WO2011018038A1 - 一种确定资源位置的方法、设备和系统 - Google Patents

一种确定资源位置的方法、设备和系统 Download PDF

Info

Publication number
WO2011018038A1
WO2011018038A1 PCT/CN2010/075912 CN2010075912W WO2011018038A1 WO 2011018038 A1 WO2011018038 A1 WO 2011018038A1 CN 2010075912 W CN2010075912 W CN 2010075912W WO 2011018038 A1 WO2011018038 A1 WO 2011018038A1
Authority
WO
WIPO (PCT)
Prior art keywords
dsch
subframe
scch
time slot
slot
Prior art date
Application number
PCT/CN2010/075912
Other languages
English (en)
French (fr)
Inventor
邢艳萍
李晓卡
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to US13/382,524 priority Critical patent/US8948142B2/en
Priority to EP10807983.1A priority patent/EP2466939B1/en
Publication of WO2011018038A1 publication Critical patent/WO2011018038A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method, device, and system for determining a resource location. Background technique
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • HSDP A High Speed Downlink
  • 3GPP 3rd Generation Partnership Project
  • FIG. 1 it is a frame structure in a TD-SCDMA mobile communication system; wherein, a TTI (transmission time interval) in HSDPA is one subframe (5 ms), during transmission of HSDPA, the network
  • the side device configures a set of HS-SCCH (High-Speed Shared Control Channel) for each UE for continuous monitoring of the UE.
  • HS-SCCH High-Speed Shared Control Channel
  • the base station when the base station performs scheduling on all users in the cell, it is determined that the scheduled HS-SCCH notifies the UE to receive data on the corresponding physical resource; wherein, whether it is the first transmission or the retransmission, the UE will follow the HS. - The information received by the SCCH is received.
  • TS Time Slot
  • HS-DSCH High- Speed Downlink Shared Channel, high speed downlink shared channel
  • the HS-SCCH is generally configured in the TS6, when the HS-DSCH allocated by the base station is at the TS0. , the timing relationship shown in Figure 2 occurs, because HS-SCCH and HS-DSCH are the next two time slots; when the UE has not resolved the HS-DSCH, the network side has started at HS-DSCH.
  • the downlink data is transmitted. At this time, the UE cannot complete the decoding of the HS-SCCH and the reception process of the HS-DSCH data in time. Summary of the invention
  • the present invention provides a method, apparatus and system for determining a resource location to accurately determine the location of a subframe in which the HS-DSCH allocated by the base station is located.
  • an embodiment of the present invention provides a method for determining a resource location, including:
  • the user equipment UE obtains the time slot in which the high speed downlink shared channel HS-DSCH is located according to the high speed shared control channel HS-SCCH;
  • an embodiment of the present invention provides a user equipment (UE), including: an acquiring module, configured to acquire a time slot in which an HS-DSCH is located according to an HS-SCCH, and a determining module, configured to acquire, according to the HS-DSCH acquired by the acquiring module, The slot determines the subframe in which the HS-DSCH is located.
  • UE user equipment
  • the embodiment of the present invention provides a network side device, including: a processing module, configured to add time slot information of an HS-DSCH to an HS-SCCH, and send the HS-SCCH to the UE, where Obtaining, according to the HS-SCCH, the time slot in which the HS-DSCH is located, and determining, according to the time slot in which the HS-DSCH is located,
  • the subframe in which the HS-DSCH is located; a sending module, configured to send, according to the HS-DSCH slot information added by the processing module, the HS-DSCH to the UE, where the UE receives the time slot of the HS-DSCH in the subframe where the HS-DSCH is located The HS-DSCH.
  • an embodiment of the present invention provides a system for determining a resource location, including: a network side device, configured to send an HS-SCCH to a UE;
  • a UE configured to acquire, according to the HS-SCCH, a time slot in which the HS-DSCH is located; and determine, according to the time slot in which the HS-DSCH is located, a subframe in which the HS-DSCH is located; and in a subframe where the HS-DSCH is located
  • the time slot in which the HS-DSCH is located receives the HS-DSCH from the network side device.
