WO2009006823A1 - Random access method of time division synchronization code division mulitple access enhanced uplink system - Google Patents

Random access method of time division synchronization code division mulitple access enhanced uplink system Download PDF

Info

Publication number
WO2009006823A1
WO2009006823A1 PCT/CN2008/071503 CN2008071503W WO2009006823A1 WO 2009006823 A1 WO2009006823 A1 WO 2009006823A1 CN 2008071503 W CN2008071503 W CN 2008071503W WO 2009006823 A1 WO2009006823 A1 WO 2009006823A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
uplink
channel
physical
carrier
Prior art date
Application number
PCT/CN2008/071503
Other languages
English (en)
French (fr)
Inventor
Yincheng Zhang
Hui Chen
Hu Liu
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to KR1020107002555A priority Critical patent/KR101404292B1/ko
Priority to EP08773067.7A priority patent/EP2173109A4/en
Publication of WO2009006823A1 publication Critical patent/WO2009006823A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2618Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using hybrid code-time division multiple access [CDMA-TDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications, and more particularly to a random access method for a time division synchronous code division multiple access uplink enhancement system.
  • BACKGROUND In order to meet the increasing demand for high-speed uplink packet data services of users, and to better support high-speed downlink packet access (HSDPA) technology to provide support for higher service quality, 3GPP introduced high-speed uplink packets based on Wideband Code Division Multiple Access (WCDMA) and Time Division Synchronization Code Division Multiple Access (TD-SCDMA) in Rel6 and Rel7 respectively.
  • WCDMA Wideband Code Division Multiple Access
  • TD-SCDMA Time Division Synchronization Code Division Multiple Access
  • HSUPA High Speed Uplink Packet Access
  • E-DCH Enhanced Uplink or Enhanced Dedicated Channel
  • HSUPA adopts hybrid automatic repeat reQuest (HARQ), high-order modulation (16QAM), node ) (B) fast scheduling, and T/P-based reverse RoT (Rise over Thermal) control. , higher user peak rate and cell data throughput can be obtained, and stable reverse RoT control can be achieved.
  • HARQ hybrid automatic repeat reQuest
  • 16QAM high-order modulation
  • B node
  • T/P-based reverse RoT Spin over Thermal
  • the HSUPA service is classified into a scheduled transmission and a non-scheduled transmission service according to different scheduling modes.
  • the enhanced uplink physical channel resource of the non-scheduled transmission is configured by the Serving Radio Network Controller (SRNC).
  • SRNC Serving Radio Network Controller
  • the user equipment (User Equipment, UE for short) is allocated in the same manner as the existing dedicated physical channel resource allocation.
  • the SRNC first allocates an enhanced uplink physical channel resource pool and sends it to the NodeB, and then the Node B adopts dynamic scheduling.
  • the method of allocating the enhanced uplink physical channel resource to the UE is the same as the physical channel resource allocation mode of the high speed physical downlink shared channel (HS-PDSCH) related to the existing HSDPA.
  • HS-PDSCH high speed physical downlink shared channel
  • HSUPA introduces a Enhance Physical Uplink Channel (E-PUCH) to carry the corresponding transport channel.
  • E-PUCH Enhance Physical Uplink Channel
  • E-AGCH Enhanced Absolute Grant Channel
  • E-HICH enhanced HARQ Acknowledgement Indicator Channel
  • the access channel (E-RUCCH, E-DCH random access uplink control channel, that is, the enhanced uplink random access uplink control channel) is a physical layer control channel, and is used to transmit related information when the UE has no 4 authorized resources.
  • Scheduling Information SI
  • PRACH Physical Random Access Channel
  • E-RUCCH physical channel allocation and use The mode is the common channel preemption mode, which is performed during the random access process. Therefore, E-RUCCH and P The RACH shares the physical code channel resources.
  • the uplink transmitted during the uplink synchronization process in the random access process is performed.
  • the synchronization code (8 S YNC - UL code) is divided into two parts, one part is used to indicate PRACH random access (expressed as uplink synchronization code set A), and the other part is used to indicate E-RUCCH random access (represented as uplink synchronization)
  • the code set B), and the set A and B are broadcasted to the UE through the cell system information broadcast, and sent to the Node B through the Node B Application Part (NBAP) message.
  • NBAP Node B Application Part
  • a multi-carrier cell includes multiple carriers.
  • One of the plurality of carriers is a primary carrier, and the other carriers are secondary carriers, and all or part of the common channels are established and used only on the primary carrier.
  • the common channel PRACH is only configured and used on the primary carrier. If an uplink enhancement technique is introduced in a multi-carrier TD-SCDMA system, in addition to performing E-DCH transmission on the primary carrier, E-DCH transmission is usually performed on the secondary carrier, even on the primary carrier and the secondary carrier. E-DCH transmission.
  • the present invention provides a random access method for a time division synchronous code division multiple access uplink enhancement system.
