WO2020083326A1 - 参数配置、参数接收方法及装置、存储介质 - Google Patents

参数配置、参数接收方法及装置、存储介质 Download PDF

Info

Publication number
WO2020083326A1
WO2020083326A1 PCT/CN2019/112929 CN2019112929W WO2020083326A1 WO 2020083326 A1 WO2020083326 A1 WO 2020083326A1 CN 2019112929 W CN2019112929 W CN 2019112929W WO 2020083326 A1 WO2020083326 A1 WO 2020083326A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference pilot
static
identification
pseudo
group index
Prior art date
Application number
PCT/CN2019/112929
Other languages
English (en)
French (fr)
Inventor
肖华华
蒋创新
鲁照华
李永
张淑娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to KR1020217015368A priority Critical patent/KR20210077750A/ko
Priority to EP19876133.0A priority patent/EP3873046A4/en
Publication of WO2020083326A1 publication Critical patent/WO2020083326A1/zh
Priority to US17/236,341 priority patent/US12003358B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26136Pilot sequence conveying additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/02Amplitude-modulated carrier systems, e.g. using on-off keying; Single sideband or vestigial sideband modulation
    • H04L27/06Demodulator circuits; Receiver circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/262Reduction thereof by selection of pilot symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal

Definitions

  • the present disclosure relates to the field of communications, for example, to a parameter configuration, parameter receiving method and device, and storage medium.
  • CSI channel state information
  • CSI-RS downlink channel state information reference signal
  • SRS uplink Sounding Reference Signal
  • the pilot pattern configuration 1 is a pilot configuration based on Interval Frequency Division Multiplexing (IFDM), which divides the frequency domain subcarriers into 2 combs at equal intervals, each The comb corresponds to a DMRS, CDM (Code Division Multiplexing, Code Division Multiplexing) Group, and the pilot of a port is sent on only one of the combs, also known as DMRS Type 1.
  • IFDM Interval Frequency Division Multiplexing
  • CDM Code Division Multiplexing, Code Division Multiplexing
  • the pilot of a port is sent on only one of the combs, also known as DMRS Type 1.
  • the pilot pattern configuration 2 is a pilot pattern based on Frequency-Domain-Orthogonal Cover Code (FD-OCC).
  • This pilot pattern uses adjacent Nocc subcarriers
  • pilot signals of different ports are distinguished by OCC, where Nocc is the sequence length of OCC.
  • This type of pilot is also called DMRS Type 2, and there are at most 3 DMRS ports in the frequency domain.
  • the DMRS ports between the groups are distinguished by the frequency domain, the ports in the DMRS group are distinguished by OCC, and the group distinguished by OCC
  • the port is a DMRS CDM Group, and there are at most 3 CDM Groups. .
  • the pilot sequences corresponding to different DMRS CDM Groups are the same, as shown in FIG. 3. Because the pilot sequences of different CDM Groups are the same, it is possible that the signals will be superimposed in the same direction in the time domain, resulting in a higher peak-to-average power ratio (Peak to Average Power Ratio, PAPR), that is, at different times.
  • PAPR Peak to Average Power Ratio
  • the transmit power at the domain sampling point is sometimes greater than the average power, and sometimes less than the average power.
  • the value of the maximum transmit power divided by the average power may exceed the capability of the transmit antenna unit.
  • CSI-RS a large PAPR may also be generated.
  • Embodiments of the present invention provide a parameter configuration, parameter receiving method and device, and a storage medium to at least solve the problem of excessively high PAPR of reference signals caused by the same sequence of reference pilot groups in the related art.
  • a parameter configuration method including:
  • Configure reference pilot sequence parameters determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameter, where the initial value of the reference pilot pseudo-random sequence is used to generate the corresponding
  • the pilot pseudo-random sequence of the reference pilot group M is a positive integer, and the reference pilot group corresponds to at least one reference pilot port.
  • a parameter receiving method for receiving reference pilot sequence parameters; determining the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters Where the initial value of the reference pilot pseudo-random sequence is used to generate a pilot pseudo-random sequence of the corresponding reference pilot group, M is a positive integer, and the reference pilot group corresponds to at least one reference pilot port.
  • a parameter configuration device including:
  • Configuration module set to configure reference pilot sequence parameters
  • the first determining module is configured to determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters, where the initial value of the reference pilot pseudo-random sequence is used to generate the corresponding
  • the pilot pseudo-random sequence of the reference pilot group M is a positive integer, and the reference pilot group corresponds to at least one reference pilot port.
  • a parameter receiving device including:
  • the receiving module is set to receive the reference pilot sequence parameters
  • the second determining module is configured to determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters, where the initial value of the reference pilot pseudo-random sequence is used to generate the corresponding
  • the pilot pseudo-random sequence of the reference pilot group M is a positive integer, and the reference pilot group corresponds to at least one reference pilot port.
  • a storage medium in which a computer program is stored, wherein the computer program is set to execute the parameter configuration method at runtime.
  • a storage medium in which a computer program is stored, wherein the computer program is set to execute the parameter receiving method at runtime.
  • reference pilot sequence parameters are configured, and initial values of reference pilot pseudo-random sequences corresponding to M reference pilot groups are determined according to the reference pilot sequence parameters, and the initial values of reference pilot pseudo-random sequences are used to generate
  • the pilot pseudo-random sequence of the corresponding reference pilot group corresponds to at least one reference pilot port.
  • Figure 1 is a schematic diagram of the pilot of DMRS Type 1 in the related art
  • Figure 2 is a schematic diagram of DMRS Type 2 pilot in the related art
  • FIG. 3 is a schematic diagram of the pilot sequence of DMRS Type 1 or DMRS Type 2 in the related art
  • FIG. 5 is a flowchart of a parameter receiving method according to an embodiment of the present invention.
  • FIG. 6 is a structural block diagram of a parameter configuration device according to an embodiment of the present invention.
  • FIG. 7 is a structural block diagram of a parameter receiving apparatus according to an embodiment of the present invention.
  • FIG. 4 is a flowchart of a parameter configuration method according to an embodiment of the present invention. As shown in FIG. 4, the process includes the following steps:
  • Step S402 configuring reference pilot sequence parameters
  • Step S404 Determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters, where the initial value of the reference pilot pseudo-random sequence is used to generate the corresponding reference pilot group Pilot pseudo-random sequence, M is a positive integer, and the reference pilot group corresponds to at least one reference pilot port.
  • reference pilot sequence parameters are configured, and initial values of reference pilot pseudorandom sequences corresponding to M reference pilot groups are determined according to the reference pilot sequence parameters, and the initial values of reference pilot pseudorandom sequences are used to generate
  • the pilot pseudo-random sequence of the corresponding reference pilot group adopts the above technical solution to solve the problem of excessively high PAPR of the reference signal due to the same pilot sequence in the related art, thereby effectively reducing the PAPR of the reference signal.
  • the reference pilot signal may also be called a reference signal, a pilot signal, a reference pilot and other concepts, and is used for signals for channel measurement or channel estimation, including but not limited to DMRS, CSI-RS, SRS, etc.
  • the CSI-RS is also divided into multiple groups, and the CSI-RS of each group is distinguished by code division, which is also a CSI-RS CDM Group.
  • the reference pilot group includes at least one of the following: a reference pilot port group, a reference pilot CDM group, and a CDM group corresponding to the reference pilot port.
  • the reference pilot sequence parameter includes at least one of the following: a static identifier, a static identifier step size, a dynamic identifier, a reference pilot group index, and a backoff weight w, where the reference pilot group index includes a reference pilot Group absolute index and reference pilot group relative index.
  • the method includes at least one of the following: the static identification is configured by high layer signaling; the static identification step size is determined by high layer signaling configuration; the dynamic identification is configured by physical layer signaling; and the reference pilot group index It is configured by physical layer signaling; the backoff weight w is configured by high layer signaling or physical layer signaling; and the backoff weight is determined by a static identifier or a dynamic identifier.
  • K static identifiers are configured through high-level signaling, and the K static identifiers are divided into L groups of static identifier groups, where K is a positive and even number, and L is an integer greater than 1 and less than K.
  • the method includes at least one of the following:
  • the value of K is determined by at least one of: the number of reference pilot groups, the number of transmission layers, and the type of reference pilot; the value of L is determined by the number of reference pilot groups; and the static identifier The number of static identifications included in a group is determined by the number of pilot port groups.
  • the method includes one of the following: selecting the static identification group by dynamic identification and a reference pilot group index; selecting the static identification group by dynamic identification; selecting the static identification group by referring to the pilot group index; by dynamic identification And the reference pilot group index to select the static identifier; determine the backoff weight value w through the static identifier or the dynamic identifier.
  • the determination of the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters includes at least one of the following ways: at least the M reference pilot groups are determined according to the static identification and the reference pilot group index Corresponding reference pilot pseudo-random sequence initial; at least according to the static identification, reference pilot group index and static identification step size to determine the M reference pilot group corresponding reference pilot pseudo-random sequence initial value; at least according to the static identification, reference pilot The frequency group index and the dynamic identification determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups; and determine the M reference pilot groups based at least on the static identification, reference pilot group index, dynamic identification and static identification step size The initial value of the corresponding reference pilot pseudo-random sequence.
  • Determining the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters includes at least one of the following ways: at least M are determined according to the static identifier, the reference pilot group index, and the modulo operation The initial value of the reference pilot pseudo-random sequence corresponding to the reference pilot group; at least the initial reference pilot pseudo-random sequence corresponding to the M reference pilot groups is determined according to the static identification, the reference pilot group index, the static identification step size, and the modulo operation Value; at least according to the static identification, reference pilot group index, dynamic identification and modulus operation to determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups; and at least according to the static identification, reference pilot group index, dynamic The identification, the static identification step size, and the modulo operation determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups.
  • the static mark includes a first position static mark and a second position static mark
  • the modulo operation includes one of the following operations:
  • Modulus the results of the static calculation of the first position, dynamic identification, and reference pilot group index, and modulo the results of the calculation of the static identification, dynamic identification, and reference pilot group index of the second position.
  • the reference pilot pseudo-random sequences of the M reference pilot groups include: a first type of reference pilot pseudo-random sequence and a second type of reference pilot pseudo-random sequence, wherein the first The pseudo-random sequence of reference pilots includes a sequence with the same value of the pseudo-random sequences of the M reference pilots, and the pseudo-random sequence of reference pilots of the second type includes the value of the pseudo-random sequences of the M reference pilots Not the same sequence.
  • the reference pilot pseudo-random sequence of the M reference pilot groups is determined to be the first type of reference pilot pseudo-random sequence by at least one of the following information: the dynamic identifier takes a value of 0; The static identifier step value is zero; the static identifier corresponding to the M reference pilot groups has the same value; and the backoff weight value w has the value 0.
  • the embodiments of the present invention also provide the following technical solutions:
  • the base station instructs the terminal to perform one of the following operations on the precoding indication information or the indication information on the DMRS port, and instructs the terminal to transmit DMRS: At least one column in the code is multiplied by a coefficient; DMRS is multiplied by a coefficient on at least one port that transmits DMRS.
  • the indication information satisfies at least one of the following:
  • the DMRS port indicated by the indication information is one of the following port sets: DMRS type 1 port set: ⁇ 0,4 ⁇ , ⁇ 0,1,4 ⁇ , ⁇ 0,1,4,5 ⁇ , ⁇ 2, 6 ⁇ , ⁇ 2,3,6 ⁇ , ⁇ 2,3,6,7 ⁇ , ⁇ 0,2,4,6 ⁇ ; DMRS type 2 port set: ⁇ 0,1,6 ⁇ , ⁇ 0,1 , 6,7 ⁇ , ⁇ 2,3,8 ⁇ , ⁇ 2,3,8,9 ⁇ , ⁇ 4,5,10,11 ⁇ ;
  • the precoding word indicated by the indication information has one of the following characteristics: all elements in the precoding word matrix are non-zero; in the precoding word matrix, there are at least two non-zero elements in one row.
  • the DMRS is multiplied by a coefficient on at least one port transmitting DMRS in the following manner: the coefficient multiplied by the DMRS transmitting 3 ports is included in the coefficient multiplied by the DMRS transmitting 4 ports, The coefficient multiplied by the DMRS transmitting 2 ports is included in the coefficient multiplied by the DMRS transmitting 3 ports.
  • the coefficient multiplied by each of the ports varies according to frequency domain resource units, and / or the coefficient multiplied by each of the ports varies according to time domain resource units.
  • At least one column in the precoding used is multiplied by a coefficient in the following manner: the coefficient multiplied by 2 columns in the precoding is included in the coefficient multiplied by 3 columns in the precoding, the precoding The coefficient multiplied by 3 columns is included in the coefficient multiplied by 4 columns in precoding.
  • the coefficient multiplied by each column in the precoding varies according to frequency domain resource units, and / or the coefficient multiplied by each column in the precoding varies according to time domain resource units.
  • FIG. 5 is a flowchart of a parameter receiving method according to an embodiment of the present invention. As shown in FIG. 5, the process includes the following steps:
  • Step S502 receiving reference pilot sequence parameters
  • Step S504 Determine an initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters, where the initial value of the reference pilot pseudo-random sequence is used to generate the corresponding reference pilot group
  • the pilot pseudo-random sequence of, the reference pilot group corresponds to at least one reference pilot port, M is a positive integer.
  • the initial value of the reference pilot pseudo-random sequence is used to Generate the pilot pseudo-random sequence of the corresponding reference pilot group, and adopt the above technical solution to solve the problem that the PAPR of the reference signal in the related art is too high due to the same pilot sequence, thereby effectively reducing the PAPR of the reference signal.
  • the reference pilot group includes at least one of the following: a reference pilot port group, a reference pilot CDM group, and a CDM group corresponding to the reference pilot port.
  • the reference pilot sequence parameters include at least one of the following: a static identifier, a static identifier step size, a dynamic identifier, a reference pilot group index, and a backoff weight value w, where the reference pilot
  • the frequency group index includes a reference pilot group absolute index and a reference pilot group relative index.
  • the method includes at least one of the following: the static identification is configured by high-level signaling; the static identification step size is configured by high-level signaling; the dynamic identification is configured by physical-layer signaling; The reference pilot group index is configured by physical layer signaling; the backoff weight value w is configured by high layer signaling or physical layer signaling; and the backoff weight value w is determined by a static identifier or a dynamic identifier.
  • K static identifiers are configured through high-level signaling, and the K static identifiers are divided into L groups of static identifier groups, where K is a positive and even number, and L is an integer greater than 1 and less than K.
  • the method includes at least one of the following: the value of K is determined by at least one of: the number of reference pilot groups, the number of transmission layers, and the type of reference pilot; the L The value is determined by the number of reference pilot groups; and the number of static identifications included in the static identification group is determined by the number of pilot port groups.
  • the method includes one of the following: selecting the static identification group through a dynamic identification and a reference pilot group index; selecting the static identification group through a dynamic identification; and selecting the static identification group through a reference pilot group index Static identification group; select the static identification through the dynamic identification and the reference pilot group index.
  • determining the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters includes at least one of the following ways: at least according to the static identification and the reference pilot group index Determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups; at least determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the static identification, the reference pilot group index and the static identification step size ; At least determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the static identification, reference pilot group index and dynamic identification; and at least according to the static identification, reference pilot group index, dynamic identification and static identification steps The length determines the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups.
  • determining the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters includes at least one of the following ways:
  • the operation determines the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups; at least the reference pilot pseudo-random corresponding to the M reference pilot groups is determined according to the static identification, the reference pilot group index, the dynamic identification, and the modulus operation
  • the initial value of the sequence; and the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups is determined according to at least the static identification, the reference pilot group index, the dynamic identification, the static identification step, and the modulo operation.
  • the static mark includes a first position static mark and a second position static mark
  • the modulo operation includes one of the following operations:
  • Modulus the results of the static calculation of the first position, dynamic identification, and reference pilot group index, and modulo the results of the calculation of the static identification, dynamic identification, and reference pilot group index of the second position.
  • the reference pilot pseudo-random sequences of the M reference pilot groups include: a first type of reference pilot pseudo-random sequence and a second type of reference pilot pseudo-random sequence, wherein the first The pseudo-random sequence of reference pilots includes a sequence with the same value of the pseudo-random sequences of the M reference pilots, and the pseudo-random sequence of reference pilots of the second type includes the value of the pseudo-random sequences of the M reference pilots Not the same sequence.
  • the reference pilot pseudo-random sequence of the M reference pilot groups is determined to be the first type of reference pilot pseudo-random sequence by at least one of the following information:
  • the value of the dynamic identifier is 0; the value of the static identifier step is zero; the value of the static identifier corresponding to the M reference pilot groups is the same; the value of the backoff weight w is 0.
  • the terminal when the reference signal is DMRS, the terminal performs one of the following operations by receiving precoding indication information or indication information for the DMRS port, and instructs the terminal to transmit DMRS: using Multiply at least one column by a factor; multiply the DMRS by a factor on at least one port that transmits DMRS.
  • the indication information satisfies at least one of the following:
  • the DMRS port indicated by the indication information is one of the following port sets: DMRS type 1 port set: ⁇ 0,4 ⁇ , ⁇ 0,1,4 ⁇ , ⁇ 0,1,4,5 ⁇ , ⁇ 2, 6 ⁇ , ⁇ 2,3,6 ⁇ , ⁇ 2,3,6,7 ⁇ , ⁇ 0,2,4,6 ⁇ ; DMRS type 2 port set: ⁇ 0,1,6 ⁇ , ⁇ 0,1 , 6,7 ⁇ , ⁇ 2,3,8 ⁇ , ⁇ 2,3,8,9 ⁇ , ⁇ 4,5,10,11 ⁇ ;
  • the precoding words indicated by the instruction information have one of the following characteristics: All elements in the precoding word matrix are non-zero; in the precoding word matrix, there are at least two non-zero elements in a row.
  • the DMRS is multiplied by a coefficient on at least one port transmitting DMRS in the following manner: the coefficient multiplied by the DMRS transmitting 3 ports is included in the coefficient multiplied by the DMRS transmitting 4 ports, The coefficient multiplied by the DMRS transmitting 2 ports is included in the coefficient multiplied by the DMRS transmitting 3 ports.
  • the coefficient multiplied by each of the ports varies according to frequency domain resource units, and / or the coefficient multiplied by each of the ports varies according to time domain resource units.
  • At least one column in the precoding used is multiplied by a coefficient in the following manner: the coefficient multiplied by 2 columns in the precoding is included in the coefficient multiplied by 3 columns in the precoding, the The coefficient multiplied by 3 columns is included in the coefficient multiplied by 4 columns in precoding.