  • the embodiment of the invention has at least the following advantages:
  • the UE may determine the subframe in which the HS-DSCH is allocated according to the time slot in which the HS-DSCH is allocated by the base station; when the HS-DSCH resource of the TS0 is allocated to the UE, sufficient decoding time for the HS-SCCH is reserved for the UE, and the TD- is solved.
  • TS0 is used as the HS-DSCH resource in the SCDMA system, the UE cannot complete the HS-SCCH decoding and HS-DSCH data reception in time.
  • the fixed interval between the HS-SCCH and the HS-DSCH resources is adjusted according to actual needs, which avoids the conflict problem of the HS-SICH when the network side device allocates different resources for different types of UEs.
  • FIG. 1 is a frame structure in a TD-SCDMA mobile communication system in the prior art
  • FIG. 2 is a timing relationship of a HS-DSCH allocated by a base station in TS0 in the prior art
  • FIG. 3 is a conflict situation in a scheduling process in the prior art
  • FIG. 4 is a schematic flow chart of a method for determining a resource location according to Embodiment 1 of the present invention.
  • FIG. 5 is a schematic flowchart of a method for determining a resource location according to Embodiment 2 of the present invention.
  • FIG. 6 is a schematic diagram showing a timing relationship between an HS-SCCH and an HS-DSCH in an embodiment of the present invention
  • 7 is a schematic diagram showing a timing relationship between an HS-DSCH and an HS-SICH in an embodiment of the present invention
  • FIG. 8 is a schematic diagram of correspondence between HS-DSCH location, HS-DSCH location, and HS-SICH location according to Embodiment 3 of the present invention.
  • FIG. 9 is a schematic flowchart of a method for determining a resource location according to Embodiment 3 of the present invention.
  • FIG. 10 is a schematic diagram of a correspondence between an HS-DSCH position, an HS-DSCH position, and an HS-SICH position according to Embodiment 4 of the present invention
  • FIG. 11 is a schematic flowchart of a method for determining a resource location according to Embodiment 4 of the present invention.
  • FIG. 12 is a schematic diagram of correspondence between HS-DSCH position, HS-DSCH position, and HS-SICH position provided by five elements according to an embodiment of the present invention
  • FIG. 13 is a schematic flow chart of a method for determining a resource location according to Embodiment 5 of the present invention.
  • FIG. 14 is a schematic structural diagram of a user equipment according to Embodiment 6 of the present invention.
  • FIG. 15 is a schematic structural diagram of a network side device according to Embodiment 7 of the present invention. detailed description
  • TS0 can be used as the HS-DSCH resource in the TD-SCDMA system
  • TS0 there is a process in which the UE cannot complete the HS-SCCH decoding and the HS-DSCH data reception in time; and if the HS-DSCH allocated by the network side is specified
  • the HS-DSCH resource is fixed in the next subframe of the HS-SCCH, and the timing relationship between the HS-DSCH and the HS-SICH remains unchanged.
  • the base station allocates, by the HS-SCCH, UE1 with HS-DSCH resources supporting TS0, the HS-DSCH is in TS0 and TS5 of subframe #n+2; according to HS-DSCH and HS-SICH ( The timing relationship of the High-Speed Shared Information Channel, UE1 needs to perform HS-SICH feedback in subframe #n+4.
  • the base station uses the same HS-SCCH for scheduling in a conventional HSDPA UE2 in subframe #n+1, the allocated resource is the slot 4 resource of subframe #n+2, and at this time, UE2 needs to be in the subframe.
  • #n+4 uses the same HS-SICH for feedback. It can be seen that the feedback of UE1 and UE2 conflicts.
  • an embodiment of the present invention provides a method, a device, and a system for determining a resource location.
  • the method for determining a resource location after the network side device sends the HS-SCCH to the UE, the UE according to the HS-SCCH indication. Determining whether the HS-DSCH resource includes the slot 0.
