WO2009012090A1 - Apparatus for occluding body lumens - Google Patents
Apparatus for occluding body lumens Download PDFInfo
- Publication number
- WO2009012090A1 WO2009012090A1 PCT/US2008/069482 US2008069482W WO2009012090A1 WO 2009012090 A1 WO2009012090 A1 WO 2009012090A1 US 2008069482 W US2008069482 W US 2008069482W WO 2009012090 A1 WO2009012090 A1 WO 2009012090A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tension member
- film
- flat film
- distal
- elongate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/12—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/12—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/12—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12099—Occluding by internal devices, e.g. balloons or releasable wires characterised by the location of the occluder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/12—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B17/12131—Occluding by internal devices, e.g. balloons or releasable wires characterised by the type of occluding device
- A61B17/1214—Coils or wires
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/221—Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00831—Material properties
- A61B2017/00867—Material properties shape memory effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/12—Surgical instruments, devices or methods for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels or umbilical cord
- A61B17/12022—Occluding by internal devices, e.g. balloons or releasable wires
- A61B2017/1205—Introduction devices
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22051—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
- A61B2017/22054—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation with two balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22051—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
- A61B2017/22065—Functions of balloons
- A61B2017/22067—Blocking; Occlusion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B2017/22082—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance
- A61B2017/22084—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for after introduction of a substance stone- or thrombus-dissolving
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B17/22—Implements for squeezing-off ulcers or the like on inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; for invasive removal or destruction of calculus using mechanical vibrations; for removing obstructions in blood vessels, not otherwise provided for
- A61B17/221—Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions
- A61B2017/2217—Gripping devices in the form of loops or baskets for gripping calculi or similar types of obstructions single wire changing shape to a gripping configuration
Definitions
- the present invention relates generally to medical apparatus. More particularly, the present invention relates to apparatus for treating ureters and other body lumens.
- kidney stones It is common for kidney stones to pass from the kidney through the ureter to the urinary bladder. While muscular peristalsis of the ureter will often pass the stones into the bladder without complication, in some instances large and/or irregularly shaped stones may become lodged within the ureter causing discomfort and potential damage to the ureter and upper collective system.
- ESWL extracorporeal shock wave lithotripsy
- ISWL further lithotripsy through the scope
- the length of material can be an everting tubular member, a flat membrane which folds as an accordion structure, can or take a variety of other configurations. None of the prior described occlusion structures, however, has been optimum in all respects.
- the apparatus should also be atraumatic in use, require significantly less skill than basket manipulation, optionally allow the release of captured material, should be simple and economical in construction and use, and should provide minimum risk and trauma to the patient. At least some of these objectives will be met by the inventions described hereinbelow.
- the present apparatus provides an improved luminal occlusion device, comprising a tension member, an elongate shaft, and a flat film having an axial receptacle for receiving a distal portion of the tension member.
- the tension member has a proximal end and a distal end, and is typically formed as a solid core wire having the dimensions and properties generally associated with smaller guidewires, such as uretal guidewires.
- the elongate shaft serves as a guide structure for the tension member and will usually comprise a hollow tube, such as a hollow polymeric tubular body, having a distal end and a proximal end.
- the tension member is slidably received within a lumen of the elongate shaft, and the distal end of the tension member is able to extend distally from the distal end of the shaft and axially translate relative to the elongate shaft.
- the axial receptacle of the flat film will then be disposed over the tension member and will typically have a proximal end fixed or otherwise coupled to a distal end of the elongate shaft and a distal end fixed or otherwise coupled to a distal location on the tension member.
- the flat film can be axially elongated and placed in a low profile configuration by advancing the tension member distally relative to the elongate shaft.
- the flat film can be compacted into a high volume configuration by proximally drawing the tension member relative to the elongate shaft.
- the stability of the deployment is improved.
- the flat film has characteristics which are further selected to improve the effectiveness of the deployment.
- the film will preferably be elastic so that it may elongate and "neckdown" as it is stretched by distal advancement of the tension member.
- the film may consist of a single layer or flat sheet, but will more usually comprise two or more layers which have been laminated to form the film with an axial sleeve or other receptacle defining an axis thereof.
- the film will usually be symmetric, extending from the axial receptacle in a pair of "wing" structures, where the wing structures may have a variety of specific configurations as illustrated in detail hereinbelow. In other instances, however, the film may be asymmetric relative to the axial receptacle, in some cases consisting only of a single wing or structure extending from one side of the axial receptacle.
- the film may be formed from a variety of materials, typically being a polymer, such as a polyethylene, nylon, silicone, spun olefin, but preferably being a polyurethane film that is resilient, elastic, and which has a "low notch sensitivity" which allows it to withstand laser impingement without significant degradation during lithotripsy protocols.