  • the coefficient multiplied by each column in the precoding varies according to frequency domain resource units, and / or the coefficient multiplied by each column in the precoding varies according to time domain resource units.
  • a parameter configuration device is also provided.
  • the device is used to implement the above-mentioned embodiments and implementation modes, and those that have already been described will not be repeated.
  • the term "module” may implement a combination of software and / or hardware that performs predetermined functions.
  • the devices described in the following embodiments are preferably implemented in software, implementation of hardware or a combination of software and hardware is also possible and conceived.
  • FIG. 6 is a structural block diagram of a parameter configuration device according to an embodiment of the present invention. As shown in FIG. 6, the device includes:
  • the configuration module 60 is set to configure reference pilot sequence parameters
  • the first determining module 62 is configured to determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters, where the initial value of the reference pilot pseudo-random sequence is used to generate the corresponding
  • the pilot pseudo-random sequence of the reference pilot group of the reference pilot group corresponds to at least one reference pilot port, and M is a positive integer.
  • the initial value of the reference pilot pseudo-random sequence is used for Generate the pilot pseudo-random sequence of the corresponding reference pilot group, and adopt the above technical solution to solve the problem that the PAPR of the reference signal in the related art is too high due to the same pilot sequence, thereby effectively reducing the PAPR of the reference signal.
  • the reference pilot group includes at least one of the following: a reference pilot port group, a reference pilot CDM group, and a CDM group corresponding to the reference pilot port.
  • the reference pilot sequence parameters include at least one of the following: a static identifier, a static identifier step size, a dynamic identifier, a reference pilot group index, and a backoff weight value w, where the reference pilot
  • the frequency group index includes a reference pilot group absolute index and a reference pilot group relative index.
  • the method includes at least one of the following:
  • the static identification is configured through high-level signaling
  • the static identification step is configured through high-level signaling
  • the dynamic identification is configured through physical layer signaling
  • the reference pilot group index is configured through physical layer signaling
  • the back-off weight w is configured by high-layer signaling or physical layer signaling
  • the rollback weight value w is determined by a static mark or a dynamic mark.
  • K static identifiers are configured through high-level signaling, and the K static identifiers are divided into L groups of static identifier groups, where K is a positive and even number, and L is an integer greater than 1 and less than K.
  • the method includes at least one of the following:
  • the value of K is determined by at least one of the following: the number of reference pilot groups, the number of transmission layers, and the reference pilot type;
  • L is determined by the number of reference pilot groups.
  • the number of static identifications included in the static identification group is determined by the number of pilot port groups.
  • the method includes one of the following:
  • the static identification is selected through a dynamic identification and a reference pilot group index.
  • determining the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters includes at least one of the following ways:
  • the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups is determined according to at least the static identification, the reference pilot group index, the dynamic identification, and the static identification step.
  • determining the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters includes at least one of the following ways:
  • the operation determines the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups; at least the reference pilot pseudo-random corresponding to the M reference pilot groups is determined according to the static identification, the reference pilot group index, the dynamic identification, and the modulo operation
  • the initial value of the sequence; and the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups is determined according to at least the static identification, the reference pilot group index, the dynamic identification, the static identification step size, and the modulus operation.
  • the static mark includes a first position static mark and a second position static mark
  • the modulo operation includes one of the following operations:
  • Modulus the results of the static calculation of the first position, dynamic identification, and reference pilot group index, and modulo the results of the calculation of the static identification, dynamic identification, and reference pilot group index of the second position.
  • the reference pilot pseudo-random sequences of the M reference pilot groups include: a first type of reference pilot pseudo-random sequence and a second type of reference pilot pseudo-random sequence, wherein the first The pseudo-random sequence of reference pilots includes a sequence with the same value of the pseudo-random sequences of the M reference pilots, and the pseudo-random sequence of reference pilots of the second type includes the value of the pseudo-random sequences of the M reference pilots Not the same sequence.
  • the reference pilot pseudo-random sequence of the M reference pilot groups is determined to be the first type of reference pilot pseudo-random sequence by at least one of the following information:
  • the value of the dynamic identifier is 0; the value of the static identifier step is zero; the value of the static identifier corresponding to the M reference pilot groups is the same; and the value of the backoff weight w is 0.
  • the base station when the reference signal is DMRS, instructs the terminal to perform one of the following operations through the precoding indication information or the DMRS port indication information, and instructs the terminal to transmit DMRS: the precoding used Multiply at least one column by a factor; multiply the DMRS by a factor on at least one port that transmits DMRS.
  • the indication information satisfies at least one of the following:
  • the DMRS port indicated by the indication information is one of the following port sets: DMRS type 1 port set: ⁇ 0,4 ⁇ , ⁇ 0,1,4 ⁇ , ⁇ 0,1,4,5 ⁇ , ⁇ 2, 6 ⁇ , ⁇ 2,3,6 ⁇ , ⁇ 2,3,6,7 ⁇ , ⁇ 0,2,4,6 ⁇ ; DMRS type 2 port set: ⁇ 0,1,6 ⁇ , ⁇ 0,1 , 6,7 ⁇ , ⁇ 2,3,8 ⁇ , ⁇ 2,3,8,9 ⁇ , ⁇ 4,5,10,11 ⁇ ;
  • the precoding word indicated by the indication information has one of the following characteristics: all elements in the precoding word matrix are non-zero; in the precoding word matrix, there are at least two non-zero elements in one row.
  • the DMRS is multiplied by a coefficient on at least one port transmitting DMRS in the following manner: the coefficient multiplied by the DMRS transmitting 3 ports is included in the coefficient multiplied by the DMRS transmitting 4 ports, The coefficient multiplied by the DMRS transmitting 2 ports is included in the coefficient multiplied by the DMRS transmitting 3 ports.
  • the coefficient multiplied by each of the ports varies according to frequency domain resource units, and / or the coefficient multiplied by each of the ports varies according to time domain resource units.
  • At least one column in the precoding used is multiplied by a coefficient in the following manner: the coefficient multiplied by 2 columns in the precoding is included in the coefficient multiplied by 3 columns in the precoding, the The coefficient multiplied by 3 columns is included in the coefficient multiplied by 4 columns in precoding.
  • the coefficient multiplied by each column in the precoding varies according to frequency domain resource units, and / or the coefficient multiplied by each column in the precoding varies according to time domain resource units.
  • a parameter receiving device is also provided.
  • the device is used to implement the above-mentioned embodiments and implementation modes, and those that have already been described will not be repeated.
  • the term "module” may implement a combination of software and / or hardware that performs predetermined functions.
  • the devices described in the following embodiments are preferably implemented in software, implementation of hardware or a combination of software and hardware is also possible and conceived.
  • the apparatus includes:
  • the receiving module 70 is set to receive reference pilot sequence parameters
  • the second determining module 72 is configured to determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters, where the initial value of the reference pilot pseudo-random sequence is used to generate the corresponding
  • the pilot pseudo-random sequence of the reference pilot group of the reference pilot group corresponds to at least one reference pilot port, and M is a positive integer.
  • the second determination module 72 here is the first determination module in the set of parameter receiving devices.
  • the initial value of the reference pilot pseudo-random sequence is used to Generate the pilot pseudo-random sequence of the corresponding reference pilot group, and adopt the above technical solution to solve the problem that the PAPR of the reference signal in the related art is too high due to the same pilot sequence, thereby effectively reducing the PAPR of the reference signal.
  • the reference pilot group includes at least one of the following: a reference pilot port group, a reference pilot CDM group, and a CDM group corresponding to the reference pilot port.
  • the reference pilot sequence parameters include at least one of the following: a static identifier, a static identifier step size, a dynamic identifier, a reference pilot group index, and a backoff weight value w, where the reference pilot
  • the frequency group index includes a reference pilot group absolute index and a reference pilot group relative index.
  • the method includes at least one of the following:
  • the static identification is configured through high-level signaling
  • the static identification step is configured through high-level signaling
  • the dynamic identification is configured through physical layer signaling
  • the reference pilot group index is configured through physical layer signaling
  • the back-off weight w is configured by high-layer signaling or physical layer signaling
  • the rollback weight value w is determined by a static mark or a dynamic mark.
  • K static identifiers are configured through high-level signaling, and the K static identifiers are divided into L groups of static identifier groups, where K is a positive and even number, and L is an integer greater than 1 and less than K.
  • the method includes at least one of the following:
  • the value of K is determined by at least one of the following: the number of reference pilot groups, the number of transmission layers, and the type of reference pilot;
  • L is determined by the number of reference pilot groups
  • the number of static identifications included in the static identification group is determined by the number of pilot port groups.
  • the method includes one of the following:
  • the static identification is selected through a dynamic identification and a reference pilot group index.
  • determining the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters includes at least one of the following ways:
  • the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups is determined according to at least the static identification, the reference pilot group index, the dynamic identification, and the static identification step.
  • determining the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters includes at least one of the following ways: at least according to the static identifier and the reference pilot group index And the modulo operation determines the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups; at least according to the static identification, the reference pilot group index, the static identification step size, and the modulo operation determine the corresponding M reference pilot groups Reference pilot pseudo-random sequence initial value; at least according to the static identification, reference pilot group index, dynamic identification and modulo operation to determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups; and at least according to the static identification, The reference pilot group index, dynamic identification, static identification step size, and modulo operation determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups.
  • the static mark includes a first position static mark and a second position static mark
  • the modulo operation includes one of the following operations:
  • Modulus the results of the static calculation of the first position, dynamic identification, and reference pilot group index, and modulo the results of the calculation of the static identification, dynamic identification, and reference pilot group index of the second position.
  • the reference pilot pseudo-random sequences of the M reference pilot groups include: a first type of reference pilot pseudo-random sequence and a second type of reference pilot pseudo-random sequence, wherein the first The pseudo-random sequence of reference pilots includes a sequence with the same value of the pseudo-random sequences of the M reference pilots, and the pseudo-random sequence of reference pilots of the second type includes the value of the pseudo-random sequences of the M reference pilots Not the same sequence.
  • the reference pilot pseudo-random sequence of the M reference pilot groups is determined to be the first type of reference pilot pseudo-random sequence by at least one of the following information: the dynamic identifier takes a value of 0; The static identifier step value is zero; the static identifier corresponding to the M reference pilot groups has the same value; and the backoff weight value w has the value 0.
  • the terminal when the reference signal is DMRS, the terminal performs one of the following operations by receiving precoding indication information or indication information for the DMRS port, and instructs the terminal to transmit DMRS: at least A column is multiplied by a coefficient; DMRS is multiplied by a coefficient on at least one port that transmits DMRS.
  • the indication information satisfies at least one of the following:
  • the DMRS port indicated by the indication information is one of the following port sets: DMRS type 1 port set: ⁇ 0,4 ⁇ , ⁇ 0,1,4 ⁇ , ⁇ 0,1,4,5 ⁇ , ⁇ 2, 6 ⁇ , ⁇ 2,3,6 ⁇ , ⁇ 2,3,6,7 ⁇ , ⁇ 0,2,4,6 ⁇ ; DMRS type 2 port set: ⁇ 0,1,6 ⁇ , ⁇ 0,1 , 6,7 ⁇ , ⁇ 2,3,8 ⁇ , ⁇ 2,3,8,9 ⁇ , ⁇ 4,5,10,11 ⁇ ;
  • the precoding word indicated by the indication information has one of the following characteristics: all elements in the precoding word matrix are non-zero; in the precoding word matrix, there are at least two non-zero elements in one row.
  • the DMRS is multiplied by a coefficient on at least one port transmitting DMRS in the following manner: the coefficient multiplied by the DMRS transmitting 3 ports is included in the coefficient multiplied by the DMRS transmitting 4 ports, The coefficient multiplied by the DMRS transmitting 2 ports is included in the coefficient multiplied by the DMRS transmitting 3 ports.
  • the coefficient multiplied by each of the ports varies according to frequency domain resource units, and / or the coefficient multiplied by each of the ports varies according to time domain resource units.
  • At least one column in the precoding used is multiplied by a coefficient in the following manner: the coefficient multiplied by 2 columns in the precoding is included in the coefficient multiplied by 3 columns in the precoding, the The coefficient multiplied by 3 columns is included in the coefficient multiplied by 4 columns in precoding.
  • the coefficient multiplied by each column in the precoding varies according to frequency domain resource units, and / or the coefficient multiplied by each column in the precoding varies according to time domain resource units.
  • reference pilot group involved in the present disclosure can be replaced with the following concepts: reference pilot port group, reference pilot CDM group, CDM group corresponding to the reference pilot port, CDM group, CDM Group.
  • Reference pilots include but are not limited to CSI-RS, DMRS, SRS.
  • the reference pilot port refers to a Resource Element (RE), or RE group, used to send a reference pilot signal.
  • RE Resource Element
  • the reference pilot group index may also be a group number or number or indication or identification of the reference pilot group.
  • the reference pilot group index includes a reference pilot group relative index and a reference pilot group absolute index.
  • the absolute index of the reference pilot group is the overall number or index of all reference pilot groups from small to large. For example, the L reference pilots are divided into M reference pilot groups, then the absolute indexes of the reference pilot groups are respectively Pilot group 0 to reference pilot group M-1, where L and M are positive integers.
  • the reference pilot group relative index refers to the reference pilot group index after the reference pilot group assigned to a terminal is rearranged according to the size of the absolute index of the reference pilot group, for example, the reference pilot group assigned to a terminal is M references M 'of the pilot groups, where M' is less than M, then the relative index of the reference pilot group is the relative index of the reference pilot group 0 to the relative index of the reference pilot group M'-1.
  • M 6
  • the reference pilot group assigned to the terminal is ⁇ reference pilot group 5, reference pilot group 1 ⁇
  • the relative index of reference pilot group 1 is the relative index of reference pilot group 0
  • the relative index of 5 is the relative index 1 of the reference pilot group.
  • This embodiment is used to describe the generation of the CSI-RS sequence when the reference pilot signal is CSI-RS.
  • the base station generates the reference pilot pseudo-random sequence of each CSI-RS port group by the following formula:
  • c (n) 0, 1, ..., M PN -1, including but not limited to the definition in the following manner:
  • x 1 (n + 31) (x 1 (n + 3) + x 1 (n)) mod2
  • x 2 (n + 31) (x 2 (n + 3) + x 2 (n + 2) + x 2 (n + 1) + x 2 (n)) mod2
  • N C 1600
  • the base station maps the generated reference pilot pseudo-random sequence onto the pilot port and sends the reference pilot.
  • different CSI-RS pilot port groups respectively correspond to different CDM Groups, and different CSI-RS pilot groups are orthogonal in the frequency domain or the time domain.
  • the base station needs to configure reference pilot sequence parameters, and determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters, Where M is a positive integer, the reference pilot sequence parameters include at least one of the following: static identification, static identification step size, and reference pilot group index.
  • the terminal generates the reference pilot pseudo-random sequence of the CSI-RS port group through formula (1), and estimates the channel on the pilot port according to the generated reference pilot pseudo-random sequence.
  • the terminal needs to receive reference pilot sequence parameters, and determine the initial value of the reference pilot pseudorandom sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters, Where M is a positive integer, the reference pilot sequence parameters include at least one of the following: static identification, static identification step size, and reference pilot group index.
  • the following uses some different examples to show how to determine the initial value of the reference pilot pseudo-random sequence through the reference pilot sequence parameters.
  • the terminal or base station uses the reference pilot sequence parameters to determine the initial value of the CSI-RS pseudo-random sequence.
  • the base station or the terminal determines the initial value of the CSI-RS pseudo-random sequence in the following manner.
  • the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups is determined according to at least the static identifier and the reference pilot group index. Among them, the initial value of the reference pilot pseudo-random sequence corresponding to the n cdm CSI-RS pilot group is determined by one of the following formulas:
  • the initial value of the pseudo-random sequence of the reference pilot corresponding to the M reference pilot groups is determined according to at least the static identification, the reference pilot group index, and the modulus operation. Among them, the initial value of the reference pilot pseudo-random sequence corresponding to the n cdm CSI-RS pilot group is determined by one of the following formulas:
  • Modulation of the results of the first position static identification and the reference pilot group index calculation includes but is not limited to one of the following formulas:
  • Modulation of the results of the second position static identification and the reference pilot group index calculation includes but is not limited to one of the following formulas:
  • Modulus the result of the first position static identification and reference pilot group index calculation, and modulo the second position static identification and reference pilot group index calculation include but not limited to one of the following formulas:
  • Modulus of the calculation results of the static identification and the reference pilot group index may include, but is not limited to, any one of the above formulas (a), (b), and (c) in this embodiment.
  • n ID is the static identification
  • the base station configures it to the terminal through high-level signaling
  • n cdm is the reference pilot group index, or the CDM group index corresponding to the reference pilot, or the CDM group index.
  • (n ⁇ ) mod 2 k represents the modulo operation on the identity ( ⁇ ), where the values k of k0, k1, and k2 are high-level configuration parameters, or the parameters agreed between the terminal and the base station, which are positive integers, in one embodiment Among them, k0 is 9, k1 is 9, and k2 is 10.
  • first position static mark and the second position static mark refer to the first occurrence static mark and the second occurrence static mark from left to right in the reference sequence initial value c init (n cdm ) generation formula, respectively.
  • the reference pilot pseudo-random sequences corresponding to different reference pilot groups can produce different sequences (referred to as second-type reference pilot pseudo-random sequences) due to the different initial values of the reference pilot pseudo-random sequences, thereby making the same
  • the PAPR formed by signals of different reference pilot ports on a symbol in the time domain is relatively small, within an acceptable range.
  • the initial values of the reference pilot pseudo-random sequences of different reference pilot groups are the same (referred to as the first type of reference pilot pseudo-random sequence).
  • An error occurs when the user of the version estimates the interference of the user of the higher version.
  • the reference pilot sequences corresponding to different reference pilot groups are the same, that is, the reference pilots of the M reference pilot groups are determined to be pseudo-random by the following information
  • the sequence is the first type of reference pilot pseudo-random sequence:
  • the static identifiers corresponding to the M reference pilot groups have the same value (that is, the n cdm corresponding to different reference pilot groups have the same value).