  • a random access method for a time division synchronous code division multiple access uplink enhancement system includes: configuring a fast physical access channel, a physical random access channel, and an uplink on a primary carrier of a time division synchronous code division multiple access uplink enhancement system Enhancing a physical channel resource of the random access control channel, and configuring, for the primary carrier, an uplink synchronization code set for indicating normal random access and uplink enhanced random access; on a secondary carrier of the time division synchronous code division multiple access uplink enhancement system, Enable the uplink pilot time slot resource, and configure the physical channel resource of the fast physical access channel and the uplink enhanced random access control channel; and the user equipment performs normal random access and/or uplink enhanced random access in one transmission time interval.
  • the common random access refers to random access for transmitting data by using a physical random access channel
  • the uplink enhanced random access refers to random access for transmitting data by the enhanced random access control channel.
  • the user equipment performs normal random access or uplink enhanced random access on the primary carrier, and
  • the physical random access channel and the uplink enhanced random access control channel share physical code channel resources.
  • the enabling of the uplink pilot time slot resource on the secondary carrier means that the uplink synchronization code is transmitted on the secondary carrier, and the uplink synchronization code is used for uplink enhanced random access.
  • the information about the physical channel resources on the primary carrier and the uplink synchronization code set are sent to the user equipment by using the system information broadcast mode.
  • the information about the physical channel resources on the secondary carrier is sent to the user equipment by using a radio bearer setup/reconfiguration process or a system information broadcast manner.
  • the user equipment can perform normal random access or uplink enhanced random access on the primary carrier in a transmission time interval.
  • the user equipment can perform normal random access or uplink enhanced random access on the primary carrier. Performing uplink enhanced random access on one or more secondary carriers; the user equipment may perform uplink enhanced random access or common random access on the primary carrier, or uplink enhanced random access on one or multiple secondary carriers.
  • the invention inherits and is compatible with the 3GPP single carrier TD-SCDMA uplink augmentation system and the CCSA multi-carrier TD-SCDMA system, and expands the random access resources and the corresponding configuration usage method in the multi-carrier TD-SCDMA system, so that the UE can Multi-carrier E-DCH transmission and no grant
  • the relevant auxiliary scheduling information is sent, and the E-DCH data transmission is requested to be authorized, thereby supporting the introduction of the uplink enhancement technology in the multi-carrier TD-SCDMA system.
  • FIG. 1 is a schematic diagram of a random access method of a time division synchronous code division multiple access uplink enhancement system according to an embodiment of the present invention
  • FIG. 2 is a time division synchronization code division multiple access uplink according to an embodiment of the present invention.
  • one multi-carrier cell of a multi-carrier TD-SCDMA system includes three carriers: a primary carrier, a secondary carrier 1, and a secondary carrier 2.
  • the uplink pilot time slot (UpPTS) on the secondary carrier is enabled, that is, the UE may transmit an uplink synchronization code (SYNC-UL code) on the UpPTS of the secondary carrier.
  • the PRACH random access related resources are configured only on the primary carrier, and the E-RUCCH random access related resources are configured on all carriers.
  • the UE can only perform PRACH random access on the primary carrier, and can perform E-RUCCH random access on the primary carrier, and/or the secondary carrier 1, and/or the secondary carrier 2.
  • the random access method according to an embodiment of the present invention includes the following steps (the following steps do not indicate strict chronological order):
  • FPACH Fast Physical Access Channel
  • PRACH Physical Access Channel
  • E-RUCCH physical channel resources
  • the PRACH and the E-RUCCH physical channel can share the physical The code channel resource, and the uplink carrier code set for indicating the PRACH random access and the E-RUCCH random access is configured for the primary carrier.
  • FPACH and E-RUCCH physical channel resources are configured on the secondary carrier.
  • the secondary carrier it is usually only required to configure the FPACH and E-RUCCH physical channel resources on the carrier on which the E-DCH transmission is performed (that is, on the carrier configured with the physical channel resources required for the E-DCH transmission).
  • the wireless network is composed of two network elements, a radio network controller (RNC) and a node B (Node B), and the RNC and the Node B are connected through the Iub interface),
  • RNC radio network controller
  • Node B node B
  • the configuration process can be implemented by the physical shared channel reconfiguration process in the Node B Application Part (NBAP) initiated by the RNC through the Iub interface to the Node B.
  • NBAP Node B Application Part
  • the resource configuration information is included in the PHYSICAL SHARED CHANNEL RECONFIGURATION REQUEST message, and the carrier indication information is added to implement the foregoing resource configuration for each carrier.
