WO2009006827A1 - Procédé et appareil de mise à jour de temps de propagation en boucle - Google Patents

Procédé et appareil de mise à jour de temps de propagation en boucle Download PDF

Info

Publication number
WO2009006827A1
WO2009006827A1 PCT/CN2008/071525 CN2008071525W WO2009006827A1 WO 2009006827 A1 WO2009006827 A1 WO 2009006827A1 CN 2008071525 W CN2008071525 W CN 2008071525W WO 2009006827 A1 WO2009006827 A1 WO 2009006827A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference pilot
loop delay
rtd
value
report
Prior art date
Application number
PCT/CN2008/071525
Other languages
English (en)
French (fr)
Inventor
Yaobing Wang
Jian Li
Yayong Chen
Yunjuan Xie
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Publication of WO2009006827A1 publication Critical patent/WO2009006827A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2662Arrangements for Wireless System Synchronisation
    • H04B7/2671Arrangements for Wireless Time-Division Multiple Access [TDMA] System Synchronisation
    • H04B7/2678Time synchronisation
    • H04B7/2681Synchronisation of a mobile station with one base station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information

Definitions

  • the invention belongs to the field of mobile communication technologies, and in particular relates to a method and a device for updating a loop delay. Background technique
  • each base station is equipped with a GPS (Global Pisition System) receiving system.
  • GPS Global Pisition System
  • the reference time of its system is synchronized with the Universal Time Coordinate UTC in GPS.
  • the downlink pilot (Pilot) signal time of each sector carrier frequency is synchronized with the GPS time (ie, Tsys), and the time of the mobile phone is based on the multipath component of the earliest arriving mobile phone antenna.
  • the pilot is the reference pilot
  • the mobile phone synchronizes the transmission of the traffic channel (Traffic Channel) and the access channel (Access Channel) with the reference time by controlling the time delay of the internal hardware and software.
  • the two-way time between the handset and the base station Delay 2
  • RTD Red Trip Delay
  • the RTD can be a one-way delay between the mobile phone and the base station, and can also use the two-way delay between the mobile phone and the base station.
  • the difference (RTD referred to below refers to one-way delay).
  • the TD can reflect the distance between the base station and the mobile phone.
  • the unit of the RTD is chip.
  • the handset continuously searches for pilot signals for the current sector and neighboring sectors.
  • the handset estimates the phase of the non-reference pilot by measuring the reference pilot signal (the earliest arriving pilot signal) and the phase difference (delay) between each pilot signal.
  • the phase difference values of the pilot signals from different base stations are equivalent to the value of the arrival time difference.
  • the BTS Base transceiver system
  • the BTS continuously detects the RTD between itself and the mobile phone. If the size of the RTD changes by more than one threshold, the BTS will report the RTD value between the mobile phone and the BTS to the BSC (Base station controller) (the RTD value measured by the base station includes the internal processing delay of the base station).
  • the base station also reports the RTD of the corresponding branch. The BSC updates the RTD of the corresponding branch according to the obtained RTD report value.
  • RTD for business processing One of the applications of RTD for business processing is the ability to use RTD positioning technology combined with traditional satellite positioning technology to achieve optimal positioning accuracy with minimal hardware cost.
  • the second application is as a trigger condition for hard handover, which can improve the timeliness and accuracy of hard handover.
  • the forward link reference time is Tsys
  • the base time of the mobile phone is Tsys+t 1
  • this time is the reference time of the reverse channel
  • the base station receives
  • the time on the reverse channel is Tsys+tl+t2
  • the total bidirectional loop delay is 11 +t2
  • ie the RTD is (t 1 +t2)/2.
