisomy 21 from euploid cases. The subset of sequenced data could be the proportion of sequenced tags that passed certain quality parameters. For example, in example II, sequenced tags that were uniquely aligned to the repeat-masked reference human genome were used. Alternatively, one may sequence a representative pool of nucleic acid fragments from all of the chromosomes but focus on the comparison between data relevant to the potentially aneuploid chromosome and data relevant to a number of non-aneuploid chromosomes.
[0086] Yet alternatively, a subset of the sequencing output encompassing sequenced tags generated from nucleic acid fragments corresponding to a specified size window in the original specimen could be sub-selected during the post-sequencing analysis. For example, using the Illumina Genome analyzer, one could use paired-end sequencing which refers to sequencing the two ends of nucleic acid fragments. The sequenced data from each paired-end are then aligned to the reference human genome sequence. The distance or number of nucleotides spanning between the two ends could then be deduced. The whole length of the original nucleic acid fragment could also be deduced. Alternatively, sequencing platforms such as the 454 platform and possibly some single molecule sequencing techniques are able to sequence the full length of short nucleic acid fragments, for example 200 bp. In this manner, the actual length of the nucleic acid fragment would be immediately known from the sequenced data.
[0087] Such paired-end analysis is also possible using other sequencing platforms, e.g. the Applied Biosystems SOLiD system. For the Roche 454 platform, because of its increased read length compared with other massively parallel sequencing systems, it is also possible to determine the length of a fragment from its complete sequence.
[0088] The advantage of focusing the data analysis on the subset of sequenced tags corresponding to short nucleic acid fragments in the original maternal plasma specimen because the dataset would effectively be enriched with DNA sequences derived from the fetus. This is because the fetal DNA molecules in maternal plasma are comprised of shorter fragments than the maternal background DNA molecules (Chan et al Clin Chem 2004; 50: 88-92). According to FIG. 7, the number of sequenced tags required for differentiating euploid from trisomy 21 cases would reduce as the fractional fetal DNA concentration increases. [0089] The post-sequencing selection of subsets of nucleic acid pools is different from other nucleic acid enrichment strategies which are performed prior to specimen analysis, such as the use gel electrophoresis or size exclusion columns for the selection of nucleic acids of particular sizes, which require the physical separation of the enriched pool from the background pool of nucleic acids. The physical procedures would introduce more experimental steps and may be prone to problems such as contamination. The post- sequencing in silico selection of subsets of sequencing output would also allow one to vary the selection depending on the sensitivity and specificity required for disease determination.
[0090] The bioinformatics, computational and statistical approaches used to determine if a maternal plasma specimen is obtained from a pregnant woman conceived with a trisomy 21 or euploid fetus could be compiled into a computer program product used to determine parameters from the sequencing output. The operation of the computer program would involve the determining of a quantitative amount from the potentially aneuploid chromosome as well as amount(s) from one or more of the other chromosomes. A parameter would be determined and compared with appropriate cut-off values to determine if a fetal chromosomal aneuploidy exists for the potentially aneuploid chromosome. EXAMPLES
The following examples are offered to illustrate, but not to limit the claimed invention. I. PRENATAL DIAGNOSIS OF FETAL TRISOMY 21
[0091] Eight pregnant women were recruited for the study. AU of the pregnant women were in the 1st or 2nd trimester of gestation and had a singleton pregnancy. Four of them were each carrying a fetus with trisomy 21 and the other four were each carrying a euploid fetus. Twenty milliliters of peripheral venous blood was collected from each subject. Maternal plasma was harvested after centrifugation at 1600 x g for 10 minutes and further centrifuged at 16000 x g for 10 minutes. DNA was then extracted from 5-10 mL of each plasma sample. The maternal plasma DNA was then used for massively parallel sequencing by the Illumina Genome Analyzer according to manufacturer's instructions. The technicians performing the sequencing were blinded from the fetal diagnoses during the sequencing and sequence data analysis.
[0092] Briefly, approximately 50 ng of maternal plasma DNA was used for DNA library preparation. It is possible to start with lesser amounts such as 15 ng or 10 ng of maternal plasma DNA. Maternal plasma DNA fragments were blunt-ended, ligated to Solexa adaptors and fragments of 150-300 bp were selected by gel purification. Alternatively, blunt-ended and adaptor-ligated maternal plasma DNA fragments could be passed through columns (e.g. AMPure, Agencourt) to remove unligated adaptors without size-selection before cluster generation. The adaptor-ligated DNA was hybridized to the surface of flow cells, and DNA clusters were generated using the Illumina cluster station, followed by 36 cycles of sequencing on the Illumina Genome Analyzer. DNA from each maternal plasma specimen was sequenced by one flow cell. Sequenced reads were compiled using Solexa Analysis Pipeline. All reads were then aligned to the repeat-masked reference human genomic sequence, NCBI 36 assembly (GenBank accession numbers: NCJ)OOOOl to NC_000024), using the Eland application.
[0093] In this study, to reduce the complexity of the data analysis, only sequences that have been mapped to a unique location in the repeat-masked human genome reference are further considered. Other subsets of or the entire set of the sequenced data could alternatively be used. The total number of uniquely mappable sequences for each specimen was counted. The number of sequences uniquely aligned to chromosome 21 was expressed as a proportion to the total count of aligned sequences for each specimen. As maternal plasma contains fetal DNA among a background of DNA of maternal origin, the trisomy 21 fetus would contribute extra sequenced tags originating from chromosome 21 due to the presence of an extra copy of chromosome 21 in the fetal genome. Hence, the percentage of chromosome 21 sequences in maternal plasma from a pregnancy carrying a trisomy 21 fetus would be higher than that from a pregnancy with a euploid fetus. The analysis does not require the targeting of fetal-specific sequences. It also does not require the prior physical separation of fetal from maternal nucleic acids. It also does not require the need to distinguish or identify fetal from maternal sequences after sequencing.
[0094] FIG. 3 A shows the percentage of sequences mapped to chromosome 21 (percentage representation of chromosome 21) for each of the 8 maternal plasma DNA samples. The percentage representation of chromosome 21 was significantly higher in maternal plasma of trisomy 21 pregnancies than in that of euploid pregnancies. These data suggest that noninvasive prenatal diagnosis of fetal aneuploidy could be achieved by determining the percentage representation of the aneuploid chromosome compared to that of a reference population. Alternatively, the chromosome 21 over-representation could be detected by comparing the percentage representation of chromosome 21 obtained experimentally with the percentage representation of chromosome 21 sequences expected for a euploid human genome. This could be done by masking or not masking the repeat regions in the human genome. [0095] Five of the eight pregnant women were each carrying a male fetus. The sequences mapped to the Y chromosome would be fetal-specific. The percentage of sequences mapped to the Y-chromosome was used to calculate the fractional fetal DNA concentration in the original maternal plasma specimen. Moreover, the fractional fetal DNA concentration was also determined by using microfluidics digital PCR involving the zinc finger protein, X- linked (ZFX) and zinc finger protein, Y-linked (ZFY) paralogous genes.
[0096] FIG. 3 B shows the correlation of the fractional fetal DNA concentrations as inferred by the percentage representation of Y chromosome by sequencing and that determined by ZFYIZFX microfluidics digital PCR. There was a positive correlation between the fractional fetal DNA concentrations in maternal plasma determined by these two methods. The coefficient of correlation (r) was 0.917 in the Pearson correlation analysis.
[0097] The percentages of maternal plasma DNA sequences aligned to each of the 24 chromosomes (22 autosomes and X and Y chromosomes) for two representative cases are shown in FIG. 4 A. One pregnant woman was carrying a trisomy 21 fetus and the other was carrying a euploid fetus. The percentage representation of sequences mapped to chromosome 21 is higher in the pregnant woman carrying a trisomy 21 fetus when compared with the pregnant woman carrying a normal fetus. [0098] The differences (%) of the percentage representation per chromosome between the maternal plasma DNA specimens of the above two cases is shown in FIG. 4B. The percentage difference for a particular chromosome is calculated using the formula below:
Percentage difference (%) = (P21 - PE)/ PE x 100%, where
P21 = percentage of plasma DNA sequences aligned to the particular chromosome in the pregnant woman carrying a trisomy 21 fetus and;
PE = percentage of plasma DNA sequences aligned to the particular chromosome in the pregnant woman carrying a euploid fetus.
[0099] As shown in FIG. 4B, there is an over-representation of chromosome 21 sequences by 11% in the plasma of the pregnant woman carrying a trisomy 21 fetus when compared with the pregnant woman carrying a euploid fetus. For the sequences aligned to other chromosomes, the differences between the two cases were within 5%. As the percentage representation for chromosome 21 is increased in the trisomy 21 compared with the euploid maternal plasma samples, the difference (%) could be alternatively referred as the degree of over-representation in chromosome 21 sequences. In addition to differences (%) and absolute differences between the chromosome 21 percentage representation, ratios of the counts from test and reference samples could also be calculated and would be indicative of the degree of chromosome 21 over-representation in trisomy 21 compared with euploid samples.
[0100] For the four pregnant women each carrying a euploid fetus, a mean of 1.345% of their plasma DNA sequences were aligned to chromosome 21. In the four pregnant women carrying a trisomy 21 fetus, three of their fetuses were males. The percentage representation of chromosome 21 was calculated for each of these three cases. The difference (%) in chromosome 21 percentage representation for each of these three trisomy 21 cases from the mean chromosome 21 percentage representation derived from values of the four euploid cases were determined as described above. In other words, the mean of the four cases carrying a euploid fetus was used as the reference in this calculation. The fractional fetal DNA concentrations for these three male trisomy 21 cases were inferred from their respective percentage representation of Y chromosome sequences.
[0101] The correlation between the degree of over-representation for chromosome 21 sequences and the fractional fetal DNA concentrations is shown in FIG. 5. There was a significant positive correlation between the two parameters. The coefficient of correlation (r) was 0.898 in the Pearson correlation analysis. These results indicate that the degree of over- representation of chromosome 21 sequences in maternal plasma is related to the fractional concentration of fetal DNA in the maternal plasma sample. Thus, cut-off values in the degree of chromosome 21 sequence over-representation relevant to the fractional fetal DNA concentrations could be determined to identify pregnancies involving trisomy 21 fetuses.
[0102] The determination of the fractional concentration of fetal DNA in maternal plasma can also be done separate to the sequencing run. For example, the Y chromosome DNA concentration could be pre-determined using real-time PCR, microfluidics PCR or mass spectrometry. For example, we have demonstrated in FIG. 3 B that there is good correlation between the fetal DNA concentrations estimated based on the Y-chromosome count generated during the sequencing run and the ZFY/ZFX ratio generated external to the sequencing run. In fact, fetal DNA concentration could be determined using loci other than the Y chromosome and applicable to female fetuses. For example, Chan et al showed that fetal-derived methylated RASSFlA sequences would be detected in the plasma of pregnant women in the background of maternally derived unmethylated RASSFlA sequences (Chan et al, Clin Chem 2006;52:2211-8). The fractional fetal DNA concentration can thus be determined by dividing the amount of methylated RASSFlA sequences by the amount of total RASSFlA (methylated and unmethylated) sequences.
[0103] It is expected that maternal plasma would be preferred over maternal serum for practicing our invention because DNA is released from the maternal blood cells during blood clotting. Thus, if serum is used, it is expected that the fractional concentration of fetal DNA will be lower in maternal plasma than maternal serum. In other words, if maternal serum is used, it is expected that more sequences would need to be generated for fetal chromosomal aneuploidy to be diagnosed, when compared with a plasma sample obtained from the same pregnant woman at the same time.
[0104] Yet another alternative way of determining the fractional concentration of fetal DNA would be through the quantification of polymorphic differences between the pregnant women and the fetus (Dhallan R, et al. 2007 Lancet, 369, 474-481). An example of this method would be to target polymorphic sites at which the pregnant woman is homozygous and the fetus is heterozygous. The amount of fetal-specific allele can be compared with the amount of the common allele to determine the fractional concentration of fetal DNA. [0105] In contrast to the existing techniques for detecting chromosomal aberrations, including comparative genomic hybridization, microarray comparative genomic hybridization, quantitative real-time polymerase chain reaction, which detect and quantify one or more specific sequence(s), massively parallel sequencing is not dependent on the detection or analysis of predetermined or a predefined set of DNA sequences. A random representative fraction of DNA molecules from the specimen pool is sequenced. The number of different sequenced tags aligned to various chromosomal regions is compared between specimens containing or not containing the DNA species of interest. Chromosomal aberrations would be revealed by differences in the number (or percentage) of sequences aligned to any given chromosomal region in the specimens. [0106] In another example the sequencing technique on plasma cell-free DNA may be used to detect the chromosomal aberrations in the plasma DNA for the detection of a specific cancer. Different cancers have a set of typical chromosomal aberrations. Changes (amplifications and deletions) in multiple chromosomal regions may be used. Thus, there would be an increased proportion of sequences aligned to the amplified regions and a decreased proportion of sequences aligned to decreased regions. The percentage representation per chromosome could be compared with the size for each corresponding chromosome in a reference genome expressed as percentage of genomic representation of any given chromosome in relation to the whole genome. Direct comparisons or comparisons to a reference chromosome may also be used. H. SEQUENCING JUST A FRACTION OF THE HUMAN GENOME
[0107] In the experiment described in example I above, maternal plasma DNA from each individual specimen was sequenced using one flow cell only. The number of sequenced tags generated from each of the tested specimens by the sequencing run is shown in FIG. 6. T21 denote a sample obtained from a pregnancy involving a trisomy 21 fetus. [0108] As 36 bp were sequenced from each of the sequenced maternal plasma DNA fragments, the number of nucleotides/basepairs sequenced from each specimen could be determined by 36 bp multiplied by the sequenced tag count and are also shown in FIG. 6. As there are approximately 3 billion basepairs in the human genome, the amount of sequencing data generated from each maternal plasma specimen represented only a fraction, ranging from some 10% to 13%.
[0109] Furthermore, in this study, only the uniquely mappable sequenced tags, termed UO in nomenclature from the Eland software, were used to demonstrate the presence of over- representation in the amount of chromosome 21 sequences in the maternal plasma specimens from pregnancies each carrying a fetus with trisomy 21, as described in example I above. As shown in FIG. 6, UO sequences only represent a subset of all the sequenced tags generated from each specimen and further represent an even smaller proportion, some 2%, of the human genome. These data indicate that the sequencing of only a portion of the human genomic sequences present in the tested specimen is sufficient to achieve the diagnosis of fetal aneuploidy.
III. DETERMINATION OF NUMBER OF SEQUENCES REQUIRED
[0110] The sequencing result of the plasma DNA from a pregnant woman carrying a euploid male fetus is used for this analysis. The number of sequenced tags that can be mapped without mismatches to the reference human genome sequence was 1,990,000. Subsets of sequences were randomly chosen from these 1,990,000 tags and the percentage of sequences aligned to chromosome 21 was calculated within each subset. The number of sequences in the subsets was varied from 60,000 to 540,000 sequences. For each subset size, multiple subsets of the same number of sequenced tags were compiled by random selection of the sequenced tags from the total pool until no other combination was possible. The mean percentage of sequences aligned to chromosome 21 and its standard deviation (SD) were then calculated from the multiple subsets within each subset size. These data were compared across different subset sizes to determine the effect of subset size on the distribution of the percentage of sequences aligned to the chromosome 21. The 5th and 95f percentiles of the percentages were then calculated according to the mean and SD.
[0111] When a pregnant woman is carrying a trisomy 21 fetus, the sequenced tags aligned to chromosome 21 should be over-represented in the maternal plasma due to an extra dose of chromosome 21 from the fetus. The degree of over-representation is dependent on the fetal DNA percentage in the maternal plasma DNA sample following the equation below:
PerT2i = PerEu x (1 + f/2) where PerT2i represents the percentage of sequences aligned to chromosome 21 in a woman with a trisomy 21 fetus; and
PerEu represents the percentage of sequences aligned to chromosome 21 in a woman with a euploid fetus; and f represents the fetal DNA percentage in maternal plasma DNA
[0112] As shown in FIG. 7, the SD for the percentages of sequences aligned to chromosome 21 decreases with increasing number of sequences in each subset. Therefore, when the number of sequences in each subset increases, the interval between the 5th and 95th percentiles decreases. When the 5%-95% interval for the euploid and trisomy 21 cases do not overlap, then the differentiation between the two groups of cases would be possible with an accuracy of >95%.
[0113] As shown in FIG. 7, the minimal subset size for the differentiation of trisomy 21 cases from euploid cases is dependent on the fetal DNA percentage. The minimal subset sizes for differentiating trisomy 21 from euploid cases were 120,000, 180,000 and 540,000 sequences for fetal DNA percentages of 20%, 10% and 5%, respectively. In other words, the number of sequences needed to be analyzed would be 120,000 for determining whether a fetus has trisomy 21 when a maternal plasma DNA sample contains 20% fetal DNA. The number of sequences needed to be analyzed would be increased to 540,000 when the fetal DNA percentage drops to 5%. [0114] As the data were generated using 36 basepair sequencing, 120,000, 180,000 and 540,000 sequences correspond to 0.14%, 0.22% and 0.65% of the human genome, respectively. As the lower range of fetal DNA concentrations in maternal plasma obtained from early pregnancies were reported to be some 5% (Lo, YMD et al. 1998 Am J Hum Genet 62, 768-775), the sequencing of about 0.6% of the human genome may represent the minimal amount of sequencing required for diagnosis with at least 95% accuracy in detecting fetal chromosomal aneuploidy for any pregnancy.
IV. RANDOM SEQUENCING
[0115] To illustrate that the sequenced DNA fragments were randomly selected during the sequencing run, we obtained the sequenced tags generated from the eight maternal plasma samples analyzed in example I. For each maternal plasma specimen, we determined the starting positions in relation to the reference human genome sequence, NCBI assembly 36, of each of the 36 bp sequenced tags that were aligned uniquely to chromosome 21 without mismatches. We then ordered the starting position number for the pools of aligned sequenced tags from each specimen in ascending order. We performed a similar analysis for chromosome 22. For illustrative purpose, the top ten starting positions for chromosome 21 and chromosome 22 for each of the maternal plasma specimens are shown in FIGS. 8 A and 8B, respectively. As can be appreciated from these Tables, the sequenced pools of DNA fragments were non-identical between samples.
[0116] Any of the software components or functions described in this application, may be implemented as software code to be executed by a processor using any suitable computer language such as, for example, Java, C++ or Perl using, for example, conventional or object- oriented techniques. The software code may be stored as a series of instructions, or commands on a computer readable medium for storage and/or transmission, suitable media include random access memory (RAM), a read only memory (ROM), a magnetic medium such as a hard-drive or a floppy disk, or an optical medium such as a compact disk (CD) or DVD (digital versatile disk), flash memory, and the like. The computer readable medium may be any combination of such storage or transmission devices.
[0117] Such programs may also be encoded and transmitted using carrier signals adapted for transmission via wired, optical, and/or wireless networks conforming to a variety of protocols, including the Internet. As such, a computer readable medium according to an embodiment of the present invention may be created using a data signal encoded with such programs. Computer readable media encoded with the program code may be packaged with a compatible device or provided separately from other devices (e.g., via Internet download). Any such computer readable medium may reside on or within a single computer program product (e.g. a hard drive or an entire computer system), and may be present on or within different computer program products within a system or network. A computer system may include a monitor, printer, or other suitable display for providing any of the results mentioned herein to a user.
[0118] An example of a computer system is shown in FIG. 9. The subsystems shown in FIG. 9 are interconnected via a system bus 975. Additional subsystems such as a printer 974, keyboard 978, fixed disk 979, monitor 976, which is coupled to display adapter 982, and others are shown. Peripherals and input/output (I/O) devices, which couple to I/O controller 971, can be connected to the computer system by any number of means known in the art, such as serial port 977. For example, serial port 977 or external interface 981 can be used to connect the computer apparatus to a wide area network such as the Internet, a mouse input device, or a scanner. The interconnection via system bus allows the central processor 973 to communicate with each subsystem and to control the execution of instructions from system memory 972 or the fixed disk 979, as well as the exchange of information between subsystems. The system memory 972 and/or the fixed disk 979 may embody a computer readable medium.
[0119] The above description of exemplary embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form described, and many modifications and variations are possible in light of the teaching above. The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications to thereby enable others skilled in the art to best utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated.
[0120] All publications, patents, and patent applications cited herein are hereby incorporated by reference in their entirety for all purposes.