- the film may be formed from layers of different materials, may include reinforcement filaments, braids, webs, or the like.
- the flat film will typically have parallel edges which are spaced apart by a distance in the range from 2 mm to 15 mm and will have a length in the axial direction in the range from 10 mm to 100 mm.
- Preferred flat films will comprise one or more polymeric sheet(s) having a total thickness in the range from 0.1 mm to 0.5 mm. It has been found that sheets with these characteristics will have a very low profile elongated configuration to facilitate introduction into the body lumen, particularly into ureters and past kidney stones, as well as having a deployed, high-volume configuration which is symmetric and particularly suitable for deployment and occlusion within a ureter.
- the flat film will comprise at least one elongate element formed therein or on a surface thereof.
- the elongate element will be located along at least one of the axial edges (e.g., parallel to and spaced inwardly from the edge), and more typically, one elongate element will be provided along each of the two edges of the flat film.
- flat film includes a first wing portion formed on one side of the axial receptacle and a second wing portion formed on the other side of the axial receptacle.
- a first elongate element is disposed along an outer edge of the first wing and a second elongate element is disposed along an outer edge of the second wing.
- two or more elongate elements may be placed in parallel and/or in series along the edge(s).
- the elongate elements may serve various purposes.
- the elongate elements will comprise radioopaque markers.
- the elongate elements may comprise primarily structural elements, such as nitinol or other elastic wires which are arranged to deform or stretch the film radially outwardly with respect to the axial receptacle.
- the elongate elements may serve both purposes and/or individual elements serving each purpose may be present on the film.
- first and second wires are attached to the outer edge of each wing of the flat film, where the wires preferentially collapse into helical structures as the film is foreshortened by proximal retraction of the tension member. Such structures provide a very large and generally circular occlusion component within the body lumen after deployment.
- the radioopaque markers may have different mechanical properties than those of the film.
- the markers may be more rigid or stiff than the film, causing the film to collapse or fold in a manner different from what would occur without the marker.
- the metal foil markers disposed along opposite edges of the film will cause the film to rotate as it collapses, thus forming a higher volume and less collapsible occlusion than would be formed with a simple accordion-type fold.
- Gold foil is an ideal material for this application as it is dense and highly radioopaque, can be utilized as a very thin foil, and while being stiffer than the thin film, is still quite flexible.
- thin shape memory wires such as nickel titanium wires
- Shaping of the compacted film could also be accomplished by screening a relatively thick layer of ink on the film in strips or in a geometric pattern.
- the luminal occlusion device will further comprise a distal tip extending distally from the distal end of the tension member.
- the distal tip will be relatively soft and facilitate atraumatic introduction on the occlusion device through a body lumen, particularly through a ureter past a kidney stone.
- the distal tip will comprise a polymeric tube which tapers down in the distal direction, and the polymeric tube will comprise a polymer, such as polyurethane, having a durometer in the range from 25D to 55D.
- the tension member will typically comprise a solid core wire, usually having a width in the range from about 0.2 to about 0.6 mm. In other cases, however, the tension member could comprise a hollow core wire, could have dimensions which are larger or smaller than those cited above.
- the elongate shaft will comprise a polymeric tube having an outside width in the range from 0.5 mm to 1.5 mm and a length in the range from 50 cm to 250 cm.
- the polymeric tube may comprise any of a variety of polymers, typically being a polyether block amide having a durometer in the range from 5OD to 80D. In many cases, at least a portion of the polymer tube will be reinforced, and in particular embodiments the entire polymeric tube is reinforced with a steel braid.
- the occlusion device will typically have a handle at or near its proximal end.
- the handle is removably attachable to the proximal end of the elongate shaft and is positioned over a proximal end of the tension member.
- the handle allows manipulation of the occlusion device while it is being introduced into the ureter or other body lumen.
- the handle also prevents accidental deployment of the tension member since it covers and protects the distal end.
- the handle will be moved after the occlusion device has been positioned within the body lumen at its target location.
- the proximal end of the tension member is exposed so that the user may manually grasp the proximal end, and pull on it in a proximal direction in order to deploy the flat film.
- the proximal end of the tension member will be modified to provide a gripping surface to facilitate manual deployment.
- the tension member may be modified or additional components provided in order to lock or hold the flat film in its deployed configuration after the tension member has been pulled proximally.
- a detent structure may be formed at or near the proximal end of the tension member, where the detent expands when the tension member is proximally retracted to deploy the film. The expanded detent thus blocks or inhibits inadvertent distal movement of the tension member which would unintentionally return the flat film to its low profile configuration.