  • the configuration method is the same as that in the single carrier TD-SCDMA uplink enhanced system in the existing 3GPP standard.
  • the FPACH and E-RUCCH physical channel resource configuration on the secondary carrier reference may be made to the configuration method of the FPACH and the PRACH physical channel. If the wireless network on the network side has only one network element of the Node B, the configuration process can be implemented by interacting with related functional modules in the Node B.
  • the configuration method is the same as that in the single-carrier TD-SCDMA uplink enhanced system in the existing 3GPP standard, that is, information about the physical channel resource on the primary carrier is transmitted by the system information broadcast manner. And sending the uplink synchronization code set to the UE.
  • the resource configuration information about the E-RUCCH random access may be sent to the UE in the radio bearer setup/reconfiguration process, or may be sent to the UE in the system information broadcast manner.
  • the configuration process is performed by the RNC through the Uu interface (the interface between the network side and the UE)
  • the radio bearer release, transport channel reconfiguration, physical channel reconfiguration process (hysical channel reconfiguration), and cell update process (cell update) and other processes are implemented.
  • the UE determines PRACH random access or E-RUCCH random access, and selects one or more carriers to initiate PRACH random access or E in the resource configuration situation. -RUCCH random access procedure.
  • the UE On the UE side, if the UE does not have the HSUPA related resource, the UE will not perform the E-RUCCH random access, and only initiates the PRACH random access. Therefore, the UE performs the PRACH random access procedure on the primary carrier. If the UE is allocated HSUPA related resources, but the PRACH random access is initiated, the UE also performs a PRACH random access procedure on the primary carrier (such as UE1 in FIG. 2).
  • the UE may perform E-RUCCH random access on one or more carriers of the primary carrier, the secondary carrier 1, and the secondary carrier 2.
  • the UE2, UE3, and UE4 in FIG. 2 perform E-RUCCH random access on the primary carrier, the secondary carrier 1, and the secondary carrier 2, respectively.
  • the UE performs PRACH random access or E-RUCCH random access on the primary carrier, in the random access procedure, the configured uplink synchronization code set for different random access is selected according to the corresponding set.
  • An uplink synchronization code performs an uplink synchronization process.
  • the UE can only perform the PRACH random access or the E-RUCCH random access procedure, and cannot perform the PRACH random access and the E-RUCCH random access process at the same time.
  • the UE may perform the E-RUCCH random access procedure on one or more secondary carriers while performing the PRACH random access or the E-RUCCH random access procedure on the primary carrier; The UE may also select only the PRACH random access procedure or the E-RUCCH random access procedure on the primary carrier, or only select the E-RUCCH random connection on one secondary carrier. Into the process.
  • the Node B determines and receives the PRACH physical channel or the E-RUCCH physical channel on the primary carrier according to the uplink synchronization code, receives the E-RUCCH physical channel on the secondary carrier, and receives the physical channel from the PRACH and E. -
  • the data received by the RUCCH physical channel is processed separately. Since the primary carrier can perform both PRACH random access and E-RUCCH random access, and different uplink synchronization code sets are respectively configured, on the primary carrier, the Node B needs to receive according to the uplink synchronization process.
  • the uplink synchronization code is used to determine whether it is a PRACH physical channel or an E-RUCCH physical channel.
  • Node B Since the transmission and reception of the uplink synchronization code correspond to the transmission and reception of the subsequent PRACH physical channel or the E-RUCCH physical channel, although the PRACH physical channel and the E-RUCCH physical channel share the same physical code channel resource, Node B It is still possible to distinguish between receiving a PRACH physical channel or an E-RUCCH physical channel.
  • the E-RUCCH physical channel is received during the random access procedure.
  • the data received from the E-RUCCH physical channel is sent to the relevant entity of the MAC-e sublayer associated with the E-DCH transmission in the Node B.
  • the wireless network For the data received from the PRACH physical channel, if the wireless network includes two entities, RNC and Node B, it is sent to the RNC in the form of a RACH transport channel data packet; if only one entity of the Node B is sent to the Node B, Internal related functional entities.
  • the present invention inherits and is compatible with the 3GPP single-carrier TD-SCDMA uplink augmentation system and the CCSA multi-carrier TD-SCDMA system, and extends the random access resources and corresponding configurations in the multi-carrier TD-SCDMA system.
  • the method is used to enable the UE to send relevant auxiliary scheduling information when the multi-carrier E-DCH is transmitted and there is no authorized resource, requesting authorization to perform E-DCH data transmission.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