Claims

WHAT IS CLAIMED IS:
L A method for performing prenatal diagnosis of a fetal chromosomal aneuploidy in a biological sample obtained from a pregnant female subject, wherein the biological sample includes nucleic acid molecules, the method comprising: receiving the biological sample; sequencing at least a portion of a plurality of the nucleic acid molecules contained in the biological sample, wherein the sequenced portion represents a fraction of the human genome; based on the sequencing: determining a first amount of a first chromosome from sequences identified as originating from the first chromosome; determining a second amount of one or more second chromosomes from sequences identified as originating from one of the second chromosomes; determining a parameter from the first amount and the second amount; comparing the parameter to one or more cutoff values; and based on the comparison, determining a classification of whether a fetal chromosomal aneuploidy exists for the first chromosome.
2. The method of claim 1, wherein the sequencing is performed randomly on a portion of the nucleic acid molecules contained in the biological sample.
3. The method of claim 1, wherein the biological sample is maternal blood, plasma, serum, urine or saliva
4. The method of claim 1, wherein the biological sample is transcervical lavage fluid.
5. The method of claim 1, wherein the first chromosome is chromosome 21, chromosome 18, chromosome 13, chromosome X, or chromosome Y.
6. The method of claim 1 , wherein the parameter is a ratio of sequences that originate from the first chromosome.
7. The method of claim 6, wherein the ratio is obtained from any one or more of a fractional count of the number of sequenced tags, a fractional number of sequenced nucleotides, and a fractional length of accumulated sequences.
8. The method of claim 6, wherein the sequences that originate from the first chromosome are selected to be less than a specified number of base pairs.
9. The method of claim 8, wherein the specified number of base pairs is 300bp, 200bp, or lOObp.
10. The method of claim 1, wherein the nucleic acid molecules of the biological sample have been enriched for sequences originating from at least one particular chromosome.
11. The method of claim 1 , wherein the nucleic acid molecules of the biological sample have been enriched for sequences less than 300 bp.
12. The method of claim 1, wherein the nucleic acid molecules of the biological sample have been enriched for sequences less than 200 bp.
13. The method of claim 1, wherein the nucleic acid molecules of the biological sample have been amplified using a polymerase chain reaction.
14. The method of claim 1, wherein the sequenced portion represents at least a pre-determined fraction of the human genome.
15. The method of claim 1 , wherein the fraction represents at least 0.1% of the human genome.
16. The method of claim 1, wherein the fraction represents at least 0.5% of the human genome.
17. The method of claim 1, wherein at least one of the cutoff values is related to the fractional concentration of fetal DNA in the biological sample.
18. The method of claim 17, wherein the fractional concentration of fetal DNA in the biological sample is determined by any one or more of a proportion of Y W chromosome sequences, a fetal epigenetic marker, or using single nucleotide polymorphism analysis.
19. The method of claim 1 , wherein a cutoff value is a reference value established in a normal biological sample.
20. The method of claim 1, further comprising: identifying an amount of fetal DNA in the biological sample; and calculating a number N of sequences to be analyzed based on a desired accuracy.
21. A computer program product comprising a computer readable medium encoded with a plurality of instructions for controlling a computing system to perform an operation for performing prenatal diagnosis of a fetal chromosomal aneuploidy in a biological sample obtained from a pregnant female subject, wherein the biological sample includes nucleic acid molecules, the operation comprising the steps of: receiving data from a random sequencing of a portion of the nucleic acid molecules contained in the biological sample obtained from a pregnant female subject, wherein the biological sample includes nucleic acid molecules, wherein the portion represents a fraction of the human genome; based on the data from the random sequencing: determining a first amount of a first chromosome from sequences identified as originating from the first chromosome; determining a second amount of one or more second chromosomes from sequences identified as originating from one of the second chromosomes; determining a parameter from the first amount and the second amount; comparing the parameter to one or more cutoff values; and
based on the comparison, determining a classification of whether a fetal chromosomal aneuploidy exists for the first chromosome.
22. A method for performing prenatal diagnosis of a fetal chromosomal aneuploidy in a biological sample obtained from a pregnant female subject, wherein the biological sample includes nucleic acid molecules, the method comprising: receiving the biological sample; calculating a number N of sequences to be analyzed based on a desired accuracy; randomly sequencing at least N of the nucleic acid molecules contained in the biological sample, wherein the portion represents a fraction of the human genome; based on the random sequencing: determining a first amount of a first chromosome from sequences identified as originating from the first chromosome; determining a second amount of one or more second chromosomes from sequences identified as originating from one of the second chromosomes; determining a parameter from the first amount and the second amount; comparing the parameter to one or more cutoff values; and based on the comparison, determining a classification of whether a fetal chromosomal aneuploidy exists for the first chromosome.
23. The method of claim 22, further comprising: identifying a percentage of fetal DNA in the biological sample, wherein calculating a number N of sequences to be analyzed based on a desired accuracy is based on the percentage.
PCT/GB2008/002530 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using genomic sequencing WO2009013496A1 (en)

Priority Applications (29)

Application Number Priority Date Filing Date Title
SI200831133T SI2183693T2 (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using genomic sequencing
ES08776043T ES2441807T5 (en) 2007-07-23 2008-07-23 Diagnosis of fetal chromosomal aneuploidy using genomic sequencing
MX2014006501A MX346069B (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using genomic sequencing.
JP2010517481A JP5736170B2 (en) 2007-07-23 2008-07-23 Diagnosis of fetal chromosomal aneuploidy using genomic sequencing
BRPI0814670A BRPI0814670B8 (en) 2007-07-23 2008-07-23 method for performing prenatal diagnosis of a fetal chromosomal aneuploidy
EP19215726.1A EP3656870A1 (en) 2007-07-23 2008-07-23 Diagnosing cancer using genomic sequencing
EP19153260.5A EP3540739A1 (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using genomic sequencing
NZ582702A NZ582702A (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using genomic sequencing
CN200880108377A CN101849236A (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using genomic sequencing
KR1020177032673A KR101966262B1 (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing
KR1020237025635A KR20230117256A (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing
KR1020167005386A KR101972994B1 (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing
EP08776043.5A EP2183693B2 (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using genomic sequencing
MX2010000846A MX2010000846A (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using genomic sequencing.
CA2693081A CA2693081C (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using genomic sequencing
EP12173422.2A EP2527471B1 (en) 2007-07-23 2008-07-23 Diagnosing cancer using genomic sequencing
EA201000231A EA017966B1 (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using genomic sequencing
MX2014006579A MX341573B (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using genomic sequencing.
AU2008278843A AU2008278843B2 (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using genomic sequencing
KR1020207023505A KR102339760B1 (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing
PL08776043T PL2183693T5 (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using genomic sequencing
DK08776043.5T DK2183693T5 (en) 2007-07-23 2008-07-23 Diagnosis of fetal chromosomal aneuploidy using genome sequencing
KR1020217034197A KR102561664B1 (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing
KR1020107003969A KR101916456B1 (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing
IL203311A IL203311A (en) 2007-07-23 2010-01-14 Diagnosing fetal chromosomal aneuploidy using genomic sequencing
ZA2010/00524A ZA201000524B (en) 2007-07-23 2010-01-22 Diagnosing fetal chromosomal aneuploidy using genomic sequencing
HK10110583.0A HK1144024A1 (en) 2007-07-23 2010-11-12 Diagnosing fetal chromosomal aneuploidy using genomic sequencing
HRP20140009TT HRP20140009T4 (en) 2007-07-23 2014-01-07 Diagnosing fetal chromosomal aneuploidy using genomic sequencing
IL233261A IL233261A (en) 2007-07-23 2014-06-19 Diagnosing fetal chromosomal aneuploidy using genomic sequencing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US95143807P 2007-07-23 2007-07-23
US60/951,438 2007-07-23

Publications (1)

Publication Number Publication Date
WO2009013496A1 true WO2009013496A1 (en) 2009-01-29

Family

ID=39798126

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/GB2008/002524 WO2009013492A1 (en) 2007-07-23 2008-07-23 Determining a nucleic acid sequence imbalance
PCT/GB2008/002530 WO2009013496A1 (en) 2007-07-23 2008-07-23 Diagnosing fetal chromosomal aneuploidy using genomic sequencing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/GB2008/002524 WO2009013492A1 (en) 2007-07-23 2008-07-23 Determining a nucleic acid sequence imbalance

Country Status (26)

Country Link
US (10) US12054776B2 (en)
EP (15) EP3770275A1 (en)
JP (16) JP5519500B2 (en)
KR (23) KR101829564B1 (en)
CN (11) CN106676188A (en)
AU (1) AU2008278839B2 (en)
BR (1) BRPI0814670B8 (en)
CA (10) CA3076142C (en)
CY (3) CY1114773T1 (en)
DK (6) DK2557520T3 (en)
EA (6) EA039167B1 (en)
ES (6) ES2820866T3 (en)
FI (1) FI2557517T3 (en)
HK (5) HK1177768A1 (en)
HR (4) HRP20230033T3 (en)
HU (3) HUE061020T2 (en)
IL (2) IL203311A (en)
LT (2) LT2557517T (en)
MX (3) MX346069B (en)
NZ (2) NZ600407A (en)
PL (4) PL2557517T3 (en)
PT (3) PT2557520T (en)
SG (1) SG183062A1 (en)
SI (4) SI2183693T2 (en)
WO (2) WO2009013492A1 (en)
ZA (1) ZA201000524B (en)