  • the terminal or base station uses the reference pilot sequence parameters to determine the initial value of the CSI-RS pseudo-random sequence.
  • the base station or the terminal determines the initial value of the CSI-RS pseudo-random sequence in the following manner.
  • the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups is determined according to at least the static identification, the reference pilot group index, and the static identification step size.
  • the initial value of the reference pilot pseudo-random sequence corresponding to the n cdm CSI-RS pilot group is determined by one of the following formulas:
  • the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups is determined according to at least the static identification, the reference pilot group index and the static identification step size, and the modulo operation. Among them, the initial value of the reference pilot pseudo-random sequence corresponding to the n cdm CSI-RS pilot group is determined by one of the following formulas:
  • Modulus of the results of the first position static identification, reference pilot group index and static identification step calculation includes but is not limited to one of the following formulas:
  • Modulus of the results of the second position static identification, reference pilot group index and static identification step size calculation includes but is not limited to one of the following formulas:
  • Modulating the results of the static identification and reference pilot group index calculation may include, but is not limited to, any one of the above formulas (a), (b), and (c) in this embodiment.
  • n ID is the static identification
  • the base station configures the terminal to the terminal through high-level signaling, such as Scrambling ID configuration through the high-level signaling, the terminal receives The higher layer signaling obtains the n ID .
  • n cdm is the reference pilot group index, or the CDM group index corresponding to the reference pilot, or the CDM group index.
  • (n ⁇ ) mod 2 k represents the modulo operation on the identity ( ⁇ ), where the values k of k0, k1, and k2 are high-level configuration parameters, or the parameters agreed between the terminal and the base station, which are positive integers, in one embodiment Among them, k0 is 9, k1 is 9, and k2 is 10.
  • first position static mark and the second position static mark refer to the first occurrence static mark and the second occurrence static mark from left to right in the reference sequence initial value c init (n cdm ) generation formula, respectively.
  • K is a static identification step size, which is a non-negative integer through high-level signaling configuration or a contract between the terminal and the base station.
  • the value is 0 or 2 m , where m is a positive integer.
  • the reference pilot pseudo-random sequences corresponding to different reference pilot groups can produce different sequences (referred to as second-type reference pilot pseudo-random sequences) due to the different initial values of the reference pilot pseudo-random sequences, thereby making the same
  • the PAPR formed by signals of different reference pilot ports on a symbol in the time domain is relatively small, within an acceptable range.
  • the initial values of the reference pilot pseudo-random sequences of different reference pilot groups are the same (referred to as the first type of reference pilot pseudo-random sequence).
  • An error occurs when the user of the version estimates the interference of the user of the higher version.
  • the frequency pseudo-random sequence is the first type of reference pilot pseudo-random sequence:
  • This embodiment is used to explain the generation of the DMRS sequence when the reference pilot signal is DMRS.
  • the base station generates the reference pilot pseudo-random sequence of each DMRS port group through the formula (1) of Embodiment 1, and the base station maps the generated reference pilot pseudo-random sequence onto the pilot port and sends the reference pilot.
  • different DMRS pilot port groups respectively correspond to different CDM Groups, and different DMRS pilot groups are orthogonal in the frequency domain or the time domain.
  • the base station needs to configure reference pilot sequence parameters, and determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters, where M It is a positive integer, and the reference pilot sequence parameters include at least one of the following: static identification, static identification step size, reference pilot group index, and dynamic identification.
  • the terminal generates the reference pilot pseudo-random sequence of the DMRS port group according to formula (1) of Embodiment 1, and estimates the channel on the pilot port according to the generated reference pilot pseudo-random sequence.
  • the terminal needs to receive reference pilot sequence parameters, and determine the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups according to the reference pilot sequence parameters, where M It is a positive integer, and the reference pilot sequence parameters include at least one of the following: static identification, static identification step size, reference pilot group index, and dynamic identification.
  • the following uses some different examples to show how to determine the initial value of the reference pilot pseudo-random sequence through the reference pilot sequence parameters.
  • the terminal or the base station uses the reference pilot sequence parameter to determine the initial value of the DMRS Type 1 pseudo-random sequence.
  • the base station or terminal determines the initial value of the DMRS pseudo-random sequence in the following manner.
  • the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups is determined according to at least the static identifier, the dynamic identifier, and the reference pilot group index. Among them, the initial value of the reference pilot pseudo-random sequence corresponding to the n cdm DMRS pilot group is determined by one of the following formulas:
  • n SCID is the dynamic identification, generally configured through DMRS sequence initialization of physical downlink control signaling, and the value is 0 Or 1.
  • the base station configures the terminal to the terminal through high-level signaling, such as UL-DMRS-Scrambling-ID (Uplink-Demodulation Reference Signal-Scrambling-ID) for uplink DMRS.
  • UL-DMRS-Scrambling-ID Uplink-Demodulation Reference Signal-Scrambling-ID
  • n cdm is the reference pilot group index, or the CDM group index corresponding to the reference pilot, or the CDM group index.
  • the reference pilot pseudo-random sequences corresponding to different reference pilot groups can produce different sequences (referred to as second-type reference pilot pseudo-random sequences) due to the different initial values of the reference pilot pseudo-random sequences, thereby making the same
  • the PAPR formed by signals of different reference pilot ports on a symbol in the time domain is relatively small, within an acceptable range.
  • the initial values of the reference pilot pseudo-random sequences of different reference pilot groups are the same (referred to as the first type of reference pilot pseudo-random sequence).
  • An error occurs when the user of the version estimates the interference of the user of the higher version.
  • the reference pilot sequences corresponding to different reference pilot groups are the same, that is, the reference pilots of the M reference pilot groups are determined to be pseudo-random by the following information
  • the sequence is the first type of reference pilot pseudo-random sequence:
  • the static identifiers corresponding to the M reference pilot groups have the same value (that is, the n cdm corresponding to different reference pilot groups have the same value).
  • the terminal or the base station uses the reference pilot sequence parameter to determine the initial value of the pseudo-random sequence of DMRS Type 1 or DMRS Type 2.
  • the base station or terminal determines the initial value of the DMRS pseudo-random sequence in the following manner.
  • the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups is determined according to at least the static identifier, the dynamic identifier, and the reference pilot group index. Among them, the initial value of the reference pilot pseudo-random sequence corresponding to the n cdm DMRS pilot group is determined by one of the following formulas:
  • the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups is determined according to at least the static identification, the dynamic identification, the reference pilot group index, and the modulo operation.
  • the initial value of the reference pilot pseudo-random sequence corresponding to the n cdm DMRS pilot group is determined by one of the following formulas:
  • Modulus of the results of the first position static identification, dynamic identification, and reference pilot group index calculation includes but is not limited to one of the following formulas:
  • Modulus of the calculation results of the static identification, dynamic identification, and reference pilot group index of the second location includes but is not limited to one of the following formulas:
  • Modulus of the calculation results of the static identification, the dynamic identification, and the reference pilot group index may include, but not limited to, any one of the above formulas (a), (b), and (c) in this embodiment.
  • the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups is determined by one of the following formulas:
  • n SCID is the dynamic identification, generally configured through DMRS sequence initialization of physical downlink control signaling, and the value is 0 or 1.
  • the base station configures the terminal to the terminal through high-level signaling, such as UL-DMRS-Scrambling-ID configuration for uplink DMRS, and DL-DMRS-Scrambling-ID configuration in downlink DMRS.
  • n cdm is the reference pilot group index, or the CDM group index corresponding to the reference pilot, or the CDM group index.
  • (n ⁇ ) mod 2 k represents the modulo operation on the identity ( ⁇ ), where the values k of k0, k1, and k2 are high-level configuration parameters, or the parameters agreed between the terminal and the base station, which are positive integers, in one embodiment Among them, k0 is 16, k1 is 16, and k2 is 17.
  • first position static mark and the second position static mark refer to the first occurrence static mark and the second occurrence static mark from left to right in the reference sequence initial value c init (n cdm ) generation formula, respectively.
  • the reference pilot pseudo-random sequences corresponding to different reference pilot groups can produce different sequences (referred to as second-type reference pilot pseudo-random sequences) due to the different initial values of the reference pilot pseudo-random sequences, thereby making the same
  • the PAPR formed by signals of different reference pilot ports on a symbol in the time domain is relatively small, within an acceptable range.
  • the initial values of the reference pilot pseudo-random sequences of different reference pilot groups are the same (referred to as the first type of reference pilot pseudo-random sequence).
  • An error occurs when the user of the version estimates the interference of the user of the higher version.
  • the frequency pseudo-random sequence is the first type of reference pilot pseudo-random sequence:
  • the static identifiers corresponding to the M reference pilot groups have the same value (that is, the n cdm corresponding to different reference pilot groups have the same value); and the backoff weight value w has the value 0.
  • the back-off mark can be 0 when the dynamic mark value is 0, or the difference between the static mark values corresponding to the M reference pilot groups is less than a positive integer T (such as the dynamic mark of the first reference pilot group- The value of the second reference pilot group's dynamic identifier ⁇ T) is 0.
  • the terminal or the base station uses the reference pilot sequence parameter to determine the initial value of the pseudo-random sequence of DMRS Type 1 or DMRS Type 2.
  • the base station or terminal determines the initial value of the DMRS pseudo-random sequence in the following manner.
  • the initial value of the pseudo-random sequence of reference pilots corresponding to the M reference pilot groups is determined according to at least the static identification, the dynamic identification, the reference pilot group index, and the static identification step. Among them, the initial value of the reference pilot pseudo-random sequence corresponding to the n cdm DMRS pilot group is determined by one of the following formulas:
  • the initial value of the reference pilot pseudo-random sequence corresponding to the M reference pilot groups is determined according to at least the static identification, the dynamic identification, the reference pilot group index, and the modulo operation.
  • the initial value of the reference pilot pseudo-random sequence corresponding to the n cdm DMRS pilot group is determined by one of the following formulas:
  • Modulus of the results of the first position static identification, dynamic identification, reference pilot group index and static identification step size calculation includes but is not limited to one of the following formulas:
  • Modulation of the results of the second position static identification, dynamic identification, reference pilot group index, and static identification step size calculation includes but is not limited to one of the following formulas:
  • Modulus of the calculation results of static identification, dynamic identification, reference pilot group index and static identification step size may include but not limited to any one of (a), (b), (c) above in this embodiment formula.
  • n SCID is the dynamic identification, and is generally configured through DMRS sequence initialization of physical downlink control signaling, and the value is 0 or 1.
  • the base station configures the terminal with high-level signaling, such as UL-DMRS-Scrambling-ID for high-level signaling for uplink DMRS, and DL-DMRS-Scrambling-ID for high-level signaling in downlink DMRS.
  • n cdm is the reference pilot group index, or the CDM group index corresponding to the reference pilot, or the CDM group index.
  • K 1 includes but is not limited to one of the following values: static identification step size K, dynamic identification n SCID , product of dynamic identification and static identification n SCID * K.
  • (n ⁇ ) mod 2 k represents the modulo operation on the identity ( ⁇ ), where the values k of k0, k1, and k2 are high-level configuration parameters, or the parameters agreed between the terminal and the base station, which are positive integers, in one embodiment Among them, k0 is 16, k1 is 16, and k2 is 17.
  • first position static mark and the second position static mark refer to the first occurrence static mark and the second occurrence static mark from left to right in the reference sequence initial value c init (n cdm ) generation formula, respectively.
  • the reference pilot pseudo-random sequences corresponding to different reference pilot groups can produce different sequences (referred to as second-type reference pilot pseudo-random sequences) due to the different initial values of the reference pilot pseudo-random sequences, thereby making the same
  • the PAPR formed by signals of different reference pilot ports on a symbol in the time domain is relatively small, within an acceptable range.
  • the initial values of the reference pilot pseudo-random sequences of different reference pilot groups are the same (referred to as the first type of reference pilot pseudo-random sequence).
  • An error occurs when the user of the version estimates the interference of the user of the higher version.
  • the frequency pseudo-random sequence is the first type of reference pilot pseudo-random sequence:
  • the terminal or the base station uses the reference pilot sequence parameter to determine the initial value of the pseudo-random sequence of DMRS Type 1 or DMRS Type 2.
  • the base station or terminal determines the initial value of the DMRS pseudo-random sequence in the following manner.
  • the first group of static signs is The second set of static identifiers.
  • the first group of static labels is The second set of static identifiers.
  • the data layer here is also called layer, transmission layer, and channel rank.
  • the static flag group k (i + j) mod 2
  • M is the number of static identification groups, which is a positive integer.
  • C init (m) is generated by the following formula:
  • This embodiment is used to explain a method for a base station and a terminal to solve power imbalance.
  • the terminal transmits DMRS to facilitate the receiving end to obtain the transmission channel coefficients for demodulation of the data.
  • the signal on the port transmitting the DMRS is composed of the signal transmitted by the transmitting antenna unit according to the weight indicated by the precoding. At the same time, it also means that the same transmit antenna unit needs to transmit signals on multiple DMRS ports. Because of the superposition of signals on the same transmit antenna unit, the power of the signal is either far above the average power or far below the average power, forming a power unbalanced.
  • the terminal multiplies the DMRS by a coefficient on at least one port that transmits DMRS, and then transmits the DMRS to alleviate the unbalanced transmission power of the transmitting antenna unit; At least one column of elements in the precoding is multiplied by a coefficient, and then the DMRS is transmitted to alleviate the unbalanced transmission power of the transmitting antenna unit.
  • the terminal performs the operation of multiplying the coefficient according to the information indicated by the base station, where the indication information of the base station may be information of the indicated DMRS port or information of the indicated precoding word.
  • the indicated DMRS port needs to meet certain conditions before the terminal performs the multiplying factor operation; or the indicated precoding needs to meet certain conditions before the terminal performs the multiplying factor operation; or the indicated DMRS port requires A certain condition is satisfied, and the indicated precoding also needs to meet a certain condition at the same time before the terminal performs the operation of multiplying by the coefficient.
  • the indicated DMRS port needs to satisfy the condition that the DMRS port is one of the following port sets: DMRS type 1 port set: ⁇ 0,4 ⁇ , ⁇ 0,1,4 ⁇ , ⁇ 0,1,4,5 ⁇ , ⁇ 2,6 ⁇ , ⁇ 2,3,6 ⁇ , ⁇ 2,3,6,7 ⁇ , ⁇ 0,2,4,6 ⁇ ; DMRS type 2 port set: ⁇ 0,1,6 ⁇ , ⁇ 0,1,6,7 ⁇ , ⁇ 2,3,8 ⁇ , ⁇ 2,3,8,9 ⁇ , ⁇ 4,5,10,11 ⁇ .
  • the condition that the indicated precoding needs to meet is that the indicated precoding word has one of the following characteristics:
  • the indicated DMRS port needs to satisfy the above-mentioned conditions that the DMRS port needs to meet, and the indicated precoding also needs to satisfy the above-mentioned precoding needs.
  • All elements in the precoding word matrix are non-zero, for example, the codeword used for 2 antennas to transmit DMRS of 2 ports:
  • the codeword for DMRS transmitting 2 ports with 4 antennas For example, the codeword for DMRS transmitting 2 ports with 4 antennas:
  • the codeword used to transmit 3 ports of DMRS with 4 antennas For example, the codeword used to transmit 3 ports of DMRS with 4 antennas:
  • the codeword for DMRS transmitting 4 ports with 4 antennas For example, the codeword for DMRS transmitting 4 ports with 4 antennas:
  • a codeword used for 4 antennas to transmit 4 ports of DMRS there are at least two non-zero elements in a row.
  • a codeword used for 4 antennas to transmit 4 ports of DMRS :
  • the coefficient may be an imaginary number, a real number, or a complex number.
  • the DMRS is multiplied by a coefficient on at least one port transmitting DMRS, including: the coefficient multiplied by the DMRS transmitting 3 ports is included in the coefficient multiplied by the DMRS transmitting 4 ports
  • the coefficient multiplied by the DMRS transmitting 2 ports is included in the coefficient multiplied by the DMRS transmitting 3 ports.
  • the DMRS transmitting 4 ports the coefficients multiplied by each port are a, b, c, d; the DMRS transmitting 3 ports multiplied by the coefficients corresponding to the ports are a, b, c; the two ports are transmitted
  • the coefficient multiplied by DMRS corresponds to a and b according to the port.
  • the coefficient multiplied by each port varies according to the frequency domain resource unit. For example, it changes according to the resource block, or changes according to the subband, or changes according to the frequency domain resource unit to which the DMRS is bound.
  • the coefficient multiplied by each port varies according to the time domain resource unit. For example, it changes according to the OFDM symbol, or changes according to the time slot.
  • At least one column in the precoding used by the pair is multiplied by a coefficient, including: the coefficient multiplied by 2 columns in the precoding is included in the coefficient multiplied by 3 columns in the precoding.
  • the coefficient multiplied by 3 columns in encoding is included in the coefficient multiplied by 4 columns in precoding.
  • the coefficients to be multiplied by 4 columns in the precoding word matrix are a, b, c, and d;
  • the coefficients to be multiplied by 3 columns in the precoding word matrix are respectively a, b, and c according to the columns;
  • the precoding word The coefficients to be multiplied by 2 columns in the matrix are a and b according to the column correspondence.
  • the coefficients multiplied by the columns in the precoding word matrix vary according to the frequency domain resource unit. For example, it changes according to the resource block, or changes according to the subband, or changes according to the frequency domain resource unit to which the DMRS is bound.
  • the coefficients multiplied by the columns in the precoding word matrix vary according to time-domain resource units. For example, it changes according to the OFDM symbol, or changes according to the time slot.
  • An embodiment of the present invention further provides a storage medium, which includes a stored program, wherein the method described in any one of the above is executed when the above program runs.
  • the above storage medium may be set to store program code for performing the following steps:
  • An embodiment of the present invention further provides a storage medium, which includes a stored program, wherein the method described in any one of the above is executed when the above program runs.
  • the storage medium is also set to store program code for performing the following steps:
  • the above storage medium may include, but is not limited to: U disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), mobile hard disk, magnetic disk or optical disk, etc.
  • ROM read-only memory
  • RAM random access memory
  • mobile hard disk magnetic disk or optical disk, etc.
  • modules or steps of the present disclosure can be implemented by a general-purpose computing device, they can be concentrated on a single computing device, or distributed in a network composed of multiple computing devices on.
  • they can be implemented with program code executable by the computing device, so that they can be stored in the storage device to be executed by the computing device, and in some cases, can be in a different order than here
  • the steps shown or described are performed, or they are made into individual integrated circuit modules respectively, or multiple modules or steps among them are made into a single integrated circuit module for implementation. In this way, the present disclosure is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种参数配置、参数接收方法及装置、存储介质,其中,上述参数配置方法包括:配置参考导频序列参数,根据所述参考导频序列参数确定M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值,其中,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,M为正整数,每个参考导频组对应至少一个参考导频端口。