时分同步码分多址上行增强系统
的随枳接入方法
技术领域 本发明涉及通信领域,更具体地涉及一种时分同步码分多址上行增强系 统的随机接入方法。 背景技术 为了满足用户日益增长的对高速上行分组数据业务的需求,也为了更好 地与高速下行分组接入 ( High Speed Downlink Packet Access , 简称 HSDPA ) 技术相配合提供对更高业务质量的支持, 3GPP分别在 Rel6和 Rel7中引入了 基于宽带码分多址( Wideband Code Division Multiple Access , 简称 WCDMA ) 和时分同步码分多址 ( Time Division Synchronization Code Division Multiple Access , 简称 TD-SCDMA ) 的高速上行分组接入 ( High Speed Uplink Packet Access, 简称 HSUPA )技术, 或者称为上行增强 ( Enhanced Uplink )或增强 的专用信道 ( Enhanced Dedicated Channel, 简称 E-DCH ) 技术。 HSUPA采 用混和自动重传请求( Hybrid Automatic Repeat reQuest , 简称 HARQ )、 高阶 调制 ( 16QAM )、 节点 Β ( Node B )快速调度、 和基于 T/P的反向 RoT ( Rise over Thermal )控制等技术,可以获得更高的用户峰值速率和小区数据吞吐量, 并可以达到稳定的反向 RoT控制。
HSUPA业务按调度方式的不同分为调度传输和非调度传输业务,其中, 非调度传输的增强上行物理信道资源由服务无线网络控制器 (Serving Radio Network Controller , 简称 SRNC ) 采用 争态配置的方式为用户设备 ( User Equipment, 简称 UE ) 分配, 分配方式与现有的专用物理信道资源分配方式 相同; 对于调度传输, SRNC 首先分配增强上行物理信道资源池并发送给 NodeB , 然后由 Node B采用动态调度的方式为 UE分配增强上行物理信道资 源, 分配方式与现有的 HSDPA相关的高速物理下行共享信道(High Speed Physical Downlink Shared Channel, 简称 HS-PDSCH )的物理信道资源分配方 式 目同。 在物理层 载方面, HSUPA引入了上行增强物理信道( Enhance Physical Uplink Channel, 简称 E-PUCH )来承载相应的传输信道。 同时, 为了完成相 应的控制、 调度、 和反馈, HSUPA在物理层引入了上行增强随机接入控制信 道 ( Enhanced Random access Uplink Control Channel, 简称 E-RUCHH 增 强绝对 4受权信道(Enhanced Absolute Grant Channel, 简称 E-AGCH )、 和增强 混和自动重传请求确认指示信道 ( Enhanced HARQ Acknowledgement Indicator Channel, 简称 E-HICH ) 三种物理控制信道。 其中, E-RUCCH和 E-AGCH物理信道仅用于调度传输方式。 上行增强随机接入信道( E-RUCCH , E-DCH随机接入上行控制信道, 即增强上行链路随机接入上行控制信道) 是物理层控制信道, 用于在 UE无 4受权资源的情况下, 传输相关的辅助调度信息 (Schedule Information, 简称 SI ), 请求 4吏权以进行 E-DCH 数据传输。 与物理随机接入信道 (Physical Random Access Channel, 简称 PRACH )相同, E-RUCCH物理信道的分配和 使用方式为公共信道抢占方式,是在随机接入过程中进行的,因此, E-RUCCH 和 PRACH共享物理码道资源。 为了可以和 PRACH共享物理码道, 同时又 能在随机接入过程中区分 PRACH物理信道和 E-RUCCH物理信道, 将随机 接入过程中的上行同步过程中发射的上行同步码 ( 8个 S YNC— UL码) 分成 的两部分, 一部分用于指示 PRACH随机接入(表示为上行同步码集合 A ), 另一部分用于指示 E-RUCCH随机接入 (表示为上行同步码集合 B ), 并将集 合 A和 B通过小区系统信息广播发送给 UE,通过 Node B应用部分( Node B Application Part, 简称 NBAP ) 消息中发送给 Node B。 如果 UE 需要进行 PRACH物理信道发射 (即, 普通随机接入 ), 则在随机接入过程中的上行同 步过程中, 选择集合 A中的一个上行同步码进行上行同步过程, 这样, Node B 就知道随后在共享码道上发射的是 PRACH 物理信道; 如果需要进行 E-RUCCH物理信道发射(即, 上行增强随机接入), 则选择集合 B中的一个 上行同步码进行上行同步过程。 在中国通信标准化协会 ( CCSA ) 目前制定的的多载波 TD-SCDMA 系 统标准中, 一个多载波小区包括多个载波。 多个载波中的一个载波为主载波, 其它载波为辅载波, 仅在主载波上建立和使用全部或部分公共信道。 其中, 公共信道 PRACH仅在主载波上配置和使用。 如果在多载波 TD-SCDMA系 统中引入上行增强技术, 则除了在主载波上进行 E-DCH传输外, 通常还要 在辅载波上进行 E-DCH传输, 甚至同时在主载波和辅载波上进行 E-DCH传 输。 为了使得在多载波 E-DCH传输情况下, UE能够在无 4吏权资源时发送相 关的辅助调度信息, 请求 4受权进行 E-DCH数据传输, 需要在多载波系统中 引入相应的 E-RUCCH 物理信道配置及其使用方法。 由于 E-RUCCH 与 PRACH 物理信道及随机接入过程相关, 因此, 涉及到整个随机接入过程及 随机接入资源的配置和使用方法。 发明内容 鉴于以上所述的一个或多个问题,本发明提供了一种时分同步码分多址 上行增强系统的随机接入方法。 根据本发明的时分同步码分多址上行增强系统的随机接入方法, 包括: 在时分同步码分多址上行增强系统的主载波上配置快速物理接入信道、 物理 随机接入信道、 和上行增强随机接入控制信道的物理信道资源, 并为主载波 配置用于指示普通随机接入和上行增强随机接入的上行同步码集合; 在时分 同步码分多址上行增强系统的辅载波上, 启用上行导频时隙资源, 并配置快 速物理接入信道和上行增强随机接入控制信道的物理信道资源; 以及用户设 备在一个传输时间间隔内进行普通随机接入和 /或上行增强随机接入。 其中, 普通随机接入是指以物理随机接入信道发送数据的随机接入; 上 行增强随机接入是指以上行增强随机接入控制信道发送数据的随机接入。 其中, 用户设备在主载波上进行普通随机接入或上行增强随机接入, 和