  • the embodiment of the present invention provides a method for updating a loop delay, including:
  • the frequency loop delay estimation value is as follows:
  • RTD—i Bts—Report—RTD[Ref]+ (PnPhase_i - 64 PN i), where RTD—i represents the i-th non-reference pilot loop delay estimation value, Bts—Report—RTD[Ref] indicates The pilot loop delay is reported, PnPhase_i represents the phase of the i-th non-reference pilot, and PN_i represents the pseudo-random sequence code of the i-th non-reference pilot.
  • the embodiment of the present invention further provides a device for loop delay update, including:
  • the first acquiring module is configured to: obtain a reference pilot loop delay report value
  • a receiving module configured to receive a phase of a non-reference pilot measured by the terminal and obtain a matched pseudo random sequence code
  • the operation module is configured to obtain a non-reference pilot loop delay estimation value, and update the non-reference pilot loop delay to the value, and obtain the non-reference pilot loop delay estimation value by using the following formula:
  • RTD—i Bts—Report—RTD [Ref]+ (PnPhase ⁇ i - 64 PN i), where RTD—i represents the i-th non-reference pilot loop delay estimate, Bts—Report—RTD[Ref] Indicates the reference pilot loop delay report value, PnPhase_i represents the phase of the i-th non-reference pilot, and PN_i represents the pseudo-random sequence code of the i-th non-reference pilot.
  • FIG. 1 is a schematic diagram of a prior art RTD algorithm
  • FIG. 2 is a schematic diagram of a RTD of a prior art base station
  • FIG. 3 is a schematic diagram of a base station RTD according to a first embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a base station RTD according to a second embodiment of the present invention.
  • FIG. 6 is a flowchart of a method according to a second embodiment of the present invention.
  • FIG. 7 is a flowchart of a method according to a third embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a RTD of a base station according to a third embodiment of the present invention.
  • FIG. 9 is a flowchart of a method according to a fourth embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a base station RTD according to a fourth embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a base station RTD according to a fourth embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a measured value delay of a base station according to an embodiment of the present disclosure.
  • Figure 13 is a structural diagram of a device according to a fifth embodiment of the present invention.
  • FIG. 14 is a structural diagram of a device according to a sixth embodiment of the present invention. detailed description
  • a first embodiment of the present invention provides a method for updating a loop delay.
  • a mobile phone has two active set branches A and B, and their real RTDs are 5 chips and 8 chips, respectively.
  • B is a non-reference pilot
  • a method for implementing loop delay update is shown in FIG. 4, including:
  • Step 103 It is further possible to update the non-reference pilot B RTD by using RTD [NoRef].
  • RTD[NoRef] is the same as non-reference pilot B real RTD.
  • a second embodiment of the present invention provides a method for updating a loop delay.
  • the corrected RTD [NoRef] is the same as the non-reference pilot B real RTD by the method in the first embodiment, no deviation occurs.
  • the RTD can be updated only when the base station reports.
  • the RTD of the active set branch B changes from 8 chips in Figure 3 to 9 chips in Figure 5
  • no base station reports the RTD assuming the RTD changes more than the lChip base station reports
  • the real-time performance is poor.
  • Step 201 When the RTD of the non-reference pilot B is changed from 8 chips to 9 chips, no base station reports the RTD. At this time, due to the change of the pilot strength, the mobile phone reports the PSMM message, and the system acquires the phase of the non-reference pilot B in the PSMM message. 2308 and get a matching PN of 36.
  • Step 202 Acquire a non-reference pilot B-loop delay estimation value, using the following formula:
  • RTD—i Bts—Report—RTD [Ref]+ (PnPhase_i - 64 PN i), where RTD—i Indicates the i-th non-reference pilot B-loop delay estimation value, Bts_Report-RTD[Ref] indicates the reference pilot A RTD report value, used as the reference RTD in the calculation, PnPhase_i indicates the ith non-reference
  • non-reference pilot B RTD can be updated using RTD_i.
  • the PPSMM (Phase Pilot Strength Measurement Message) message can be used on the mobile phone PSMM message period.
  • the RTD method of updating the non-reference pilot by the phase of the non-reference pilot reported by the PSMM/PPSMM message and obtaining the matched PN may also not be based on the scheme in the first embodiment, that is, not based on the non-reference pilot B.
  • the base station reports the scheme for correcting the RTD, and directly implements on the basis of the prior art. Then, the correction method in the first embodiment can be used to further correct the non-reference pilot B RTD report value based on the solution of the embodiment.
  • the Pnphase in the PSMM/PPSMM message is measured by the mobile phone. This value is not always reliable.
  • the non-reference pilot B becomes the reference pilot, the non-reference is updated if the non-reference pilot B RTD is used to estimate the value.
  • the pilot B RTD is used as a reference pilot RTD to correct the non-reference pilot RTD reported value, or as a reference RTD for obtaining a non-reference pilot B loop delay estimation value, and the obtained non-reference pilot RTD may be There are deviations.
  • the BSC maintains two RTD values, "current update value" and "base station reported value" for the A and B branches in the active set.
  • the "current update value” is called when the business process (such as: hard handoff and mobile phone location) is used as the algorithm decision and performance field output.
  • the "base station reported value” is used to correct the RTD reported by other non-reference pilot base stations when the branch is used as a reference pilot or as a reference RTD for Pnphase calculation.
  • the method flow provided by the third embodiment of the present invention is as shown in FIG. 7, and includes:
  • Step 301 As shown in FIG. 5, after the base station of the reference pilot A reports the RTD, the reference pilot A is obtained.
  • Step 302 As shown in FIG. 5, after reporting the RTD by the base station of the reference pilot A, the reference pilot A RTD reporting value is 5 chips, and the reference base station A's "base station reporting value” is updated to 5 chips, with a value of 5 chips.
  • the base station reports the value of the RTD reported by the non-reference pilot base station B or as the reference RTD for obtaining the non-reference pilot B loop delay estimation value.
  • Step 303 As shown in FIG. 5, the PSMM/PPSMM message reported by the mobile phone is received, and the non-reference pilot B-loop delay estimation value 9chips is calculated, and the "current update value" of the non-reference pilot B is updated to 9 chips. It is further determined whether a hard handoff is required by reading the "current update value" of the value of 9 chips.
  • Step 304 The non-reference pilot B base station's real RTD value is changed from 9chips as shown in Figure 5.
  • Step 305 As shown in FIG. 8, after correcting the non-reference pilot B RTD report value, the non-reference pilot B loop delay correction value 7chips is obtained, and the "base station reported value" of the non-reference pilot B is updated to 7chips, if the reference pilot changes at this time, becomes the B branch, and the value is 7chips "base station reported value" to correct the other non-reference pilot (when the A branch becomes non-reference pilot) RTD reported value or as Obtain the reference RTD for the non-reference pilot B loop delay calculation value calculation.
  • the non-reference pilot corresponding branch performs service processing
  • the non-reference pilot RTD reporting value or the non-reference pilot RTD correction value may also be directly invoked.
  • the reference pilot base station RTD report value may also be directly invoked.
  • the non-reference pilot base station RTD report value can also be directly corrected by using the B branch as the non-reference pilot RTD correction value 7chips when the non-reference pilot is used.