Cited By (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7888017B2 (en) 2006-02-02 2011-02-15 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive fetal genetic screening by digital analysis
WO2011051283A1 (en) 2009-10-26 2011-05-05 Lifecodexx Ag Means and methods for non-invasive diagnosis of chromosomal aneuploidy
EP2334812A2 (en) 2008-09-20 2011-06-22 The Board Of Trustees Of The University Of the Leland Stanford Junior University Noninvasive diagnosis of fetal aneuploidy by sequencing
US8024128B2 (en) 2004-09-07 2011-09-20 Gene Security Network, Inc. System and method for improving clinical decisions by aggregating, validating and analysing genetic and phenotypic data
WO2011130880A1 (en) * 2010-04-23 2011-10-27 深圳华大基因科技有限公司 Detection method of fetal chromosomal aneuploidy
US8137912B2 (en) 2006-06-14 2012-03-20 The General Hospital Corporation Methods for the diagnosis of fetal abnormalities
US8168389B2 (en) 2006-06-14 2012-05-01 The General Hospital Corporation Fetal cell analysis using sample splitting
CN102791881A (en) * 2009-11-06 2012-11-21 香港中文大学 Size-based genomic analysis
US8318430B2 (en) 2010-01-23 2012-11-27 Verinata Health, Inc. Methods of fetal abnormality detection
JP2013501514A (en) * 2009-08-11 2013-01-17 ザ チャイニーズ ユニバーシティ オブ ホンコン Chromosome aneuploidy detection method
WO2013040773A1 (en) * 2011-09-21 2013-03-28 深圳华大基因科技有限公司 Method and system for determining chromosome aneuploidy of single cell
WO2013057568A1 (en) 2011-10-18 2013-04-25 Multiplicom Nv Fetal chromosomal aneuploidy diagnosis
US8442774B2 (en) 2007-07-23 2013-05-14 The Chinese University Of Hong Kong Diagnosing fetal chromosomal aneuploidy using paired end
US8515679B2 (en) 2005-12-06 2013-08-20 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US8532930B2 (en) 2005-11-26 2013-09-10 Natera, Inc. Method for determining the number of copies of a chromosome in the genome of a target individual using genetic data from genetically related individuals
WO2013150503A1 (en) * 2012-04-06 2013-10-10 The Chinese University Of Hong Kong Noninvasive prenatal diagnosis of fetal trisomy by allelic ratio analysis using targeted massively parallel sequencing
WO2013190441A3 (en) * 2012-06-21 2014-02-27 The Chinese University Of Hong Kong Mutational analysis of plasma dna for cancer detection
US8825412B2 (en) 2010-05-18 2014-09-02 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US8972202B2 (en) 2007-07-23 2015-03-03 The Chinese University Of Hong Kong Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing
US9163282B2 (en) 2010-05-18 2015-10-20 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US9228234B2 (en) 2009-09-30 2016-01-05 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US9364829B2 (en) 2005-06-02 2016-06-14 Fluidigm Corporation Analysis using microfluidic partitioning devices
US9411937B2 (en) 2011-04-15 2016-08-09 Verinata Health, Inc. Detecting and classifying copy number variation
US9424392B2 (en) 2005-11-26 2016-08-23 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US9447453B2 (en) 2011-04-12 2016-09-20 Verinata Health, Inc. Resolving genome fractions using polymorphism counts
US9493828B2 (en) 2010-01-19 2016-11-15 Verinata Health, Inc. Methods for determining fraction of fetal nucleic acids in maternal samples
US9499870B2 (en) 2013-09-27 2016-11-22 Natera, Inc. Cell free DNA diagnostic testing standards
US9639657B2 (en) 2008-08-04 2017-05-02 Natera, Inc. Methods for allele calling and ploidy calling
US9657342B2 (en) 2010-01-19 2017-05-23 Verinata Health, Inc. Sequencing methods for prenatal diagnoses
US9677118B2 (en) 2014-04-21 2017-06-13 Natera, Inc. Methods for simultaneous amplification of target loci
US9840732B2 (en) 2012-05-21 2017-12-12 Fluidigm Corporation Single-particle analysis of particle populations
AU2015202167B2 (en) * 2008-09-20 2017-12-21 The Board Of Trustees Of The Leland Stanford Junior University Noninvasive diagnosis of fetal aneuploidy by sequencing
US9920361B2 (en) 2012-05-21 2018-03-20 Sequenom, Inc. Methods and compositions for analyzing nucleic acid
US9965585B2 (en) 2010-11-30 2018-05-08 The Chinese University Of Hong Kong Detection of genetic or molecular aberrations associated with cancer
US10011870B2 (en) 2016-12-07 2018-07-03 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US10053729B2 (en) 2012-03-26 2018-08-21 The Johns Hopkins University Rapid aneuploidy detection
US10081839B2 (en) 2005-07-29 2018-09-25 Natera, Inc System and method for cleaning noisy genetic data and determining chromosome copy number
US10083273B2 (en) 2005-07-29 2018-09-25 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10113196B2 (en) 2010-05-18 2018-10-30 Natera, Inc. Prenatal paternity testing using maternal blood, free floating fetal DNA and SNP genotyping
US10179937B2 (en) 2014-04-21 2019-01-15 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US10240209B2 (en) 2015-02-10 2019-03-26 The Chinese University Of Hong Kong Detecting mutations for cancer screening
US10262755B2 (en) 2014-04-21 2019-04-16 Natera, Inc. Detecting cancer mutations and aneuploidy in chromosomal segments
WO2019085988A1 (en) 2017-11-02 2019-05-09 The Chinese University Of Hong Kong Using nucleic acid size range for noninvasive prenatal testing and cancer detection
US10316362B2 (en) 2010-05-18 2019-06-11 Natera, Inc. Methods for simultaneous amplification of target loci
US10388403B2 (en) 2010-01-19 2019-08-20 Verinata Health, Inc. Analyzing copy number variation in the detection of cancer
US10392666B2 (en) 2012-09-20 2019-08-27 The Chinese University Of Hong Kong Non-invasive determination of methylome of tumor from plasma
US10415089B2 (en) 2010-01-19 2019-09-17 Verinata Health, Inc. Detecting and classifying copy number variation
WO2019195225A1 (en) 2018-04-02 2019-10-10 Illumina, Inc. Compositions and methods for making controls for sequence-based genetic testing
US10504613B2 (en) 2012-12-20 2019-12-10 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10526658B2 (en) 2010-05-18 2020-01-07 Natera, Inc. Methods for simultaneous amplification of target loci
US10577655B2 (en) 2013-09-27 2020-03-03 Natera, Inc. Cell free DNA diagnostic testing standards
US10586610B2 (en) 2010-01-19 2020-03-10 Verinata Health, Inc. Detecting and classifying copy number variation
US10591391B2 (en) 2006-06-14 2020-03-17 Verinata Health, Inc. Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats
US10622094B2 (en) 2013-06-21 2020-04-14 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10633713B2 (en) 2017-01-25 2020-04-28 The Chinese University Of Hong Kong Diagnostic applications using nucleic acid fragments
US10662474B2 (en) 2010-01-19 2020-05-26 Verinata Health, Inc. Identification of polymorphic sequences in mixtures of genomic DNA by whole genome sequencing
US20200168296A1 (en) * 2013-01-25 2020-05-28 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10706957B2 (en) 2012-09-20 2020-07-07 The Chinese University Of Hong Kong Non-invasive determination of methylome of tumor from plasma
US10704090B2 (en) 2006-06-14 2020-07-07 Verinata Health, Inc. Fetal aneuploidy detection by sequencing
US10894976B2 (en) 2017-02-21 2021-01-19 Natera, Inc. Compositions, methods, and kits for isolating nucleic acids
US11111544B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US11111543B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US11322224B2 (en) 2010-05-18 2022-05-03 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11326208B2 (en) 2010-05-18 2022-05-10 Natera, Inc. Methods for nested PCR amplification of cell-free DNA
US11332774B2 (en) 2010-10-26 2022-05-17 Verinata Health, Inc. Method for determining copy number variations
US11332785B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11332793B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for simultaneous amplification of target loci
US11339429B2 (en) 2010-05-18 2022-05-24 Natera, Inc. Methods for non-invasive prenatal ploidy calling
WO2022134807A1 (en) * 2020-12-21 2022-06-30 高嵩 Method for detecting fetal genetic variations by sequencing polymorphic sites and target sites
US11401551B2 (en) 2009-11-05 2022-08-02 The Chinese University Of Hong Kong Identifying a de novo fetal mutation from a maternal biological sample
US11408031B2 (en) 2010-05-18 2022-08-09 Natera, Inc. Methods for non-invasive prenatal paternity testing
US11459616B2 (en) 2016-10-24 2022-10-04 The Chinese University Of Hong Kong Methods and systems for tumor detection
US11479812B2 (en) 2015-05-11 2022-10-25 Natera, Inc. Methods and compositions for determining ploidy
US11485996B2 (en) 2016-10-04 2022-11-01 Natera, Inc. Methods for characterizing copy number variation using proximity-litigation sequencing
US11525159B2 (en) 2018-07-03 2022-12-13 Natera, Inc. Methods for detection of donor-derived cell-free DNA
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci
US12024738B2 (en) 2018-04-14 2024-07-02 Natera, Inc. Methods for cancer detection and monitoring
US12084720B2 (en) 2017-12-14 2024-09-10 Natera, Inc. Assessing graft suitability for transplantation
US12100478B2 (en) 2012-08-17 2024-09-24 Natera, Inc. Method for non-invasive prenatal testing using parental mosaicism data