- the detent may comprise, for example, a bend in the tension member, such as a short serpentine section.
- the flat films may have a variety of specific geometries. As discussed above, often the flat film will include first and second wings, where the wings are generally rectangular or trapezoidal and symmetrically disposed about the axial receptacle. The wings, however, need not be symmetric and need not have straight or flat edges. Moreover, the films may be modified to affect the geometry or shape of the film as it is compacted.
- the film may include one or more slits. When the slits are oriented wholly or partially axially, they facilitate radial expansion of the film, allowing the film to assume a greater effective radius than might have been possible without the slits. When the slits are oriented wholly or partially laterally, in contrast, they will facilitate axial stretching of the film as the tension member is distally translated, allowing the film to assume an even narrower profile for advancement through the ureter or other body lumen.
- the flat film comprises a first winged region and a second winged region, where the winged regions are axially separated by a narrowed or waist region.
- Nitinol or other highly elastic wires are embedded into the radially outward edges of the winged regions as well as the narrowed or waist region therebetween. The elastic wires maintain the winged regions in a flat or outwardly deployed configuration when the flat film is in its elongated position. It will be appreciated that the winged regions will easily collapse against the elongate shaft which carries them as it is being introduced through the ureter, other body lumen, or delivery sheath or cannula.
- the flat film may be axially collapsed so that the winged regions are compacted into two axially spaced-apart structures, typically having the elastic wires form into two, separate helical windings.
- the waist portion of the flat film will typically be reinforced or otherwise prevented from axially collapsing so that there is a space between the two compacted regions.
- Such axially spaced-apart compacted structures provide for "dual" sweeping where any stone fragments which bypass the leading compacted structure can be caught by the trailing structure.
- Fig. 1 is an exploded view of a luminal occlusion device constructed in accordance with the principles of the present invention.
- Fig. 2 illustrates the luminal occlusion device of Fig. 1 in its assembled configuration with portions broken away.
- Figs. 3A-3D are cross-sectional drawings taken along lines 3A to 3D in Fig. 2.
- FIGs. 4 and 5 illustrate the steps which are taken to deploy a flat film on the luminal occlusion device of Figs. 1 and 2.
- Fig. 6 illustrates an additional embodiment of a luminal occlusion device constructed in accordance with the principles of the present invention.
- Figs. 7, 8, and 9 are cross-sectional views taken along lines 7-7, 8-8, and 9-9 of Fig. 6, respectively.
- Fig. 10 illustrates the luminal occlusion device of Fig. 6, shown with a flat film in its compacted configuration.
- Figs. 1 IA and 1 IB illustrate a flat film useful in the luminal occlusion devices of the present invention, where the film includes axial slits, with the film shown in its relaxed configuration in Fig. 1 IA and in its partially foreshortened configuration in Fig. 1 IB.
- Figs. 12A and 12B illustrate a further example of a flat film useful in the luminal occlusion devices of the present invention, where the flat film includes lateral slits.
- the film is shown in its relaxed configuration in Fig. 12A and in its axially stretched configuration in Fig. 12B.
- Figs. 13-18 illustrate additional flat films geometric, suitable for use in the luminal occlusion devices of the present invention.
- Figs. 19 and 20 illustrate a specific embodiment of a luminal occlusion device constructed in accordance with the principles of the present invention and having two axially spaced-apart winged regions (Fig. 19) which may be axially collapsed into two axially spaced-apart compacted structures (Fig. 20).
- an exemplary luminal occlusion device 10 constructed in accordance with the principles of the present invention, comprises a tension member 12, an elongate shaft 14, a flat film 16, a handle 18, and a distal tip 20.
- the tension member 12 comprises a solid core wire, typically composed of stainless steel or nickel- titanium alloy, having a length in the range set forth above.
- a serpentine detent 24 is formed near a proximal end 26 thereof. The distal end 28 of the tension member will pass through a lumen 30 of the elongate shaft 14, as best seen in Figs. 2 and 3B.
- the distal end 28 is connected to a distal end 34 of the flat film 16, while a distal end 38 of the elongate shaft 14 is connected to a proximal end 36 of the flat film.
- the distal portion of the tension member 12 passes through an axial receptacle 42 of the flat film 16, as best seen in Fig. 3C, and proximal retraction of the tension member 12 relative to elongate shaft 14 will thus cause the axial receptacle 42 to bunch up on the tension member, thus compacting the opposed wings 44, causing them to deploy, as best illustrated in Fig. 5 discussed below.
- a pair of radioopaque markers 50 are formed on the flat film 16, typically being gold foil strips which are glued, bonded, or otherwise attached to the wings 44.