  • the subframe where the HS-DSCH is located is the next subframe N+1 of the subframe N where the HS-SCCH is located; if the slot 0 is included, then The subframe in which the HS-DSCH of slot 0 is located is the next subframe N+2 of the subframe N in which the HS-SCCH is located, and the subframe in which the HS-DSCH resource of other slots is located is the next subframe of the subframe N in which the HS-SCCH is located. Frame N+l.
  • the UE may determine the subframe in which the UE is located according to the time slot in which the HS-DSCH is allocated by the base station; when the HS-DSCH resource of the TS0 is allocated to the UE, sufficient decoding time for the HS-SCCH is reserved for the UE.
  • the TS0 is used as the HS-DSCH resource in the TD-SCDMA system, the problem that the UE cannot complete the HS-SCCH decoding and the HS-DSCH data reception in time may occur.
  • the fixed interval between the HS-SCCH and the HS-DSCH resource may be adjusted according to actual needs, thereby avoiding the HS-SICH conflict problem when the network side device allocates different resources to different types of UEs.
  • a first embodiment of the present invention provides a method for determining a resource location. As shown in FIG. 4, the method includes the following steps: Step 401: The user equipment UE receives the high speed shared control channel HS-SCCH from the network side device.
  • Step 402 The UE acquires a time slot in which the high speed downlink shared channel HS-DSCH is located according to the HS-SCCH.
  • the time slot in which the UE acquires the high-speed downlink shared channel HS-DSCH according to the HS-SCCH includes: the UE decodes the HS-SCCH, and the decoded HS-SCCH carries the Time slot information of the HS-DSCH.
  • Step 403 The UE determines, according to the time slot in which the HS-DSCH is located, the subframe in which the HS-DSCH is located.
  • the determining, by the UE, the subframe in which the HS-DSCH is located according to the time slot in which the HS-DSCH is located includes:
  • the subframe in which the HS-DSCH of other slots is located is the next subframe N+1 of the subframe N in which the HS-SCCH is located.
  • Step 404 The UE receives the HS-DSCH from the network side device in a time slot of the HS-DSCH in the subframe where the HS-DSCH is located.
  • the method further includes: the UE sharing the information channel HS-SICH in the high speed The response information is returned to the network side device.
  • the returning, by the UE, the response information to the network side device on the high-speed shared information channel HS-SICH includes: the slot where the HS-DSCH is located does not include the slot 0, and the UE is located at the HS-DSCH.
  • the time slot in which the HS-DSCH is located includes time slot 0, and the UE is in the HS of the next subframe of the subframe where the HS-DSCH corresponding to the time slot 0 is located.
  • - SICH returns response information to the network side device.
  • the returning the response information by the UE to the network side device on the high speed shared information channel HS-SICH further includes: when the UE returns response information to the network side device on the HS-SICH, in the HS-DSCH There should be a time slot offset of not less than 8 between the last HS-DSCH and the corresponding HS-SICH.
  • the UE can determine the subframe in which the UE is located according to the time slot in which the HS-DSCH is allocated by the base station; when the HS-DSCH resource of the TS0 is allocated to the UE, sufficient UE is reserved.
  • the decoding time of the HS-SCCH solves the problem that when the TS0 is used as the HS-DSCH resource in the TD-SCDMA system, the UE cannot complete the HS-SCCH decoding and the HS-DSCH data reception in time.
  • the fixed interval between the HS-SCCH and the HS-DSCH resources is adjusted according to actual needs, which avoids the conflict problem of the HS-SICH when the network side device allocates different resources to different types of UEs.
  • the second embodiment of the present invention provides a method for determining a resource location, which can be applied to an application scenario in which a TS0 can be used as an HS-DSCH resource in a TD-SCDMA system, and of course, an application scenario in which TS0 is not used as an HS-DSCH resource.
  • the embodiments of the present invention are applicable to the corresponding application scenarios in other systems, and details are not described herein again.
  • the above method for determining resource location includes the following steps:
  • Step 501 The network side device sends the HS-SCCH to the UE.