Description

参数配置、参数接收方法及装置、存储介质
本申请要求在2018年10月24日提交中国专利局、申请号为201811247396.4的中国专利申请的优先权,以上申请的全部内容通过引用结合在本申请中。
技术领域
本公开涉及通信领域,例如涉及一种参数配置、参数接收方法及装置、存储介质。
背景技术
当前,无线通信系统已经从第四代的长期演进技术(Long Term Evolution,,LTE)、长期演进升级技术(LTE-Advanced,LTE-A),发展和演进到现在的第五代的新无线接入技术(New Radio Access Technology,New RAT/NR)。在这些系统中,需要发送参考信号以估计信道状态信息(Channel-State Information,CSI),比如下行链路的信道状态信息参考信号(Channel-State Information Reference Signal,CSI-RS)或上行链路的探测参考信号(Sounding Reference Signal,SRS),还需要发送参考信号用于数据解调,比如解调参考信号(Demodulation Reference Signal,DMRS)。
目前的NR版本(Release 15)中,对于DMRS参考信号,它的图样有两种主要的形式,包括导频图样配置1和导频图样配置2。如图1所示,导频图样配置1是基于间隔频分复用(Interval Frequency Division Multiplexing,IFDM)的导频配置,这种导频配置将频域子载波等间距分成2个梳,每个梳对应一个DMRS CDM(Code Division Multiplexing,码分复用)Group(组),一个端口的导频只在其中的一个梳上发,也称为DMRS Type(类型)1。如图2所示,导频图样 配置2是基于频域-正交覆盖码(Frequency Domain-Orthogonal Cover Code,FD-OCC)的导频图样,这种导频图样将相邻的Nocc个子载波用于传输导频信号,其中不同端口的导频信号用OCC进行区分,其中Nocc为OCC的序列长度。这类导频也称为DMRS Type 2,在频域上最多有3组DMRS端口,组之间的DMRS端口通过频域区分,DMRS组内的端口通过OCC进行区分,通过OCC进行区分的一组端口就是一个DMRS CDM Group,最多有3组CDM Group。。
在相关协议中,不同的DMRS CDM Group对应的导频序列是相同的,比如图3所示。由于不同的CDM Group的导频序列是相同的,从而有可能会导致信号在时域同向叠加,从而产生较高的峰均功率比(Peak to Average Power Ratio,PAPR),即在不同的时域采样点上发送功率有时大于平均功率,有时小于平均功率,最大发送功率除以平均功率的值有可能超过发送天线单元的能力。同样地,在CSI-RS中,也有可能会产生较大的PAPR。
发明内容
本发明实施例提供了一种参数配置、参数接收方法及装置、存储介质,以至少解决相关技术中由于参考导频组的序列相同而导致的参考信号的PAPR过高问题。
根据本发明的一个实施例,提供了一种参数配置方法,包括:
配置参考导频序列参数;根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,其中,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,M为正整数,所述参考导频组至少对应一个参考导频端口。
根据本发明的另一个实施例,还提供了一种参数接收方法,接收参考导频 序列参数;根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,其中,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,M为正整数,所述参考导频组至少对应一个参考导频端口。
根据本发明的另一个实施例,还提供了一种参数配置装置,包括:
配置模块,设置为配置参考导频序列参数;
第一确定模块,设置为根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,其中,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,M为正整数,所述参考导频组至少对应一个参考导频端口。
根据本发明的另一个实施例,还提供了一种参数接收装置,包括:
接收模块,设置为接收参考导频序列参数;
第二确定模块,设置为根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,其中,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,M为正整数,所述参考导频组至少对应一个参考导频端口。
根据本发明的另一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述参数配置方法。
根据本发明的另一个实施例,还提供了一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述参数接收方法。
通过本公开,配置参考导频序列参数,根据所述参考导频序列参数确定M 个参考导频组对应的参考导频伪随机序列初始值,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,参考导频组至少对应一个参考导频端口,采用上述技术方案,解决相关技术中由于导频序列相同而导致的参考信号的PAPR过高的问题,进而有效降低了参考信号的PAPR。
附图说明
图1是相关技术中DMRS Type1的导频示意图;
图2是相关技术中DMRS Type2的导频示意图;
图3是相关技术中DMRS Type1或DMRS Type2的导频序列示意图;
图4是根据本发明实施例的参数配置方法的流程图;
图5是根据本发明实施例的参数接收方法的流程图;
图6是根据本发明实施例的参数配置装置的结构框图;
图7是根据本发明实施例的参数接收装置的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种参数配置方法,图4是根据本发明实施例的参数配置方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,配置参考导频序列参数;
步骤S404,根据所述参考导频序列参数确定M个参考导频组对应的参考导 频伪随机序列初始值,其中,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,M为正整数,参考导频组至少对应一个参考导频端口。
通过本公开,配置参考导频序列参数,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,采用上述技术方案,解决相关技术中由于导频序列相同而导致的参考信号的PAPR过高的问题,进而有效降低了参考信号的PAPR。
需要说明的是,本发明实施例范围内,参考导频信号,也可以叫做参考信号、导频信号、参考导频等概念,用于做信道测量或者信道估计的信号,包括但不限于DMRS、CSI-RS、SRS等。对于CSI-RS,同样会将CSI-RS分成多个组,每个组的CSI-RS通过码分进行区分,也是一个CSI-RS CDM Group。
所述参考导频组包括以下至少之一:参考导频端口组、参考导频CDM组、以及参考导频端口对应的CDM组。
所述参考导频序列参数包括以下至少之一:静态标识、静态标识步长、动态标识、参考导频组索引、以及回退权值w,其中,所述参考导频组索引包括参考导频组绝对索引和参考导频组相对索引。
所述方法包括以下至少之一:所述静态标识通过高层信令配置;所述静态标识步长通过高层信令配置确定;所述动态标识通过物理层信令配置;所述参考导频组索引通过物理层信令配置;所述回退权值w通过高层信令或物理层信令配置;以及所述回退权值通过静态标识或动态标识确定。
在一实施方式中,通过高层信令配置K个静态标识,并将所述K个静态标识分成L组静态标识组,所述K为正偶数,L为大于1且小于K的整数。
所述方法包括以下至少之一:
所述K的值由以下至少之一确定:参考导频组的个数、传输层数、以及参考导频类型;所述L的值由参考导频组的个数确定;以及所述静态标识组包含的静态标识个数由导频端口组的个数确定。
所述方法包括以下之一:通过动态标识和参考导频组索引选择所述静态标识组;通过动态标识选择所述静态标识组;通过参考导频组索引选择所述静态标识组;通过动态标识和参考导频组索引选择所述静态标识;通过静态标识或动态标识确定回退权值w。
根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,包括以下方式至少之一:至少根据静态标识和参考导频组索引确定M个参考导频组对应的参考导频伪随机序列初始;至少根据静态标识、参考导频组索引和静态标识步长确定M个参考导频组对应的参考导频伪随机序列初始值;至少根据静态标识、参考导频组索引和动态标识确定M个参考导频组对应的参考导频伪随机序列初始值;以及至少根据静态标识、参考导频组索引、动态标识和静态标识步长确定M个参考导频组对应的参考导频伪随机序列初始值。
根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,包括以下方式至少之一:至少根据静态标识、参考导频组索引以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值;至少根据静态标识、参考导频组索引、静态标识步长以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值;至少根据静态标识、参考导频组索引、动态标识以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值;以及至少根据静态标识、参考导频组索引、动态标识、静态标识步长以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值。
在本发明实施例中,所述静态标识包括第一位置静态标识和第二位置静态标识,所述取模操作包括以下操作之一:
对静态标识和参考导频组索引计算的结果取模;
对静态标识、参考导频组索引和静态标识步长计算的结果取模;
对第一位置静态标识和参考导频组索引计算的结果取模;
对第一位置静态标识、参考导频组索引和静态标识步长计算的结果取模;
对第二位置静态标识、参考导频组索引计算的结果取模;
对第二位置静态标识、参考导频组索引和静态标识步长计算的结果取模;
对第一位置静态标识和参考导频组索引计算的结果取模,并且对第二位置静态标识和参考导频组索引计算的结果取模;
对第一位置静态标识、参考导频组索引和静态标识步长计算的结果取模,并且对第二位置静态标识、参考导频组索引和静态标识步长计算的结果取模;
对静态标识、动态标识、参考导频组索引计算的结果取模;
对静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模;
对第一位置静态标识、动态标识、参考导频组索引计算的结果取模;
对第二位置静态标识、动态标识、参考导频组索引计算的结果取模;
对第一位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模;
对第二位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模;
对第一位置静态标识、动态标识、参考导频组索引计算的结果取模,并且对第二位置静态标识、动态标识、参考导频组索引计算的结果取模。
对第一位置静态标识、动态标识、参考导频组索引和静态标识步长计算的 结果取模,并且对第二位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模。
在本发明实施例中,所述M个参考导频组的参考导频伪随机序列包括:第一类参考导频伪随机序列和第二类参考导频伪随机序列,其中,所述第一类参考导频伪随机序列包括所述M个参考导频的伪随机序列取值相同的序列,所述第二类参考导频伪随机序列包括所述M个参考导频的伪随机序列取值不相同的序列。
在本发明实施例中,通过以下信息至少之一确定所述M个参考导频组的参考导频伪随机序列为所述第一类参考导频伪随机序列:动态标识符取值为0;静态标识符步长取值为零;所述M个参考导频组对应的静态标识符取值相同;以及回退权值w取值为0。
另外一方面,终端或基站发射参考导频信号时,有可能对参考信号进行预编码,这样,同一个发射天线单元的信号是来自多个参考导频信号的叠加信号。比如,发送用户进行数据解调的DMRS,传输DMRS的端口上的信号由发射天线单元根据预编码所指示的权值发射的信号组成。同时,也意味着同一个发射天线单元需要发射多个DMRS端口上的信号,因为同一发射天线单元上的多个参考信号叠加的原因,使得不同符号上的发射功率或者远超平均功率或者远低于平均功率,形成功率的不平衡,为了解决上述技术问题,本发明实施例还提供了以下技术方案:
在本发明实施例中,在参考导频为DMRS时,基站通过对预编码的指示信息或者对DMRS端口的指示信息指示终端进行如下操作之一,并指示所述终端发射DMRS:对使用的预编码中至少一列乘以一个系数;在至少一个发射DMRS的端口上用DMRS乘以一个系数。
在本发明实施例中,所述指示信息满足以下至少之一:
所述指示信息所指示的DMRS端口是以下端口集合之一:DMRS类型1的端口集合:{0,4},{0,1,4},{0,1,4,5},{2,6},{2,3,6},{2,3,6,7},{0,2,4,6};DMRS类型2的端口集合:{0,1,6},{0,1,6,7},{2,3,8},{2,3,8,9},{4,5,10,11};
所述指示信息所指示的预编码字具有以下特征之一:预编码字矩阵中所有元素非零;预编码字矩阵中,至少有一行存在两个非零元素。
在本发明实施例中,通过以下方式在至少一个发射DMRS的端口上用DMRS乘以一个系数:发射3个端口的DMRS所乘以的系数包含在发射4个端口DMRS所乘以的系数中,发射2个端口的DMRS所乘以的系数包含在发射3个端口的DMRS所乘以的系数中。
在本发明实施例中,每个所述端口乘以的系数按照频域资源单位而变化,和/或,每个所述端口乘以的系数按照时域资源单位而变化。
在本发明实施例中,通过以下方式对使用的预编码中至少一列乘以一个系数:预编码中2列所乘以的系数包含在预编码中3列所乘以的系数中,预编码中3列所乘以的系数包含在预编码中4列所乘以的系数中。
在本发明实施例中,所述预编码中每列乘以的系数按照频域资源单位而变化,和/或所述预编码中每列乘以的系数按照时域资源单位而变化。
实施例2
在本实施例中提供了一种参数接收方法,图5是根据本发明实施例的参数接收方法的流程图,如图5所示,该流程包括如下步骤:
步骤S502,接收参考导频序列参数;
步骤S504,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,其中,所述参考导频伪随机序列初始值用于生成对应的 参考导频组的导频伪随机序列,参考导频组至少对应一个参考导频端口,M为正整数。
通过上述各个步骤,接收参考导频序列参数,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,采用上述技术方案,解决相关技术中由于导频序列相同而导致的参考信号的PAPR过高的问题,进而有效降低了参考信号的PAPR。
在本发明实施例中,所述参考导频组包括以下至少之一:参考导频端口组、参考导频CDM组、以及参考导频端口对应的CDM组。
在本发明实施例中,所述参考导频序列参数包括以下至少之一:静态标识、静态标识步长、动态标识、参考导频组索引、以及回退权值w,其中,所述参考导频组索引包括参考导频组绝对索引和参考导频组相对索引。
在本发明实施例中,所述方法包括以下至少之一:所述静态标识通过高层信令配置;所述静态标识步长通过高层信令配置;所述动态标识通过物理层信令配置;所述参考导频组索引通过物理层信令配置;所述回退权值w通过高层信令或物理层信令配置;以及所述回退权值w通过静态标识或动态标识确定。
在本发明实施例中,通过高层信令配置K个静态标识,并将所述K个静态标识分成L组静态标识组,所述K为正偶数,L为大于1且小于K的整数。
在本发明实施例中,所述方法包括以下至少之一:所述K的值由以下至少之一确定:参考导频组的个数、传输层数、以及参考导频类型;所述L的值由参考导频组的个数确定;以及所述静态标识组包含的静态标识个数由导频端口组的个数确定。
在本发明实施例中,所述方法包括以下之一:通过动态标识和参考导频组 索引选择所述静态标识组;通过动态标识选择所述静态标识组;通过参考导频组索引选择所述静态标识组;通过动态标识和参考导频组索引选择所述静态标识。
在本发明实施例中,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,包括以下方式至少之一:至少根据静态标识和参考导频组索引确定M个参考导频组对应的参考导频伪随机序列初始值;至少根据静态标识、参考导频组索引和静态标识步长确定M个参考导频组对应的参考导频伪随机序列初始值;至少根据静态标识、参考导频组索引和动态标识确定M个参考导频组对应的参考导频伪随机序列初始值;以及至少根据静态标识、参考导频组索引、动态标识和静态标识步长确定M个参考导频组对应的参考导频伪随机序列初始值。
在一实施例中,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,包括以下方式至少之一:
至少根据静态标识、参考导频组索引以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值;至少根据静态标识、参考导频组索引、静态标识步长以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值;至少根据静态标识、参考导频组索引、动态标识以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值;以及至少根据静态标识、参考导频组索引、动态标识、静态标识步长以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值。
在本发明实施例中,所述静态标识包括第一位置静态标识和第二位置静态标识,所述取模操作包括以下操作之一:
对静态标识和参考导频组索引计算的结果取模;
对静态标识、参考导频组索引和静态标识步长计算的结果取模;
对第一位置静态标识和参考导频组索引计算的结果取模;
对第一位置静态标识、参考导频组索引和静态标识步长计算的结果取模;
对第二位置静态标识、参考导频组索引计算的结果取模;
对第二位置静态标识、参考导频组索引和静态标识步长计算的结果取模;
对第一位置静态标识和参考导频组索引计算的结果取模,并且对第二位置静态标识和参考导频组索引计算的结果取模;
对第一位置静态标识、参考导频组索引和静态标识步长计算的结果取模,并且对第二位置静态标识、参考导频组索引和静态标识步长计算的结果取模;
对静态标识、动态标识、参考导频组索引计算的结果取模;
对静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模;
对第一位置静态标识、动态标识、参考导频组索引计算的结果取模;
对第二位置静态标识、动态标识、参考导频组索引计算的结果取模;
对第一位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模;
对第二位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模;
对第一位置静态标识、动态标识、参考导频组索引计算的结果取模,并且对第二位置静态标识、动态标识、参考导频组索引计算的结果取模。
对第一位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模,并且对第二位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模。
在本发明实施例中,所述M个参考导频组的参考导频伪随机序列包括:第 一类参考导频伪随机序列和第二类参考导频伪随机序列,其中,所述第一类参考导频伪随机序列包括所述M个参考导频的伪随机序列取值相同的序列,所述第二类参考导频伪随机序列包括所述M个参考导频的伪随机序列取值不相同的序列。
在本发明实施例中,通过以下信息至少之一确定所述M个参考导频组的参考导频伪随机序列为所述第一类参考导频伪随机序列:
动态标识符取值为0;静态标识符步长取值为零;所述M个参考导频组对应的静态标识符取值相同;回退权值w取值为0。
在本发明实施例中,在参考信号为DMRS时,终端通过接收预编码的指示信息或者对DMRS端口的指示信息指示以进行如下操作之一,并指示所述终端发射DMRS:对使用的预编码中至少一列乘以一个系数;在至少一个发射DMRS的端口上用DMRS乘以一个系数。
在本发明实施例中,所述指示信息满足以下至少之一:
所述指示信息所指示的DMRS端口是以下端口集合之一:DMRS类型1的端口集合:{0,4},{0,1,4},{0,1,4,5},{2,6},{2,3,6},{2,3,6,7},{0,2,4,6};DMRS类型2的端口集合:{0,1,6},{0,1,6,7},{2,3,8},{2,3,8,9},{4,5,10,11};所述指示信息所指示的预编码字具有以下特征之一:预编码字矩阵中所有元素非零;预编码字矩阵中,至少有一行存在两个非零元素。
在本发明实施例中,通过以下方式在至少一个发射DMRS的端口上用DMRS乘以一个系数:发射3个端口的DMRS所乘以的系数包含在发射4个端口DMRS所乘以的系数中,发射2个端口的DMRS所乘以的系数包含在发射3个端口的DMRS所乘以的系数中。
在本发明实施例中,每个所述端口乘以的系数按照频域资源单位而变化,和/ 或,每个所述端口乘以的系数按照时域资源单位而变化。
在本发明实施例中,通过以下方式对使用的预编码中至少一列乘以一个系数:预编码中2列所乘以的系数包含在预编码中3列所乘以的系数中,预编码中3列所乘以的系数包含在预编码中4列所乘以的系数中。
在本发明实施例中,所述预编码中每列乘以的系数按照频域资源单位而变化,和/或所述预编码中每列乘以的系数按照时域资源单位而变化。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例3
在本实施例中还提供了一种参数配置装置,该装置用于实现上述实施例及实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图6是根据本发明实施例的参数配置装置的结构框图,如图6所示,该装置包括:
配置模块60,设置为配置参考导频序列参数;
第一确定模块62,设置为根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,其中,所述参考导频伪随机序列初始值用 于生成对应的参考导频组的导频伪随机序列,参考导频组至少对应一个参考导频端口,M为正整数。
通过上述各个模块,配置参考导频序列参数,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,采用上述技术方案,解决相关技术中由于导频序列相同而导致的参考信号的PAPR过高的问题,进而有效降低了参考信号的PAPR。
在本发明实施例中,所述参考导频组包括以下至少之一:参考导频端口组、参考导频CDM组、以及参考导频端口对应的CDM组。
在本发明实施例中,所述参考导频序列参数包括以下至少之一:静态标识、静态标识步长、动态标识、参考导频组索引、以及回退权值w,其中,所述参考导频组索引包括参考导频组绝对索引和参考导频组相对索引。
在本发明实施例中,所述方法包括以下至少之一:
所述静态标识通过高层信令配置;
所述静态标识步长通过高层信令配置;
所述动态标识通过物理层信令配置;
所述参考导频组索引通过物理层信令配置;
所述回退权值w通过高层信令或物理层信令配置;以及
所述回退权值w通过静态标识或动态标识确定。