- Additional radioopaque markers 52 and 54 are formed on the distal ends of the tension member 12 and elongate shaft 14, respectively.
- the distal tip 20 is also attached to the distal end 28 of the tension member 12, although the tip will usually have a hollow lumen, as best seen in Fig. 3D.
- the flat film 16 on the luminal occlusion device 10 may be deployed in a simple, two-step procedure.
- the handle 18 is first removed from the proximal end 40 of the elongate shaft 14, exposing a gripping surface 60 at the proximal end 26 of the tension member 12.
- the user may then deploy the film 16 by grasping the elongate shaft 14 near the proximal end 40 with one hand and grasping the gripping surface 60 on the tension member 12 with the other hand.
- the gripping surface 60 is then proximal Iy withdrawn relative to the elongate shaft 14 which causes the distal end 28 of the tension member to move toward the distal end 38 of the elongate shaft.
- This foreshortening causes the film 16, which is captured between these two ends, to axially shorten and compact, as shown in Fig. 5.
- the radioopaque markers 52 and 54 can be observed to move toward each other and will define the leading and trailing ends of the film 16 after it is compacted.
- the combination of the flat film and the axial markers preferably having a stiffness greater than that of the film, causes a high volume and resilient structure which is capable of conforming to and effectively occluding the body lumen deployment, as illustrated.
- An alternative luminal occlusion device 70 includes a tension member 72 and an elongate shaft 74 constructed generally as described above with respect to the embodiment of Fig. 1. Note that the proximal portion of the device is not shown as it will be identical to that shown in Fig. 1.
- a flat film 76 is also similar to film 16 shown in Fig. 1 , except that it includes at least one peripheral wire 78 along the outer edge of each of two wings 80.
- the wires 78 extend over and are attached to the distal end of the elongate shaft 14, typically being helically wound over the outer surface of the distal end of said shaft.
- the wires 78 are wrapped around the tension member 72 near the distal end thereof, again being helically wound to facilitate attachment.
- the wires 78 will be highly elastic, typically being composed of nickel titanium alloy (nitinol) or other highly elastic alloy.
- the wires When the tension member 72 is distally advanced relative to the shaft 74, the wires will collapse inwardly, helping reduce the profile of the film 76 as it is being introduced.
- the peripheral wires 78 Conversely, when the tension member 72 is proximally retracted relative to the elongate shaft 14, as shown in Fig. 10, the peripheral wires 78 will axially collapse or foreshorten into a generally helical configuration, providing a compacted structure having a generally circular outer periphery with excellent occlusion characteristics.
- Film 76 has a plurality of individual radioopaque markers 82 formed along each edge adjacent the wires 78. It would also be possible, of course, to employ strip radioopaque markers as shown in previous embodiments.
- the flat films have generally had symmetric, regular geometries.
- the films have also been continuous without gaps or other disruptions.
- the films may be asymmetric, and/or may have slits or other discontinuities formed in their surfaces.
- a flat film 100 which is formed similarly to film 16 in Fig. 1, may include a plurality of axial slits 102.
- the slits 102 will open allowing portions 104 on the film to extend radially further away from the axial receptacle 106 than would have been possible in the absence of the slits. In this way, the film 100 may assume a larger compacted diameter than would have been possible without the slits.
- a film 1 10 may include a plurality of lateral slits 1 12, were the lateral slits 1 12 allow the film 1 10 to stretch greater in the axial direction, as shown in Fig. 12B, than would have been possible in the absence of the slits. In this way, the film can be caused to neckdown to a reduced profile relative to the non-slitted film.
- the films of the present invention may have a variety of peripheral shapes.
- a film 120 has a symmetric profile with a gap 122 along each edge.
- a film 130 comprises a pair of axially staggered wings 132 and 134 so that the film has an asymmetric profile.
- a film 140 consists of a single wing on one side of the axial receptacle 142.
- films may have tapered profiles.
- film 150 has smoothly tapered edges.
- film 160 has stepped, tapered edges.
- a film 170 may comprise two or more axially separated segments 172 and 174.
- the films 172 and 174 are separated by a non-collapsible spacer 176 so that after compaction, each of the segments 172 and 174 will form a separate occlusion component with a fixed space therebetween.
- a further exemplary luminal occlusion device 200 comprises a tension member 212, and elongate shaft 214, a flat film 216, a handle (not shown), and a distal tip 220. While the structure of the luminal occlusion device is generally the same as for the luminal occlusion device 10 illustrated in Figs. 1, 2, and 3A-3D, except that the flat film 216 includes a first or distal wing portion 230 and a second or proximal wing portion 240. The wing portions 230 and 240 are separated by a narrowed or waist region 242 therebetween.