Families Citing this family (198)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005009324D1 (en) 2005-04-06 2008-10-09 Maurice Stroun Method for cancer diagnosis by detection of DNA and RNA in the circulation
US20070178501A1 (en) * 2005-12-06 2007-08-02 Matthew Rabinowitz System and method for integrating and validating genotypic, phenotypic and medical information into a database according to a standardized ontology
US20070027636A1 (en) * 2005-07-29 2007-02-01 Matthew Rabinowitz System and method for using genetic, phentoypic and clinical data to make predictions for clinical or lifestyle decisions
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
US7888127B2 (en) 2008-01-15 2011-02-15 Sequenom, Inc. Methods for reducing adduct formation for mass spectrometry analysis
US20110033862A1 (en) * 2008-02-19 2011-02-10 Gene Security Network, Inc. Methods for cell genotyping
AU2009223671B2 (en) * 2008-03-11 2014-11-27 Sequenom, Inc. Nucleic acid-based tests for prenatal gender determination
DE102008019132A1 (en) * 2008-04-16 2009-10-22 Olympus Life Science Research Europa Gmbh A method for quantitatively determining the copy number of a predetermined sequence in a sample
WO2009146335A1 (en) * 2008-05-27 2009-12-03 Gene Security Network, Inc. Methods for embryo characterization and comparison
US12038438B2 (en) 2008-07-18 2024-07-16 Bio-Rad Laboratories, Inc. Enzyme quantification
EP4047367A1 (en) 2008-07-18 2022-08-24 Bio-Rad Laboratories, Inc. Method for detecting target analytes with droplet libraries
GB2467691A (en) 2008-09-05 2010-08-11 Aueon Inc Methods for stratifying and annotating cancer drug treatment options
US8476013B2 (en) 2008-09-16 2013-07-02 Sequenom, Inc. Processes and compositions for methylation-based acid enrichment of fetal nucleic acid from a maternal sample useful for non-invasive prenatal diagnoses
US8962247B2 (en) * 2008-09-16 2015-02-24 Sequenom, Inc. Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non invasive prenatal diagnoses
WO2011053790A2 (en) * 2009-10-30 2011-05-05 Fluidigm Corporation Assay of closely linked targets in fetal diagnosis and coincidence detection assay for genetic analysis
DK2496720T3 (en) 2009-11-06 2020-09-28 Univ Leland Stanford Junior NON-INVASIVE DIAGNOSIS OF TRANSPLANT REJECTION IN ORGAN-TRANSPLANTED PATIENTS
AU2010330936B2 (en) * 2009-12-17 2014-05-22 Keygene N.V. Restriction enzyme based whole genome sequencing
WO2011087760A2 (en) 2009-12-22 2011-07-21 Sequenom, Inc. Processes and kits for identifying aneuploidy
AU2015204302B2 (en) * 2010-01-19 2017-10-05 Verinata Health, Inc. Method for determining copy number variations
AU2015203579B2 (en) * 2010-01-19 2017-12-21 Verinata Health, Inc. Sequencing methods and compositions for prenatal diagnoses
US9323888B2 (en) 2010-01-19 2016-04-26 Verinata Health, Inc. Detecting and classifying copy number variation
BR112012018458A2 (en) * 2010-01-26 2018-07-10 Nipd Genetics Ltd Methods and Compositions for Noninvasive Prenatal Diagnosis of Fetal Aneuploidies
WO2011100604A2 (en) * 2010-02-12 2011-08-18 Raindance Technologies, Inc. Digital analyte analysis
WO2013052557A2 (en) * 2011-10-03 2013-04-11 Natera, Inc. Methods for preimplantation genetic diagnosis by sequencing
EP2596127A2 (en) * 2010-07-23 2013-05-29 Esoterix Genetic Laboratories, LLC Identification of differentially represented fetal or maternal genomic regions and uses thereof
US10533223B2 (en) 2010-08-06 2020-01-14 Ariosa Diagnostics, Inc. Detection of target nucleic acids using hybridization
US11031095B2 (en) 2010-08-06 2021-06-08 Ariosa Diagnostics, Inc. Assay systems for determination of fetal copy number variation
US20120077185A1 (en) * 2010-08-06 2012-03-29 Tandem Diagnostics, Inc. Detection of genetic abnormalities and infectious disease
US20130040375A1 (en) 2011-08-08 2013-02-14 Tandem Diagnotics, Inc. Assay systems for genetic analysis
US8700338B2 (en) 2011-01-25 2014-04-15 Ariosa Diagnosis, Inc. Risk calculation for evaluation of fetal aneuploidy
US20140342940A1 (en) 2011-01-25 2014-11-20 Ariosa Diagnostics, Inc. Detection of Target Nucleic Acids using Hybridization
US10167508B2 (en) 2010-08-06 2019-01-01 Ariosa Diagnostics, Inc. Detection of genetic abnormalities
US20130261003A1 (en) 2010-08-06 2013-10-03 Ariosa Diagnostics, In. Ligation-based detection of genetic variants
US11203786B2 (en) 2010-08-06 2021-12-21 Ariosa Diagnostics, Inc. Detection of target nucleic acids using hybridization
US20120034603A1 (en) * 2010-08-06 2012-02-09 Tandem Diagnostics, Inc. Ligation-based detection of genetic variants
US20130210002A1 (en) * 2010-08-13 2013-08-15 Xiuqing Zhang Method of analyzing cellular chromosomes
WO2012040387A1 (en) 2010-09-24 2012-03-29 The Board Of Trustees Of The Leland Stanford Junior University Direct capture, amplification and sequencing of target dna using immobilized primers
US9267174B2 (en) 2010-10-26 2016-02-23 Stanford University Method of simultaneously screening for multiple genotypes and/or mutations
US8877442B2 (en) 2010-12-07 2014-11-04 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive determination of fetal inheritance of parental haplotypes at the genome-wide scale
CN103459614B (en) * 2011-01-05 2015-12-02 香港中文大学 Fetal chromosomal Noninvasive prenatal gene somatotype
WO2012103031A2 (en) * 2011-01-25 2012-08-02 Ariosa Diagnostics, Inc. Detection of genetic abnormalities
US9994897B2 (en) 2013-03-08 2018-06-12 Ariosa Diagnostics, Inc. Non-invasive fetal sex determination
US8756020B2 (en) 2011-01-25 2014-06-17 Ariosa Diagnostics, Inc. Enhanced risk probabilities using biomolecule estimations
US10131947B2 (en) 2011-01-25 2018-11-20 Ariosa Diagnostics, Inc. Noninvasive detection of fetal aneuploidy in egg donor pregnancies
US11270781B2 (en) 2011-01-25 2022-03-08 Ariosa Diagnostics, Inc. Statistical analysis for non-invasive sex chromosome aneuploidy determination
EP3760730A1 (en) * 2011-02-09 2021-01-06 Natera, Inc. Methods for non-invasive prenatal ploidy calling
WO2012112804A1 (en) 2011-02-18 2012-08-23 Raindance Technoligies, Inc. Compositions and methods for molecular labeling
TWI611186B (en) * 2011-02-24 2018-01-11 香港中文大學 Molecular testing of multiple pregnancies
US20140087962A1 (en) * 2011-03-22 2014-03-27 Life Technologies Corporation Identification of Linkage Using Multiplex Digital PCR
WO2012129363A2 (en) 2011-03-24 2012-09-27 President And Fellows Of Harvard College Single cell nucleic acid detection and analysis
EP2691544B1 (en) * 2011-03-30 2017-09-13 Verinata Health, Inc Method for verifying bioassay samples
GB2484764B (en) * 2011-04-14 2012-09-05 Verinata Health Inc Normalizing chromosomes for the determination and verification of common and rare chromosomal aneuploidies
CA2834218C (en) 2011-04-29 2021-02-16 Sequenom, Inc. Quantification of a minority nucleic acid species using inhibitory oligonucleotides
US20140235474A1 (en) 2011-06-24 2014-08-21 Sequenom, Inc. Methods and processes for non invasive assessment of a genetic variation
PL2561103T3 (en) 2011-06-29 2015-02-27 Bgi Diagnosis Co Ltd Noninvasive detection of fetal genetic abnormality
WO2013002731A1 (en) * 2011-06-30 2013-01-03 National University Of Singapore Foetal nucleated red blood cell detection
US20130157875A1 (en) * 2011-07-20 2013-06-20 Anthony P. Shuber Methods for assessing genomic instabilities
EP2563937A1 (en) * 2011-07-26 2013-03-06 Verinata Health, Inc Method for determining the presence or absence of different aneuploidies in a sample
US8712697B2 (en) 2011-09-07 2014-04-29 Ariosa Diagnostics, Inc. Determination of copy number variations using binomial probability calculations
US20130110407A1 (en) * 2011-09-16 2013-05-02 Complete Genomics, Inc. Determining variants in genome of a heterogeneous sample
US20140242588A1 (en) 2011-10-06 2014-08-28 Sequenom, Inc Methods and processes for non-invasive assessment of genetic variations
JP6073902B2 (en) 2011-10-06 2017-02-01 セクエノム, インコーポレイテッド Methods and processes for non-invasive assessment of genetic variation
US9984198B2 (en) 2011-10-06 2018-05-29 Sequenom, Inc. Reducing sequence read count error in assessment of complex genetic variations
US10424394B2 (en) 2011-10-06 2019-09-24 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US9367663B2 (en) 2011-10-06 2016-06-14 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10196681B2 (en) 2011-10-06 2019-02-05 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US8688388B2 (en) 2011-10-11 2014-04-01 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
CA2851537C (en) 2011-10-11 2020-12-29 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
CN102329876B (en) * 2011-10-14 2014-04-02 深圳华大基因科技有限公司 Method for measuring nucleotide sequence of disease associated nucleic acid molecules in sample to be detected
WO2013062856A1 (en) 2011-10-27 2013-05-02 Verinata Health, Inc. Set membership testers for aligning nucleic acid samples
EP2602733A3 (en) * 2011-12-08 2013-08-14 Koninklijke Philips Electronics N.V. Biological cell assessment using whole genome sequence and oncological therapy planning using same
EP2805280B1 (en) 2012-01-20 2022-10-05 Sequenom, Inc. Diagnostic processes that factor experimental conditions
ES2930180T3 (en) 2012-03-02 2022-12-07 Sequenom Inc Methods for enriching for cancer nucleic acid from a biological sample
US9892230B2 (en) 2012-03-08 2018-02-13 The Chinese University Of Hong Kong Size-based analysis of fetal or tumor DNA fraction in plasma
CA3209140A1 (en) * 2012-04-19 2013-10-24 The Medical College Of Wisconsin, Inc. Highly sensitive surveillance using detection of cell free dna
US10289800B2 (en) 2012-05-21 2019-05-14 Ariosa Diagnostics, Inc. Processes for calculating phased fetal genomic sequences
DK3663409T3 (en) 2012-05-21 2021-12-13 Sequenom Inc METHODS AND PROCESSES FOR NON-INVASIVE ASSESSMENT OF GENETIC VARIATIONS
US10497461B2 (en) 2012-06-22 2019-12-03 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
CA2878979C (en) * 2012-07-13 2021-09-14 Sequenom, Inc. Processes and compositions for methylation-based enrichment of fetal nucleic acid from a maternal sample useful for non-invasive prenatal diagnoses
CN104583421A (en) 2012-07-19 2015-04-29 阿瑞奥萨诊断公司 Multiplexed sequential ligation-based detection of genetic variants
US20160040229A1 (en) 2013-08-16 2016-02-11 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
WO2014039556A1 (en) 2012-09-04 2014-03-13 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US10876152B2 (en) 2012-09-04 2020-12-29 Guardant Health, Inc. Systems and methods to detect rare mutations and copy number variation
US11913065B2 (en) 2012-09-04 2024-02-27 Guardent Health, Inc. Systems and methods to detect rare mutations and copy number variation
LT3354747T (en) 2012-09-20 2021-04-12 The Chinese University Of Hong Kong Non-invasive determination of methylome of tumor from plasma
US20150275300A1 (en) * 2012-09-26 2015-10-01 Agency For Science, Technology And Research Biomarkers for down syndrome prenatal diagnosis
US10482994B2 (en) 2012-10-04 2019-11-19 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
CA3120521A1 (en) 2012-10-04 2014-04-10 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
EP3026124A1 (en) * 2012-10-31 2016-06-01 Genesupport SA Non-invasive method for detecting a fetal chromosomal aneuploidy
US10643738B2 (en) * 2013-01-10 2020-05-05 The Chinese University Of Hong Kong Noninvasive prenatal molecular karyotyping from maternal plasma
CA2901460A1 (en) * 2013-02-20 2014-08-28 Bionano Genomics, Inc. Characterization of molecules in nanofluidics
EP3910072A3 (en) * 2013-02-28 2022-02-16 The Chinese University Of Hong Kong Maternal plasma transcriptome analysis by massively parallel rna sequencing
KR101614471B1 (en) * 2013-02-28 2016-04-21 주식회사 테라젠이텍스 Method and apparatus for diagnosing fetal chromosomal aneuploidy using genomic sequencing
US20130189684A1 (en) 2013-03-12 2013-07-25 Sequenom, Inc. Quantification of cell-specific nucleic acid markers
WO2014168711A1 (en) 2013-03-13 2014-10-16 Sequenom, Inc. Primers for dna methylation analysis
US9305756B2 (en) 2013-03-13 2016-04-05 Agena Bioscience, Inc. Preparation enhancements and methods of use for MALDI mass spectrometry
JP2016518811A (en) 2013-03-15 2016-06-30 ザ チャイニーズ ユニバーシティ オブ ホンコン Determination of the fetal genome in multiple pregnancy
HUE061261T2 (en) 2013-04-03 2023-05-28 Sequenom Inc Methods and processes for non-invasive assessment of genetic variations
US20140336055A1 (en) 2013-05-07 2014-11-13 Sequenom, Inc. Genetic markers for macular degeneration disorder treatment
JP6561046B2 (en) 2013-05-24 2019-08-14 セクエノム, インコーポレイテッド Methods and treatments for non-invasive assessment of genetic variation
WO2014200579A1 (en) * 2013-06-13 2014-12-18 Ariosa Diagnostics, Inc. Statistical analysis for non-invasive sex chromosome aneuploidy determination
CN104520437B (en) * 2013-07-17 2016-09-14 深圳华大基因股份有限公司 A kind of chromosomal aneuploidy detection method and device
US10174375B2 (en) 2013-09-20 2019-01-08 The Chinese University Of Hong Kong Sequencing analysis of circulating DNA to detect and monitor autoimmune diseases
IL289974B (en) 2013-10-04 2022-09-01 Sequenom Inc Methods and processes for non-invasive assessment of genetic variations
JP6680680B2 (en) 2013-10-07 2020-04-15 セクエノム, インコーポレイテッド Methods and processes for non-invasive assessment of chromosomal alterations
WO2015061359A1 (en) 2013-10-21 2015-04-30 Verinata Health, Inc. Method for improving the sensitivity of detection in determining copy number variations
CN105765076B (en) * 2013-12-17 2019-07-19 深圳华大基因股份有限公司 A kind of chromosomal aneuploidy detection method and device
EP3087204B1 (en) 2013-12-28 2018-02-14 Guardant Health, Inc. Methods and systems for detecting genetic variants
EP3736344A1 (en) 2014-03-13 2020-11-11 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
RU2602366C2 (en) * 2014-05-21 2016-11-20 Общество С Ограниченной Ответственностью "Тестген" Method of producing dna primers and probes for minimally invasive prenatal pcr diagnosis of trisomy of 21st chromosome of fetus in blood of pregnant woman and diagnostic kit therefor
KR101663171B1 (en) * 2014-05-27 2016-10-14 이원 다이애그노믹스 게놈센타(주) Biomarkers indicative of Down Syndrom and Their uses
WO2016003047A1 (en) * 2014-07-01 2016-01-07 바이오코아 주식회사 Method for analyzing fetus gene information from blood or blood plasma of pregnant woman by using digital pcr
EP3169813B1 (en) * 2014-07-18 2019-06-12 The Chinese University Of Hong Kong Methylation pattern analysis of tissues in dna mixture
WO2016010401A1 (en) * 2014-07-18 2016-01-21 에스케이텔레콘 주식회사 Method for expecting fetal single nucleotide polymorphisms using maternal serum dna
KR20160010277A (en) * 2014-07-18 2016-01-27 에스케이텔레콤 주식회사 Method for prediction of fetal monogenic genetic variations through next generation sequencing of maternal cell-free dna
US20160026759A1 (en) * 2014-07-22 2016-01-28 Yourgene Bioscience Detecting Chromosomal Aneuploidy
US20170211143A1 (en) 2014-07-25 2017-07-27 University Of Washington Methods of determining tissues and/or cell types giving rise to cell-free dna, and methods of identifying a disease or disorder using same
EP3175000B1 (en) 2014-07-30 2020-07-29 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
CA2970501C (en) 2014-12-12 2020-09-15 Verinata Health, Inc. Using cell-free dna fragment size to determine copy number variations
US10364467B2 (en) 2015-01-13 2019-07-30 The Chinese University Of Hong Kong Using size and number aberrations in plasma DNA for detecting cancer
US10319463B2 (en) 2015-01-23 2019-06-11 The Chinese University Of Hong Kong Combined size- and count-based analysis of maternal plasma for detection of fetal subchromosomal aberrations
CN104789466B (en) * 2015-05-06 2018-03-13 安诺优达基因科技(北京)有限公司 Detect the kit and device of chromosomal aneuploidy
CN104789686B (en) * 2015-05-06 2018-09-07 浙江安诺优达生物科技有限公司 Detect the kit and device of chromosomal aneuploidy
US10395759B2 (en) 2015-05-18 2019-08-27 Regeneron Pharmaceuticals, Inc. Methods and systems for copy number variant detection
WO2016189388A1 (en) 2015-05-22 2016-12-01 Nipd Genetics Ltd Multiplexed parallel analysis of targeted genomic regions for non-invasive prenatal testing
CN104951671B (en) * 2015-06-10 2017-09-19 东莞博奥木华基因科技有限公司 The device of fetal chromosomal aneuploidy is detected based on single sample peripheral blood
US11802305B2 (en) * 2015-06-24 2023-10-31 Oxford BioDynamics PLC Detection processes using sites of chromosome interaction
EP3118323A1 (en) 2015-07-13 2017-01-18 Cartagenia N.V. System and methodology for the analysis of genomic data obtained from a subject
WO2017009372A2 (en) 2015-07-13 2017-01-19 Cartagenia Nv System and methodology for the analysis of genomic data obtained from a subject
PT3739061T (en) 2015-07-20 2022-04-05 Univ Hong Kong Chinese Methylation pattern analysis of haplotypes in tissues in dna mixture
EP3967775B1 (en) 2015-07-23 2023-08-23 The Chinese University Of Hong Kong Analysis of fragmentation patterns of cell-free dna
TWI793586B (en) 2015-08-12 2023-02-21 香港中文大學 Single-molecule sequencing of plasma dna
AU2016321204B2 (en) 2015-09-08 2022-12-01 Cold Spring Harbor Laboratory Genetic copy number determination using high throughput multiplex sequencing of smashed nucleotides
US10774375B2 (en) 2015-09-18 2020-09-15 Agena Bioscience, Inc. Methods and compositions for the quantitation of mitochondrial nucleic acid
WO2017051996A1 (en) * 2015-09-24 2017-03-30 에스케이텔레콤 주식회사 Non-invasive type fetal chromosomal aneuploidy determination method
CN105132572B (en) * 2015-09-25 2018-03-02 邯郸市康业生物科技有限公司 A kind of patau syndrome kit of noninvasive Prenatal Screening 21
KR101848438B1 (en) * 2015-10-29 2018-04-13 바이오코아 주식회사 A method for prenatal diagnosis using digital PCR
EP3390668A4 (en) 2015-12-17 2020-04-01 Guardant Health, Inc. Methods to determine tumor gene copy number by analysis of cell-free dna
GB201522665D0 (en) * 2015-12-22 2016-02-03 Premaitha Ltd Detection of chromosome abnormalities
KR101817180B1 (en) * 2016-01-20 2018-01-10 이원다이애그노믹스(주) Method of detecting chromosomal abnormalities
US10095831B2 (en) 2016-02-03 2018-10-09 Verinata Health, Inc. Using cell-free DNA fragment size to determine copy number variations
NZ745249A (en) 2016-02-12 2021-07-30 Regeneron Pharma Methods and systems for detection of abnormal karyotypes
WO2017192589A1 (en) 2016-05-02 2017-11-09 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Neutralizing antibodies to influenza ha and their use and identification
KR101879329B1 (en) * 2016-06-13 2018-07-17 충북대학교 산학협력단 RNA-seq expression data simulation method for differential gene expression analysis, and recording medium thereof
US11200963B2 (en) 2016-07-27 2021-12-14 Sequenom, Inc. Genetic copy number alteration classifications
CA3037366A1 (en) 2016-09-29 2018-04-05 Myriad Women's Health, Inc. Noninvasive prenatal screening using dynamic iterative depth optimization
US9850523B1 (en) 2016-09-30 2017-12-26 Guardant Health, Inc. Methods for multi-resolution analysis of cell-free nucleic acids
AU2017336153B2 (en) 2016-09-30 2023-07-13 Guardant Health, Inc. Methods for multi-resolution analysis of cell-free nucleic acids
IL315032A (en) 2016-11-30 2024-10-01 The Chinese Univ Of Hong Kong Analysis of cell-free dna in urine and other samples
MX2019008320A (en) * 2017-01-11 2019-09-09 Quest Diagnostics Invest Llc Method for non-invasive prenatal screening for aneuploidy.
JP7237003B2 (en) 2017-01-24 2023-03-10 セクエノム, インコーポレイテッド Methods and processes for evaluation of gene fragments
US11773434B2 (en) 2017-06-20 2023-10-03 The Medical College Of Wisconsin, Inc. Assessing transplant complication risk with total cell-free DNA
EP3658689B1 (en) 2017-07-26 2021-03-24 Trisomytest, s.r.o. A method for non-invasive prenatal detection of fetal chromosome aneuploidy from maternal blood based on bayesian network
CN111051511A (en) 2017-08-04 2020-04-21 十亿至一公司 Target-associated molecules for characterization associated with biological targets
WO2019025004A1 (en) 2017-08-04 2019-02-07 Trisomytest, S.R.O. A method for non-invasive prenatal detection of fetal sex chromosomal abnormalities and fetal sex determination for singleton and twin pregnancies
US11519024B2 (en) 2017-08-04 2022-12-06 Billiontoone, Inc. Homologous genomic regions for characterization associated with biological targets
SK862017A3 (en) 2017-08-24 2020-05-04 Grendar Marian Doc Mgr Phd Method of using fetal fraction and chromosome representation in the determination of aneuploid state in non-invasive prenatal testing
WO2019043656A1 (en) * 2017-09-01 2019-03-07 Genus Plc Methods and systems for assessing and/or quantifying sex skewed sperm cell populations
AU2018355575A1 (en) 2017-10-27 2020-05-21 Juno Diagnostics, Inc. Devices, systems and methods for ultra-low volume liquid biopsy
CN112365927B (en) * 2017-12-28 2023-08-25 安诺优达基因科技(北京)有限公司 CNV detection device
AU2018399524B2 (en) 2018-01-05 2022-05-26 Billiontoone, Inc. Quality control templates for ensuring validity of sequencing-based assays
CN108282396B (en) * 2018-02-13 2022-02-22 湖南快乐阳光互动娱乐传媒有限公司 Multi-level message broadcasting method and system in IM (instant Messaging) cluster
KR102099151B1 (en) * 2018-03-05 2020-04-10 서강대학교산학협력단 Method and apparatus of analyzing digital polymerase chain reaction using microwell array
AU2019247652A1 (en) 2018-04-02 2020-10-15 Enumera Molecular, Inc. Methods, systems, and compositions for counting nucleic acid molecules
CN112292458A (en) * 2018-05-03 2021-01-29 香港中文大学 Analysis of preferred ends and recognition orientations of size markers for measuring properties of cell-free mixtures
TW202410055A (en) 2018-06-01 2024-03-01 美商格瑞爾有限責任公司 Convolutional neural network systems and methods for data classification
US20200075124A1 (en) * 2018-09-04 2020-03-05 Guardant Health, Inc. Methods and systems for detecting allelic imbalance in cell-free nucleic acid samples
CA3107467A1 (en) 2018-09-07 2020-03-12 Sequenom, Inc. Methods, and systems to detect transplant rejection
WO2020076474A1 (en) 2018-10-12 2020-04-16 Nantomics, Llc Prenatal purity assessments using bambam
SG11202103486YA (en) * 2018-10-31 2021-05-28 Guardant Health Inc Methods, compositions and systems for calibrating epigenetic partitioning assays
CN109545379B (en) * 2018-12-05 2021-11-09 易必祥 Treatment system based on gene big data
US11581062B2 (en) 2018-12-10 2023-02-14 Grail, Llc Systems and methods for classifying patients with respect to multiple cancer classes
JP2020108548A (en) * 2019-01-04 2020-07-16 株式会社大一商会 Game machine
JP6783437B2 (en) * 2019-01-04 2020-11-11 株式会社大一商会 Game machine
CN113661249A (en) 2019-01-31 2021-11-16 夸登特健康公司 Compositions and methods for isolating cell-free DNA
CA3128894A1 (en) 2019-02-19 2020-08-27 Sequenom, Inc. Compositions, methods, and systems to detect hematopoietic stem cell transplantation status
KR20200109544A (en) * 2019-03-13 2020-09-23 울산대학교 산학협력단 Multi-cancer classification method by common significant genes
CA3130810A1 (en) 2019-03-25 2020-10-01 The Chinese University Of Hong Kong Determining linear and circular forms of circulating nucleic acids
WO2020206170A1 (en) 2019-04-02 2020-10-08 Progenity, Inc. Methods, systems, and compositions for counting nucleic acid molecules
US11931674B2 (en) 2019-04-04 2024-03-19 Natera, Inc. Materials and methods for processing blood samples
RU2717023C1 (en) * 2019-04-24 2020-03-17 Общество с ограниченной ответственностью "ГЕНОТЕК ИТ" Method for determining foetal karyotype of pregnant woman based on sequencing hybrid readings consisting of short fragments of extracellular dna
KR102427319B1 (en) 2019-08-16 2022-08-01 더 차이니즈 유니버시티 오브 홍콩 Determination of base modifications of nucleic acids
TWI724710B (en) * 2019-08-16 2021-04-11 財團法人工業技術研究院 Method and device for constructing digital disease module
JP2022549737A (en) * 2019-09-30 2022-11-28 マイオーム,インコーポレイテッド Polygenic risk score for in vitro fertilization
WO2021074382A1 (en) * 2019-10-16 2021-04-22 Stilla Technologies Determination of nucleic acid sequence concentrations
WO2021137770A1 (en) 2019-12-30 2021-07-08 Geneton S.R.O. Method for fetal fraction estimation based on detection and interpretation of single nucleotide variants
EP4087942A4 (en) * 2020-01-08 2024-01-24 The Chinese University Of Hong Kong Biterminal dna fragment types in cell-free samples and uses thereof
US11475981B2 (en) 2020-02-18 2022-10-18 Tempus Labs, Inc. Methods and systems for dynamic variant thresholding in a liquid biopsy assay
US11211144B2 (en) 2020-02-18 2021-12-28 Tempus Labs, Inc. Methods and systems for refining copy number variation in a liquid biopsy assay
US11211147B2 (en) 2020-02-18 2021-12-28 Tempus Labs, Inc. Estimation of circulating tumor fraction using off-target reads of targeted-panel sequencing
US20230120825A1 (en) 2020-02-28 2023-04-20 Laboratory Corporation Of America Holdings Compositions, Methods, and Systems for Paternity Determination
WO2021229661A1 (en) * 2020-05-11 2021-11-18 日本電気株式会社 Determination device, determination method, and recording medium
WO2021229654A1 (en) * 2020-05-11 2021-11-18 日本電気株式会社 Determination device, determination method, and recording medium
WO2021237105A1 (en) * 2020-05-22 2021-11-25 Invitae Corporation Methods for determining a genetic variation
WO2022246291A1 (en) * 2021-05-21 2022-11-24 Invitae Corporation Methods for determining a genetic variation
CN113981062B (en) * 2021-10-14 2024-02-20 武汉蓝沙医学检验实验室有限公司 Method for evaluating fetal DNA concentration by non-maternal and maternal DNA and application
AU2023240345A1 (en) 2022-03-21 2024-10-10 Billion Toone, Inc. Molecule counting of methylated cell-free dna for treatment monitoring
WO2024058850A1 (en) * 2022-09-16 2024-03-21 Myriad Women's Health, Inc. Rna-facs for rare cell isolation and detection of genetic variants