在本发明实施例中,通过高层信令配置K个静态标识,并将所述K个静态标识分成L组静态标识组,所述K为正偶数,L为大于1且小于K的整数。
在本发明实施例中,所述方法包括以下至少之一:
所述K的值由以下至少之一确定:参考导频组的个数、传输层数、以及参 考导频类型;
所述L的值由参考导频组的个数确定;以及
所述静态标识组包含的静态标识个数由导频端口组的个数确定。
所述方法包括以下之一:
通过动态标识和参考导频组索引选择所述静态标识组;
通过动态标识选择所述静态标识组;
通过参考导频组索引选择所述静态标识组;
通过动态标识和参考导频组索引选择所述静态标识。
在本发明实施例中,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,包括以下方式至少之一:
至少根据静态标识和参考导频组索引确定M个参考导频组对应的参考导频伪随机序列初始值;
至少根据静态标识、参考导频组索引和静态标识步长确定M个参考导频组对应的参考导频伪随机序列初始值;
至少根据静态标识、参考导频组索引和动态标识确定M个参考导频组对应的参考导频伪随机序列初始值;以及
至少根据静态标识、参考导频组索引、动态标识和静态标识步长确定M个参考导频组对应的参考导频伪随机序列初始值。
在本发明实施例中,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,包括以下方式至少之一:
至少根据静态标识、参考导频组索引以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值;至少根据静态标识、参考导频组索引、静态标识步长以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值; 至少根据静态标识、参考导频组索引、动态标识以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值;以及至少根据静态标识、参考导频组索引、动态标识、静态标识步长以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值。
在本发明实施例中,所述静态标识包括第一位置静态标识和第二位置静态标识,所述取模操作包括以下操作之一:
对静态标识和参考导频组索引计算的结果取模;
对静态标识、参考导频组索引和静态标识步长计算的结果取模;
对第一位置静态标识和参考导频组索引计算的结果取模;
对第一位置静态标识、参考导频组索引和静态标识步长计算的结果取模;
对第二位置静态标识、参考导频组索引计算的结果取模;
对第二位置静态标识、参考导频组索引和静态标识步长计算的结果取模;
对第一位置静态标识和参考导频组索引计算的结果取模,并且对第二位置静态标识和参考导频组索引计算的结果取模;
对第一位置静态标识、参考导频组索引和静态标识步长计算的结果取模,并且对第二位置静态标识、参考导频组索引和静态标识步长计算的结果取模;
对静态标识、动态标识、参考导频组索引计算的结果取模;
对静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模;
对第一位置静态标识、动态标识、参考导频组索引计算的结果取模;
对第二位置静态标识、动态标识、参考导频组索引计算的结果取模;
对第一位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模;
对第二位置静态标识、动态标识、参考导频组索引和静态标识步长计算的 结果取模;
对第一位置静态标识、动态标识、参考导频组索引计算的结果取模,并且对第二位置静态标识、动态标识、参考导频组索引计算的结果取模。
对第一位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模,并且对第二位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模。
在本发明实施例中,所述M个参考导频组的参考导频伪随机序列包括:第一类参考导频伪随机序列和第二类参考导频伪随机序列,其中,所述第一类参考导频伪随机序列包括所述M个参考导频的伪随机序列取值相同的序列,所述第二类参考导频伪随机序列包括所述M个参考导频的伪随机序列取值不相同的序列。
在本发明实施例中,通过以下信息至少之一确定所述M个参考导频组的参考导频伪随机序列为所述第一类参考导频伪随机序列:
动态标识符取值为0;静态标识符步长取值为零;所述M个参考导频组对应的静态标识符取值相同;以及回退权值w取值为0。
在本发明实施例中,在参考信号为DMRS时,基站通过对预编码的指示信息或者对DMRS端口的指示信息指示终端进行如下操作之一,并指示所述终端发射DMRS:对使用的预编码中至少一列乘以一个系数;在至少一个发射DMRS的端口上用DMRS乘以一个系数。
在本发明实施例中,所述指示信息满足以下至少之一:
所述指示信息所指示的DMRS端口是以下端口集合之一:DMRS类型1的端口集合:{0,4},{0,1,4},{0,1,4,5},{2,6},{2,3,6},{2,3,6,7},{0,2,4,6};DMRS类型2的端口集合:{0,1,6},{0,1,6,7},{2,3,8},{2,3,8,9},{4,5,10,11};
所述指示信息所指示的预编码字具有以下特征之一:预编码字矩阵中所有元素非零;预编码字矩阵中,至少有一行存在两个非零元素。
在本发明实施例中,通过以下方式在至少一个发射DMRS的端口上用DMRS乘以一个系数:发射3个端口的DMRS所乘以的系数包含在发射4个端口DMRS所乘以的系数中,发射2个端口的DMRS所乘以的系数包含在发射3个端口的DMRS所乘以的系数中。
在本发明实施例中,每个所述端口乘以的系数按照频域资源单位而变化,和/或,每个所述端口乘以的系数按照时域资源单位而变化。
在本发明实施例中,通过以下方式对使用的预编码中至少一列乘以一个系数:预编码中2列所乘以的系数包含在预编码中3列所乘以的系数中,预编码中3列所乘以的系数包含在预编码中4列所乘以的系数中。
在本发明实施例中,所述预编码中每列乘以的系数按照频域资源单位而变化,和/或所述预编码中每列乘以的系数按照时域资源单位而变化。
实施例4
在本实施例中还提供了一种参数接收装置,该装置用于实现上述实施例及实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图7是根据本发明实施例的参数接收装置的结构框图,如图7所示,该装置包括:
接收模块70,设置为接收参考导频序列参数;
第二确定模块72,设置为根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,其中,所述参考导频伪随机序列初始值用 于生成对应的参考导频组的导频伪随机序列,参考导频组至少对应一个参考导频端口,M为正整数。这里的第二确定模块72即是本套参数接收装置中的第一确定模块。
通过上述各个步骤,接收参考导频序列参数,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,采用上述技术方案,解决相关技术中由于导频序列相同而导致的参考信号的PAPR过高的问题,进而有效降低了参考信号的PAPR。
在本发明实施例中,所述参考导频组包括以下至少之一:参考导频端口组、参考导频CDM组、以及参考导频端口对应的CDM组。
在本发明实施例中,所述参考导频序列参数包括以下至少之一:静态标识、静态标识步长、动态标识、参考导频组索引、以及回退权值w,其中,所述参考导频组索引包括参考导频组绝对索引和参考导频组相对索引。
在本发明实施例中,所述方法包括以下至少之一:
所述静态标识通过高层信令配置;
所述静态标识步长通过高层信令配置;
所述动态标识通过物理层信令配置;
所述参考导频组索引通过物理层信令配置;
所述回退权值w通过高层信令或物理层信令配置;以及
所述回退权值w通过静态标识或动态标识确定。
在本发明实施例中,通过高层信令配置K个静态标识,并将所述K个静态标识分成L组静态标识组,所述K为正偶数,L为大于1且小于K的整数。
在本发明实施例中,所述方法包括以下至少之一:
所述K的值由以下至少之一确定:参考导频组的个数、传输层数、以及参考导频类型;
所述L的值由参考导频组的个数确定;
所述静态标识组包含的静态标识个数由导频端口组的个数确定。
在本发明实施例中,所述方法包括以下之一:
通过动态标识和参考导频组索引选择所述静态标识组;
通过动态标识选择所述静态标识组;
通过参考导频组索引选择所述静态标识组;
通过动态标识和参考导频组索引选择所述静态标识。
在本发明实施例中,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,包括以下方式至少之一:
至少根据静态标识和参考导频组索引确定M个参考导频组对应的参考导频伪随机序列初始值;
至少根据静态标识、参考导频组索引和静态标识步长确定M个参考导频组对应的参考导频伪随机序列初始值;
至少根据静态标识、参考导频组索引和动态标识确定M个参考导频组对应的参考导频伪随机序列初始值;以及
至少根据静态标识、参考导频组索引、动态标识和静态标识步长确定M个参考导频组对应的参考导频伪随机序列初始值。
在本发明实施例中,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,包括以下方式至少之一:至少根据静态标识、参考导频组索引以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值;至少根据静态标识、参考导频组索引、静态标识步长以及取模操作确 定M个参考导频组对应的参考导频伪随机序列初始值;至少根据静态标识,参考导频组索引、动态标识以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值;以及至少根据静态标识、参考导频组索引、动态标识、静态标识步长以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值。
在本发明实施例中,所述静态标识包括第一位置静态标识和第二位置静态标识,所述取模操作包括以下操作之一:
对静态标识和参考导频组索引计算的结果取模;
对静态标识、参考导频组索引和静态标识步长计算的结果取模;
对第一位置静态标识和参考导频组索引计算的结果取模;
对第一位置静态标识、参考导频组索引和静态标识步长计算的结果取模;
对第二位置静态标识、参考导频组索引计算的结果取模;
对第二位置静态标识、参考导频组索引和静态标识步长计算的结果取模;
对第一位置静态标识和参考导频组索引计算的结果取模,并且对第二位置静态标识和参考导频组索引计算的结果取模;
对第一位置静态标识、参考导频组索引和静态标识步长计算的结果取模,并且对第二位置静态标识、参考导频组索引和静态标识步长计算的结果取模;
对静态标识、动态标识、参考导频组索引计算的结果取模;
对静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模;
对第一位置静态标识、动态标识、参考导频组索引计算的结果取模;
对第二位置静态标识、动态标识、参考导频组索引计算的结果取模;
对第一位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模;
对第二位置静态标识、动态标识、参考导频组索引和静态标识步长计算的 结果取模;
对第一位置静态标识、动态标识、参考导频组索引计算的结果取模,并且对第二位置静态标识、动态标识、参考导频组索引计算的结果取模。
对第一位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模,并且对第二位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模。
在本发明实施例中,所述M个参考导频组的参考导频伪随机序列包括:第一类参考导频伪随机序列和第二类参考导频伪随机序列,其中,所述第一类参考导频伪随机序列包括所述M个参考导频的伪随机序列取值相同的序列,所述第二类参考导频伪随机序列包括所述M个参考导频的伪随机序列取值不相同的序列。
在本发明实施例中,通过以下信息至少之一确定所述M个参考导频组的参考导频伪随机序列为所述第一类参考导频伪随机序列:动态标识符取值为0;静态标识符步长取值为零;所述M个参考导频组对应的静态标识符取值相同;以及回退权值w取值为0。
在本发明实施例中,在参考信号为DMRS时,终端通过接收预编码的指示信息或者对DMRS端口的指示信息进行如下操作之一,并指示所述终端发射DMRS:对使用的预编码中至少一列乘以一个系数;在至少一个发射DMRS的端口上用DMRS乘以一个系数。
在本发明实施例中,所述指示信息满足以下至少之一:
所述指示信息所指示的DMRS端口是以下端口集合之一:DMRS类型1的端口集合:{0,4},{0,1,4},{0,1,4,5},{2,6},{2,3,6},{2,3,6,7},{0,2,4,6};DMRS类型2的端口集合:{0,1,6},{0,1,6,7},{2,3,8},{2,3,8,9},{4,5,10,11};
所述指示信息所指示的预编码字具有以下特征之一:预编码字矩阵中所有元素非零;预编码字矩阵中,至少有一行存在两个非零元素。
在本发明实施例中,通过以下方式在至少一个发射DMRS的端口上用DMRS乘以一个系数:发射3个端口的DMRS所乘以的系数包含在发射4个端口DMRS所乘以的系数中,发射2个端口的DMRS所乘以的系数包含在发射3个端口的DMRS所乘以的系数中。
在本发明实施例中,每个所述端口乘以的系数按照频域资源单位而变化,和/或,每个所述端口乘以的系数按照时域资源单位而变化。
在本发明实施例中,通过以下方式对使用的预编码中至少一列乘以一个系数:预编码中2列所乘以的系数包含在预编码中3列所乘以的系数中,预编码中3列所乘以的系数包含在预编码中4列所乘以的系数中。
在本发明实施例中,所述预编码中每列乘以的系数按照频域资源单位而变化,和/或所述预编码中每列乘以的系数按照时域资源单位而变化。
以下结合实施例对上述参数配置、参数接收过程进行说明,但不用于限定上述实施例的技术方案。
本公开所涉及的参考导频组可以用如下概念替换:参考导频端口组、参考导频CDM组、参考导频端口对应的CDM组、CDM组、CDM Group。参考导频包括但不限于CSI-RS、DMRS、SRS。参考导频端口是指用于发送参考导频信号的资源元素(Resource Element,RE),或者RE组。
本发明实施例中,参考导频组索引也可以是参考导频组的组号或者编号或者指示、标识,参考导频组索引包括参考导频组相对索引和参考导频组绝对索引。其中,参考导频组绝对索引是对所有的参考导频组从小到大的整体编号或索引,比如L个参考导频被分成M个参考导频组,那么参考导频组绝对索引分 别为参考导频组0~参考导频组M-1,其中L和M为正整数。参考导频组相对索引是指分配给一个终端的参考导频组按参考导频组绝对索引的大小重新排序后的参考导频组索引,比如分配给一个终端的参考导频组为M个参考导频组中的M’个,其中M’小于M,那么参考导频组的相对索引就是参考导频组相对索引0~参考导频组相对索引M’-1。比如M=6,分配给终端的参考导频组为{参考导频组5,参考导频组1},那么参考导频组1的相对索引为参考导频组相对索引0,参考导频组5的相对索引为参考导频组相对索引1。
实例1
本实施例用于说明参考导频信号为CSI-RS的时候,CSI-RS序列的生成。
基站通过如下公式生成每个CSI-RS端口组的参考导频伪随机序列:
Figure PCTCN2019112929-appb-000001
其中,c(n)的长度为n=0,1,...,M PN-1,包括但不限于用如下方式定义:
c(n)=(x 1(n+N C)+x 2(n+N C))mod2
x 1(n+31)=(x 1(n+3)+x 1(n))mod2
x 2(n+31)=(x 2(n+3)+x 2(n+2)+x 2(n+1)+x 2(n))mod2
这里,N C=1600,并且第一个序列x 1(n)初始化为序列x 1(0)=1,x 1(n)=0,n=1,2,...,30,第二个m-sequence(m序列)x 2(n),标记为
Figure PCTCN2019112929-appb-000002
其中c init为参考导频伪随机序列初始值。
基站将生成的参考导频伪随机序列映射到导频端口上,并发送所述参考导频。
这里不同的CSI-RS导频端口组分别对应不同的CDM Group,不同的CSI-RS导频组在频域上或者时域上是正交的。为了生成不同CSI-RS端口组上的参考导频序列,基站需要配置参考导频序列参数,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,其中M为正整数,参考导频 序列参数包括以下至少之一:静态标识、静态标识步长、以及参考导频组索引。
同样地,终端通过公式(1)生成CSI-RS端口组的参考导频伪随机序列,并根据所述生成的参考导频伪随机序列对导频端口上的信道进行估计。为了生成不同CSI-RS端口组上的参考导频序列,终端需要接收参考导频序列参数,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,其中M为正整数,参考导频序列参数包括以下至少之一:静态标识、静态标识步长、以及参考导频组索引。
下面通过一些不同的示例来表明如何通过参考导频序列参数来确定参考导频伪随机序列初始值。
实例2:
本实施例为终端或者基站用参考导频序列参数来确定CSI-RS伪随机序列初始值。
基站或者终端通过如下方式确定CSI-RS伪随机序列初始值。
根据至少静态标识和参考导频组索引确定M个参考导频组对应的参考导频伪随机序列初始值。其中,第n cdm个CSI-RS导频组对应的参考导频伪随机序列初始值通过以下公式之一确定:
Figure PCTCN2019112929-appb-000003
或者
Figure PCTCN2019112929-appb-000004
或者
Figure PCTCN2019112929-appb-000005
或者,
根据至少静态标识、参考导频组索引以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值。其中,第n cdm个CSI-RS导频组对应的参考导频伪随机序列初始值通过以下公式之一确定:
(a)对第一位置静态标识和参考导频组索引计算的结果取模包括但不限于以下公式之一:
Figure PCTCN2019112929-appb-000006
Figure PCTCN2019112929-appb-000007
Figure PCTCN2019112929-appb-000008
Figure PCTCN2019112929-appb-000009
(b)对第二位置静态标识和参考导频组索引计算的结果取模包括但不限于以下公式之一:
Figure PCTCN2019112929-appb-000010
Figure PCTCN2019112929-appb-000011
(c)对第一位置静态标识和参考导频组索引计算的结果取模,并且对第二位置静态标识和参考导频组索引计算的结果取模包括但不限于以下公式之一:
Figure PCTCN2019112929-appb-000012
Figure PCTCN2019112929-appb-000013
(d)对静态标识和参考导频组索引计算的结果取模可以包括但不限于本实施例中上述(a)、(b),、(c)中的任何一个公式。
其中,
Figure PCTCN2019112929-appb-000014
是无线帧的时隙(slot)索引号,l是时隙上的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号索引号,n ID为静态标识,基站通过高层信令配置给终端,比如通过高层信令Scrambling ID(扰码)配置,终端通过接收高层信令获得所述n ID。n cdm为参考导频组索引,或参考导频对应的CDM组索引,或者CDM组索引。
这里,(n·)mod 2 k表示对标识(·)取模操作,其中k的取值k0、k1、k2为高层配置参数,或者终端和基站约定的参数,为正整数,在一实施方式中,k0为 9,k1为9,k2为10。
这里,第一位置静态标识和第二位置静态标识分别是指参考序列初始值c init(n cdm)生成公式中从左到右第一个出现的静态标识和第二个出现的静态标识。
这样就可以使得不同参考导频组对应的参考导频伪随机序列由于参考导频伪随机序列初始值的不同而生产不同的序列(称为第二类参考导频伪随机序列),从而使得同一个符号上的不同参考导频端口的信号在时域形成的PAPR比较小,在可以接受的范围内。但由于存在低版本的用户,不同的参考导频组的参考导频伪随机序列初始值相同(称为第一类参考导频伪随机序列),如果两个版本的用户进行复用,那么低版本的用户对高版本的用户进行干扰估计时就会出现错误。所以为了解决这个问题,需要使得高版本的用户也回退到不同的参考导频组对应的参考导频序列是相同的情况,即通过以下信息确定M个参考导频组的参考导频伪随机序列为第一类参考导频伪随机序列:
M个参考导频组对应的静态标识符取值相同(即不同参考导频组对应的n cdm都取值相同)。
实例3:
本实施例为终端或者基站用参考导频序列参数来确定CSI-RS伪随机序列初始值。
基站或者终端通过如下方式确定CSI-RS伪随机序列初始值。
根据至少静态标识、参考导频组索引和静态标识步长确定M个参考导频组对应的参考导频伪随机序列初始值。
其中,第n cdm个CSI-RS导频组对应的参考导频伪随机序列初始值通过以下公式之一确定:
Figure PCTCN2019112929-appb-000015
或者
Figure PCTCN2019112929-appb-000016
或者
Figure PCTCN2019112929-appb-000017
或者,
根据至少静态标识、参考导频组索引和静态标识步长以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值。其中,第n cdm个CSI-RS导频组对应的参考导频伪随机序列初始值通过以下公式之一确定:
(a)对第一位置静态标识、参考导频组索引和静态标识步长计算的结果取模包括但不限于以下公式之一:
Figure PCTCN2019112929-appb-000018
Figure PCTCN2019112929-appb-000019
Figure PCTCN2019112929-appb-000020
Figure PCTCN2019112929-appb-000021
(b)对第二位置静态标识、参考导频组索引和静态标识步长计算的结果取模包括但不限于以下公式之一:
Figure PCTCN2019112929-appb-000022
Figure PCTCN2019112929-appb-000023
(c)对第一位置静态标识、参考导频组索引和静态标识步长计算的结果取模,并且对第二位置静态标识、参考导频组索引和静态标识步长计算的结果取模包括但不限于以下公式之一:
Figure PCTCN2019112929-appb-000024
Figure PCTCN2019112929-appb-000025
(d)对静态标识和参考导频组索引计算的结果取模可以包括但不限于本实施例中上述(a)、(b)、(c)中的任何一个公式。
其中,
Figure PCTCN2019112929-appb-000026
是无线帧的时隙(slot)索引号, l是时隙上的OFDM符号索引号,n ID为静态标识,基站通过高层信令配置给终端,比如通过高层信令Scrambling ID配置,终端通过接收高层信令获得所述n ID。n cdm为参考导频组索引,或参考导频对应的CDM组索引,或者CDM组索引。
这里,(n·)mod 2 k表示对标识(·)取模操作,其中k的取值k0、k1、k2为高层配置参数,或者终端和基站约定的参数,为正整数,在一实施方式中,k0为9,k1为9,k2为10。
这里,第一位置静态标识和第二位置静态标识分别是指参考序列初始值c init(n cdm)生成公式中从左到右第一个出现的静态标识和第二个出现的静态标识。