/或在一个或多个辅载波上进行上行增强随机接入。 在主载波上, 物理随机接 入信道和上行增强随机接入控制信道共享物理码道资源。 在辅载波上启用上 行导频时隙资源是指在辅载波上的上行导频时隙发射上行同步码, 其中, 该 上行同步码用于上行增强随机接入。 通过系统信息广播方式, 将有关主载波 上的物理信道资源的信息和上行同步码集合发送给用户设备。 通过无线承载 建立 /重配置过程或系统信息广播方式,将有关辅载波上的物理信道资源的信 息发送给用户设备。 其中, 在一个传输时间间隔内, 用户设备在主载波上只能进行普通随机 接入或上行增强随机接入; 用户设备可以在主载波上进行普通随机接入或上 行增强随机接入的同时, 在一个或多个辅载波上进行上行增强随机接入; 用 户设备可以在主载波上进行上行增强随机接入或普通随机接入, 或在一个或 多个辅载波上进行上行增强随机接入。 本发明继承并兼容了 3GPP单载波 TD-SCDMA上行增强系统和 CCSA 的多载波 TD-SCDMA 系统, 并且在多载波 TD-SCDMA 系统中扩展了随机 接入资源及相应的配置使用方法,使得 UE能够在多载波 E-DCH传输且无授 权资源时发送相关的辅助调度信息, 请求授权进行 E-DCH数据传输, 从而 支持在多载波 TD-SCDMA系统中引入上行增强技术。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1 是根据本发明实施例的时分同步码分多址上行增强系统的随机接 入方法的 ¾ϊ程图; 以及 图 2 是根据本发明实施例的时分同步码分多址上行增强系统的随机接 入方法的模型图。 具体实施方式 下面参考附图详细说明本发明的具体实施方式。 如图 2 所示, 多载波 TD-SCDMA系统的一个多载波小区包括 3个载波: 主载波、 辅载波 1、 和辅 载波 2。 其中, 辅载波上的上行导频时隙 (UpPTS ) 是启用的, 即 UE可以 在辅载波的 UpPTS发射上行同步码 (SYNC— UL码)。 而且, 只在主载波上 配置了 PRACH随机接入相关资源, 而在所有载波上都配置了 E-RUCCH随 机接入相关资源。 UE只能在主载波上进行 PRACH随机接入, 而可以在主载 波、和 /或辅载波 1、和 /或辅载波 2上进行 E-RUCCH随机接入。 如图 1所示, 根据本发明实施例的随机接入方法包括以下步骤 (下面的步骤不表示严格的 时间先后顺序):
S102 , 在网络侧, 在主载波上配置快速物理接入信道 (Fast Physical Access Channel, 简称 FPACH )、 PRACH, 和 E-RUCCH等的物理信道资源, 其中, PRACH和 E-RUCCH物理信道可以共享物理码道资源, 并为主载波 配置用于指示 PRACH随机接入和 E-RUCCH随机接入的上行同步码集合。 同时, 在辅载波上配置 FPACH和 E-RUCCH物理信道资源。 其中, 对于辅载波, 通常只需要在进行 E-DCH传输的载波上 (即, 配 置有进行 E-DCH传输所需物理信道资源的载波上)配置 FPACH和 E-RUCCH 物理信道资源。 由于辅载波的 UpPTS 时隙的所有上行同步码都只用于 E-RUCCH随机接入, 所以无需配置用于指示 PRACH随机接入和 E-RUCCH 随机接入的上行同步码集合。 在网络侧, 按现有网络结构 (即, 无线网络由无线网络控制器 ( Radio Network Controller, 简称 RNC ) 和节点 B ( Node B ) 两个网元组成, RNC 与 Node B通过 Iub接口相连 ),该配置过程可以由 RNC通过 Iub接口向 Node B发起的 Node B应用部分 ( Node B Application Part, 简称 NBAP )十办议中的 物理共享信道重配置( Physical Shared Channel Reconfiguration )过程来实现。 其中, 在 "物理共享信道重配置请求 (PHYSICAL SHARED CHANNEL RECONFIGURATION REQUEST )" 消息中包括上述资源配置信息, 并增加 载波指示信息, 以实现对每个载波分别进行上述资源配置。 对于主载波上的上述资源配置, 其配置方法与现有 3GPP标准中的单载 波 TD-SCDMA 上行增强系统中的方法相同。 对于辅载波上的 FPACH、 E-RUCCH物理信道资源配置, 可以参考 FPACH和 PRACH物理信道的配置 方法。 如果网络侧的无线网络只有 Node B 一个网元, 则该配置过程可以由 Node B内部的相关功能模块之间相互配合来实现。