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007092473A2 (en) * 2006-02-02 2007-08-16 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive fetal genetic screening by digital analysis

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641628A (en) * 1989-11-13 1997-06-24 Children's Medical Center Corporation Non-invasive method for isolation and detection of fetal DNA
AU2765992A (en) * 1991-10-03 1993-05-03 Indiana University Foundation Method for screening for alzheimer's disease
US6100029A (en) * 1996-08-14 2000-08-08 Exact Laboratories, Inc. Methods for the detection of chromosomal aberrations
US20010051341A1 (en) * 1997-03-04 2001-12-13 Isis Innovation Limited Non-invasive prenatal diagnosis
GB9704444D0 (en) * 1997-03-04 1997-04-23 Isis Innovation Non-invasive prenatal diagnosis
US6143496A (en) * 1997-04-17 2000-11-07 Cytonix Corporation Method of sampling, amplifying and quantifying segment of nucleic acid, polymerase chain reaction assembly having nanoliter-sized sample chambers, and method of filling assembly
US6558901B1 (en) * 1997-05-02 2003-05-06 Biomerieux Vitek Nucleic acid assays
US6566101B1 (en) * 1997-06-16 2003-05-20 Anthony P. Shuber Primer extension methods for detecting nucleic acids
US20030022207A1 (en) 1998-10-16 2003-01-30 Solexa, Ltd. Arrayed polynucleotides and their use in genome analysis
DE60044490D1 (en) * 1999-02-23 2010-07-15 Caliper Life Sciences Inc MANIPULATION OF MICROTEILS IN MICROFLUID SYSTEMS
AUPQ008799A0 (en) * 1999-04-30 1999-05-27 Tillett, Daniel Genome sequencing
US6818395B1 (en) * 1999-06-28 2004-11-16 California Institute Of Technology Methods and apparatus for analyzing polynucleotide sequences
US6440706B1 (en) 1999-08-02 2002-08-27 Johns Hopkins University Digital amplification
EP1261932B1 (en) * 1999-10-13 2009-09-30 Sequenom, Inc. Methods for identifying polymorphic genetic markers
GB0009784D0 (en) * 2000-04-20 2000-06-07 Simeg Limited Methods for clinical diagnosis
GB0016742D0 (en) * 2000-07-10 2000-08-30 Simeg Limited Diagnostic method
US6664056B2 (en) * 2000-10-17 2003-12-16 The Chinese University Of Hong Kong Non-invasive prenatal monitoring
US8898021B2 (en) * 2001-02-02 2014-11-25 Mark W. Perlin Method and system for DNA mixture analysis
US20060068433A1 (en) * 2004-09-20 2006-03-30 Godfrey Tony E Multiple mode multiplex reaction quenching method
US6960437B2 (en) * 2001-04-06 2005-11-01 California Institute Of Technology Nucleic acid amplification utilizing microfluidic devices
US20020164816A1 (en) * 2001-04-06 2002-11-07 California Institute Of Technology Microfluidic sample separation device
US7118907B2 (en) * 2001-06-06 2006-10-10 Li-Cor, Inc. Single molecule detection systems and methods
US20050037388A1 (en) * 2001-06-22 2005-02-17 University Of Geneva Method for detecting diseases caused by chromosomal imbalances
US6927028B2 (en) 2001-08-31 2005-08-09 Chinese University Of Hong Kong Non-invasive methods for detecting non-host DNA in a host using epigenetic differences between the host and non-host DNA
GT200200183A (en) * 2001-09-28 2003-05-23 PROCEDURE TO PREPARE DERIVATIVES OF HETEROCICLOALQUILSULFONIL PIRAZOL
EP1448205B1 (en) 2001-10-05 2011-03-23 Zalicus Inc. Combinations for the treatment of immunoinflammatory disorders
JP2005509871A (en) * 2001-11-20 2005-04-14 エグザクト サイエンシーズ コーポレイション Automated sample preparation method and apparatus
EP1463796B1 (en) 2001-11-30 2013-01-09 Fluidigm Corporation Microfluidic device and methods of using same
US7691333B2 (en) * 2001-11-30 2010-04-06 Fluidigm Corporation Microfluidic device and methods of using same
US20030180765A1 (en) 2002-02-01 2003-09-25 The Johns Hopkins University Digital amplification for detection of mismatch repair deficient tumor cells
WO2003074740A1 (en) 2002-03-01 2003-09-12 Ravgen, Inc. Rapid analysis of variations in a genome
US6977162B2 (en) 2002-03-01 2005-12-20 Ravgen, Inc. Rapid analysis of variations in a genome
US20070178478A1 (en) 2002-05-08 2007-08-02 Dhallan Ravinder S Methods for detection of genetic disorders
US7727720B2 (en) * 2002-05-08 2010-06-01 Ravgen, Inc. Methods for detection of genetic disorders
US7442506B2 (en) * 2002-05-08 2008-10-28 Ravgen, Inc. Methods for detection of genetic disorders
KR100500697B1 (en) 2002-10-21 2005-07-12 한국에너지기술연구원 A multi-stage heat recovery system with the water-fluidized-bed heat exchanger
US7704687B2 (en) * 2002-11-15 2010-04-27 The Johns Hopkins University Digital karyotyping
CN101245376A (en) * 2003-01-17 2008-08-20 香港中文大学 Circulating mRNA as diagnostic markers for pregnancy-related disorders
MXPA05009140A (en) 2003-02-28 2006-04-28 Ravgen Inc Methods for detection of genetic disorders.
WO2004078999A1 (en) 2003-03-05 2004-09-16 Genetic Technologies Limited Identification of fetal dna and fetal cell markers in maternal plasma or serum
US20040209299A1 (en) * 2003-03-07 2004-10-21 Rubicon Genomics, Inc. In vitro DNA immortalization and whole genome amplification using libraries generated from randomly fragmented DNA
WO2004083816A2 (en) 2003-03-14 2004-09-30 John Wayne Cancer Institute Loss of heterozygosity of the dna markers in the 12q22-23 region
US7604965B2 (en) * 2003-04-03 2009-10-20 Fluidigm Corporation Thermal reaction device and method for using the same
US7666361B2 (en) * 2003-04-03 2010-02-23 Fluidigm Corporation Microfluidic devices and methods of using same
US20040197832A1 (en) * 2003-04-03 2004-10-07 Mor Research Applications Ltd. Non-invasive prenatal genetic diagnosis using transcervical cells
US7476363B2 (en) * 2003-04-03 2009-01-13 Fluidigm Corporation Microfluidic devices and methods of using same
US20050145496A1 (en) * 2003-04-03 2005-07-07 Federico Goodsaid Thermal reaction device and method for using the same
RU2249820C1 (en) * 2003-08-18 2005-04-10 Лактионов Павел Петрович Early diagnosis method for detecting diseases related to cellular genetic apparatus disorders
WO2005023091A2 (en) 2003-09-05 2005-03-17 The Trustees Of Boston University Method for non-invasive prenatal diagnosis
US20050282213A1 (en) * 2003-09-22 2005-12-22 Trisogen Biotechnology Limited Partnership Methods and kits useful for detecting an alteration in a locus copy number
WO2005035725A2 (en) 2003-10-08 2005-04-21 The Trustees Of Boston University Methods for prenatal diagnosis of chromosomal abnormalities
EP1524321B2 (en) * 2003-10-16 2014-07-23 Sequenom, Inc. Non-invasive detection of fetal genetic traits
WO2005039389A2 (en) * 2003-10-22 2005-05-06 454 Corporation Sequence-based karyotyping
US20070212689A1 (en) * 2003-10-30 2007-09-13 Bianchi Diana W Prenatal Diagnosis Using Cell-Free Fetal DNA in Amniotic Fluid
US20100216153A1 (en) * 2004-02-27 2010-08-26 Helicos Biosciences Corporation Methods for detecting fetal nucleic acids and diagnosing fetal abnormalities
US20100216151A1 (en) * 2004-02-27 2010-08-26 Helicos Biosciences Corporation Methods for detecting fetal nucleic acids and diagnosing fetal abnormalities
US20060046258A1 (en) * 2004-02-27 2006-03-02 Lapidus Stanley N Applications of single molecule sequencing
US7709194B2 (en) 2004-06-04 2010-05-04 The Chinese University Of Hong Kong Marker for prenatal diagnosis and monitoring
DE102004036285A1 (en) * 2004-07-27 2006-02-16 Advalytix Ag Method for determining the frequency of sequences of a sample
CN1779688A (en) * 2004-11-22 2006-05-31 寰硕数码股份有限公司 Interactive medical information system and method
ES2398233T3 (en) * 2005-03-18 2013-03-14 The Chinese University Of Hong Kong A method for the detection of chromosomal aneuploidies
EP2161347B1 (en) 2005-03-18 2016-08-24 The Chinese University Of Hong Kong Markers for prenatal diagnosis and monitoring
US20070196820A1 (en) 2005-04-05 2007-08-23 Ravi Kapur Devices and methods for enrichment and alteration of cells and other particles
US20090317798A1 (en) 2005-06-02 2009-12-24 Heid Christian A Analysis using microfluidic partitioning devices
WO2007001259A1 (en) * 2005-06-16 2007-01-04 Government Of The United States Of America, Represented By The Secretary, Department Of Health And Human Services Methods and materials for identifying polymorphic variants, diagnosing susceptibilities, and treating disease
US20070059680A1 (en) * 2005-09-15 2007-03-15 Ravi Kapur System for cell enrichment
US20070122823A1 (en) 2005-09-01 2007-05-31 Bianchi Diana W Amniotic fluid cell-free fetal DNA fragment size pattern for prenatal diagnosis
US20070184511A1 (en) * 2005-11-18 2007-08-09 Large Scale Biology Corporation Method for Diagnosing a Person Having Sjogren's Syndrome
EP3012760A1 (en) * 2005-11-26 2016-04-27 Natera, Inc. System and method for cleaning noisy genetic data and using data to make predictions
DK1996728T3 (en) 2006-02-28 2011-08-15 Univ Louisville Res Found Detection of fetal chromosomal abnormalities using tandem single nucleotide polymorphisms
US20080038733A1 (en) * 2006-03-28 2008-02-14 Baylor College Of Medicine Screening for down syndrome
US8058055B2 (en) * 2006-04-07 2011-11-15 Agilent Technologies, Inc. High resolution chromosomal mapping
US7901884B2 (en) * 2006-05-03 2011-03-08 The Chinese University Of Hong Kong Markers for prenatal diagnosis and monitoring
US7754428B2 (en) 2006-05-03 2010-07-13 The Chinese University Of Hong Kong Fetal methylation markers
EP2061801A4 (en) * 2006-06-14 2009-11-11 Living Microsystems Inc Diagnosis of fetal abnormalities by comparative genomic hybridization analysis
WO2007147018A1 (en) * 2006-06-14 2007-12-21 Cellpoint Diagnostics, Inc. Analysis of rare cell-enriched samples
WO2007147074A2 (en) * 2006-06-14 2007-12-21 Living Microsystems, Inc. Use of highly parallel snp genotyping for fetal diagnosis
US8372584B2 (en) * 2006-06-14 2013-02-12 The General Hospital Corporation Rare cell analysis using sample splitting and DNA tags
DK2029778T3 (en) 2006-06-14 2018-08-20 Verinata Health Inc DIAGNOSIS OF Fetal ABNORMITIES
EP2024512A4 (en) 2006-06-14 2009-12-09 Artemis Health Inc Methods for the diagnosis of fetal abnormalities
US8137912B2 (en) * 2006-06-14 2012-03-20 The General Hospital Corporation Methods for the diagnosis of fetal abnormalities
US20080050739A1 (en) * 2006-06-14 2008-02-28 Roland Stoughton Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats
AU2007260750A1 (en) * 2006-06-16 2007-12-21 Sequenom, Inc. Methods and compositions for the amplification, detection and quantification of nucleic acid from a sample
WO2008014516A2 (en) * 2006-07-28 2008-01-31 Living Microsystems, Inc. Selection of cells using biomarkers
JP4379742B2 (en) 2006-10-23 2009-12-09 ソニー株式会社 REPRODUCTION DEVICE, REPRODUCTION METHOD, AND PROGRAM
MY151801A (en) * 2007-01-30 2014-07-14 Interdigital Tech Corp Implicit drx cycle length adjustment control in lte_active mode
WO2008098142A2 (en) * 2007-02-08 2008-08-14 Sequenom, Inc. Nucleic acid-based tests for rhd typing, gender determination and nucleic acid quantification
US20100094562A1 (en) * 2007-05-04 2010-04-15 Mordechai Shohat System, Method and Device for Comprehensive Individualized Genetic Information or Genetic Counseling
EP2851422A3 (en) 2007-05-24 2015-06-24 Apceth GmbH & Co. KG CD34neg stem cells for the treatment of gastrointestinal disorders
EP3770275A1 (en) 2007-07-23 2021-01-27 The Chinese University of Hong Kong Determining a fetal aneuploidy
US20090053719A1 (en) 2007-08-03 2009-02-26 The Chinese University Of Hong Kong Analysis of nucleic acids by digital pcr
BRPI0815946B8 (en) 2007-09-19 2021-05-25 Pluristem Ltd article of manufacture
LT2562268T (en) * 2008-09-20 2017-04-25 The Board Of Trustees Of The Leland Stanford Junior University Noninvasive diagnosis of fetal aneuploidy by sequencing
US8620593B2 (en) * 2009-11-06 2013-12-31 The Chinese University Of Hong Kong Size-based genomic analysis