  • the base station RTD of the branch A can also directly report the value of 5 chips to other non-reference pilot base stations RTD. The value is corrected.
  • the non-reference pilot RTD estimation value is only used for service processing, the non-reference pilot RTD estimation value is not used as the reference pilot RTD, and the reference pilot RTD always uses the "base station value", so The possibility of deviation of the reference pilot RTD does not become large.
  • the fourth embodiment of the present invention provides a method for loop delay update, because there is a problem in the solution of the third embodiment: the change of the reference pilot does not trigger the reporting of the PSMM/PPSMM message, so that The condition for reporting the PSMM/PPSMM message is not satisfied, but when the reference pilot is changed from the A branch to the B branch, the 4 ⁇ PSMM/PPSMM message is not used. If the reference pilot changes (such as from branch A to branch B) and after the first PSMM/PPSMM message is reported, branch C has the base station reporting the RTD. Of course, this is not necessarily branch C. In fact, as long as There is a problem with the RTD reported by the base station.
  • the branch C has the base station reporting the RTD, which is only a preferred embodiment of the present invention. This value may be a
  • the RTD correction for branch A of the non-reference pilot is currently known (only which branch is known as the reference pilot by the PSMM/PPSMM), which may cause the RTD confusion to be updated later.
  • the base station reports the RTD between the PSMM/PPSMM message reporting, and the RTD reporting value of each base station is first buffered, and after the first PSMM/PPSMM message is reported, the following update is performed:
  • the new reference pilot B reported in the PSMM/PPSMM message if there is a buffer value reported by the base station, the "base station reported value” and the “current update value” are updated to the buffer value reported by the B-branch base station, otherwise the update is not performed.
  • the non-reference pilot A reported in the PSMM/PPSMM message if there is a base station reporting buffer value, the "base station reported value” is corrected by the new reference pilot B, and then the "base station reported value” and the “current update value” are updated respectively. . Then use the "base station reported value" of branch B and the Pnphase of the non-reference pilot A in the PSMM/PPSMM message to the "current update value" of the non-reference pilot.
  • the method flow of the fourth embodiment of the present invention is as shown in FIG. 9, and includes: Step 401:
  • the base station RTD diagram is as shown in FIG. 10.
  • a changes to B no PSMM/PPSMM message is reported, but branch A, branch B, and branch C (new branch)
  • the branch A RTD reports a value of 6.5 chips (the real RTD is 7 chips)
  • the branch B RTD has a value of 6 chips
  • the branch C RTD has a value of 8 chips (the real RTD is lOchips).
  • the BSC caches and does not update the "base station value" and "current update value".
  • Step 402 The location of the mobile phone changes.
  • the schematic diagram of the RTD of the base station is shown in FIG. 11.
  • the PSMM/PPSMM message is reported, and the reference pilot is confirmed to be B according to the PSMM/PPSMM message, and the Pnphase of the branch A is 2306 (the PN of the branch A is 36), the Pnphase of the branch C is 14338 (the PN of the branch C is 224), and the BSC updates each branch RTD according to the above information.
  • Step 403 The reference pilot is found to be changed, and the three branches have the base station reporting buffer value, and the reference base station B's "base station reported value” and “current update value” are first updated to the buffer value reported by the branch base station 6 chips; Then, the referenced pilot B's "base station reported value” is used to correct the buffer values reported by the non-reference pilots A and C base stations, and then updated to "base station reported value" and "current update value”: branch B: 6chips
  • the base station C reports the RTD because the branch C RTD is not immediately applied.