这里,K为静态标识步长,通过高层信令配置或者终端和基站约定,它是非负整数,在一实施方式中取值为0或者2 m,其中m为正整数。
这样就可以使得不同参考导频组对应的参考导频伪随机序列由于参考导频伪随机序列初始值的不同而生产不同的序列(称为第二类参考导频伪随机序列),从而使得同一个符号上的不同参考导频端口的信号在时域形成的PAPR比较小,在可以接受的范围内。但由于存在低版本的用户,不同的参考导频组的参考导频伪随机序列初始值相同(称为第一类参考导频伪随机序列),如果两个版本的用户进行复用,那么低版本的用户对高版本的用户进行干扰估计时就会出现错误。所以为了解决这个问题,需要使得高版本的用户也回退到不同的参考导频组对应的参考导频序列是相同的情况,即通过以下信息至少之一确定M个参考导频组的参考导频伪随机序列为第一类参考导频伪随机序列:
静态标识步长取值为零(即K=0);和M个参考导频组对应的静态标识符取值相同(即不同参考导频组对应的n cdm都取值相同)。
实例4
本实施例用于说明参考导频信号为DMRS的时候,DMRS序列的生成。
基站通过实施例1的公式(1)生成每个DMRS端口组的参考导频伪随机序列,基站将生成的参考导频伪随机序列映射到导频端口上,并发送所述参考导频。
这里不同的DMRS导频端口组分别对应不同的CDM Group,不同的DMRS导频组在频域上或者时域上是正交的。为了生成不同DMRS端口组上的参考导频序列,基站需要配置参考导频序列参数,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,其中M为正整数,参考导频序列参数包括以下至少之一:静态标识、静态标识步长、参考导频组索引、以及动态标识。
同样地,终端通过实施例1的公式(1)生成DMRS端口组的参考导频伪随机序列,并根据所述生成的参考导频伪随机序列对导频端口上的信道进行估计。为了生成不同DMRS端口组上的参考导频序列,终端需要接收参考导频序列参数,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,其中M为正整数,参考导频序列参数包括以下至少之一:静态标识、静态标识步长、参考导频组索引、以及动态标识。
下面通过一些不同的示例来表明如何通过参考导频序列参数来确定参考导频伪随机序列初始值。
实例5:
本实施例为终端或者基站用参考导频序列参数来确定DMRS Type1的伪随机序列初始值。
基站或者终端通过如下方式确定DMRS伪随机序列初始值。
根据至少静态标识、动态标识、参考导频组索引确定M个参考导频组对应的参考导频伪随机序列初始值。其中,第n cdm个DMRS导频组对应的参考导频 伪随机序列初始值通过以下公式之一确定:
Figure PCTCN2019112929-appb-000027
或者
Figure PCTCN2019112929-appb-000028
或者
Figure PCTCN2019112929-appb-000029
其中,
Figure PCTCN2019112929-appb-000030
表示一个slot中的符号个数,一般取值为14,
Figure PCTCN2019112929-appb-000031
是无线帧的时隙(slot)索引号,l是时隙上的OFDM符号索引号,n SCID为动态标识,一般通过物理下行控制信令的DMRS sequence initialization(序列初始化)配置,取值为0或者1。
Figure PCTCN2019112929-appb-000032
为静态标识,基站通过高层信令配置给终端,比如对于上行的DMRS用高层信令UL-DMRS-Scrambling-ID(Uplink-Demodulation Reference Signal-Scrambling-ID,上行链路解调参考信号扰码标识)配置,在下行DMRS中通过高层信令DL-DMRS-Scrambling-ID(Downlink-Demodulation Reference Signal-Scrambling-ID,下行链路解调参考信号扰码标识)配置,终端通过接收高层信令获得所述
Figure PCTCN2019112929-appb-000033
但由于一般来说,高层信令会配置至少两个静态标识,比如静态标识
Figure PCTCN2019112929-appb-000034
所以需要动态标识和参考导频组索引中至少之一,来选择其中的一个静态标识。n cdm为参考导频组索引,或参考导频对应的CDM组索引,或者CDM组索引。
这样就可以使得不同参考导频组对应的参考导频伪随机序列由于参考导频伪随机序列初始值的不同而生产不同的序列(称为第二类参考导频伪随机序列),从而使得同一个符号上的不同参考导频端口的信号在时域形成的PAPR比较小,在可以接受的范围内。但由于存在低版本的用户,不同的参考导频组的参考导频伪随机序列初始值相同(称为第一类参考导频伪随机序列),如果两个版本的用户进行复用,那么低版本的用户对高版本的用户进行干扰估计时就会出现错误。所以为了解决这个问题,需要使得高版本的用户也回退到不同的参考导频 组对应的参考导频序列是相同的情况,即通过以下信息确定M个参考导频组的参考导频伪随机序列为第一类参考导频伪随机序列:
M个参考导频组对应的静态标识符取值相同(即不同参考导频组对应的n cdm都取值相同)。
实例6:
本实施例为终端或者基站用参考导频序列参数来确定DMRS Type1或DMRS Type2的伪随机序列初始值。
基站或者终端通过如下方式确定DMRS伪随机序列初始值。
根据至少静态标识、动态标识、参考导频组索引确定M个参考导频组对应的参考导频伪随机序列初始值。其中,第n cdm个DMRS导频组对应的参考导频伪随机序列初始值通过以下公式之一确定:
Figure PCTCN2019112929-appb-000035
或者
Figure PCTCN2019112929-appb-000036
或者
Figure PCTCN2019112929-appb-000037
或者根据至少静态标识、动态标识、参考导频组索引以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值。其中,第n cdm个DMRS导频组对应的参考导频伪随机序列初始值通过以下公式之一确定:
(a)对第一位置静态标识、动态标识、参考导频组索引计算的结果取模包括但不限于以下公式之一:
Figure PCTCN2019112929-appb-000038
Figure PCTCN2019112929-appb-000039
Figure PCTCN2019112929-appb-000040
Figure PCTCN2019112929-appb-000041
(b)对第二位置静态标识、动态标识、参考导频组索引计算的结果取模包括但不限于以下公式之一:
Figure PCTCN2019112929-appb-000042
Figure PCTCN2019112929-appb-000043
(c)对第一位置静态标识、动态标识、参考导频组索引计算的结果取模,并且对第二位置静态标识、动态标识、参考导频组索引计算的结果取模包括但不限于以下公式之一:
Figure PCTCN2019112929-appb-000044
Figure PCTCN2019112929-appb-000045
(d)对静态标识、动态标识、参考导频组索引计算的结果取模可以包括但不限于本实施例中上述(a)、(b)、(c)中的任何一个公式。
或者根据至少静态标识、动态标识、参考导频组索引以及回退权值w确定M个参考导频组对应的参考导频伪随机序列初始值。其中,第n cdm个DMRS导频组对应的参考导频伪随机序列初始值通过以下公式之一确定:
Figure PCTCN2019112929-appb-000046
Figure PCTCN2019112929-appb-000047
其中,
Figure PCTCN2019112929-appb-000048
表示一个slot中的符号个数,一般取值为14,
Figure PCTCN2019112929-appb-000049
是无线帧的时隙(slot)索引号, l是时隙上的OFDM符号索引号,n SCID为动态标识,一般通过物理下行控制信令的DMRS sequence initialization配置,取值为0或者1。
Figure PCTCN2019112929-appb-000050
为静态标识,基站通过高层信令配置给终端,比如对于上行的DMRS用高层信令UL-DMRS-Scrambling-ID配置,在下行DMRS中通过高层信令DL-DMRS-Scrambling-ID配置,终端通过接收高层信令获得所述
Figure PCTCN2019112929-appb-000051
但由 于一般来说,高层信令会配置至少两个静态标识,比如静态标识
Figure PCTCN2019112929-appb-000052
所以需要动态标识和参考导频组索引中至少之一,来选择其中的一个静态标识。n cdm为参考导频组索引,或参考导频对应的CDM组索引,或者CDM组索引。
这里,(n·)mod 2 k表示对标识(·)取模操作,其中k的取值k0、k1、k2为高层配置参数,或者终端和基站约定的参数,为正整数,在一实施方式中,k0为16,k1为16,k2为17。
这里,第一位置静态标识和第二位置静态标识分别是指参考序列初始值c init(n cdm)生成公式中从左到右第一个出现的静态标识和第二个出现的静态标识。
这样就可以使得不同参考导频组对应的参考导频伪随机序列由于参考导频伪随机序列初始值的不同而生产不同的序列(称为第二类参考导频伪随机序列),从而使得同一个符号上的不同参考导频端口的信号在时域形成的PAPR比较小,在可以接受的范围内。但由于存在低版本的用户,不同的参考导频组的参考导频伪随机序列初始值相同(称为第一类参考导频伪随机序列),如果两个版本的用户进行复用,那么低版本的用户对高版本的用户进行干扰估计时就会出现错误。所以为了解决这个问题,需要使得高版本的用户也回退到不同的参考导频组对应的参考导频序列是相同的情况,即通过以下信息至少之一确定M个参考导频组的参考导频伪随机序列为第一类参考导频伪随机序列:
M个参考导频组对应的静态标识符取值相同(即不同参考导频组对应的n cdm都取值相同);和回退权值w取值为0。其中,回退标识可以在动态标识取值为0时取0,或者在M个参考导频组对应的静态标识取值相差小于一个正整数T(比如第一个参考导频组的动态标识-第二个参考导频组的动态标识<T)时取值为0。
实例7:
本实施例为终端或者基站用参考导频序列参数来确定DMRS Type1或DMRS Type2的伪随机序列初始值。
基站或者终端通过如下方式确定DMRS伪随机序列初始值。
根据至少静态标识、动态标识、参考导频组索引、静态标识步长确定M个参考导频组对应的参考导频伪随机序列初始值。其中,第n cdm个DMRS导频组对应的参考导频伪随机序列初始值通过以下公式之一确定:
Figure PCTCN2019112929-appb-000053
或者
Figure PCTCN2019112929-appb-000054
或者
Figure PCTCN2019112929-appb-000055
或者根据至少静态标识、动态标识、参考导频组索引以及取模操作确定M个参考导频组对应的参考导频伪随机序列初始值。其中,第n cdm个DMRS导频组对应的参考导频伪随机序列初始值通过以下公式之一确定:
(a)对第一位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模包括但不限于以下公式之一:
Figure PCTCN2019112929-appb-000056
Figure PCTCN2019112929-appb-000057
Figure PCTCN2019112929-appb-000058
Figure PCTCN2019112929-appb-000059
(b)对第二位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模包括但不限于以下公式之一:
Figure PCTCN2019112929-appb-000060
Figure PCTCN2019112929-appb-000061
(c)对第一位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模,并且对第二位置静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模包括但不限于以下公式之一:
Figure PCTCN2019112929-appb-000062
Figure PCTCN2019112929-appb-000063
(d)对静态标识、动态标识、参考导频组索引和静态标识步长计算的结果取模可以包括但不限于本实施例中上述(a)、(b)、(c)中的任何一个公式。
其中,
Figure PCTCN2019112929-appb-000064
表示一个slot中的符号个数,一般取值为14,
Figure PCTCN2019112929-appb-000065
是无线帧的时隙(slot)索引号,l是时隙上的OFDM符号索引号,n SCID为动态标识,一般通过物理下行控制信令的DMRS sequence initialization配置,取值为0或者1。
Figure PCTCN2019112929-appb-000066
为静态标识,基站通过高层信令配置给终端,比如对于上行的DMRS用高层信令UL-DMRS-Scrambling-ID配置,在下行DMRS中通过高层信令DL-DMRS-Scrambling-ID配置,终端通过接收高层信令获得所述
Figure PCTCN2019112929-appb-000067
但由于一般来说,高层信令会配置至少两个静态标识,比如静态标识
Figure PCTCN2019112929-appb-000068
所以需要动态标识和参考导频组索引中至少之一,来选择其中的一个静态标识。n cdm为参考导频组索引,或参考导频对应的CDM组索引,或者CDM组索引。这里,K 1包括但不限于如下之一的取值:静态标识步长K、动态标识n SCID、动态标识和静态标识的乘积n SCID*K。
这里,(n·)mod 2 k表示对标识(·)取模操作,其中k的取值k0、k1、k2为高层配置参数,或者终端和基站约定的参数,为正整数,在一实施方式中,k0为16,k1为16,k2为17。
这里,第一位置静态标识和第二位置静态标识分别是指参考序列初始值c init(n cdm)生成公式中从左到右第一个出现的静态标识和第二个出现的静态标识。
这样就可以使得不同参考导频组对应的参考导频伪随机序列由于参考导频伪随机序列初始值的不同而生产不同的序列(称为第二类参考导频伪随机序列),从而使得同一个符号上的不同参考导频端口的信号在时域形成的PAPR比较小,在可以接受的范围内。但由于存在低版本的用户,不同的参考导频组的参考导频伪随机序列初始值相同(称为第一类参考导频伪随机序列),如果两个版本的用户进行复用,那么低版本的用户对高版本的用户进行干扰估计时就会出现错误。所以为了解决这个问题,需要使得高版本的用户也回退到不同的参考导频组对应的参考导频序列是相同的情况,即通过以下信息至少之一确定M个参考导频组的参考导频伪随机序列为第一类参考导频伪随机序列:
静态标识符步长取值为零(即K=0);M个参考导频组对应的静态标识符取值相同(即不同参考导频组对应的n cdm都取值相同);以及动态标识为0。
实例8
本实施例为终端或者基站用参考导频序列参数来确定DMRS Type1或DMRS Type2的伪随机序列初始值。
基站或者终端通过如下方式确定DMRS伪随机序列初始值。
通过高层信令配置K个静态标识
Figure PCTCN2019112929-appb-000069
并将所述K个静态标识分成L组静态标识组,所述K为正偶数,L为大于1且小于K的整数。比如K=4,分成L=2组,每组两个静态标识,第一组静态标识为
Figure PCTCN2019112929-appb-000070
第二组静态标识为
Figure PCTCN2019112929-appb-000071
或者,比如K=6,分成L=2组,每组3个静态标识,第一组静态标识为
Figure PCTCN2019112929-appb-000072
第二组静态标识为
Figure PCTCN2019112929-appb-000073
在一实施方式中,所述K由以下至少之一确定:参考导频组个数、数据层 数、以及参考导频类型。比如导频组类型为DMRS Type1时K=4,导频组类型为DMRS Type1时K=6;参考导频组个数为2时K=4,参考导频组个数为3时K=6;数据层数小于等于4时K=4,数据层数大于4时K=6。这里的数据层又称为层、传输层、信道秩。
在一实施方式中,所述L由参考导频组个数确定,和/或,每个静态标识组包含的静态标识个数由参考导频组个数确定。比如,参考导频组个数为2时L=2,每个静态标识组包括2个静态标识,参考导频组个数为3时L=3,每个静态标识组包括3个静态标识。
通过动态标识和参考导频组索引中至少之一选择所述静态标识组,比如,动态标识取值i时选择静态标识组i,i=0,1。比如参考导频组索引取值i时选择静态标识组k,k=i mod 2,i=0,1,…,M,M为静态标识组的个数,为正整数。比如参考导频组索引取值i和动态标识取值j时选择静态标识组k,k=(i+j)mod 2,i=0,1,…,M-1,j=0,1,M为静态标识组的个数,为正整数。
通过上述方法选择了静态标识组后,比如选了静态标识组k后,用静态标识组k里的第m个元素作为第m个参考导频组的静态标识
Figure PCTCN2019112929-appb-000074
并用所述选择的第m个参考导频组的静态标识
Figure PCTCN2019112929-appb-000075
以及动态标识确定第m个参考导频组对应的参考导频伪随机序列初始值C init(m),其中,m=0,…,N-1,N为参考导频组的个数。其中C init(m)由以下公式生成:
Figure PCTCN2019112929-appb-000076
实例9
本实施例用于说明基站和终端解决功率不平衡的方法。
终端发射DMRS以便于接收端获取传输信道系数以进行数据的解调,传输DMRS的端口上的信号由发射天线单元根据预编码所指示的权值发射的信号组 成。同时,也意味着同一个发射天线单元需要发射多个DMRS端口上的信号,因为同一发射天线单元上信号叠加的原因,使得信号的功率或者远超平均功率或者远低于平均功率,形成功率的不平衡。
终端根据基站所指示的信息,对于使用的预编码,在至少一个发射DMRS的端口上用DMRS乘以一个系数,然后发射DMRS,以缓解发射天线单元发射功率不平衡的情况;或者,对使用的预编码中至少一列元素乘以一个系数,然后发射DMRS,以缓解发射天线单元发射功率不平衡的情况。终端根据基站所指示的信息进行所述乘以系数的操作,其中所述基站的指示信息,可以是指示的DMRS端口的信息,也可以是指示的预编码字的信息。所指示的DMRS端口需要满足一定条件,终端才进行所述乘以系数的操作;或者所指示的预编码需要满足一定条件,终端才进行所述乘以系数的操作;或者所指示的DMRS端口需要满足一定条件,并且,所指示的预编码也同时要满足一定条件,终端才进行所述乘以系数的操作。例如,指示的DMRS端口需要满足的条件是DMRS端口是以下端口集合之一:DMRS类型1的端口集合:{0,4},{0,1,4},{0,1,4,5},{2,6},{2,3,6},{2,3,6,7},{0,2,4,6};DMRS类型2的端口集合:{0,1,6},{0,1,6,7},{2,3,8},{2,3,8,9},{4,5,10,11}。例如,所指示的预编码需要满足的条件是指示的预编码字具有以下特征之一:
1)预编码字矩阵中所有元素非零;
2)预编码字矩阵中,至少有一行存在两个非零元素。
再例如,所指示的DMRS端口需要满足上述DMRS端口需要满足的条件,并且,所指示的预编码也同时要满足上述预编码需要满足的条件。
预编码字矩阵中所有元素非零,例如,用于2天线发射2个端口的DMRS的码字:
Figure PCTCN2019112929-appb-000077
例如,用于4天线发射2个端口的DMRS的码字:
Figure PCTCN2019112929-appb-000078
例如,用于4天线发射3个端口的DMRS的码字:
Figure PCTCN2019112929-appb-000079
例如,用于4天线发射4个端口的DMRS的码字:
Figure PCTCN2019112929-appb-000080
预编码字矩阵中,至少有一行存在两个非零元素,例如,用于4天线发射4个端口的DMRS的码字:
Figure PCTCN2019112929-appb-000081
所述系数,可以是虚数,可以是实数,也可以是复数。
为了减小系统的复杂度,所述在至少一个发射DMRS的端口上用DMRS乘以一个系数,包括:发射3个端口的DMRS所乘以的系数包含在发射4个端口DMRS所乘以的系数中,发射2个端口的DMRS所乘以的系数包含在发射3个 端口的DMRS所乘以的系数中。例如,发射4个端口的DMRS,各端口乘以的系数为a、b、c、d;发射3个端口的DMRS的乘以的系数按照端口对应为a、b、c;发射2个端口的DMRS乘以的系数按照端口对应为a、b。
为了缓解同一发射天线单元上功率的平衡问题,每个端口乘以的系数按照频域资源单位而变化。例如,按照资源块变化,或者按照子带而变化,或者按照DMRS绑定的频域资源单位而变化。
为了缓解同一发射天线单元上功率的平衡问题,每个端口乘以的系数按照时域资源单位而变化。例如,按照OFDM符号变化,或者按照时隙而变化。
为了减小系统的复杂度,所述对使用的预编码中至少一列乘以一个系数,包括:预编码中2列所乘以的系数包含在预编码中3列所乘以的系数中,预编码中3列所乘以的系数包含在预编码中4列所乘以的系数中。例如,预编码字矩阵中4列需要乘以的系数分别为a、b、c、d;预编码字矩阵中3列需要乘以的系数按照列对应分别为a、b、c;预编码字矩阵中2列需要乘以的系数按照列对应分别为a、b。
为了缓解同一发射天线单元上功率的平衡问题,预编码字矩阵中的列所乘以的系数按照频域资源单位而变化。例如,按照资源块变化,或者按照子带而变化,或者按照DMRS绑定的频域资源单位而变化。
为了缓解同一发射天线单元上功率的平衡问题,预编码字矩阵中的列所乘以的系数按照时域资源单位而变化。例如,按照OFDM符号变化,或者按照时隙而变化。
实施例5
本发明的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,配置参考导频序列参数;
S2,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,其中,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,参考导频组至少对应一个参考导频端口,M为正整数。
实施例6
本发明的实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行上述任一项所述的方法。
存储介质还被设置为存储用于执行以下步骤的程序代码:
S3,接收参考导频序列参数;
S4,根据所述参考导频序列参数确定M个参考导频组对应的参考导频伪随机序列初始值,其中,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,参考导频组至少对应一个参考导频端口,M为正整数。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本实施例中的示例可以参考上述实施例及实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上。在一实施方式中,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并 且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。