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007092473A2 (en) * 2006-02-02 2007-08-16 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive fetal genetic screening by digital analysis

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
BISCHOFF F Z ET AL: "CELL-FREE FETAL DNA AND INTACT FETAL CELLS IN MATERNAL BLOOD CIRCULATION: IMPLICATIONS FOR FIRST AND SECOND TRIMESTER NON-INVASIVE PRENATAL DIAGNOSIS", HUMAN REPRODUCTION UPDATE, OXFORD UNIVERSITY PRESS, OXFORD, GB, vol. 8, no. 6, 1 November 2002 (2002-11-01), pages 493 - 500, XP009024999, ISSN: 1355-4786 *
CHRISTINA FAN AND STEPHEN R QUAKE H: "Detection of Aneuploidy with Digital Polymerase Chain Reaction", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. COLUMBUS, US, vol. 79, no. 19, 1 October 2007 (2007-10-01), pages 7576 - 7579, XP007905914, ISSN: 0003-2700, [retrieved on 20070824] *
DENNIS LO AND ROSSA W K CHIU Y M: "Prenatal diagnosis: progress through plasma nucleic acids", NATURE REVIEWS GENETICS, MACMILLAN MAGAZINES, GB, vol. 8, 1 January 2007 (2007-01-01), pages 71 - 77, XP007905874 *
LO Y M DENNIS ET AL: "Noninvasive prenatal diagnosis of fetal chromosomal aneuploidies by maternal plasma nucleic acid analysis", CLINICAL CHEMISTRY, AMERICAN ASSOCIATION FOR CLINICAL CHEMISTRY, WASHINGTON, DC, vol. 54, no. 3, 17 January 2008 (2008-01-17), pages 461 - 466, XP001536860, ISSN: 0009-9147 *
LO YMD ET AL: "Digital PCR for the molecular detection of fetal chromosomal aneuploidy.", PNAS, vol. 104, no. 32, 7 August 2007 (2007-08-07), pages 13116 - 13121, XP007905909 *
LO YMD ET AL: "Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection", NATURE MEDICINE, vol. 13, no. 2, February 2007 (2007-02-01), pages 218 - 223, XP007905910 *
LUN FIONA M F ET AL: "Microfluidics digital PCR reveals a higher than expected fraction of fetal DNA in maternal plasma", CLINICAL CHEMISTRY, AMERICAN ASSOCIATION FOR CLINICAL CHEMISTRY, WASHINGTON, DC, vol. 54, no. 10, 1 October 2008 (2008-10-01), pages 1664 - 1672, XP009108983, ISSN: 0009-9147 *
POHL GUDRUN ET AL: "Principle and applications of digital PCR.", EXPERT REVIEW OF MOLECULAR DIAGNOSTICS JAN 2004, vol. 4, no. 1, January 2004 (2004-01-01), pages 41 - 47, XP009109051, ISSN: 1473-7159 *
SHIH I-M ET AL: "Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis", CANCER RESEARCH, vol. 61, February 2002 (2002-02-01), pages 818 - 822, XP007905911 *
TONG YU K ET AL: "Noninvasive prenatal detection of fetal trisomy 18 by epigenetic allelic ratio analysis in maternal plasma: Theoretical and empirical considerations", CLINICAL CHEMISTRY, AMERICAN ASSOCIATION FOR CLINICAL CHEMISTRY, WASHINGTON, DC, vol. 52, no. 12, 13 October 2006 (2006-10-13), pages 2194 - 2202, XP002470084, ISSN: 0009-9147 *
XIAO YAN ZHONG ET AL: "FETAL DNA IN MATERNAL PLASMA IS ELEVATED IN PREGNANCIES WITH ANEUPLOID FETUSES", PRENATAL DIAGNOSIS, CHICHESTER, SUSSEX, GB, vol. 20, no. 10, 1 October 2000 (2000-10-01), pages 795 - 798, XP008007704, ISSN: 0197-3851 *
ZHOU W ET AL: "Counting alleles to predict recurrence of early-stage colorectal cancers", LANCET THE, LANCET LIMITED. LONDON, GB, vol. 359, no. 9302, 19 January 2002 (2002-01-19), pages 219 - 225, XP004791874, ISSN: 0140-6736 *