  • the content carried on the HS-SCCH includes, but is not limited to, the physical resources occupied by the HS-DSCH, the modulation mode used in the current transmission, the transport block size, and the HARQ (Hybrid Automatic Repeat reQuest) information. , new data indications, and information such as the UE ID.
  • HARQ Hybrid Automatic Repeat reQuest
  • the network side device includes, but is not limited to, an RNC (Radio Network Controller), an NB (Node B, a Node B), a base station, and the like. It should be noted that the network side device is not limited to the foregoing devices, and all of the devices are located. The network side device is within the protection scope of the embodiment of the present invention. For convenience of description, the network side device in the embodiment of the present invention A base station is taken as an example for description.
  • Step 502 The UE receives and decodes the HS-SCCH, and determines, according to the time slot of the HS-DSCH allocated by the base station, the subframe where the HS-DSCH allocated by the base station is located.
  • the base station When the base station wants to send downlink enhanced data to a certain UE on the HS-DSCH, the base station will first send the HS-SCCH to the UE.
  • the UE determines the time slot and the subframe in which the HS-DSCH is located by decoding the HS-SCCH, thereby receiving the HS-DSCH resource at the determined position.
  • the UE determines, according to the time slot of the HS-DSCH allocated by the base station, the subframe in which the HS-DSCH allocated by the base station is located, and the UE determines whether the HS-DSCH resource indicated by the HS-SCCH includes the time slot 0, if not included.
  • the subframe where the HS-DSCH is located is the next subframe N+1 of the subframe N where the HS-SCCH is located; if the slot 0 is included, the subframe where the HS-DSCH of the slot 0 is located is the sub-frame of the HS-SCCH The next subframe N+2 of the frame N, the subframe where the HS-DSCH resource of the other slot is located is the next subframe N+1 of the subframe N where the HS-SCCH is located.
  • the subframe in which the determined HS-DSCH is located is the next subframe N+1 of the subframe N in which the HS-SCCH is located, according to the existing HSDPA, HS-SCCH and HS. Determining the timing relationship between the DSCHs, the timing relationship is specifically corresponding to the next valid HS-DSCH allocation, and the corresponding slot information of the HS-DSCH is carried on the HS-SCCH, and the indicated HS-DSCH will be carried. The HS-DSCH corresponding information is transmitted on the next subframe of the HS-SCCH.
  • FIG. 6 it is a timing relationship between HS-SCCH and HS-DSCH.
  • the DwPTS (downlink pilot time slot) time slot and the UpPTS (uplink pilot time slot) are not considered in the timing relationship.
  • Step 503 The UE receives the HS-DSCH data according to the time slot and the subframe of the HS-DSCH resource.
  • the time slot in which the HS-DSCH allocated by the base station is located may be obtained. Further, according to the processing procedure in the foregoing step 502, the subframe where the HS-DSCH is located may be determined, that is, the UE may receive the HS-DSCH data according to the time slot and the subframe.
  • Step 504 The UE demodulates and decodes the received HS-DSCH data, and feeds back an ACK (ACKnowledge Character), or a NACK and CQI (Channel Quality Indicator) information on the HS-SICH; When receiving the HS-DSCH data, the UE needs to return response information to the base station. It should be noted that the location of the HS-SICH is notified to the UE in advance by the network side device, and details are not described in the embodiment of the present invention.
  • the subframe in which the HS-SICH is located there is also a location requirement.
  • the subframe in which the HS-SICH is located is based on the existing HSDPA, HS-
  • the timing relationship between the DSCH and the HS-SICH is determined.
  • the timing relationship is specifically as follows:
  • the HS-SCCH needs to correspond to one HS-SICH, and carries the ACK/NACK information and the CQI information through the HS-SICH.
  • the correspondence between the HS-SCCH and the HS-SICH is predefined by the network side device, and is the same for all UEs; where, for the UE, the HS-DSCH and the corresponding HS-SICH There should be a slot offset with nHS-SICH greater than or equal to 9, that is, after receiving the last HS-DSCH, it takes 9 slots to send the HS-SICH. As shown in Figure 7, the timing relationship between HS-DSCH and HS-SICH is shown. Similarly, DwPTS and UpPTS are not considered in this timing relationship.