- Elastic wires 244 and 246 are disposed along the outer edges of both the wing portions 230 and 240 as well as the narrowed region 242.
- the wires will be configured to maintain the flat film 216 in its pre-deployment or flattened configuration as illustrated in Fig. 19. They will further be configured to cause the wing portions 230 and 240 to collapse into compacted regions 230' and 240', as illustrated in Fig. 20 as the tension member is proximally retracted relative to the elongate shaft 214.
- the narrowed region 242 will be reinforced or otherwise prevented from collapsing so that the length of the narrowed region remains more or less constant so that the compacted regions 230' and 240' are maintained in their axially spaced-apart configuration, as shown in Fig. 20.
- the narrowed region thus provides a space or volume 260 when the occlusion device is deployed in a ureter U or other body lumen, also as shown in Fig. 20.
- the space or volume can isolate urinary calculi or stones or serve other purposes in performing intraluminal medical procedures.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Reproductive Health (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Prostheses (AREA)
- Surgical Instruments (AREA)
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2010516215A JP5284356B2 (ja) | 2007-07-13 | 2008-07-09 | 身体管腔を閉塞するための装置 |
| EP08772472.0A EP2166964B1 (en) | 2007-07-13 | 2008-07-09 | Apparatus for occluding body lumens |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US11/777,522 US7879066B2 (en) | 2007-07-13 | 2007-07-13 | Apparatus for occluding body lumens |
| US11/777,522 | 2007-07-13 | ||
| US12/041,241 | 2008-03-03 | ||
| US12/041,241 US8475489B2 (en) | 2007-07-13 | 2008-03-03 | Apparatus for occluding body lumens |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2009012090A1 true WO2009012090A1 (en) | 2009-01-22 |
Family
ID=40253773
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2008/069482 Ceased WO2009012090A1 (en) | 2007-07-13 | 2008-07-09 | Apparatus for occluding body lumens |
Country Status (5)
| Country | Link |
|---|---|
| US (2) | US8475489B2 (enExample) |
| EP (1) | EP2166964B1 (enExample) |
| JP (1) | JP5284356B2 (enExample) |
| KR (1) | KR101555072B1 (enExample) |
| WO (1) | WO2009012090A1 (enExample) |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8939991B2 (en) | 2008-06-08 | 2015-01-27 | Hotspur Technologies, Inc. | Apparatus and methods for removing obstructive material from body lumens |
| JP5571074B2 (ja) | 2008-07-03 | 2014-08-13 | ホットスパー テクノロジーズ,インコーポレイテッド | 体管腔内の閉塞部を治療する装置および方法 |
| US9101382B2 (en) | 2009-02-18 | 2015-08-11 | Hotspur Technologies, Inc. | Apparatus and methods for treating obstructions within body lumens |
| US8945160B2 (en) | 2008-07-03 | 2015-02-03 | Hotspur Technologies, Inc. | Apparatus and methods for treating obstructions within body lumens |
| EP2355717B1 (en) * | 2008-12-01 | 2014-02-19 | Percutaneous Systems, Inc. | Systems for capturing and removing urinary stones from body cavities |
| US20120109057A1 (en) | 2009-02-18 | 2012-05-03 | Hotspur Technologies, Inc. | Apparatus and methods for treating obstructions within body lumens |
| US9820726B2 (en) * | 2009-08-24 | 2017-11-21 | St. Jude Medical Puerto Rico Llc | Polymer membrane locator with built-in stress relief structure |
| WO2011042893A1 (en) * | 2009-10-09 | 2011-04-14 | Flip Technologies Limited | A device and a method for facilitating monitoring the cross-section of a gastric sleeve during formation thereof |
| US10342548B2 (en) * | 2012-01-13 | 2019-07-09 | W. L. Gore & Associates, Inc. | Occlusion devices and methods of their manufacture and use |
| US9126013B2 (en) | 2012-04-27 | 2015-09-08 | Teleflex Medical Incorporated | Catheter with adjustable guidewire exit position |
| WO2014116718A1 (en) * | 2013-01-22 | 2014-07-31 | Percutaneous Systems, Inc. | Ureteral stent and method and system for its deployment |