Cited By (209)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8024128B2 (en) 2004-09-07 2011-09-20 Gene Security Network, Inc. System and method for improving clinical decisions by aggregating, validating and analysing genetic and phenotypic data
US9364829B2 (en) 2005-06-02 2016-06-14 Fluidigm Corporation Analysis using microfluidic partitioning devices
US10392664B2 (en) 2005-07-29 2019-08-27 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US11111544B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10083273B2 (en) 2005-07-29 2018-09-25 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10260096B2 (en) 2005-07-29 2019-04-16 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US11111543B2 (en) 2005-07-29 2021-09-07 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US12065703B2 (en) 2005-07-29 2024-08-20 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10081839B2 (en) 2005-07-29 2018-09-25 Natera, Inc System and method for cleaning noisy genetic data and determining chromosome copy number
US10266893B2 (en) 2005-07-29 2019-04-23 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US10227652B2 (en) 2005-07-29 2019-03-12 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US10597724B2 (en) 2005-11-26 2020-03-24 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US9430611B2 (en) 2005-11-26 2016-08-30 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US9695477B2 (en) 2005-11-26 2017-07-04 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US9424392B2 (en) 2005-11-26 2016-08-23 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US10711309B2 (en) 2005-11-26 2020-07-14 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US10240202B2 (en) 2005-11-26 2019-03-26 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US11306359B2 (en) 2005-11-26 2022-04-19 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
US8532930B2 (en) 2005-11-26 2013-09-10 Natera, Inc. Method for determining the number of copies of a chromosome in the genome of a target individual using genetic data from genetically related individuals
US8515679B2 (en) 2005-12-06 2013-08-20 Natera, Inc. System and method for cleaning noisy genetic data and determining chromosome copy number
US9777328B2 (en) 2006-02-02 2017-10-03 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive fetal genetic screening by digital analysis
US11692225B2 (en) 2006-02-02 2023-07-04 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive fetal genetic screening by digital analysis
US10072295B2 (en) 2006-02-02 2018-09-11 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive fetal genetic screening by digtal analysis
US8008018B2 (en) 2006-02-02 2011-08-30 The Board Of Trustees Of The Leland Stanford Junior University Determination of fetal aneuploidies by massively parallel DNA sequencing
US9441273B2 (en) 2006-02-02 2016-09-13 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive fetal genetic screening by digital analysis
US8293470B2 (en) 2006-02-02 2012-10-23 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive fetal genetic screening by digital analysis
US9777329B2 (en) 2006-02-02 2017-10-03 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive fetal genetic screening by digital analysis
US7888017B2 (en) 2006-02-02 2011-02-15 The Board Of Trustees Of The Leland Stanford Junior University Non-invasive fetal genetic screening by digital analysis
US10155984B2 (en) 2006-06-14 2018-12-18 The General Hospital Corporation Rare cell analysis using sample splitting and DNA tags
US8168389B2 (en) 2006-06-14 2012-05-01 The General Hospital Corporation Fetal cell analysis using sample splitting
US9017942B2 (en) 2006-06-14 2015-04-28 The General Hospital Corporation Rare cell analysis using sample splitting and DNA tags
US10704090B2 (en) 2006-06-14 2020-07-07 Verinata Health, Inc. Fetal aneuploidy detection by sequencing
US11674176B2 (en) 2006-06-14 2023-06-13 Verinata Health, Inc Fetal aneuploidy detection by sequencing
US9347100B2 (en) 2006-06-14 2016-05-24 Gpb Scientific, Llc Rare cell analysis using sample splitting and DNA tags
US8137912B2 (en) 2006-06-14 2012-03-20 The General Hospital Corporation Methods for the diagnosis of fetal abnormalities
US10591391B2 (en) 2006-06-14 2020-03-17 Verinata Health, Inc. Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats
US11781187B2 (en) 2006-06-14 2023-10-10 The General Hospital Corporation Rare cell analysis using sample splitting and DNA tags
US9273355B2 (en) 2006-06-14 2016-03-01 The General Hospital Corporation Rare cell analysis using sample splitting and DNA tags
US8372584B2 (en) 2006-06-14 2013-02-12 The General Hospital Corporation Rare cell analysis using sample splitting and DNA tags
US9121069B2 (en) 2007-07-23 2015-09-01 The Chinese University Of Hong Kong Diagnosing cancer using genomic sequencing
US12065704B2 (en) 2007-07-23 2024-08-20 The Chinese University Of Hong Kong Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing
US8972202B2 (en) 2007-07-23 2015-03-03 The Chinese University Of Hong Kong Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing
US11142799B2 (en) 2007-07-23 2021-10-12 The Chinese University Of Hong Kong Detecting chromosomal aberrations associated with cancer using genomic sequencing
US12018329B2 (en) 2007-07-23 2024-06-25 The Chinese University Of Hong Kong Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing
US12054776B2 (en) 2007-07-23 2024-08-06 The Chinese University Of Hong Kong Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing
US12060614B2 (en) 2007-07-23 2024-08-13 The Chinese University Of Hong Kong Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing
US12054780B2 (en) 2007-07-23 2024-08-06 The Chinese University Of Hong Kong Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing
US8442774B2 (en) 2007-07-23 2013-05-14 The Chinese University Of Hong Kong Diagnosing fetal chromosomal aneuploidy using paired end
US10619214B2 (en) 2007-07-23 2020-04-14 The Chinese University Of Hong Kong Detecting genetic aberrations associated with cancer using genomic sequencing
US9051616B2 (en) 2007-07-23 2015-06-09 The Chinese University Of Hong Kong Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing
US9639657B2 (en) 2008-08-04 2017-05-02 Natera, Inc. Methods for allele calling and ploidy calling
EP2334812A2 (en) 2008-09-20 2011-06-22 The Board Of Trustees Of The University Of the Leland Stanford Junior University Noninvasive diagnosis of fetal aneuploidy by sequencing
EP2562268B1 (en) * 2008-09-20 2016-12-21 The Board of Trustees of The Leland Stanford Junior University Noninvasive diagnosis of fetal aneuploidy by sequencing
US9353414B2 (en) 2008-09-20 2016-05-31 The Board Of Trustees Of The Leland Stanford Junior University Noninvasive diagnosis of fetal aneuploidy by sequencing
US8296076B2 (en) 2008-09-20 2012-10-23 The Board Of Trustees Of The Leland Stanford Junior University Noninvasive diagnosis of fetal aneuoploidy by sequencing
US8682594B2 (en) 2008-09-20 2014-03-25 The Board Of Trustees Of The Leland Stanford Junior University Noninvasive diagnosis of fetal aneuploidy by sequencing
EP3378951A1 (en) * 2008-09-20 2018-09-26 The Board of Trustees of the Leland Stanford Junior University Noninvasive diagnosis of fetal aneuploidy by sequencing
US8195415B2 (en) 2008-09-20 2012-06-05 The Board Of Trustees Of The Leland Stanford Junior University Noninvasive diagnosis of fetal aneuploidy by sequencing
US12054777B2 (en) 2008-09-20 2024-08-06 The Board Of Trustees Of The Leland Standford Junior University Noninvasive diagnosis of fetal aneuploidy by sequencing
US10669585B2 (en) 2008-09-20 2020-06-02 The Board Of Trustees Of The Leland Stanford Junior University Noninvasive diagnosis of fetal aneuploidy by sequencing
US9404157B2 (en) 2008-09-20 2016-08-02 The Board Of Trustees Of The Leland Stanford Junior University Noninvasive diagnosis of fetal aneuploidy by sequencing
AU2015202167B2 (en) * 2008-09-20 2017-12-21 The Board Of Trustees Of The Leland Stanford Junior University Noninvasive diagnosis of fetal aneuploidy by sequencing
JP2013501514A (en) * 2009-08-11 2013-01-17 ザ チャイニーズ ユニバーシティ オブ ホンコン Chromosome aneuploidy detection method
US10216896B2 (en) 2009-09-30 2019-02-26 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10522242B2 (en) 2009-09-30 2019-12-31 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US9228234B2 (en) 2009-09-30 2016-01-05 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10061890B2 (en) 2009-09-30 2018-08-28 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10061889B2 (en) 2009-09-30 2018-08-28 Natera, Inc. Methods for non-invasive prenatal ploidy calling
WO2011051283A1 (en) 2009-10-26 2011-05-05 Lifecodexx Ag Means and methods for non-invasive diagnosis of chromosomal aneuploidy
AU2010311535B2 (en) * 2009-10-26 2015-05-21 Lifecodexx Ag Means and methods for non-invasive diagnosis of chromosomal aneuploidy
EP2824191A3 (en) * 2009-10-26 2015-02-18 Lifecodexx AG Means and methods for non-invasive diagnosis of chromosomal aneuploidy
EP2824191A2 (en) 2009-10-26 2015-01-14 Lifecodexx AG Means and methods for non-invasive diagnosis of chromosomal aneuploidy
US9784742B2 (en) 2009-10-26 2017-10-10 Lifecodexx Means and methods for non-invasive diagnosis of chromosomal aneuploidy
US11401551B2 (en) 2009-11-05 2022-08-02 The Chinese University Of Hong Kong Identifying a de novo fetal mutation from a maternal biological sample
US9982300B2 (en) 2009-11-06 2018-05-29 The Chinese University Of Hong Kong Size-based genomic analysis
CN102791881A (en) * 2009-11-06 2012-11-21 香港中文大学 Size-based genomic analysis
US11365448B2 (en) 2009-11-06 2022-06-21 The Chinese University Of Hong Kong Size-based genomic analysis
US9493828B2 (en) 2010-01-19 2016-11-15 Verinata Health, Inc. Methods for determining fraction of fetal nucleic acids in maternal samples
US11697846B2 (en) 2010-01-19 2023-07-11 Verinata Health, Inc. Detecting and classifying copy number variation
US10941442B2 (en) 2010-01-19 2021-03-09 Verinata Health, Inc. Sequencing methods and compositions for prenatal diagnoses
US11130995B2 (en) 2010-01-19 2021-09-28 Verinata Health, Inc. Simultaneous determination of aneuploidy and fetal fraction
US11286520B2 (en) 2010-01-19 2022-03-29 Verinata Health, Inc. Method for determining copy number variations
EP3006573B1 (en) 2010-01-19 2018-03-07 Verinata Health, Inc Methods for determining fraction of fetal nucleic acids in maternal samples
US10662474B2 (en) 2010-01-19 2020-05-26 Verinata Health, Inc. Identification of polymorphic sequences in mixtures of genomic DNA by whole genome sequencing
US9657342B2 (en) 2010-01-19 2017-05-23 Verinata Health, Inc. Sequencing methods for prenatal diagnoses
US10415089B2 (en) 2010-01-19 2019-09-17 Verinata Health, Inc. Detecting and classifying copy number variation
US10388403B2 (en) 2010-01-19 2019-08-20 Verinata Health, Inc. Analyzing copy number variation in the detection of cancer
US10612096B2 (en) 2010-01-19 2020-04-07 Verinata Health, Inc. Methods for determining fraction of fetal nucleic acids in maternal samples
US10482993B2 (en) 2010-01-19 2019-11-19 Verinata Health, Inc. Analyzing copy number variation in the detection of cancer
US11875899B2 (en) 2010-01-19 2024-01-16 Verinata Health, Inc. Analyzing copy number variation in the detection of cancer
US11884975B2 (en) 2010-01-19 2024-01-30 Verinata Health, Inc. Sequencing methods and compositions for prenatal diagnoses
US11952623B2 (en) 2010-01-19 2024-04-09 Verinata Health, Inc. Simultaneous determination of aneuploidy and fetal fraction
US10586610B2 (en) 2010-01-19 2020-03-10 Verinata Health, Inc. Detecting and classifying copy number variation
US8318430B2 (en) 2010-01-23 2012-11-27 Verinata Health, Inc. Methods of fetal abnormality detection
US10718020B2 (en) 2010-01-23 2020-07-21 Verinata Health, Inc. Methods of fetal abnormality detection
US9493831B2 (en) 2010-01-23 2016-11-15 Verinata Health, Inc. Methods of fetal abnormality detection
CN102753703A (en) * 2010-04-23 2012-10-24 深圳华大基因科技有限公司 Detection method of fetal chromosomal aneuploidy
WO2011130880A1 (en) * 2010-04-23 2011-10-27 深圳华大基因科技有限公司 Detection method of fetal chromosomal aneuploidy
US11322224B2 (en) 2010-05-18 2022-05-03 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10655180B2 (en) 2010-05-18 2020-05-19 Natera, Inc. Methods for simultaneous amplification of target loci
US11286530B2 (en) 2010-05-18 2022-03-29 Natera, Inc. Methods for simultaneous amplification of target loci
US12110552B2 (en) 2010-05-18 2024-10-08 Natera, Inc. Methods for simultaneous amplification of target loci
US11306357B2 (en) 2010-05-18 2022-04-19 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11312996B2 (en) 2010-05-18 2022-04-26 Natera, Inc. Methods for simultaneous amplification of target loci
US11326208B2 (en) 2010-05-18 2022-05-10 Natera, Inc. Methods for nested PCR amplification of cell-free DNA
US10316362B2 (en) 2010-05-18 2019-06-11 Natera, Inc. Methods for simultaneous amplification of target loci
US10526658B2 (en) 2010-05-18 2020-01-07 Natera, Inc. Methods for simultaneous amplification of target loci
US11332785B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10538814B2 (en) 2010-05-18 2020-01-21 Natera, Inc. Methods for simultaneous amplification of target loci
US10557172B2 (en) 2010-05-18 2020-02-11 Natera, Inc. Methods for simultaneous amplification of target loci
US8825412B2 (en) 2010-05-18 2014-09-02 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US8949036B2 (en) 2010-05-18 2015-02-03 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US12020778B2 (en) 2010-05-18 2024-06-25 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10590482B2 (en) 2010-05-18 2020-03-17 Natera, Inc. Amplification of cell-free DNA using nested PCR
US11111545B2 (en) 2010-05-18 2021-09-07 Natera, Inc. Methods for simultaneous amplification of target loci
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci
US9163282B2 (en) 2010-05-18 2015-10-20 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10597723B2 (en) 2010-05-18 2020-03-24 Natera, Inc. Methods for simultaneous amplification of target loci
US9334541B2 (en) 2010-05-18 2016-05-10 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11332793B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for simultaneous amplification of target loci
US11746376B2 (en) 2010-05-18 2023-09-05 Natera, Inc. Methods for amplification of cell-free DNA using ligated adaptors and universal and inner target-specific primers for multiplexed nested PCR
US10017812B2 (en) 2010-05-18 2018-07-10 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11525162B2 (en) 2010-05-18 2022-12-13 Natera, Inc. Methods for simultaneous amplification of target loci
US11339429B2 (en) 2010-05-18 2022-05-24 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US10793912B2 (en) 2010-05-18 2020-10-06 Natera, Inc. Methods for simultaneous amplification of target loci
US10174369B2 (en) 2010-05-18 2019-01-08 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11519035B2 (en) 2010-05-18 2022-12-06 Natera, Inc. Methods for simultaneous amplification of target loci
US10113196B2 (en) 2010-05-18 2018-10-30 Natera, Inc. Prenatal paternity testing using maternal blood, free floating fetal DNA and SNP genotyping
US11482300B2 (en) 2010-05-18 2022-10-25 Natera, Inc. Methods for preparing a DNA fraction from a biological sample for analyzing genotypes of cell-free DNA
US10774380B2 (en) 2010-05-18 2020-09-15 Natera, Inc. Methods for multiplex PCR amplification of target loci in a nucleic acid sample
US10731220B2 (en) 2010-05-18 2020-08-04 Natera, Inc. Methods for simultaneous amplification of target loci
US11408031B2 (en) 2010-05-18 2022-08-09 Natera, Inc. Methods for non-invasive prenatal paternity testing
US11332774B2 (en) 2010-10-26 2022-05-17 Verinata Health, Inc. Method for determining copy number variations
US12002544B2 (en) 2010-11-30 2024-06-04 The Chinese University Of Hong Kong Determining progress of chromosomal aberrations over time
US9965585B2 (en) 2010-11-30 2018-05-08 The Chinese University Of Hong Kong Detection of genetic or molecular aberrations associated with cancer
US10658070B2 (en) 2011-04-12 2020-05-19 Verinata Health, Inc. Resolving genome fractions using polymorphism counts
US9447453B2 (en) 2011-04-12 2016-09-20 Verinata Health, Inc. Resolving genome fractions using polymorphism counts
US9411937B2 (en) 2011-04-15 2016-08-09 Verinata Health, Inc. Detecting and classifying copy number variation
WO2013040773A1 (en) * 2011-09-21 2013-03-28 深圳华大基因科技有限公司 Method and system for determining chromosome aneuploidy of single cell
EP3301190A1 (en) 2011-10-18 2018-04-04 Multiplicom NV Fetal chromosomal aneuploidy diagnosis
WO2013057568A1 (en) 2011-10-18 2013-04-25 Multiplicom Nv Fetal chromosomal aneuploidy diagnosis
US12116628B2 (en) 2012-03-26 2024-10-15 The Johns Hopkins University Rapid aneuploidy detection
US10053729B2 (en) 2012-03-26 2018-08-21 The Johns Hopkins University Rapid aneuploidy detection
CN107841543A (en) * 2012-04-06 2018-03-27 香港中文大学 The non-invasive prenatal diagnosis of the fetal trisomic carried out by using the allele ratio analysis of targeting large-scale parallel sequencing
AU2013245272B2 (en) * 2012-04-06 2018-04-05 The Chinese University Of Hong Kong Noninvasive prenatal diagnosis of fetal trisomy by allelic ratio analysis using targeted massively parallel sequencing
WO2013150503A1 (en) * 2012-04-06 2013-10-10 The Chinese University Of Hong Kong Noninvasive prenatal diagnosis of fetal trisomy by allelic ratio analysis using targeted massively parallel sequencing
US10501797B2 (en) 2012-04-06 2019-12-10 The Chinese University Of Hong Kong Noninvasive prenatal diagnosis of fetal trisomy by allelic ratio analysis using targeted massively parallel sequencing
CN107841543B (en) * 2012-04-06 2021-12-31 香港中文大学 Non-invasive prenatal diagnosis of fetal trisomy by allele ratio analysis using targeted massively parallel sequencing
EP3178945A1 (en) * 2012-04-06 2017-06-14 The Chinese University Of Hong Kong Method of analyzing a biological sample from a female subject pregnant with a fetus
AU2018204344B2 (en) * 2012-04-06 2018-09-27 The Chinese University Of Hong Kong Noninvasive Prenatal Diagnosis of Fetal Trisomy by Allelic Ratio Analysis Using Targeted Massively Parallel Sequencing
US9920361B2 (en) 2012-05-21 2018-03-20 Sequenom, Inc. Methods and compositions for analyzing nucleic acid
US9840732B2 (en) 2012-05-21 2017-12-12 Fluidigm Corporation Single-particle analysis of particle populations
US11306354B2 (en) 2012-05-21 2022-04-19 Sequenom, Inc. Methods and compositions for analyzing nucleic acid
US11261494B2 (en) 2012-06-21 2022-03-01 The Chinese University Of Hong Kong Method of measuring a fractional concentration of tumor DNA
KR101884909B1 (en) 2012-06-21 2018-08-02 더 차이니즈 유니버시티 오브 홍콩 Mutational analysis of plasma dna for cancer detection
EP3919627A1 (en) * 2012-06-21 2021-12-08 The Chinese University Of Hong Kong Mutational analysis of plasma dna for cancer detection
EP3456843A1 (en) * 2012-06-21 2019-03-20 The Chinese University Of Hong Kong Mutational analysis of plasma dna for cancer detection
CN104662168B (en) * 2012-06-21 2017-12-05 香港中文大学 Plasma dna mutation analysis for cancer detection
CN104662168A (en) * 2012-06-21 2015-05-27 香港中文大学 Mutational analysis of plasma dna for cancer detection
AU2013278994C1 (en) * 2012-06-21 2019-12-12 The Chinese University Of Hong Kong Mutational analysis of plasma DNA for cancer detection
WO2013190441A3 (en) * 2012-06-21 2014-02-27 The Chinese University Of Hong Kong Mutational analysis of plasma dna for cancer detection
KR20150032708A (en) * 2012-06-21 2015-03-27 더 차이니즈 유니버시티 오브 홍콩 Mutational analysis of plasma dna for cancer detection
CN113151474A (en) * 2012-06-21 2021-07-23 香港中文大学 Plasma DNA mutation analysis for cancer detection
EA037292B1 (en) * 2012-06-21 2021-03-05 Те Чайниз Юниверсити Ов Гонконг Method for detecting cancer or premalignant change by mutational analysis of plasma dna
US12100478B2 (en) 2012-08-17 2024-09-24 Natera, Inc. Method for non-invasive prenatal testing using parental mosaicism data
US11274347B2 (en) 2012-09-20 2022-03-15 The Chinese University Of Hong Kong Non-invasive determination of type of cancer
US10706957B2 (en) 2012-09-20 2020-07-07 The Chinese University Of Hong Kong Non-invasive determination of methylome of tumor from plasma
US10392666B2 (en) 2012-09-20 2019-08-27 The Chinese University Of Hong Kong Non-invasive determination of methylome of tumor from plasma
US10504613B2 (en) 2012-12-20 2019-12-10 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US20200168296A1 (en) * 2013-01-25 2020-05-28 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10622094B2 (en) 2013-06-21 2020-04-14 Sequenom, Inc. Methods and processes for non-invasive assessment of genetic variations
US10577655B2 (en) 2013-09-27 2020-03-03 Natera, Inc. Cell free DNA diagnostic testing standards
US9499870B2 (en) 2013-09-27 2016-11-22 Natera, Inc. Cell free DNA diagnostic testing standards
US10597709B2 (en) 2014-04-21 2020-03-24 Natera, Inc. Methods for simultaneous amplification of target loci
US11319596B2 (en) 2014-04-21 2022-05-03 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US10351906B2 (en) 2014-04-21 2019-07-16 Natera, Inc. Methods for simultaneous amplification of target loci
US11486008B2 (en) 2014-04-21 2022-11-01 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11390916B2 (en) 2014-04-21 2022-07-19 Natera, Inc. Methods for simultaneous amplification of target loci
US10597708B2 (en) 2014-04-21 2020-03-24 Natera, Inc. Methods for simultaneous amplifications of target loci
US11319595B2 (en) 2014-04-21 2022-05-03 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US10262755B2 (en) 2014-04-21 2019-04-16 Natera, Inc. Detecting cancer mutations and aneuploidy in chromosomal segments
US11371100B2 (en) 2014-04-21 2022-06-28 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US10179937B2 (en) 2014-04-21 2019-01-15 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11530454B2 (en) 2014-04-21 2022-12-20 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US9677118B2 (en) 2014-04-21 2017-06-13 Natera, Inc. Methods for simultaneous amplification of target loci
US11414709B2 (en) 2014-04-21 2022-08-16 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US11408037B2 (en) 2014-04-21 2022-08-09 Natera, Inc. Detecting mutations and ploidy in chromosomal segments
US10240209B2 (en) 2015-02-10 2019-03-26 The Chinese University Of Hong Kong Detecting mutations for cancer screening
US11168370B2 (en) 2015-02-10 2021-11-09 The Chinese University Of Hong Kong Detecting mutations for cancer screening
US11479812B2 (en) 2015-05-11 2022-10-25 Natera, Inc. Methods and compositions for determining ploidy
US11946101B2 (en) 2015-05-11 2024-04-02 Natera, Inc. Methods and compositions for determining ploidy
US11485996B2 (en) 2016-10-04 2022-11-01 Natera, Inc. Methods for characterizing copy number variation using proximity-litigation sequencing
US11459616B2 (en) 2016-10-24 2022-10-04 The Chinese University Of Hong Kong Methods and systems for tumor detection
US11530442B2 (en) 2016-12-07 2022-12-20 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US10533219B2 (en) 2016-12-07 2020-01-14 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US11519028B2 (en) 2016-12-07 2022-12-06 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US10011870B2 (en) 2016-12-07 2018-07-03 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US10577650B2 (en) 2016-12-07 2020-03-03 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
US11479825B2 (en) 2017-01-25 2022-10-25 The Chinese University Of Hong Kong Diagnostic applications using nucleic acid fragments
US10633713B2 (en) 2017-01-25 2020-04-28 The Chinese University Of Hong Kong Diagnostic applications using nucleic acid fragments
US10894976B2 (en) 2017-02-21 2021-01-19 Natera, Inc. Compositions, methods, and kits for isolating nucleic acids
WO2019085988A1 (en) 2017-11-02 2019-05-09 The Chinese University Of Hong Kong Using nucleic acid size range for noninvasive prenatal testing and cancer detection
US11168356B2 (en) 2017-11-02 2021-11-09 The Chinese University Of Hong Kong Using nucleic acid size range for noninvasive cancer detection
EP4254417A2 (en) 2017-11-02 2023-10-04 The Chinese University of Hong Kong Using nucleic acid size range for noninvasive prenatal testing and cancer detection
US12084720B2 (en) 2017-12-14 2024-09-10 Natera, Inc. Assessing graft suitability for transplantation
WO2019195225A1 (en) 2018-04-02 2019-10-10 Illumina, Inc. Compositions and methods for making controls for sequence-based genetic testing
US12024738B2 (en) 2018-04-14 2024-07-02 Natera, Inc. Methods for cancer detection and monitoring
US11525159B2 (en) 2018-07-03 2022-12-13 Natera, Inc. Methods for detection of donor-derived cell-free DNA
WO2022134807A1 (en) * 2020-12-21 2022-06-30 高嵩 Method for detecting fetal genetic variations by sequencing polymorphic sites and target sites