  • the UE with the dedicated identifier will send the HS-DSCH corresponding to the next available HS-SICH.
  • the ACK/NACK is not described in the embodiment of the present invention.
  • the HS-SICH feedback of the UE when the time slot 0 is included in the HS-DSCH data, the HS-SICH feedback of the UE must be sent in the next subframe of the subframe where the HS-DSCH corresponding to the time slot 0 is located, thereby avoiding the network side.
  • the HS-SICH conflict problem when the device allocates different resources for different types of UEs. For example, for the collision situation shown in FIG.
  • the base station allocates the HS-DSCH resources of the TS0 and TS5 of the subframe #n+2 to the UE1 supporting the HS-DSCH in the HS-DSCH support for the HS-DSCH;
  • UE1 will perform HS-SICH feedback in subframe #n+3 (in the prior art, according to the timing relationship between HS-DSCH and HS-SICH, UE1 needs to perform HS-SICH feedback in subframe #n+4. ).
  • the base station is in subframe #n+1 to a traditional HSDPA (UE without TS0)
  • UE2 also makes Scheduling with the same HS-SCCH
  • the allocated resource is the slot 4 resource of subframe #n+2.
  • UE2 needs to use in subframe #n+4.
  • the HS-SICH performs feedback. It can be seen that when the time slot 0 is included in the HS-DSCH data, the HS-SICH feedback of the UE is transmitted in the next subframe of the subframe in which the HS-DSCH corresponding to the slot 0 is located, thereby avoiding the UE1.
  • the HS-SICH feedback of the UE must be sent in the next subframe of the subframe in which the HS-DSCH corresponding to the slot 0 is located, that is, the UE needs to be larger than the nHS-SICH.
  • the method for determining the resource location in the embodiment of the present invention is described in detail in the following three specific cases.
  • the three cases are that the HS-DSCH resource does not include the slot 0; the HS-DSCH resource only includes the slot 0; HS-DSCH
  • the resource contains slot 0 and other slots.
  • the third embodiment of the present invention provides a method for determining a resource location, where the HS-DSCH resource does not include a time slot 0 in the application scenario of the second embodiment.
  • the corresponding relationship between the HS-DSCH position, the HS-DSCH position, and the HS-SICH position is as shown in FIG. 8.
  • the correspondence is only a schematic situation, and other team-related relationships may be selected according to actual needs.
  • the method for determining the resource location is as shown in FIG. 9, and includes the following steps:
  • Step 901 The base station sends an HS-SCCH to the UE, where the base station indicates to the UE that the HS-DSCH allocated to the UE is located in the time slot 3 to the time slot 5 through the HS-SCCH. Selected, only the time slot does not need to include time slot 0.
  • Step 902 The UE receives and decodes the HS-SCCH, and obtains that the HS-DSCH resource does not include the slot 0, and determines that the subframe where the HS-DSCH is located is the next subframe N+1 of the subframe N where the HS-SCCH is located.
  • the subframe in which the HS-DSCH allocated by the base station is considered to be the next subframe N in which the HS-SCCH is located Subframe N+l. That is, the HS-DSCH is in slot 3 to slot 5 of subframe N+1.
  • Step 903 The UE receives the HS-DSCH data in the next subframe N+1 of the subframe N where the HS-SCCH is located. The time slot in which the UE receives the HS-DSCH data has been previously agreed, and details are not described herein again.
  • Step 904 The UE demodulates and decodes the HS-DSCH data, and feeds back ACK/NACK and CQI information on the HS-SICH, where the feedback on the HS-SICH is performed in the corresponding subframe according to the existing timing relationship. Feedback.
  • the fourth embodiment of the present invention provides a method for determining a resource location, where the HS-DSCH resource includes only slot 0;
  • the correspondence between the HS-DSCH position, the HS-DSCH position, and the HS-SICH position is only a schematic situation.