Claims (40)

  1. 一种参数配置方法,包括:
    配置参考导频序列参数;
    根据所述参考导频序列参数确定M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值,其中,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,所述M为正整数,每个所述参考导频组对应至少一个参考导频端口。
  2. 根据权利要求1所述的方法,其中,所述参考导频组至少包括以下之一:参考导频端口组、参考导频码分复用CDM组、以及参考导频端口对应的CDM组。
  3. 根据权利要求1所述的方法,其中,所述参考导频序列参数包括以下至少之一:静态标识、静态标识步长、动态标识、参考导频组索引、以及回退权值w,其中,所述参考导频组索引包括参考导频组绝对索引和参考导频组相对索引。
  4. 根据权利要求3所述的方法,其中,所述方法包括以下至少之一:
    所述静态标识通过高层信令配置;
    所述静态标识步长通过高层信令配置;
    所述动态标识通过物理层信令配置;
    所述参考导频组索引通过物理层信令配置;以及
    所述回退权值w通过高层信令或物理层信令配置。
  5. 根据权利要求3所述的方法,其中,通过高层信令配置K个静态标识,并将所述K个静态标识分成L组静态标识组,所述K为正偶数,所述L为大于1且小于K的整数。
  6. 根据权利要求5所述的方法,其中,所述方法包括以下至少之一:
    所述K的值由以下至少之一确定:所述参考导频组的个数、传输层数、以及参考导频类型;
    所述L的值由所述参考导频组的个数确定;以及
    所述静态标识组包含的静态标识个数由导频端口组的个数确定。
  7. 根据权利要求3或5所述的方法,其中,所述方法包括以下之一:
    通过所述动态标识和所述参考导频组索引选择所述静态标识组;
    通过所述动态标识选择所述静态标识组;
    通过所述参考导频组索引选择所述静态标识组;
    通过所述动态标识和所述参考导频组索引选择所述静态标识;
    通过所述静态标识或所述动态标识确定所述回退权值w。
  8. 根据权利要求1所述的方法,其中,所述根据所述参考导频序列参数确定M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值,包括以下方式至少之一:
    至少根据静态标识和参考导频组索引确定所述M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值;
    至少根据静态标识、参考导频组索引和静态标识步长确定所述M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值;
    至少根据静态标识、参考导频组索引和动态标识确定所述M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值;以及
    至少根据静态标识、参考导频组索引、动态标识和静态标识步长确定所述M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值。
  9. 根据权利要求1所述的方法,其中,所述根据所述参考导频序列参数确 定M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值,包括以下方式至少之一:
    至少根据静态标识、参考导频组索引以及取模操作确定所述M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值;
    至少根据静态标识、参考导频组索引、静态标识步长以及取模操作确定所述M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值;
    至少根据静态标识、参考导频组索引、动态标识以及取模操作确定所述M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值;以及
    至少根据静态标识、参考导频组索引、动态标识、静态标识步长以及取模操作确定所述M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值。
  10. 根据权利要求9所述的方法,其中,所述静态标识包括第一位置静态标识和第二位置静态标识,所述取模操作包括以下操作之一:
    对所述静态标识和所述参考导频组索引计算的结果取模;
    对所述静态标识、所述参考导频组索引和所述静态标识步长计算的结果取模;
    对所述第一位置静态标识和所述参考导频组索引计算的结果取模;
    对所述第一位置静态标识、所述参考导频组索引和所述静态标识步长计算的结果取模;
    对所述第二位置静态标识、所述参考导频组索引计算的结果取模;
    对所述第二位置静态标识、所述参考导频组索引和所述静态标识步长计算的结果取模;
    对所述第一位置静态标识和所述参考导频组索引计算的结果取模,并且对 所述第二位置静态标识和所述参考导频组索引计算的结果取模;
    对所述第一位置静态标识、所述参考导频组索引和所述静态标识步长计算的结果取模,并且对所述第二位置静态标识、所述参考导频组索引和所述静态标识步长计算的结果取模;
    对所述静态标识、所述动态标识、所述参考导频组索引计算的结果取模;
    对所述静态标识、所述动态标识、所述参考导频组索引和所述静态标识步长计算的结果取模;
    对所述第一位置静态标识、所述动态标识、所述参考导频组索引计算的结果取模;
    对所述第二位置静态标识、所述动态标识、所述参考导频组索引计算的结果取模;
    对所述第一位置静态标识、所述动态标识、所述参考导频组索引和所述静态标识步长计算的结果取模;
    对所述第二位置静态标识、所述动态标识、所述参考导频组索引和所述静态标识步长计算的结果取模;
    对所述第一位置静态标识、所述动态标识、所述参考导频组索引计算的结果取模,并且对所述第二位置静态标识、所述动态标识、所述参考导频组索引计算的结果取模;
    对所述第一位置静态标识、所述动态标识、所述参考导频组索引和所述静态标识步长计算的结果取模,并且对所述第二位置静态标识、所述动态标识、所述参考导频组索引和所述静态标识步长计算的结果取模。
  11. 根据权利要求1所述的方法,其中,
    所述M个参考导频组的导频伪随机序列属于第一类参考导频伪随机序列或 第二类参考导频伪随机序列,其中,所述第一类参考导频伪随机序列为所述M个参考导频组的导频伪随机序列取值相同的序列,所述第二类参考导频伪随机序列为所述M个参考导频组的导频伪随机序列取值不相同的序列。
  12. 根据权利要求11所述的方法,其中,
    通过以下信息至少之一确定所述M个参考导频组的导频伪随机序列属于所述第一类参考导频伪随机序列:
    动态标识符取值为0;
    静态标识符步长取值为零;
    所述M个参考导频组对应的静态标识符取值相同;以及
    回退权值w取值为0。
  13. 根据权利要求1所述的方法,还包括:参考导频为解调参考信号DMRS时,基站通过对预编码的指示信息或者对DMRS端口的指示信息指示终端进行如下操作之一:
    对使用的所述预编码中至少一列乘以一个系数;
    在所述DMRS的至少一个端口上用所述DMRS乘以一个系数。
  14. 根据权利要求13所述的方法,其中,所述指示信息满足以下至少之一:
    所述指示信息所指示的DMRS端口是以下端口集合之一:
    DMRS类型1的端口集合:{0,4},{0,1,4},{0,1,4,5},{2,6},{2,3,6},{2,3,6,7},{0,2,4,6};
    DMRS类型2的端口集合:{0,1,6},{0,1,6,7},{2,3,8},{2,3,8,9},{4,5,10,11};
    所述指示信息所指示的预编码字具有以下特征之一:
    预编码字矩阵中所有元素非零;
    预编码字矩阵中,至少有一行存在两个非零元素。
  15. 根据权利要求13所述的方法,其中,通过以下方式在所述DMRS的至少一个端口上用所述DMRS乘以一个系数:
    发射所述DMRS的3个端口上用所述DMRS所乘以的系数,包含在发射所述DMRS的4个端口上用所述DMRS所乘以的系数中,发射所述DMRS的2个端口上用所述DMRS所乘以的系数,包含在发射所述DMRS的3个端口上用所述DMRS所乘以的系数中。
  16. 根据权利要求15所述的方法,其中,所述方法包括以下至少之一:
    每个所述端口发射的所述DMRS乘以的系数按照频域资源单位而变化;和
    每个所述端口发射的所述DMRS乘以的系数按照时域资源单位而变化。
  17. 根据权利要求13所述的方法,其中,通过以下方式对使用的预编码中至少一列乘以一个系数:
    所述预编码中2列所乘以的系数包含在所述预编码中3列所乘以的系数中,所述预编码中3列所乘以的系数包含在所述预编码中4列所乘以的系数中。
  18. 根据权利要求17所述的方法,其中,所述方法包括以下至少之一:
    所述预编码中每列乘以的系数按照频域资源单位而变化;和
    所述预编码中每列乘以的系数按照时域资源单位而变化。
  19. 一种参数接收方法,包括:
    接收参考导频序列参数;
    根据所述参考导频序列参数确定M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值,其中,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,所述M为正整数,每个所述参考导频组对应至少一个参考导频端口。
  20. 根据权利要求19所述的方法,其中,所述参考导频组包括以下至少之一:参考导频端口组、参考导频码分复用CDM组、以及参考导频端口对应的CDM组。
  21. 根据权利要求19所述的方法,其中,所述参考导频序列参数包括以下至少之一:静态标识、静态标识步长、动态标识、参考导频组索引、以及回退权值w,其中,所述参考导频组索引包括参考导频组绝对索引和参考导频组相对索引。
  22. 根据权利要求21所述的方法,其中,所述方法包括以下至少之一:
    所述静态标识通过高层信令配置;
    所述静态标识步长通过高层信令配置;
    所述动态标识通过物理层信令配置;
    所述参考导频组索引通过物理层信令配置;以及
    所述回退权值w通过高层信令或物理层信令配置。
  23. 根据权利要求21所述的方法,其中,通过高层信令配置K个静态标识,并将所述K个静态标识分成L组静态标识组,所述K为正偶数,所述L为大于1且小于K的整数。
  24. 根据权利要求23所述的方法,其中,所述方法包括以下至少之一:
    所述K的值由以下至少之一确定:所述参考导频组的个数、传输层数、以及参考导频类型;
    所述L的值由所述参考导频组的个数确定;以及
    所述静态标识组包含的静态标识个数由导频端口组的个数确定。
  25. 根据权利要求22所述的方法,其中,所述方法包括以下之一:
    通过所述动态标识和所述参考导频组索引选择所述静态标识组;
    通过所述动态标识选择所述静态标识组;
    通过所述参考导频组索引选择所述静态标识组;
    通过所述动态标识和所述参考导频组索引选择所述静态标识;
    通过所述静态标识或所述动态标识确定所述回退权值w。
  26. 根据权利要求19所述的方法,其中,所述根据所述参考导频序列参数确定M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值,包括以下方式至少之一:
    至少根据静态标识和参考导频组索引确定所述M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值;
    至少根据静态标识、参考导频组索引和静态标识步长确定所述M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值;
    至少根据静态标识、参考导频组索引和动态标识确定所述M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值;以及
    至少根据静态标识、参考导频组索引、动态标识和静态标识步长确定所述M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值。
  27. 根据权利要求19所述的方法,其中,所述根据所述参考导频序列参数确定M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值,包括以下方式至少之一:
    至少根据静态标识、参考导频组索引以及取模操作确定所述M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值;
    至少根据静态标识、参考导频组索引、静态标识步长以及取模操作确定所述M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值;
    至少根据静态标识、参考导频组索引、动态标识以及取模操作确定所述M 个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值;以及
    至少根据静态标识、参考导频组索引、动态标识、静态标识步长以及取模操作确定所述M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值。
  28. 根据权利要求27所述的方法,其中,所述静态标识包括第一位置静态标识和第二位置静态标识,所述取模操作包括以下操作之一:
    对所述静态标识和所述参考导频组索引计算的结果取模;
    对所述静态标识、所述参考导频组索引和所述静态标识步长计算的结果取模;
    对所述第一位置静态标识和所述参考导频组索引计算的结果取模;
    对所述第一位置静态标识、所述参考导频组索引和所述静态标识步长计算的结果取模;
    对所述第二位置静态标识、所述参考导频组索引计算的结果取模;
    对所述第二位置静态标识、所述参考导频组索引和所述静态标识步长计算的结果取模;
    对所述第一位置静态标识和所述参考导频组索引计算的结果取模,并且对所述第二位置静态标识和所述参考导频组索引计算的结果取模;
    对所述第一位置静态标识、所述参考导频组索引和所述静态标识步长计算的结果取模,并且对所述第二位置静态标识、所述参考导频组索引和所述静态标识步长计算的结果取模;
    对所述静态标识、所述动态标识、所述参考导频组索引计算的结果取模;
    对所述静态标识、所述动态标识、所述参考导频组索引和所述静态标识步长计算的结果取模;
    对所述第一位置静态标识、所述动态标识、所述参考导频组索引计算的结果取模;
    对所述第二位置静态标识、所述动态标识、所述参考导频组索引计算的结果取模;
    对所述第一位置静态标识、所述动态标识、所述参考导频组索引和所述静态标识步长计算的结果取模;
    对所述第二位置静态标识、所述动态标识、所述参考导频组索引和所述静态标识步长计算的结果取模;
    对所述第一位置静态标识、所述动态标识、所述参考导频组索引计算的结果取模,并且对所述第二位置静态标识、所述动态标识、所述参考导频组索引计算的结果取模;
    对所述第一位置静态标识、所述动态标识、所述参考导频组索引和所述静态标识步长计算的结果取模,并且对所述第二位置静态标识、所述动态标识、所述参考导频组索引和所述静态标识步长计算的结果取模。
  29. 根据权利要求19所述的方法,其中,
    所述M个参考导频组的导频伪随机序列属于第一类参考导频伪随机序列或第二类参考导频伪随机序列,其中,所述第一类参考导频伪随机序列为所述M个参考导频组的导频伪随机序列取值相同的序列,所述第二类参考导频伪随机序列为所述M个参考导频组的导频伪随机序列取值不相同的序列。
  30. 根据权利要求29所述的方法,其中,
    通过以下信息至少之一确定所述M个参考导频组的导频伪随机序列属于所述第一类参考导频伪随机序列:
    动态标识符取值为0;
    静态标识符步长取值为零;
    所述M个参考导频组对应的静态标识符取值相同;以及
    回退权值w取值为0。
  31. 根据权利要求19所述的方法,还包括,参考导频为解调参考信号DMRS时,根据基站发射的对预编码的指示信息或者对DMRS端口的指示信息进行如下操作之一:
    对使用的所述预编码中至少一列乘以一个系数;
    在所述DMRS的至少一个端口上用所述DMRS乘以一个系数。
  32. 根据权利要求31所述的方法,其中,所述指示信息满足以下至少之一:
    所述指示信息所指示的DMRS端口是以下端口集合之一:
    DMRS类型1的端口集合:{0,4},{0,1,4},{0,1,4,5},{2,6},{2,3,6},{2,3,6,7},{0,2,4,6};
    DMRS类型2的端口集合:{0,1,6},{0,1,6,7},{2,3,8},{2,3,8,9},{4,5,10,11};
    所述指示信息所指示的预编码字具有以下特征之一:
    预编码字矩阵中所有元素非零;
    预编码字矩阵中,至少有一行存在两个非零元素。
  33. 根据权利要求31所述的方法,其中,通过以下方式在所述DMRS的至少一个端口上用所述DMRS乘以一个系数:
    发射所述DMRS的3个端口上用所述DMRS所乘以的系数,包含在发射所述DMRS的4个端口上用所述DMRS所乘以的系数中,发射所述DMRS的2个端口上用所述DMRS所乘以的系数,包含在发射所述DMRS的3个端口上用所述DMRS所乘以的系数中。
  34. 根据权利要求33所述的方法,其中,所述方法包括以下至少之一:
    每个所述端口发射的所述DMRS乘以的系数按照频域资源单位而变化;和
    每个所述端口发射的所述DMRS乘以的系数按照时域资源单位而变化。
  35. 根据权利要求31所述的方法,其中,通过以下方式对使用的预编码中至少一列乘以一个系数:
    所述预编码中2列所乘以的系数包含在所述预编码中3列所乘以的系数中,所述预编码中3列所乘以的系数包含在所述预编码中4列所乘以的系数中。
  36. 根据权利要求35所述的方法,其中,所述方法包括以下至少之一:
    所述预编码中每列乘以的系数按照频域资源单位而变化;和
    所述预编码中每列乘以的系数按照时域资源单位而变化。
  37. 一种参数配置装置,包括:
    配置模块,设置为配置参考导频序列参数;
    第一确定模块,设置为根据所述参考导频序列参数确定M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值,其中,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,所述M为正整数,每个所述参考导频组对应至少一个参考导频端口。
  38. 一种参数接收装置,包括:
    接收模块,设置为接收参考导频序列参数;
    第一确定模块,设置为根据所述参考导频序列参数确定M个参考导频组中每个参考导频组对应的参考导频伪随机序列初始值,其中,所述参考导频伪随机序列初始值用于生成对应的参考导频组的导频伪随机序列,所述M为正整数,每个所述参考导频组对应至少一个参考导频端口。
  39. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算 机程序被设置为运行时执行所述权利要求1至18任一项中所述的方法。
  40. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求19至36任一项中所述的方法。
PCT/CN2019/112929 2018-10-24 2019-10-24 参数配置、参数接收方法及装置、存储介质 WO2020083326A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217015368A KR20210077750A (ko) 2018-10-24 2019-10-24 파라미터 구성 및 파라미터 수신 방법들 및 장치, 및 저장 매체
EP19876133.0A EP3873046A4 (en) 2018-10-24 2019-10-24 PARAMETER CONFIGURATION AND PARAMETER RECEPTION METHOD AND DEVICE, AND STORAGE MEDIA
US17/236,341 US12003358B2 (en) 2018-10-24 2021-04-21 Parameter configuration and parameter receiving methods and apparatus, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811247396.4A CN111092837A (zh) 2018-10-24 2018-10-24 参数配置、参数接收方法及装置、存储介质
CN201811247396.4 2018-10-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/236,341 Continuation US12003358B2 (en) 2018-10-24 2021-04-21 Parameter configuration and parameter receiving methods and apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2020083326A1 true WO2020083326A1 (zh) 2020-04-30