  • the upper 4 ⁇ value is correlated and processed, but the reference pilot is first determined to be B, so the reference pilot at the time of the operation is accurate, corrected, non-reference pilot ( The RTD of C) is also accurate, which solves the problem of updating the RTD afterwards.
  • the reference pilot does not change and is still A, the other non-reference pilot RTD reported value including the branch B is still corrected by the "base station reported value" of the reference pilot A.
  • a fifth embodiment of the present invention provides a device for updating a loop delay, and the structure thereof is as shown in FIG. 13, which includes:
  • the first obtaining module 501 is configured to obtain a reference pilot loop delay report value.
  • the receiving module 502 is configured to receive a phase of the non-reference pilot measured by the terminal and obtain a matched pseudo random sequence code.
  • RTD—i Bts—Report—RTD [Ref]+ (PnPhase_i - 64 PN i), where RTD—i represents the i-th non-reference pilot loop delay estimation value, Bts—Report—RTD[Ref] indicates reference The pilot loop delay is reported, PnPhase_i represents the phase of the i-th non-reference pilot, and PN_i represents the pseudo-random sequence code of the i-th non-reference pilot.
  • a sixth embodiment of the present invention provides a device for updating a loop delay, and the structure thereof is as shown in FIG. 14, and includes:
  • the first obtaining module 601 is configured to obtain a reference pilot loop delay report value
  • the second obtaining module 602 is configured to: obtain a non-reference pilot loop delay report value
  • Bts—Report—RTD [Ref] where RTD[NoRef] represents the non-reference pilot loop delay correction value, Bts_Report_RTD[NoRef] indicates that the non-reference pilot loop delay is reported.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种环路时延更新的方法及装置 技术领域
本发明属于移动通信技术领域, 特别涉及一种环路时延更新的方法及 装置 。 背景技术
在移动通信的同步系统中如 CDMA ( Code Division Multi Address码 分多址) 系统和 WCDMA ( Wideband CDMA宽带码分多址) 系统, 每个 基站都配有一个 GPS ( Global Pisition System全球定位系统 )接收机, 使 其系统的参考时间是和 GPS内的世界标准时间(Universal Time Coordinate UTC)同步。
以 CDMA系统为例, 在 CDMA系统内, 每个扇区载频的下行导频 (Pilot)信号时间与 GPS时间 (即 Tsys )同步, 手机的时间是以最早到达手 机天线的多径分量为参考(该导频即为参考导频), 作为上行信道的发射 时间参考。 手机通过控制内部的硬件和软件的时间延迟, 使得业务信道 (Traffic Channel)和接入信道 (Access Channel)的传输同步于参考时间。 假 设信号从基站至手机接收机所需的时间为 t, 且上行信道和下行信道的无 线路径是可逆的(此假设在大部分的无线传输上是合理的), 则手机和基站 间的双向时延 = 2 实际应用中采用 RTD ( Round Trip Delay环路时延) 表示手机与基站的时延, RTD可以是手机与基站的单向时延也可以用手 机和基站间的双向时延,没有本质区別(下文所指的 RTD是指单向时延)。
TD可以反映基站到手机之间的距离, RTD的单位是 chip ,
lchip=244.14m。 手机会持续搜寻当前扇区和邻近扇区的导频信号。 手机通过测量参考 导频信号 (最早抵达的导频信号)和每一个导频信号间的相位差 (延迟)来估 计非参考导频的相位。 来自不同基站间的导频信号的相位差值等效于抵达 时间差的值。
在实际系统运行时, 当呼叫建立后, BTS ( Base transceiver system基 站收发信台 ) 不断检测自己与手机之间的 RTD。 如果该 RTD的大小变化 超过一个门限, BTS将向 BSC ( Base station controller基站控制器 ) 上报 手机与该 BTS之间的 RTD值(基站测量的 RTD值包括了基站的内部处理 延时) 。 另外, 在呼叫建立、 发生硬切换、 新建分支的时候, 基站也会上 报对应分支的 RTD。 BSC根据获取的 RTD上报值,更新对应分支的 RTD。
对于 RTD进行业务处理时的应用, 其应用之一是可以使用 RTD定位 技术结合传统的卫星定位技术, 能够以最少的硬件成本获得最佳的定位精 度。 其应用之二是作为硬切换的触发条件, 能够提高硬切换的及时性和准 确性。
如图 1所示,前向链路基准时间是 Tsys ,手机的基准时间就是 Tsys+t 1 , 这个时间也就是反向信道的基准时间, 而反向信道上还有一个时延 t2, 基 站接收到的反向信道上的时间就是 Tsys+tl+t2, 所以总的双向环路时延就 是 11 +t2 , 即 RTD为(t 1 +t2)/2。
从现有技术可以看出, RTD只能由基站上报得到, 环路时延更新不够 及时。 进一步对于参考导频, 其前向信道和反向信道的时延是相等的, 所 以基站上报的值就是其实际值。 但是对于非参考导频, 其前向信道的时延 是参考导频的前向时延, 反向时延是其本身的反向时延, 这两个时延不相 等时, 就造成了上报值和实际值有偏差。 如下图 2所示, 对于非参考导频 NoRefPN, 基站上报的 RTD为 ( tl+t2 ) /2, 与实际值 t2存在偏差。 发明内容 为了解决环路时延更新不够及时的问题, 本发明实施例提供了一种环 路时延更新的方法, 包括:
获取参考导频环路时延上报值;
接收终端测量的非参考导频的相位并获取匹配的伪随机序列码; 获取非参考导频环路时延推算值, 并将非参考导频环路时延更新为该 值, 获取非参考导频环路时延推算值釆用如下公式:
RTD— i = Bts— Report— RTD[Ref]+ (PnPhase_i - 64 PN i), 其中 RTD— i 表示第 i个非参考导频环路时延推算值, Bts— Report— RTD[Ref]表示参考导 频环路时延上报值, PnPhase— i表示第 i个非参考导频的相位, PN— i表示 第 i个非参考导频的伪随机序列码。
为了解决环路时延更新不够及时的问题, 同时本发明实施例还提供一 种环路时延更新的装置, 包括:
第一获取模块: 用于获取参考导频环路时延上报值;
接收模块: 用于接收终端测量的非参考导频的相位并获取匹配的伪随 机序列码;
运算模块: 用于获取非参考导频环路时延推算值, 并将非参考导频环 路时延更新为该值, 获取非参考导频环路时延推算值釆用如下公式:
RTD— i = Bts— Report— RTD [Ref]+ (PnPhase— i - 64 PN i), 其中 RTD— i 表示第 i个非参考导频环路时延推算值, Bts— Report— RTD[Ref]表示参考导 频环路时延上报值, PnPhase— i表示第 i个非参考导频的相位, PN— i表示 第 i个非参考导频的伪随机序列码。
由上述本发明实施例提供的方案可以看出,正是由于通过终端获取的非参 考导频的相位以及匹配的 PN, 之后通过计算也可获取环路时延, 使得环路时 延更新更加及时, 通过对非参考导频基站上报环路时延进行校正, 使得环路 时延更新更准确。 附图说明
图 1为现有技术 RTD算法示意图;
图 2为现有技术基站 RTD示意图;
图 3为本发明第一实施例提供的基站 RTD示意图;