| US9839539B2 (en) * | 2015-03-05 | 2017-12-12 | Cook Medical Technologies Llc | Bow stent |
| CN106880402A (zh) * | 2017-03-01 | 2017-06-23 | 北华大学 | 一种泌尿外科用结石清除装置 |
| CN111150434B (zh) * | 2018-11-08 | 2025-02-25 | 先健科技(深圳)有限公司 | 封堵器 |
Citations (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5531717A (en) | 1993-12-12 | 1996-07-02 | Rtc, Inc. | Non-contaminating probe and methods of making and using same |
| US5676688A (en) | 1995-02-06 | 1997-10-14 | Rtc, Inc. | Variably inflatable medical device |
| EP0605427B1 (en) | 1991-06-07 | 1998-05-20 | Rtc Inc. | Non-contaminating probe |
| WO1999060933A1 (en) | 1998-05-22 | 1999-12-02 | Scimed Life Systems, Inc. | Medical retrieval basket |
| US6007488A (en) | 1997-05-12 | 1999-12-28 | Rtc, Inc. | Medical probe including an electrically conductive membrane suitable for medical uses |
| US6240968B1 (en) | 1996-08-14 | 2001-06-05 | Rtc, Inc. | Membranes suitable for medical use |
| US20030120281A1 (en) | 1998-04-23 | 2003-06-26 | Boston Scientific Corporation | Atraumatic medical retrieval device |
| US20040215230A1 (en) * | 2003-04-28 | 2004-10-28 | Frazier Andrew G. C. | Left atrial appendage occlusion device with active expansion |
| US20040263996A1 (en) | 2001-09-28 | 2004-12-30 | Nikon Corporation | Zoom lens system |
| US20050197627A1 (en) | 2004-03-05 | 2005-09-08 | Percutaneous Systems, Inc. | Method and system for deploying protective sleeve in intraluminal catherization and dilation |
| US20050277980A1 (en) * | 2004-05-27 | 2005-12-15 | Cardiva Medical, Inc. | Self-tensioning vascular occlusion device and method for its use |
| US20070016244A1 (en) | 2005-07-06 | 2007-01-18 | Percutaneous Systems, Inc. | Methods and apparatus for deploying ureteral stents |
| US20070106233A1 (en) * | 2005-10-20 | 2007-05-10 | Percutaneous Systems, Inc. | Systems and methods for dilating and accessing body lumens |
Family Cites Families (49)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2756752A (en) * | 1953-12-23 | 1956-07-31 | Scherlis Irving | Surgical instrument |
| US4046149A (en) * | 1975-01-31 | 1977-09-06 | Olympus Optical Co., Ltd. | Instrument for removing a foreign substance from the body cavity of human being |
| US4262677A (en) * | 1979-03-26 | 1981-04-21 | Bader Robert F | Culture sampling device and method |
| US4295464A (en) * | 1980-03-21 | 1981-10-20 | Shihata Alfred A | Ureteric stone extractor with two ballooned catheters |
| US4807626A (en) * | 1985-02-14 | 1989-02-28 | Mcgirr Douglas B | Stone extractor and method |
| US4706671A (en) * | 1985-05-02 | 1987-11-17 | Weinrib Harry P | Catheter with coiled tip |
| US6120437A (en) * | 1988-07-22 | 2000-09-19 | Inbae Yoon | Methods for creating spaces at obstructed sites endoscopically and methods therefor |
| US5011488A (en) * | 1988-12-07 | 1991-04-30 | Robert Ginsburg | Thrombus extraction system |
| US5135534A (en) * | 1990-04-06 | 1992-08-04 | John Tulip | Laser lithotripsy |
| DE69124395T2 (de) * | 1990-11-09 | 1997-08-28 | Boston Scientific Corp., Watertown, Mass. | Führungsdraht zum durchqueren von okklusionen in blutgefässen |
| US5108420A (en) * | 1991-02-01 | 1992-04-28 | Temple University | Aperture occlusion device |
| US5565146A (en) * | 1991-04-15 | 1996-10-15 | Cologate-Palmolive Co. | Light duty liquid detergent compositions |
| US5192286A (en) * | 1991-07-26 | 1993-03-09 | Regents Of The University Of California | Method and device for retrieving materials from body lumens |
| US5814058A (en) * | 1993-03-05 | 1998-09-29 | Innerdyne, Inc. | Method and apparatus employing conformable sleeve for providing percutaneous access |
| US5431676A (en) * | 1993-03-05 | 1995-07-11 | Innerdyne Medical, Inc. | Trocar system having expandable port |
| US5385156A (en) * | 1993-08-27 | 1995-01-31 | Rose Health Care Systems | Diagnostic and treatment method for cardiac rupture and apparatus for performing the same |
| US5454790A (en) * | 1994-05-09 | 1995-10-03 | Innerdyne, Inc. | Method and apparatus for catheterization access |