S104, 在网络侧, 将在主载波和辅载波上配置的有关 PRACH随机接入 和 E-RUCCH随机接入的资源发送给 UE。 对于主载波上的上述资源配置, 配置方法与现有 3GPP标准中的单载波 TD-SCDMA 上行增强系统中的方法相同, 即通过系统信息广播方式将有关 主载波上的所述物理信道资源的信息和上行同步码集合发送给 UE。 对于辅载波上的上述资源配置,有关 E-RUCCH随机接入的资源配置信 息可以在无线承载建立 /重配置过程中发送给 UE; 也可以通过系统信息广播 方式发送给 UE。 对于在无线 载建立 /重配置过程中配置辅载波上的有关 E-RUCCH 随 机接入的资源的方式,按现有网络结构,该配置过程由 RNC通过 Uu接口(网 络侧与 UE间的接口) 向 UE发起的无线资源控制 ( Radio Resource Control, 简称 RRC ) 十办议中的 RRC连接建立过程 ( RRC connection establishment )、 无线 载建立过程( radio bearer establishment )、 无线 载重配置过程 ( radio bearer reconfiguration )、 无线承载释放过程 ( the radio bearer release )、 传输信 道重配置过程 ( transport channel reconfiguration ) , 物理信道重配置过程 ( hysical channel reconfiguration )、 以及小区更新过程 ( cell update ) 等过程 实现。 其中, 在相应的 "RRC连接建立( RRC CONNECTION SETUP ),'、 "无 线 载建立 ( RADIO BEARER SETUP ),'、 "无线 载重配置 ( RADIO BEARER RECONFIGURATION ) " , "无线 载释放 ( RADIO BEARER RELEASE ) ,' 、 " 传 输 信 道 重 配 置 ( TRANSPORT CHANNEL RECONFIGURATION ) "、 "物理信道重配置 ( PHYSICAL CHANNEL RECONFIGURATION )"、 以及 "小区更新确认 ( CELL UPDATE CONFIRM )" 消息中包括上述资源配置信息, 并增加载波指示信息, 以实现对每个载波分 别进行上述资源配置。 如果网络侧的无线网络只有 Node B—个网元, 贝l由 Node B通过与上述过程类似的过程和消息来发送 E-DCH传输相关的资源配 置信息给 UE。
S 106 , 在某个传输时间间隔 ( Transmission Time Interval , 简称 ΤΤΙ ) , UE确定 PRACH随机接入或 E-RUCCH随机接入,并 居资源配置情况选择 一个或多个载波发起 PRACH随机接入或 E-RUCCH随机接入过程。 在 UE侧, 如果 UE没有 HSUPA相关资源, 贝l UE不会进行 E-RUCCH 随机接入, 只会发起 PRACH随机接入, 因此, UE在主载波上进行 PRACH 随机接入过程。 如果 UE分配有 HSUPA相关资源, 但发起的是 PRACH随机 接入, 则 UE也在主载波上进行 PRACH随机接入过程 (如图 2中的 UE1 )。 如果 UE分配有 HSUPA相关资源,而且发起的是 E-RUCCH随机接入, 则 UE 可以在主载波、 辅载波 1、 和辅载波 2 中的一个或多个载波上进行 E-RUCCH随机接入, 以发送 SI信息到 Node B。 如图 2中的 UE2、 UE3、 UE4分别在主载波、 辅载波 1、 和辅载波 2上进行 E-RUCCH随机接入。 如果 UE在主载波上进行 PRACH随机接入或 E-RUCCH随机接入, 则 在随机接入过程中, 才艮据配置的用于不同随机接入的上行同步码集合, 在相 应的集合中选择一个上行同步码进行上行同步过程。 在一个 TTI内,在主载波上, UE只能进行 PRACH随机接入或 E-RUCCH 随机接入过程, 不能同时进行 PRACH随机接入和 E-RUCCH随机接入过程。 但是, 在主载波和多个辅载波上, UE可以在主载波进行 PRACH随机接入或 E-RUCCH 随机接入过程的同时, 在一个或者多个辅载波上进行 E-RUCCH 随机接入过程; UE 也可以只选择在主载波进行 PRACH 随机接入过程或 E-RUCCH随机接入过程, 或只选择在一个辅载波上进行 E-RUCCH随机接 入过程。 在 UE发起随机接入以后, Node B才艮据上行同步码在主载波上确定并 接收 PRACH物理信道或 E-RUCCH物理信道, 在辅载波上接收 E-RUCCH 物理信道, 并对从 PRACH和 E-RUCCH物理信道接收到的数据分别进行处 理。 由于主载波上既可以进行 PRACH随机接入又可以进行 E-RUCCH随机 接入, 而且分别配置了不同的上行同步码集合, 因此, 在主载波上, Node B 需要根据在上行同步过程中接收到的上行同步码来确定是 PRACH物理信道 还是 E-RUCCH物理信道。 由于上行同步码的发射和接收与随后的 PRACH 物理信道或 E-RUCCH 物理信道的发射和接收有对应关系, 因此, 虽然 PRACH物理信道和 E-RUCCH物理信道共享相同的物理码道资源, Node B 还是可以区分接收 PRACH物理信道或 E-RUCCH物理信道。 而对于辅载波, 在随机接入过程中接收到的是 E-RUCCH物理信道。 在 Node B中,对于从 E-RUCCH物理信道上接收到的数据,发送给 Node B中的与 E-DCH传输相关的 MAC-e子层的相关实体。 对于从 PRACH物理 信道上接收到的数据, 如果无线网络包括 RNC和 Node B 两个实体, 则以 RACH传输信道数据包的形式发送给 RNC;如果只有 Node B一个实体的话, 则发送给 Node B的内部相关功能实体。 综上所述, 本发明继承并兼容了 3 GPP单载波 TD-SCDMA上行增强系 统和 CCSA的多载波 TD-SCDMA系统, 并且在多载波 TD-SCDMA系统中 扩展了随机接入资源及相应的配置使用方法, 使得 UE能够在多载波 E-DCH 传输且无授权资源时发送相关的辅助调度信息, 请求授权进行 E-DCH数据 传输。 从而支持在多载波 TD-SCDMA系统中引入上行增强技术。 以上所述仅为本发明的实施例而已, 并不用于限制本发明, 对于本领域 的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的权利要求 范围之内。