  • the method for determining the resource location is as shown in FIG. 11, and includes the following steps:
  • Step 1101 The base station sends an HS-SCCH to the UE, where the base station indicates to the UE through the HS-SCCH that the HS-DSCH allocated to the UE is located in slot 0.
  • Step 1102 The UE receives and decodes the HS-SCCH, and obtains the HS-DSCH resource as slot 0, and determines that the subframe where the HS-DSCH is located is the next subframe N+2 of the subframe N in which the HS-SCCH is located.
  • Step 1103 The UE receives the HS-DSCH data in the next subframe N+2 of the subframe N where the HS-SCCH is located.
  • Step 1104 The UE demodulates and decodes the HS-DSCH data, and performs HS-SICH feedback in the next subframe N+3 of the HS-DSCH.
  • the HS-SICH is configured in TS1 (which is previously agreed by the network side device and the UE), and it can be seen that only 8 time slots are separated between the HS-DSCH and the HS-SICH.
  • the UE in order to guarantee the timing relationship between the HS-SCCH and the HS-SICH, the UE must perform HS-SICH feedback in the subframe #n+3.
  • the fifth embodiment of the present invention provides a method for determining a resource location, where the method includes a time slot 0 and other time slots in the HS-DSCH resource;
  • the correspondence between the HS-DSCH position, the HS-DSCH position, and the HS-SICH position is shown as a schematic situation.
  • the method for determining the resource location is as shown in FIG. 13 and includes the following steps: Step 1301: The base station sends an HS-SCCH to the UE, where the base station indicates to the UE that the HS-DSCH allocated to the UE is located in slot 0, time slot 4, and time slot 5 through the HS-SCCH.
  • Step 1302 The UE receives and decodes the HS-SCCH, obtains the HS-DSCH resource as slot 0, slot 4, and slot 5, and determines that the subframe where the HS-DSCH of slot 0 is located is the subframe where the HS-SCCH is located.
  • the next subframe N+2, and the subframe where the HS-DSCH resource of slot 4 and slot 5 is located is the next subframe N+1 of the subframe N in which the HS-SCCH is located.
  • Step 1303 The UE receives the HS-DSCH data corresponding to the slot 0 in the next subframe N+2 of the subframe N where the HS-SCCH is located; and in the next subframe N+1 of the subframe N where the HS-SCCH is located.
  • the HS-DSCH data corresponding to slot 4 and slot 5 is received.
  • Step 1304 The UE demodulates and decodes the HS-DSCH data, and performs HS-SICH feedback in the next subframe N+3 of the HS-DSCH data corresponding to the slot 0.
  • the subframe in which the HS-DSCH allocated by the base station is located may be determined; when the UE is assigned the HS of the TS0.
  • the DSCH resource is used, sufficient decoding time for the HS-SCCH is reserved for the UE, and when the TS0 is used as the HS-DSCH resource in the TD-SCDMA system, the UE cannot complete the HS-SCCH decoding and the HS-DSCH in time.
  • the problem of data reception Moreover, the fixed interval between the HS-SCCH and the HS-DSCH resources is adjusted according to actual needs, which avoids the conflict problem of the HS-SICH when the network side device allocates different resources to different types of UEs.
  • the sixth embodiment of the present invention provides a user equipment UE.
  • the method includes: an obtaining module 1401, configured to acquire a time slot in which the HS-DSCH is located according to the HS-SCCH.
  • the acquiring module 1401 is specifically configured to: decode the HS-SCCH, and acquire a time slot in which the HS-DSCH is located according to the decoded HS-SCCH; the decoded HS-SCCH carries the Information about the time slot in which the HS-DSCH is located.
  • the determining module 1402 is configured to determine, according to the time slot of the HS-DSCH acquired by the acquiring module 1401, the subframe where the HS-DSCH is located.