图 4为本发明第一实施例提供的方法流程图;
图 5为本发明第二实施例提供的基站 RTD示意图;
图 6为本发明第二实施例提供的方法流程图;
图 7为本发明第三实施例提供的方法流程图;
图 8为本发明第三实施例提供的基站 RTD示意图;
图 9为本发明第四实施例提供的方法流程图;
图 10为本发明第四实施例提供的基站 RTD示意图;
图 11为本发明第四实施例提供的基站 RTD示意图;
图 12为本发明实施例提供的基站测量值时延示意图;
图 13为本发明第五实施例提供的装置结构图;
图 14为本发明第六实施例提供的装置结构图。 具体实施方式
本发明第一实施例提供的是一种环路时延更新的方法, 如图 3所示, 某手机有两个激活集分支 A和 B , 它们的真实 RTD分别为 5chips和 8 chips, 其中 A为参考导频、 B为非参考导频, 实现环路时延更新的方法流 程如图 4所示, 包括:
步骤 101 : 参考导频 A RTD上报值为 5chips、 非参考导频 B RTD上报值为 ( 5+8 ) /2=6.5chips„
步骤 102: 对非参考导频 B RTD上报值进行校正, 釆用如下公式: RTD[NoRef] = Bts— Report— RTD [NoRefJx 2 - Bts— Report— RTD [Ref] , 其中 RTD[NoRef]表示非参考导频 B环路时延校正值, Bts— Report— RTD [NoRef] 表示非参考导频 B RTD上报值,:^8—1?^011—101)[1^3表示参考导频八101)值, 代入步骤 101的数值, RTD[NoRef] = 6.5x2 - 5=8 , 即经过校正, 与非参考 导频 B真实 RTD相同。
步骤 103: 进一步还可以利用 RTD[NoRef]对非参考导频 B RTD进行 更新。
可见, 经过校正, RTD[NoRef]与非参考导频 B真实 RTD相同。
本发明第二实施例提供的是一种环路时延更新的方法, 虽然通过第一 实施例中的方法,经过校正后 RTD[NoRef]与非参考导频 B真实 RTD相同, 不再会出现偏差, 但只有基站上报时 RTD才能更新, 当激活集分支 B的 RTD由图 3的 8chips变为图 5的 9chips, 此时没有基站上报 RTD (假设 RTD变化超过 lChip基站上报) , 因此无法进行更新, 其实时性差, 为了 进一步解决 RTD更新实时性差的问题 ,在 RTD由 8chips变为 9chips期间 , 若有手机 PSMM ( Pilot Strength Measurement Message导频强度测量) 消 息上报非参考导频 B的相位, 则根据非参考导频 B的相位获取匹配的 PN ( Pseud-random Number伪随机序列码) , 以参考导频 A的基站上报 RTD 为基准 RTD, 通过对上述参数进行相关计算来获取并更新非参考导频的 RTD。 至于如何获取匹配的 PN, 则属于现有技术, 不同的厂家有不同的 实现方法, 如釆用 PN=Pnphase/64的计算公式获取, 系统以参考导频为中 心, 根据各个基站的经纬度信息和 PN信息等参数配置, 在一个半径内搜 索与 Pnphase/64最接近的 PN。 第二实施例具体的方法流程如图 6所示, 包括:
步骤 201 : 当非参考导频 B的 RTD由 8chips变为 9chips时, 未有基 站上报 RTD, 此时由于导频强度的变化, 手机上报 PSMM消息, 系统获 取 PSMM消息中非参考导频 B的相位 2308并获取匹配的 PN为 36。
步骤 202: 获取非参考导频 B环路时延推算值, 釆用如下公式:
RTD— i = Bts— Report— RTD [Ref]+ (PnPhase_i - 64 PN i), 其中 RTD— i 表示第 i个非参考导频 B环路时延推算值, Bts— Report— RTD[Ref]表示参考 导频 A RTD上报值, 作为基准 RTD在计算中使用, PnPhase— i表示第 i 个非参考导频 B的相位, PN— i表示第 i个非参考导频 B的 PN, 代入步骤 201以及实施例一步骤 101的数值, RTD i =5+ ( 2308-64 χ 36 ) =9chips。
进一步还可以利用 RTD— i对非参考导频 B RTD进行更新。
可见, 釆用上述方法后 RTD更新更及时。
作为更优化的方案可使手机 PSMM消息周期上 即釆用 PPSMM( Period Pilot Strength Measurement Message周期导频强度测量) 消息。
当然通过 PSMM/PPSMM消息上报的非参考导频的相位并获取匹配的 PN来更新非参考导频的 RTD方法, 也可以不基于第一实施例中的方案, 即不基于对非参考导频 B的基站上报 RTD进行校正的方案, 而直接在现 有技术的基础上实施。 之后可以利用第一实施例中的校正方法, 在本实施 例方案的基础上进一步对非参考导频 B RTD上报值进行校正。
本发明第三实施例提供的是一种环路时延更新的方法, 因为
PSMM/PPSMM消息中的 Pnphase是手机测量得到的,这个值并不总是可靠的, 当非参考导频 B变为参考导频的时候,若以非参考导频 B RTD推算值更新的非 参考导频 B RTD, 作为参考导频 RTD对非参考导频 RTD上报值进行校正, 或 作为获取非参考导频 B环路时延推算值计算的基准 RTD,得到的非参考导频的 RTD就可能有偏差。 为了进一步解决这一问题, 本发明第三实施例提供的方 法中 BSC对激活集中的 A、 B分支维护 2个 RTD值, "当前更新值" 和 "基站 上报值" 。 业务处理(如: 硬切换和手机位置定位)时调用 "当前更新值" , 作为算法判决及性能字段输出使用。 "基站上报值" 用于该分支作为参考导 频时对其他非参考导频基站上报的 RTD进行校正或作为 Pnphase计算的基准 RTD。 本发明第三实施例提供的方法流程如图 7所示, 包括:
步骤 301 : 如图 5所示, 参考导频 A的基站上报 RTD后, 得到参考导频 A
RTD上报值为 5chips, 将参考导频 A的 "当前更新值" 更新为 5chips, 通过读 取该数值为 5chips 的 "当前更新值" 进一步判断是否需要硬切换。 步骤 302: 如图 5所示, 参考导频 A的基站上报 RTD后, 得到参考导频 A RTD上报值为 5chips, 将参考导频 A 的 "基站上报值" 更新为 5chips, 以数值 为 5chips "基站上报值" 对非参考导频基站 B上报的 RTD进行校正或作为获取 非参考导频 B环路时延推算值计算的基准 RTD。
步骤 303: 如图 5所示,收到手机上报的 PSMM/PPSMM消息, 计算得到非 参考导频 B环路时延推算值 9chips, 将非参考导频 B的 "当前更新值" 更新为 9chips, 通过读取该数值为 9chips 的 "当前更新值" 进一步判断是否需要硬 切换。
步骤 304: 非参考导频 B基站真实的 RTD值由如图 5所示的 9chips变为如图
8所示的 7 chips, 变化量超过门限值 lchips,非参考导频 B RTD上报值为( 5+7 ) /2=6chips, 校正后, 得到非参考导频 B环路时延校正值 7chips, 将分支 B "当 前更新值" 更新 7chips, 通过读取该数值为 7chips 的 "当前更新值" 进一步 判断是否需要硬切换。
步骤 305: 如图 8所示,对非参考导频 B RTD上报值进行校正后, 得到非参 考导频 B环路时延校正值 7chips, 将非参考导频 B 的 "基站上报值" 更新为 7chips, 若此时参考导频发生改变, 变成 B分支, 以数值为 7chips "基站上报 值" 对其他非参考导频 (此时 A分支变为非参考导频) RTD上报值进行校正 或作为获取非参考导频 B环路时延推算值计算的基准 RTD。
当然釆用 "当前更新值" 和 "基站上报值" 只是一个优选的方案。 实现 当非参考导频对应分支进行业务处理时, 也可以直接调用非参考导频 RTD上 报值或非参考导频 RTD校正值的方案。 当参考导频对应分支进行业务处理时, 也可以直接调用参考导频基站 RTD上报值。当 B分支由非参考导频改变为参考 导频时, 也可以直接以 B分支作为非参考导频时的非参考导频 RTD校正值 7chips对其他非参考导频基站 RTD上报值进行校正。 A分支作为参考导频时, 也可以直接以分支 A的基站 RTD上报值 5chips对其他非参考导频基站 RTD上 报值进行校正。
可见, 由于非参考导频 RTD推算值只是进行业务处理时使用, 不会以非 参考导频 RTD推算值作为参考导频 RTD, 参考导频 RTD始终用的是 "基站上 才艮值" , 所以参考导频 RTD出现偏差的可能性不会变大。
本发明第四实施例提供的是一种环路时延更新的方法, 因为对于实施例 三的方案中,存在一个问题: 参考导频的改变并不触发 PSMM/PPSMM消息的 上报, 这样, 当不满足 PSMM/PPSMM消息上报的条件, 只是参考导频由其中 的 A分支变为 B分支的时候, 并不上 4艮 PSMM/PPSMM消息。 如果在参考导频 改变(如由分支 A变为分支 B )和之后的第一条 PSMM/PPSMM消息上报之间 分支 C有基站上报 RTD, 当然, 这里不一定是分支 C, 事实上, 只要在这中间 有基站上报 RTD, 都会有问题: 可能不应该被校正的却被校正了, 或者应该 被校正的没有得到校正, 分支 C有基站上报 RTD只是本发明一个优选实施例 , 这个值可能被一个当前已经是非参考导频的分支 A的 RTD校正(只有通过 PSMM/PPSMM才可知道哪个分支是参考导频),从而可能造成之后更新 RTD 混乱。
为了进一步防止在参考导频由分支 A变为分支 B, 和之后的第一条