Claims

权 利 要 求 书 一种时分同步码分多址上行增强系统的随机接入方法, 其特征在于, 包 括:
在时分同步码分多址上行增强系统的主载波上配置快速物理接入 信道、 物理随机接入信道、 和上行增强随机接入控制信道的物理信道资 源, 并为所述主载波配置用于指示普通随机接入和上行增强随机接入的 上行同步码集合;
在所述时分同步码分多址上行增强系统的辅载波上,启用上行导频 时隙资源, 并配置快速物理接入信道和上行增强随机接入控制信道的物 理信道资源; 以及
用户设备在一个传输时间间隔内进行普通随机接入和 /或上行增强 随机接入。 根据权利要求 1所述的随机接入方法, 其特征在于, 所述普通随机接入 是指以物理随机接入信道发送数据的随机接入; 所述上行增强随机接入 是指以上行增强随机接入控制信道发送数据的随机接入。 才艮据权利要求 1所述的随机接入方法, 其特征在于, 所述用户设备在所 述主载波上进行所述普通随机接入或所述上行增强随机接入, 和 /或在一 个或多个所述辅载波上进行所述上行增强随机接入。 根据权利要求 1所述的随机接入方法, 其特征在于, 在所述主载波上, 所述物理随机接入信道和所述上行增强随机接入控制信道共享物理码道 资源。 根据权利要求 1所述的随机接入方法, 其特征在于, 在所述辅载波上启 用上行导频时隙资源是指在所述辅载波上的上行导频时隙发射上行同步 码, 其中, 所述上行同步码用于所述上行增强随机接入。 根据权利要求 1所述的随机接入方法, 其特征在于, 通过系统信息广播 方式, 将有关所述主载波上的所述物理信道资源的信息和所述上行同步 码集合发送给所述用户设备。
7. 根据权利要求 1所述的随机接入方法, 其特征在于, 通过无线承载建立 / 重配置过程或系统信息广播方式, 将有关所述辅载波上的所述物理信道 资源的信息发送给所述用户设备。
8. 根据权利要求 1至 7中任一项所述的随机接入方法, 其特征在于, 在一 个传输时间间隔内, 所述用户设备在所述主载波上只能进行所述普通随 机接入或所述上行增强随机接入。
9. 根据权利要求 1至 7中任一项所述的随机接入方法, 其特征在于, 在一 个传输时间间隔内, 所述用户设备在所述主载波上进行所述普通随机接 入或所述上行增强随机接入的同时, 在一个或多个所述辅载波上进行所 述上行增强随机接入。
10. 根据权利要求 1至 7中任一项所述的随机接入方法, 其特征在于, 在一 个传输时间间隔内, 所述用户设备在所述主载波上进行所述上行增强随 机接入或所述普通随机接入, 或在一个或多个所述辅载波上进行所述上 行增强随机接入。
PCT/CN2008/071503 2007-07-05 2008-07-01 Random access method of time division synchronization code division mulitple access enhanced uplink system WO2009006823A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020107002555A KR101404292B1 (ko) 2007-07-05 2008-07-01 시분할 연동 코드 분할 다중 접속 상향 강화 시스템의 임의 접속 방법
EP08773067.7A EP2173109A4 (en) 2007-07-05 2008-07-01 DIRECT ACCESS PROCEDURE OF TIME-MULTIPLEX SYNCHRONIZATION CODEMULTIPLEX MULTIPLE ACCESSORIES EXPANDED UPWARD SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710128407.2A CN101340714B (zh) 2007-07-05 2007-07-05 时分同步码分多址上行增强系统的随机接入方法
CN200710128407.2 2007-07-05

Publications (1)

Publication Number Publication Date
WO2009006823A1 true WO2009006823A1 (en) 2009-01-15

Family

ID=40214644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071503 WO2009006823A1 (en) 2007-07-05 2008-07-01 Random access method of time division synchronization code division mulitple access enhanced uplink system

Country Status (4)

Country Link
EP (1) EP2173109A4 (zh)
KR (1) KR101404292B1 (zh)
CN (1) CN101340714B (zh)
WO (1) WO2009006823A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010143851A2 (ko) * 2009-06-07 2010-12-16 엘지전자 주식회사 다중 반송파를 지원하는 무선 통신 시스템에서 임의 접속 방법 및 장치
EP2472931A1 (en) * 2010-01-08 2012-07-04 ZTE Corporation Method and system for transmitting multi-carrier uplink data at network-side
CN101873702B (zh) * 2009-04-24 2013-01-23 中国移动通信集团公司 一种主载波的选择方法及基站设备
CN111405661A (zh) * 2016-10-19 2020-07-10 Oppo广东移动通信有限公司 传输数据的方法、网络设备和终端设备

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8830982B2 (en) * 2008-05-05 2014-09-09 Industrial Technology Research Institute System and method for multicarrier uplink control
WO2010096961A1 (zh) * 2009-02-26 2010-09-02 华为技术有限公司 传输消息的方法、设备及系统
WO2010111820A1 (zh) * 2009-03-30 2010-10-07 华为技术有限公司 一种随机接入方法、演进基站及终端设备
EP3288310B1 (en) 2009-04-09 2019-06-12 Huawei Technologies Co., Ltd. Random access method in a handover involving carrier aggregation
CN101990275A (zh) * 2009-08-04 2011-03-23 鼎桥通信技术有限公司 一种在辅载波上进行公共信道资源配置的方法
US8619391B2 (en) 2010-10-28 2013-12-31 HGST Netherlands, B.V. Magnetic write heads with bi-layer wrap around shields having dissimilar shield layer widths
CN102843776B (zh) * 2011-06-20 2017-03-22 中兴通讯股份有限公司 多载波终端调度方法、信道质量信息发送方法及系统
US20150063315A1 (en) * 2013-08-30 2015-03-05 Qualcomm Incorporated Sub-channel selection to reduce latency of circuit-switched fallback
CN105323865A (zh) * 2014-07-18 2016-02-10 中兴通讯股份有限公司 资源、同步信息和随机接入信息的处理方法及装置
EP3300439B1 (en) * 2015-06-30 2021-04-07 Huawei Technologies Co., Ltd. Data transmission method and device
AU2016365882B2 (en) * 2015-12-08 2019-03-21 Telefonaktiebolaget Lm Ericsson (Publ) Network node, wireless device, methods and computer programs
CN107734712A (zh) * 2016-08-12 2018-02-23 电信科学技术研究院 一种随机接入方法和设备
CN108631907A (zh) * 2017-03-20 2018-10-09 株式会社Ntt都科摩 无授权传输方法、用户终端和基站