  • the determining module 1402 is specifically configured to: when the slot where the HS-DSCH is located only includes the slot 0, determine that the subframe where the HS-DSCH is located is the next sub-subframe of the subframe N where the HS-SCCH is located. Frame N+2; when the time slot in which the HS-DSCH is located includes a time slot 0 and other time slots, determining that the subframe in which the HS-DSCH of slot 0 is located is the next subframe N+2 of the subframe N in which the HS-SCCH is located; the subframe in which the HS-DSCH of other slots is located is The next subframe N+1 of the subframe N in which the HS-SCCH is located.
  • the receiving module 1403 is configured to receive an HS-DSCH from the network side device in a time slot where the HS-DSCH in the subframe where the HS-DSCH is located;
  • the sending module 1404 is configured to return response information to the network side device on the HS-SICH.
  • the sending module 1404 is specifically configured to: when the slot where the HS-DSCH is located does not include the slot 0, on the HS-SICH of the next subframe of the subframe where the HS-DSCH is located, to the network side.
  • the device returns response information; or, when the slot in which the HS-DSCH is located includes slot 0, the HS-SICH of the next subframe of the subframe in which the HS-DSCH corresponding to the slot 0 is located is The network side device returns response information.
  • the modules of the device in the embodiment of the present invention may be integrated into one module or may be separately deployed.
  • the above modules can be combined into one module, or they can be further split into multiple sub-modules.
  • a seventh embodiment of the present invention provides a network side device 15, as shown in FIG. 15, including: a processing module 1501, configured to add time slot information of an HS-DSCH to an HS-SCCH, and send the HS-SCCH to And determining, by the UE, the time slot in which the HS-DSCH is located according to the HS-SCCH, and determining the subframe in which the HS-DSCH is located according to the time slot in which the HS-DSCH is located.
  • a processing module 1501 configured to add time slot information of an HS-DSCH to an HS-SCCH, and send the HS-SCCH to And determining, by the UE, the time slot in which the HS-DSCH is located according to the HS-SCCH, and determining the subframe in which the HS-DSCH is located according to the time slot in which the HS-DSCH is located.
  • the sending module 1502 is configured to send, according to the HS-DSCH slot information added by the processing module 1501, the HS-DSCH to the UE, where the HS-DSCH in the subframe where the HS-DSCH is located is located in the slot where the HS-DSCH is located in the subframe where the HS-DSCH is located.
  • the HS-DSCH is received.
  • the receiving module 1503 is configured to receive response information returned by the UE from the HS-SICH, where the slot where the HS-DSCH is located does not include the slot 0, and receives the subframe from the UE where the HS-DSCH is located.
  • the response returned on the HS-SICH of a subframe Or; the slot in which the HS-DSCH is located includes slot 0, and receives response information returned from the HS-SICH of the UE in the next subframe of the subframe in which the HS-DSCH is located.
  • modules of the device of the present invention may be integrated or integrated.
  • the above modules can be combined into one module, or can be further split into multiple sub-modules.
  • the embodiment of the present invention further provides a system for determining a resource location, including: a network side device, configured to send an HS-SCCH to a UE.
  • a UE configured to acquire, according to the HS-SCCH, a time slot in which the HS-DSCH is located; and determine, according to the time slot in which the HS-DSCH is located, a subframe in which the HS-DSCH is located; and in a subframe where the HS-DSCH is located
  • the time slot in which the HS-DSCH is located receives the HS-DSCH from the network side device.
  • the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is a better implementation. the way.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making a A computer device (which may be a personal computer, server, or network device, etc.) performs the methods described in various embodiments of the present invention.
  • modules in the apparatus in the embodiments may be distributed in the apparatus of the embodiment according to the embodiment, or may be correspondingly changed in one or more apparatuses different from the embodiment.