| US5879366A (en) * | 1996-12-20 | 1999-03-09 | W.L. Gore & Associates, Inc. | Self-expanding defect closure device and method of making and using |
| US6171329B1 (en) * | 1994-12-19 | 2001-01-09 | Gore Enterprise Holdings, Inc. | Self-expanding defect closure device and method of making and using |
| US6849069B1 (en) * | 1995-11-07 | 2005-02-01 | Boston Scientitfic Corporation | Medical device with tail(s) for assisting flow of urine |
| US6800080B1 (en) * | 1996-05-03 | 2004-10-05 | Scimed Life Systems, Inc. | Medical retrieval device |
| US5972019A (en) * | 1996-07-25 | 1999-10-26 | Target Therapeutics, Inc. | Mechanical clot treatment device |
| US5827201A (en) * | 1996-07-26 | 1998-10-27 | Target Therapeutics, Inc. | Micro-braided guidewire |
| US6056769A (en) * | 1997-02-11 | 2000-05-02 | Biointerventional Corporation | Expansile device for use in blood vessels and tracts in the body and tension application device for use therewith and method |
| US5836913A (en) * | 1997-05-02 | 1998-11-17 | Innerdyne, Inc. | Device and method for accessing a body cavity |
| US5928260A (en) * | 1997-07-10 | 1999-07-27 | Scimed Life Systems, Inc. | Removable occlusion system for aneurysm neck |
| US6066149A (en) * | 1997-09-30 | 2000-05-23 | Target Therapeutics, Inc. | Mechanical clot treatment device with distal filter |
| DK1063926T3 (da) * | 1998-03-27 | 2006-09-04 | Cook Urological Inc | Minimalt invasiv, medicinsk indfangningsanordning |
| US6520983B1 (en) * | 1998-03-31 | 2003-02-18 | Scimed Life Systems, Inc. | Stent delivery system |
| US5989264A (en) * | 1998-06-11 | 1999-11-23 | Ethicon Endo-Surgery, Inc. | Ultrasonic polyp snare |
| US7044134B2 (en) * | 1999-11-08 | 2006-05-16 | Ev3 Sunnyvale, Inc | Method of implanting a device in the left atrial appendage |
| US6214037B1 (en) * | 1999-03-18 | 2001-04-10 | Fossa Industries, Llc | Radially expanding stent |
| US6709465B2 (en) * | 1999-03-18 | 2004-03-23 | Fossa Medical, Inc. | Radially expanding ureteral device |
| US7214229B2 (en) * | 1999-03-18 | 2007-05-08 | Fossa Medical, Inc. | Radially expanding stents |
| CN1204937C (zh) * | 1999-12-24 | 2005-06-08 | 东丽株式会社 | 带球的导管 |
| US6780197B2 (en) * | 2000-01-05 | 2004-08-24 | Integrated Vascular Systems, Inc. | Apparatus and methods for delivering a vascular closure device to a body lumen |
| CA2407373C (en) * | 2000-05-02 | 2008-11-25 | Boris Reydel | Introducer device for catheters o.t.l. with eversible sleeve |
| DE10031661C2 (de) | 2000-06-29 | 2003-04-24 | Johannes Woitzik | Schutzhülle für Biopsiekanüle |
| WO2002091961A1 (en) * | 2001-05-17 | 2002-11-21 | Wilson-Cook Medical, Inc. | Intragastric device for treating obesity |
| JP2006501967A (ja) * | 2002-10-09 | 2006-01-19 | フォッサ メディカル, インク. | 偏心内腔ステント |
| US7331976B2 (en) * | 2003-04-29 | 2008-02-19 | Rex Medical, L.P. | Distal protection device |
| US6929664B2 (en) * | 2003-12-05 | 2005-08-16 | Fossa Medical, Inc. | Open lumen stents |
| US8092483B2 (en) * | 2004-03-06 | 2012-01-10 | Medtronic, Inc. | Steerable device having a corewire within a tube and combination with a functional medical component |
| US20050228417A1 (en) * | 2004-03-26 | 2005-10-13 | Teitelbaum George P | Devices and methods for removing a matter from a body cavity of a patient |
| US7462183B2 (en) * | 2004-07-07 | 2008-12-09 | Percutaneous Systems, Inc. | Methods for deploying conformed structures in body lumens |
| US8162905B2 (en) * | 2004-12-17 | 2012-04-24 | W. L. Gore & Associates, Inc. | Delivery system |
| US7682371B2 (en) * | 2006-01-25 | 2010-03-23 | Medtronic Vascular, Inc. | Device with actuatable fluid-column occluder for prevention of embolization |
| US8062282B2 (en) * | 2006-02-13 | 2011-11-22 | Fossa Medical, Inc. | Methods and apparatus for temporarily occluding body openings |
| US7879066B2 (en) * | 2007-07-13 | 2011-02-01 | Percutaneous Sustems, Inc. | Apparatus for occluding body lumens |