Family

ID=70330583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/112929 WO2020083326A1 (zh) 2018-10-24 2019-10-24 参数配置、参数接收方法及装置、存储介质

Country Status (5)

Country Link
US (1) US12003358B2 (zh)
EP (1) EP3873046A4 (zh)
KR (1) KR20210077750A (zh)
CN (2) CN111092837A (zh)
WO (1) WO2020083326A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116707724A (zh) * 2022-02-24 2023-09-05 维沃移动通信有限公司 解调参考信号信息确定方法、指示方法及相关设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009006827A1 (fr) * 2007-07-10 2009-01-15 Huawei Technologies Co., Ltd. Procédé et appareil de mise à jour de temps de propagation en boucle
US20180026684A1 (en) * 2015-02-10 2018-01-25 Chao Wei Dmrs enhancement for higher order mu-mimo
CN108667581A (zh) * 2017-04-01 2018-10-16 华为技术有限公司 传输dmrs的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7729433B2 (en) * 2006-03-07 2010-06-01 Motorola, Inc. Method and apparatus for hybrid CDM OFDMA wireless transmission
US20100061360A1 (en) * 2008-09-10 2010-03-11 Texas Instruments Incorporated Dedicated reference signal structures for spatial multiplexing beamforming
KR101603108B1 (ko) * 2008-11-07 2016-03-14 엘지전자 주식회사 참조 신호 전송 방법
CN102014099B (zh) * 2009-11-02 2013-04-24 电信科学技术研究院 一种下行导频的传输方法、装置及系统
MX347998B (es) * 2012-08-03 2017-05-22 Intel Corp Mezclado incrementado de canal físico de control del enlace descendente y generación de una secuencia de señal de referencia para desmodulación.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009006827A1 (fr) * 2007-07-10 2009-01-15 Huawei Technologies Co., Ltd. Procédé et appareil de mise à jour de temps de propagation en boucle
US20180026684A1 (en) * 2015-02-10 2018-01-25 Chao Wei Dmrs enhancement for higher order mu-mimo
CN108667581A (zh) * 2017-04-01 2018-10-16 华为技术有限公司 传输dmrs的方法和装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Conclusion on the need for CSI-RS and DMRS PAPR reduction", 3GPP TSG RAN WG1 MEETING #94BIS, R1-1811184, 12 October 2018 (2018-10-12), XP051518585, DOI: 20200108203344A *
HUAWEI ET AL.: "Discussion on PAPR for CSI-RS and DMRS", 3GPP TSG RAN WG1 MEETING #94BIS, R1-1810703, 12 October 2018 (2018-10-12), XP051518107 *
OPPO: "Evaluation on DMRS for PAPR reduction", 3GPP TSG RAN WG1 MEETING #94BIS, R1-1810968, 12 October 2018 (2018-10-12), XP051518373 *
QUALCOMM INCORPORATED: "Lower PAPR reference signals", 3GPP TSG RAN WG1 MEETING #94BIS, R1-1811280, 12 October 2018 (2018-10-12), XP051518683 *

Also Published As

Publication number Publication date
EP3873046A4 (en) 2022-07-27
CN114172778A (zh) 2022-03-11
US12003358B2 (en) 2024-06-04
KR20210077750A (ko) 2021-06-25
CN111092837A (zh) 2020-05-01
CN114172778B (zh) 2023-09-26
EP3873046A1 (en) 2021-09-01
US20210297299A1 (en) 2021-09-23

Similar Documents

Publication Publication Date Title
RU2527930C2 (ru) Способ и устройство предварительного кодирования на основе опорных сигналов демодуляции смешанного мультиплексирования
CN114142980B (zh) 参考信号的传输方法及装置
CN110401472B (zh) 一种3d mimo传输方法和装置
RU2560718C1 (ru) Устройство генерирования кодов, устройство генерирования опорных сигналов и соответствующие способы
CN108540412B (zh) 无线局域网数据传输方法和装置
EP3148145A1 (en) Resource allocation method and device
CN102916920B (zh) 一种导频信号发送方法和设备
US10623154B2 (en) Method and device for configuring channel state information reference signal, and method and device for parsing configuring channel state information reference signal
CN103944685A (zh) 扩展参考信号的方法、设备和通信系统
CN103139916A (zh) 在物理上行控制信道上传输数据的方法和装置
US10536247B2 (en) Method and apparatus for calibration of an antenna
WO2017076181A1 (zh) 信道状态测量导频csi-rs的配置方法及装置
WO2018126987A1 (zh) 上行参考信号的发送、接收处理方法、装置及基站、终端
WO2017167155A1 (zh) 上行解调参考信号dmrs的发送方法及装置
JP2022121622A (ja) シーケンス生成のための方法および装置
WO2017167158A1 (zh) 导频配置信息的传输方法、装置及系统
CN102710404A (zh) 低发射功率单载波频分多址系统的传输方法
WO2020083326A1 (zh) 参数配置、参数接收方法及装置、存储介质
WO2021195975A1 (zh) 传输参考信号的方法和装置
CN102377719B (zh) 数据符号正交处理方法及装置
KR102522236B1 (ko) 심볼을 송신하는 송신기 및 방법
CN111436107B (zh) 上行信号的发送方法、信道质量确定方法和相关设备
US11356220B2 (en) Uplink transmission method, terminal, and base station
CN106656443B (zh) 增加配对用户的方法及装置
Vora et al. Index Modulation with PAPR and Beamforming for 5G MIMO-OFDM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19876133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217015368

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019876133

Country of ref document: EP

Effective date: 20210525