PSMM/PPSMM消息上报之间有基站上报 RTD的情况,对于各基站 RTD上报值 先进行緩存, 并且在之后的第一条 PSMM/PPSMM消息上报后再进行如下更 新:
对于 PSMM/PPSMM消息中上报的新的参考导频 B, 如果有基站上报的緩 存值, 则将 "基站上报值"和 "当前更新值"更新为 B分支基站上报的緩存值, 否则不进行更新; 对于 PSMM/PPSMM消息中上报的非参考导频 A, 如果有基 站上报緩存值, 用新参考导频 B的 "基站上报值"进行校正后分别更新 "基站 上报值"和 "当前更新值"。之后再用分支 B的 "基站上报值"和 PSMM/PPSMM 消息中非参考导频 A的 Pnphase对非参考导频的 "当前更新值" 。
本发明第四实施例提供的方法流程如图 9所示, 包括: 步骤 401 : 当图 3中参考导频发生改变, 基站 RTD示意图如图 10所 示, 由 A变为 B时, 没有 PSMM/PPSMM消息上报, 但分支 A、 分支 B、 分支 C (新增分支 )有基站上报 RTD , 分支 A RTD上报值为 6.5chips (真 实 RTD为 7chips ) 、 分支 B RTD上 4艮值为 6chips , 分支 C RTD上 4艮值是 8chips (真实 RTD为 lOchips ) , 上 4艮后 BSC进行緩存, 并不对 "基站上 才艮值" 和 "当前更新值" 进行更新。
步骤 402: 手机位置发生变化, 基站 RTD示意图如图 1 1所示, 此时 PSMM/PPSMM消息上报, 根据 PSMM/PPSMM消息确认参考导频为 B , 分支 A的 Pnphase为 2306 (分支 A的 PN为 36 ) , 分支 C的 Pnphase为 14338 (分支 C的 PN为 224 ) , BSC根据上述信息对各分支 RTD进行更 新。
步骤 403 : 发现参考导频发生改变, 且三个分支均有基站上报緩存值, 先将参考导频 B的 "基站上报值" 和 "当前更新值" 更新为该分支基站上 报的緩存值 6chips; 之后用参考导频 B的 "基站上报值" 对非参考导频 A 和 C基站上报的緩存值进行校正后更新为"基站上报值"和"当前更新值": 分支 B: 6chips
分支 A: 6.5 2-6=7chips
分支 C: 8 χ 2-6=10chips
步骤 404: 根据参考导频 B的 "基站上报值" 和 PSMM/PPSMM消息 中非参考导频 A和 C的 Pnphase对非参考导频的"当前更新值"进行更新, 分支 A: 6+ ( 2306-64 χ 36 ) =8chips
分支 C: 6+ ( 14338-64 χ 224 ) =8chips
由上面的实施例可以看出, 在参考导频由分支 A变为分支 B , 和之后 的步骤 401中 P SMM/PPSMM消息上报之间分支 C有基站上报 RTD , 因 为并不立即对分支 C RTD上 4艮值进行相关运算和处理, 而是首先确定参 考导频为 B , 因此运算时的参考导频是准确的,经过校正,非参考导频(分 支 C ) 的 RTD也是准确的, 解决了之后更新 RTD混乱的问题。 第四实施例中, 若参考导频未发生改变仍然是 A, 则仍以参考导频 A 的 "基站上报值" 对包括分支 B的其它非参考导频 RTD上报值进行校正。
如图 12所示, 以上实施例中, 基站到天线口的时延与载频板 TRX、 芯片 CP等硬件配置有关。 因此可以先测量出各种不同配置情况的固定时 延, 将此固定时延从基站芯片到终端的测量时延中减去后再上报给 BSC, 即: 环路时延上报值=基站芯片到终端的测量时延-芯片到天线口的固定时 延。
本发明第五实施例提供的是一种环路时延更新的装置,其结构如图 13 所示, 包括:
第一获取模块 501 : 用于获取参考导频环路时延上报值;
接收模块 502: 用于接收终端测量的非参考导频的相位并获取匹配的 伪随机序列码;
运算模块 503: 用于获取非参考导频环路时延推算值, 并将非参考导 频环路时延更新为该值, 获取非参考导频环路时延推算值釆用如下公式:
RTD— i = Bts— Report— RTD [Ref]+ (PnPhase_i - 64 PN i), 其中 RTD— i 表示第 i个非参考导频环路时延推算值, Bts— Report— RTD[Ref]表示参考导 频环路时延上报值, PnPhase— i表示第 i个非参考导频的相位, PN— i表示 第 i个非参考导频的伪随机序列码。
本发明第六实施例提供的是一种环路时延更新的装置,其结构如图 14 所示, 包括:
第一获取模块 601 : 用于获取参考导频环路时延上报值;
第二获取模块 602: 用于获取非参考导频环路时延上报值;
校正模块 603: 用于对非参考导频环路时延上报值进行校正, 釆用如 下公式: RTD[NoRef] = Bts— Report— RTD[NoRef]x2 -
Bts— Report— RTD [Ref] ,其中 RTD[NoRef]表示非参考导频环路时延校正值, Bts_Report_RTD[NoRef] 表示非参考导频环路时延上报值,
Bts— Report一 RTD [Ref] 表示参考导频环路时延上报值。 本发明的精神和范围。 这样, 倘若本发明的这些修改和变型属于本发明及 其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求 书
1、 一种环路时延更新的方法, 其特征在于, 包括:
获取参考导频环路时延上报值;
接收终端测量的非参考导频的相位并获取匹配的伪随机序列码; 获取非参考导频环路时延推算值, 并将非参考导频环路时延更新为该 值, 获取非参考导频环路时延推算值釆用如下公式:
RTD— i = Bts— Report— RTD[Ref]+ (PnPhase_i - 64 PN i), 其中 RTD— i 表示第 i个非参考导频环路时延推算值, Bts— Report— RTD[Ref]表示参考导 频环路时延上报值, PnPhase— i表示第 i个非参考导频的相位, PN— i表示 第 i个非参考导频的伪随机序列码。
2、 如权利要求 1所述的方法, 其特征在于, 还包括:
当进行基于环路时延的业务处理时, 调用非参考导频环路时延进行相 应处理操作。
3、 如权利要求 2所述的方法, 其特征在于, 还包括:
获取非参考导频环路时延上报值;
对非参考导频环路时延上报值进行校正, 釆用如下公式:
RTD[NoRef] = Bts— Report— RTD [NoRefJx 2 - Bts— Report— RTD [Ref] ,其中 RTD[NoRef]表示非参考导频环路时延校正值, Bts— Rep ort RTD [NoRef] 表示非参考导频环路时延上报值。
4如权利要求 3所述的方法, 其特征在于, 还包括:
当有基站上报环路时延时, 对非参考导频环路时延上报值进行校正, 将非参考导频环路时延更新为非参考导频环路时延校正值和 /或获取非参 考导频环路时延推算值, 并将非参考导频环路时延更新为非参考导频环路 时延推算值。
5、 如权利要求 3所述的方法, 其特征在于, 还包括:
当终端有 PSMM消息上报时, 接收终端的 PSMM消息, 根据 PSMM 消息确定参考导频后;
对非参考导频环路时延上报值进行校正, 将非参考导频环路时延更新 为非参考导频环路时延校正值和 /或获取非参考导频环路时延推算值,并将 非参考导频环路时延更新为非参考导频环路时延推算值。
6、 如权利要求 5所述的方法, 其特征在于, 若 PSMM消息中上报的 参考导频有更新, 则根据新的参考导频, 对非参考导频环路时延上报值进 行校正,将非参考导频环路时延更新为非参考导频环路时延校正值和 /或获 取非参考导频环路时延推算值, 并将非参考导频环路时延更新为非参考导 频环路时延推算值。
7、 如权利要求 5所述的方法, 其特征在于, 若 PSMM消息中上报的 参考导频没有更新, 则根据原参考导频, 对非参考导频环路时延上报值进 行校正,将非参考导频环路时延更新为非参考导频环路时延校正值和 /或获 取非参考导频环路时延推算值, 并将非参考导频环路时延更新为非参考导 频环路时延推算值。
8、 如权利要求 5至 7任意一项权利要求所述的方法, 其特征在于, 终端 PSMM消息周期上才艮。
9、 如权利要求 1至 7任意一项权利要求所述的方法, 其特征在于, 所述环路时延上报值 =基站芯片到终端的测量时延-芯片到天线口的 固定时延。
10、 如权利要求 2至 7任意一项权利要求所述的方法, 其特征在于, 所述业务处理包括基于环路时延的硬切换处理和定位处理。
1 1、 一种环路时延更新的装置, 其特征在于, 包括:
第一获取模块: 用于获取参考导频环路时延上报值;
接收模块: 用于接收终端测量的非参考导频的相位并获取匹配的伪随 机序列码;
运算模块: 用于获取非参考导频环路时延推算值, 并将非参考导频环 路时延更新为该值, 获取非参考导频环路时延推算值釆用如下公式:
RTD— i = Bts— Report— RTD[Ref]+ (PnPhase_i - 64 PN i), 其中 RTD— i 表示第 i个非参考导频环路时延推算值, Bts— Report— RTD[Ref]表示参考导 频环路时延上报值, PnPhase— i表示第 i个非参考导频的相位, PN— i表示 第 i个非参考导频的伪随机序列码。
PCT/CN2008/071525 2007-07-10 2008-07-02 Procédé et appareil de mise à jour de temps de propagation en boucle WO2009006827A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710122660.7 2007-07-10
CN2007101226607A CN101072415B (zh) 2007-07-10 2007-07-10 一种环路时延更新的方法及装置