-
2008
- 2008-03-03 US US12/041,241 patent/US8475489B2/en not_active Expired - Fee Related
- 2008-07-09 JP JP2010516215A patent/JP5284356B2/ja not_active Expired - Fee Related
- 2008-07-09 EP EP08772472.0A patent/EP2166964B1/en not_active Not-in-force
- 2008-07-09 KR KR1020107002975A patent/KR101555072B1/ko not_active Expired - Fee Related
- 2008-07-09 WO PCT/US2008/069482 patent/WO2009012090A1/en not_active Ceased
-
2013
- 2013-06-05 US US13/910,856 patent/US20130274791A1/en not_active Abandoned
Patent Citations (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5711841A (en) | 1991-06-07 | 1998-01-27 | Rtc, Inc. | Methods of making and using non-contaminating probes |
| EP0605427B1 (en) | 1991-06-07 | 1998-05-20 | Rtc Inc. | Non-contaminating probe |
| US5897535A (en) | 1991-06-07 | 1999-04-27 | Rtc, Inc. | Non-contaminating probe and methods of making and using same |
| US5531717A (en) | 1993-12-12 | 1996-07-02 | Rtc, Inc. | Non-contaminating probe and methods of making and using same |
| US5676688A (en) | 1995-02-06 | 1997-10-14 | Rtc, Inc. | Variably inflatable medical device |
| US6240968B1 (en) | 1996-08-14 | 2001-06-05 | Rtc, Inc. | Membranes suitable for medical use |
| US6007488A (en) | 1997-05-12 | 1999-12-28 | Rtc, Inc. | Medical probe including an electrically conductive membrane suitable for medical uses |
| US20030120281A1 (en) | 1998-04-23 | 2003-06-26 | Boston Scientific Corporation | Atraumatic medical retrieval device |
| WO1999060933A1 (en) | 1998-05-22 | 1999-12-02 | Scimed Life Systems, Inc. | Medical retrieval basket |
| US20040263996A1 (en) | 2001-09-28 | 2004-12-30 | Nikon Corporation | Zoom lens system |
| US20040215230A1 (en) * | 2003-04-28 | 2004-10-28 | Frazier Andrew G. C. | Left atrial appendage occlusion device with active expansion |
| US20050197627A1 (en) | 2004-03-05 | 2005-09-08 | Percutaneous Systems, Inc. | Method and system for deploying protective sleeve in intraluminal catherization and dilation |
| US20050277980A1 (en) * | 2004-05-27 | 2005-12-15 | Cardiva Medical, Inc. | Self-tensioning vascular occlusion device and method for its use |
| US20070016244A1 (en) | 2005-07-06 | 2007-01-18 | Percutaneous Systems, Inc. | Methods and apparatus for deploying ureteral stents |
| US20070106233A1 (en) * | 2005-10-20 | 2007-05-10 | Percutaneous Systems, Inc. | Systems and methods for dilating and accessing body lumens |
Also Published As
| Publication number | Publication date |
|---|---|
| EP2166964B1 (en) | 2016-03-09 |
| JP2010533510A (ja) | 2010-10-28 |
| JP5284356B2 (ja) | 2013-09-11 |
| EP2166964A4 (en) | 2014-08-13 |
| US8475489B2 (en) | 2013-07-02 |
| US20090018569A1 (en) | 2009-01-15 |
| EP2166964A1 (en) | 2010-03-31 |
| KR20100047864A (ko) | 2010-05-10 |
| US20130274791A1 (en) | 2013-10-17 |
| KR101555072B1 (ko) | 2015-09-22 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US8475489B2 (en) | Apparatus for occluding body lumens | |
| US7879066B2 (en) | Apparatus for occluding body lumens | |
| EP2021065B1 (en) | Apparatus for deploying short length ureteral stents | |
| CA2571941C (en) | Methods and apparatus for deploying conformed structures in body lumens | |
| CN109890304B (zh) | 防阻塞和浸软血栓切除装置及方法 | |
| JP3271974B2 (ja) | 体内管腔から物質を回収するための装置 | |
| US8753351B2 (en) | Methods for removing kidney stones from the ureter | |
| US8382771B2 (en) | Radial coil expandable medical wire | |
| US20090287193A1 (en) | Systems and methods for stone removal | |
| JP6643487B2 (ja) | 回収システム | |
| EP2967612B1 (en) | Recanalization device | |
| WO2009140209A1 (en) | Systems and methods for stone removal |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08772472 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2010516215 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2008772472 Country of ref document: EP |
|
| ENP | Entry into the national phase |
Ref document number: 20107002975 Country of ref document: KR Kind code of ref document: A |