Also Published As

Publication number Publication date
CN106886688B (en) 2020-07-10
KR102076438B1 (en) 2020-02-11
US9051616B2 (en) 2015-06-09
EA035451B9 (en) 2020-09-09
CN103853916A (en) 2014-06-11
DK2183693T5 (en) 2019-02-18
US20140329695A1 (en) 2014-11-06
CN106886688A (en) 2017-06-23
KR20190143494A (en) 2019-12-30
EP2557518A3 (en) 2014-10-08
JP2014073134A (en) 2014-04-24
KR20230047215A (en) 2023-04-06
EP2514842A3 (en) 2012-12-26
BRPI0814670B1 (en) 2019-10-01
EA039167B1 (en) 2021-12-13
US10208348B2 (en) 2019-02-19
CA3009992C (en) 2021-10-19
KR20160113147A (en) 2016-09-28
CN101849236A (en) 2010-09-29
EP3540739A1 (en) 2019-09-18
CY1114773T1 (en) 2016-12-14
EP2183692A1 (en) 2010-05-12
JP2016185162A (en) 2016-10-27
PL2557520T3 (en) 2021-10-11
EA028642B1 (en) 2017-12-29
JP2020115887A (en) 2020-08-06
EA201300072A1 (en) 2014-11-28
CN101971178B (en) 2014-03-26
NZ600407A (en) 2013-12-20
JP2022103371A (en) 2022-07-07
CN106676188A (en) 2017-05-17
KR102516709B1 (en) 2023-04-03
CA3176319A1 (en) 2009-01-29
EP2514842A2 (en) 2012-10-24
KR101646978B1 (en) 2016-08-09
EA035451B1 (en) 2020-06-18
EP2527471A3 (en) 2012-12-26
EP4134960A1 (en) 2023-02-15
EP2183693A1 (en) 2010-05-12
EP2557519A2 (en) 2013-02-13
IL203311A (en) 2014-07-31
CA3076159A1 (en) 2009-01-29
KR20180121695A (en) 2018-11-07
JP2020031663A (en) 2020-03-05
KR20200055151A (en) 2020-05-20
KR102339760B1 (en) 2021-12-14
JP6629940B2 (en) 2020-01-15
PT2557517T (en) 2023-01-04
JP5519500B2 (en) 2014-06-11
JP2022173465A (en) 2022-11-18
PT2557520T (en) 2021-05-06
EA201600280A1 (en) 2016-07-29
KR20160113148A (en) 2016-09-28
HUE061020T2 (en) 2023-05-28
KR20190114041A (en) 2019-10-08
KR20210130269A (en) 2021-10-29
US20140045181A1 (en) 2014-02-13
US20230323462A1 (en) 2023-10-12
US20090087847A1 (en) 2009-04-02
KR20210006468A (en) 2021-01-18
KR20160113146A (en) 2016-09-28
CN103853916B (en) 2018-07-27
DK2183693T3 (en) 2014-01-20
EP2527471B1 (en) 2020-03-04
JP2020031664A (en) 2020-03-05
KR102443163B1 (en) 2022-09-14
EP3656870A1 (en) 2020-05-27
US20140256560A1 (en) 2014-09-11
ES2933486T3 (en) 2023-02-09
CN107083424A (en) 2017-08-22
DK2183693T4 (en) 2019-02-11
JP2019000113A (en) 2019-01-10
EP2557518B1 (en) 2017-03-15
SI2557520T1 (en) 2021-08-31
JP6383837B2 (en) 2018-08-29
HUE030510T2 (en) 2017-05-29
KR20160030404A (en) 2016-03-17
KR102147626B9 (en) 2024-08-22
US20140329696A1 (en) 2014-11-06
JP2010534068A (en) 2010-11-04
JP2015142588A (en) 2015-08-06
DK2557517T3 (en) 2022-11-28
HK1224033A1 (en) 2017-08-11
KR102112438B9 (en) 2024-08-22
US8972202B2 (en) 2015-03-03
NZ582702A (en) 2012-07-27
JP7381116B2 (en) 2023-11-15
JP2024056078A (en) 2024-04-19
CN106834474A (en) 2017-06-13
KR20170127073A (en) 2017-11-20
CA3200589A1 (en) 2009-01-29
MX346069B (en) 2017-03-06
PT2183693E (en) 2014-01-14
US20140256559A1 (en) 2014-09-11
BRPI0814670B8 (en) 2021-07-27
IL233261A (en) 2016-07-31
CA3076142A1 (en) 2009-01-29
EA201000231A1 (en) 2010-06-30
JP2019013245A (en) 2019-01-31
KR20180100713A (en) 2018-09-11
EP2557517A2 (en) 2013-02-13
JP2022040312A (en) 2022-03-10
KR102458210B1 (en) 2022-10-24
US20090029377A1 (en) 2009-01-29
CA3009992A1 (en) 2009-01-29
HK1182195A1 (en) 2013-11-22
CA3076159C (en) 2022-05-24
PL2183693T3 (en) 2014-03-31
JP7490219B2 (en) 2024-05-27
KR102197512B1 (en) 2021-01-04
AU2008278839A1 (en) 2009-01-29
PL2514842T3 (en) 2016-08-31
EP2557519B1 (en) 2020-08-19
SI2183693T1 (en) 2014-02-28
HRP20140009T4 (en) 2019-03-08
HRP20210983T1 (en) 2021-09-17
KR20100058503A (en) 2010-06-03
EA202192446A1 (en) 2022-01-31
PL2183693T4 (en) 2015-11-30
JP6695392B2 (en) 2020-05-20
JP6151739B2 (en) 2017-06-21
HK1177768A1 (en) 2013-08-30
JP2010534069A (en) 2010-11-04
KR101896167B1 (en) 2018-09-07
KR20100075826A (en) 2010-07-05
JP2023178477A (en) 2023-12-14
US20190136323A1 (en) 2019-05-09
CA2694007C (en) 2019-02-26
CN106834474B (en) 2019-09-24
KR102112438B1 (en) 2020-06-04
CA2693081C (en) 2016-01-26
KR20200100860A (en) 2020-08-26
HK1144024A1 (en) 2011-01-21
CA2900927C (en) 2018-08-14
US8706422B2 (en) 2014-04-22
KR101829565B1 (en) 2018-03-29
KR102060911B1 (en) 2019-12-30
EP2557518A2 (en) 2013-02-13
ES2792802T3 (en) 2020-11-12
EP2183693B1 (en) 2014-01-01
HUE054639T2 (en) 2021-09-28
EP2183692B1 (en) 2017-08-23
KR20190114039A (en) 2019-10-08
CA2900927A1 (en) 2009-01-29
DK2514842T3 (en) 2016-05-30
JP5736170B2 (en) 2015-06-17
EA201791612A3 (en) 2018-03-30
ES2869347T3 (en) 2021-10-25
MX2010000846A (en) 2010-04-21
JP7081829B2 (en) 2022-06-07
ES2571738T3 (en) 2016-05-26
EA201791612A2 (en) 2017-11-30
WO2009013492A1 (en) 2009-01-29
DK2527471T3 (en) 2020-05-18
KR102147626B1 (en) 2020-08-24
JP7457399B2 (en) 2024-03-28
EP2514842B1 (en) 2016-02-24
MX341573B (en) 2016-08-25
EP2557520B1 (en) 2021-04-07
EP3745405A1 (en) 2020-12-02
DK2557519T3 (en) 2020-09-21
PL2183693T5 (en) 2019-04-30
LT2557520T (en) 2021-05-25
CA3029497A1 (en) 2009-01-29
KR101972994B1 (en) 2019-04-29
EP2557517A3 (en) 2014-11-05
ES2441807T5 (en) 2019-04-25
EP3892736A1 (en) 2021-10-13
HK1199067A1 (en) 2015-06-19
KR101916456B1 (en) 2018-11-07
KR102222378B1 (en) 2021-03-04
CN103902809B (en) 2017-11-28
CN103902809A (en) 2014-07-02
JP7026303B2 (en) 2022-02-28
ES2820866T3 (en) 2021-04-22
HRP20230033T3 (en) 2023-03-03
ZA201000524B (en) 2011-03-30
IL233261A0 (en) 2014-08-31
CN103849684A (en) 2014-06-11
CA3076142C (en) 2023-01-03
KR102128960B1 (en) 2020-07-02
SI2557517T1 (en) 2023-03-31
JP6522554B2 (en) 2019-05-29
AU2008278839B2 (en) 2013-04-04
CN106834481A (en) 2017-06-13
EP3067807A1 (en) 2016-09-14
HRP20160493T1 (en) 2016-07-15
SI2514842T1 (en) 2016-06-30
EP2527471A2 (en) 2012-11-28
CA2693081A1 (en) 2009-01-29
CY1124357T1 (en) 2022-07-22
US20200056242A1 (en) 2020-02-20
KR20230117256A (en) 2023-08-07
CN101971178A (en) 2011-02-09
CN107083425A (en) 2017-08-22
KR20210028263A (en) 2021-03-11
SG183062A1 (en) 2012-08-30
JP2017148073A (en) 2017-08-31
CA2694007A1 (en) 2009-01-29
HRP20140009T1 (en) 2014-03-14
EP2557517B1 (en) 2022-10-26
EA201201551A1 (en) 2013-08-30
LT2557517T (en) 2023-01-10
KR101966262B1 (en) 2019-04-08
KR20180114251A (en) 2018-10-17
EP2183693B2 (en) 2018-11-14
EP3770275A1 (en) 2021-01-27
FI2557517T3 (en) 2022-11-30
EP2557519A3 (en) 2014-07-23
BRPI0814670A2 (en) 2015-02-18
SI2183693T2 (en) 2019-02-28
EA017966B1 (en) 2013-04-30
CA3029497C (en) 2023-08-08
CA3127930A1 (en) 2009-01-29
ES2441807T3 (en) 2014-02-06
US12054776B2 (en) 2024-08-06
EP2557520A2 (en) 2013-02-13
EP2557520A3 (en) 2015-04-29
KR20220146689A (en) 2022-11-01
KR20160113145A (en) 2016-09-28
US11725245B2 (en) 2023-08-15
CY1117525T1 (en) 2017-04-26
AU2008278843A1 (en) 2009-01-29
DK2557520T3 (en) 2021-05-31
KR20220127377A (en) 2022-09-19
PL2557517T3 (en) 2023-03-06
KR102561664B1 (en) 2023-07-28
KR101829564B1 (en) 2018-02-14

Similar Documents

Publication Publication Date Title
US9051616B2 (en) Diagnosing fetal chromosomal aneuploidy using massively parallel genomic sequencing
US9121069B2 (en) Diagnosing cancer using genomic sequencing
AU2013203079B2 (en) Diagnosing fetal chromosomal aneuploidy using genomic sequencing
AU2008278843B2 (en) Diagnosing fetal chromosomal aneuploidy using genomic sequencing
AU2013200581B2 (en) Diagnosing cancer using genomic sequencing

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880108377.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08776043

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 203311

Country of ref document: IL

Ref document number: 2693081

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008278843

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 582702

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2010517481

Country of ref document: JP

Ref document number: MX/A/2010/000846

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008278843

Country of ref document: AU

Date of ref document: 20080723

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008776043

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 961/CHENP/2010

Country of ref document: IN

Ref document number: 201000231

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 20107003969

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 233261

Country of ref document: IL

ENP Entry into the national phase

Ref document number: PI0814670

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100122