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097411A1 (en) * 2000-06-12 2001-12-20 Samsung Electronics Co., Ltd Method of assigning an uplink random access channel in a cdma mobile communication system
CN1722640A (zh) * 2004-07-13 2006-01-18 中兴通讯股份有限公司 一种基于多载波的公共物理信道分配方法
CN1917693A (zh) * 2005-08-17 2007-02-21 西门子(中国)有限公司 无线移动通信系统中增加随机接入信道的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100421365C (zh) * 2004-08-14 2008-09-24 华为技术有限公司 实现用户设备无线资源控制的方法
CN100375561C (zh) * 2004-09-13 2008-03-12 大唐移动通信设备有限公司 多载波时分双工移动通信系统分配无线资源的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001097411A1 (en) * 2000-06-12 2001-12-20 Samsung Electronics Co., Ltd Method of assigning an uplink random access channel in a cdma mobile communication system
CN1722640A (zh) * 2004-07-13 2006-01-18 中兴通讯股份有限公司 一种基于多载波的公共物理信道分配方法
CN1917693A (zh) * 2005-08-17 2007-02-21 西门子(中国)有限公司 无线移动通信系统中增加随机接入信道的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; TechnicalSpecification Group Radio Access Network; Physical channels and mapping of transport channels onto physical channels (TDD)", 3GPP TS 25.221 V7.3.0, 31 May 2007 (2007-05-31), XP050366984 *
See also references of EP2173109A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873702B (zh) * 2009-04-24 2013-01-23 中国移动通信集团公司 一种主载波的选择方法及基站设备
WO2010143851A2 (ko) * 2009-06-07 2010-12-16 엘지전자 주식회사 다중 반송파를 지원하는 무선 통신 시스템에서 임의 접속 방법 및 장치
WO2010143851A3 (ko) * 2009-06-07 2011-03-03 엘지전자 주식회사 다중 반송파를 지원하는 무선 통신 시스템에서 임의 접속 방법 및 장치
US8879485B2 (en) 2009-06-07 2014-11-04 Lg Electronics Inc. Method and apparatus for random access in a multi-carrier wireless communication system
EP2472931A1 (en) * 2010-01-08 2012-07-04 ZTE Corporation Method and system for transmitting multi-carrier uplink data at network-side
EP2472931A4 (en) * 2010-01-08 2013-06-26 Zte Corp METHOD AND SYSTEM FOR TRANSMITTING MULTI-TRANSMIT UPLINK DATA ON NETWORK SIDE
US9118456B2 (en) 2010-01-08 2015-08-25 Zte Corporation Method and system for transmitting multi-carrier uplink data at network-side
CN111405661A (zh) * 2016-10-19 2020-07-10 Oppo广东移动通信有限公司 传输数据的方法、网络设备和终端设备
CN111405660A (zh) * 2016-10-19 2020-07-10 Oppo广东移动通信有限公司 传输数据的方法、网络设备和终端设备

Also Published As

Publication number Publication date
CN101340714B (zh) 2012-01-11
KR101404292B1 (ko) 2014-06-05
CN101340714A (zh) 2009-01-07
EP2173109A1 (en) 2010-04-07
EP2173109A4 (en) 2014-01-22
KR20100044818A (ko) 2010-04-30

Similar Documents

Publication Publication Date Title
WO2009006823A1 (en) Random access method of time division synchronization code division mulitple access enhanced uplink system
EP2391170B1 (en) High speed uplink packet access method in multi-carrier time division synchronization code division multiple access system and corresponding system
CN105940753B (zh) 移动通信系统中的随机接入方法和设备
EP2129147B1 (en) A method for realizing fast handover in enhanced uplink
WO2009006822A1 (fr) Procédé d'accès aléatoire d'un système en liaison montante amélioré d'accès multiple par répartition en codes de synchronisation par répartition dans le temps
EP3206452B1 (en) Priority-optimized sidelink data transfer in the case of autonomous resource allocation in lte prose communication
JP4792525B2 (ja) Td−scdmaシステム及びそれにおけるhsupaランダムアクセスの制御方法
CN105682137B (zh) 终端之间直接通信中缓冲状态报告传输方法及其装置
JP4885978B2 (ja) E−utraシステムにおける非同期、同期、及び同期待ち通信のための方法、並びに手順
KR101710607B1 (ko) 이동통신 시스템에서 단말기의 핸드오버를 지원하는 방법 및 장치
KR20190042525A (ko) 이동통신 시스템에서 랜덤 액세스 절차를 수행하는 방법 및 장치
JP2006352382A (ja) チャネル割り当て方法、無線通信システム、および無線区間のチャネル構造
TW201306634A (zh) 處理隨機存取回應之方法
JP7325577B2 (ja) 通信制御方法
WO2015115197A1 (ja) ユーザ装置及び送信制御方法
WO2008106869A1 (fr) Procédé de commande d'accès de programmation en liaison ascendante
WO2009105933A1 (zh) 一种多载波系统中确认时延的配置装置及方法
WO2009105997A1 (zh) 增强-专用传输信道传输时用户终端的编址和寻址方法
WO2012174806A1 (zh) 多载波终端调度方法、信道质量信息发送方法及系统
WO2008104094A1 (fr) Procédé pour partager la ressource hors ordonnancement et la ressource en ordonnancement dans le système à liaison ascendante étendue
WO2011018038A1 (zh) 一种确定资源位置的方法、设备和系统
WO2008028369A1 (fr) Système et procédé destinés à améliorer la commande de puissance de synchronisation en boucle fermée et la transmission de l'information d'ordonnancement assistante d'une liaison montante
JP4772895B2 (ja) チャネル割り当て方法
CN107466111B (zh) 媒体接入控制方法及无线接入设备
JP2010213337A (ja) 移動通信システム並びに同システムにおける通信方法,基地局及び移動局

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08773067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107002555

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2008773067

Country of ref document: EP