Publications (1)

Publication Number Publication Date
WO2009006827A1 true WO2009006827A1 (fr) 2009-01-15

Family

ID=38899356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071525 WO2009006827A1 (fr) 2007-07-10 2008-07-02 Procédé et appareil de mise à jour de temps de propagation en boucle

Country Status (2)

Country Link
CN (1) CN101072415B (zh)
WO (1) WO2009006827A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020083326A1 (zh) * 2018-10-24 2020-04-30 中兴通讯股份有限公司 参数配置、参数接收方法及装置、存储介质
US12003358B2 (en) 2018-10-24 2024-06-04 Zte Corporation Parameter configuration and parameter receiving methods and apparatus, and storage medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101072415B (zh) * 2007-07-10 2010-11-03 华为技术有限公司 一种环路时延更新的方法及装置
CN103581142A (zh) * 2012-08-03 2014-02-12 华为技术有限公司 数据业务体验评估方法、装置及网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998049859A1 (en) * 1997-04-30 1998-11-05 Qualcomm Incorporated A method of and apparatus for tracking propagation delay between a base station and a subscriber unit
CN1291022A (zh) * 1999-10-05 2001-04-11 Lg电子株式会社 在码分多址系统中捕获多用户信号同步的装置和方法
KR20020004447A (ko) * 2000-07-05 2002-01-16 박종섭 Cdma 시스템에서의 이동국 신호 탐색 장치 및 그 방법
CN101072415A (zh) * 2007-07-10 2007-11-14 华为技术有限公司 一种环路时延更新的方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998049859A1 (en) * 1997-04-30 1998-11-05 Qualcomm Incorporated A method of and apparatus for tracking propagation delay between a base station and a subscriber unit
CN1291022A (zh) * 1999-10-05 2001-04-11 Lg电子株式会社 在码分多址系统中捕获多用户信号同步的装置和方法
KR20020004447A (ko) * 2000-07-05 2002-01-16 박종섭 Cdma 시스템에서의 이동국 신호 탐색 장치 및 그 방법
CN101072415A (zh) * 2007-07-10 2007-11-14 华为技术有限公司 一种环路时延更新的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG Z-F. ET AL.: "Probing into CDMA2000 searching window", JOURNAL OF MINXI VOCATIONAL COLLEGE, no. 4, December 2004 (2004-12-01), pages 128 - 130 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020083326A1 (zh) * 2018-10-24 2020-04-30 中兴通讯股份有限公司 参数配置、参数接收方法及装置、存储介质
US12003358B2 (en) 2018-10-24 2024-06-04 Zte Corporation Parameter configuration and parameter receiving methods and apparatus, and storage medium

Also Published As

Publication number Publication date
CN101072415A (zh) 2007-11-14
CN101072415B (zh) 2010-11-03

Similar Documents

Publication Publication Date Title
US7492754B2 (en) Method and apparatus in a CDMA communication system
JP4373002B2 (ja) 非同期符号分割多元接続移動体通信システム内の基地局のタイミングを容易にする方法及びシステム
EP2485545B1 (en) Communications in an asynchronous wireless network
US7962148B2 (en) Controlling and managing access to multiple networks
US7650155B2 (en) Transmission time difference measurement method and system
JP4541622B2 (ja) 移動局位置情報を利用してパイロット信号サーチ時間を短縮する方法及び装置
JP2001186559A (ja) 移動通信システム及びそれに用いる基地局間の簡易同期方法
JP2002505542A (ja) 無線通信システムに時間調整を提供するための方法および装置
JP2002532946A (ja) 無線通信システム同期を行う方法および装置
JP2002524967A (ja) 通信システム
JP2000101650A (ja) パケット無線信号の基地局への時間同期
CN101184325B (zh) 通信系统中的切换方法及终端
JP2005509332A (ja) Wcdmaシステムにおける基地局の同期
CN100455109C (zh) 增强型a-gps定位方法
WO2009006827A1 (fr) Procédé et appareil de mise à jour de temps de propagation en boucle
US20130035119A1 (en) Mobile communication system and mobile terminal
JP4294409B2 (ja) 無線通信システムおよび移動無線装置
KR100331928B1 (ko) Cdma 시스템에서의 이동국 신호 탐색 장치 및 그 방법
CN102036367A (zh) 基于时间测量的定位方法及装置
KR20110085889A (ko) 기지국, 중계기, 및 그들의 동작 방법
JP2005140556A (ja) 測位方法、移動局及び基地局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08773086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08773086

Country of ref document: EP

Kind code of ref document: A1