  • the modules of the above embodiments may be combined into one module, or may be further split into a plurality of sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种确定资源位置的方法、 设备和系统 本申请要求于 2009年 8 月 11 日提交中国专利局, 申请号为 200910090792.5 , 发明名称为 "一种确定资源位置的方法、 设备和系 统"的中国专利申请的优先权,其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 尤其涉及一种确定资源位置的方法、 设备和系统。 背景技术
TD-SCDMA ( Time Division-Synchronous Code Division Multiple Access , 时分同步的码分多址技术 ) 系统在 3 GPP ( 3rd Generation Partnership Proj ect, 第三代伙伴项目) 的 Release5中引入了 HSDP A ( High Speed Downlink Packet Access, 高速下行分组接入 )技术, 从 而提高了 UE ( User Equipment, 用户设备) 的下行速率。
如图 1所示, 为一种 TD-SCDMA移动通信系统中帧结构; 其中, HSDPA中的 TTI ( transmission time interval , 传输时间间隔) 为一个 子帧 (5ms ) , 在 HSDPA的传输过程中, 网络侧设备为每个 UE配置 了一组 HS-SCCH ( High-Speed Shared Control Channel, 高速共享控制 信道) , 用于对 UE进行持续监听。
具体的, 在基站对小区内的所有用户进行调度时, 需要确定调度 过 HS-SCCH通知 UE在对应的物理资源上接收数据; 其中, 无论是首 次传输或者是重传, UE均将按照该 HS-SCCH通知的信息接收数据。
其中, 在现有协议中, 为了保证广播的覆盖与质量, 辅载波 TS ( Time Slot, 时隙) 0的时隙、 码道资源都没有被使用, 即 TS0是不能 作为 HS-DSCH ( High-Speed Downlink Shared Channel, 高速下行共享 信道)的资源的。 但是在现有的 TD-SCDMA系统 N频点的小区中, 随 着 F频段的引入, TS0的使用被重新考虑。
在实现本发明的过程中,发明人发现现有技术中至少存在以下缺 点:
当 TD-SCDMA 系统中需要考虑辅载波 TS0 的使用且用作 HS-DSCH资源时, 根据现有系统的典型配置, HS-SCCH—般被配置 在 TS6, 当基站分配的 HS-DSCH在 TS0时, 则会出现如图 2所示的 定时关系, 由于 HS-SCCH和 HS-DSCH为紧接着的两个时隙; 会出 现 UE还没有解析完 HS-DSCH时, 网络侧已经开始在 HS-DSCH上 发送下行数据了, 此时, UE是无法及时完成 HS-SCCH 的解码及 HS-DSCH数据的接收过程的。 发明内容
本发明提供一种确定资源位置的方法、设备和系统, 以准确地确 定基站分配的 HS-DSCH所在子帧的位置。
为了达到上述目的, 本发明实施例提供一种确定资源位置的方 法, 包括:
用户设备 UE根据高速共享控制信道 HS-SCCH获取高速下行共 享信道 HS-DSCH所在时隙;
所述 UE根据所述 HS-DSCH所在时隙确定所述 HS-DSCH所在 子帧。
另一方面, 本发明实施例提供一种用户设备 UE, 包括: 获取模块, 用于根据 HS-SCCH获取 HS-DSCH所在时隙; 确定模块, 用于根据所述获取模块获取的 HS-DSCH所在时隙确 定所述 HS-DSCH所在子帧。
另一方面, 本发明实施例提供一种网络侧设备, 包括: 处理模块, 用于在 HS-SCCH中添加 HS-DSCH的时隙信息, 并 将所述 HS-SCCH发送给 UE, 由所述 UE根据所述 HS-SCCH获取所 述 HS-DSCH 所在时隙以及根据所述 HS-DSCH所在时隙确定所述
HS-DSCH所在子帧; 发送模块, 用于根据所述处理模块添加的 HS-DSCH时隙信息向 UE发送所述 HS-DSCH, 由所述 UE在所述 HS-DSCH所在子帧中的 HS-DSCH所在时隙接收来所述 HS-DSCH。
另一方面, 本发明实施例提供一种确定资源位置的系统, 包括: 网络侧设备, 用于向 UE发送 HS-SCCH;
UE, 用于根据所述 HS-SCCH获取 HS-DSCH所在时隙; 并根据 所述 HS-DSCH所在时隙确定所述 HS-DSCH 所在子帧; 并在所述 HS-DSCH所在子帧中的 HS-DSCH所在时隙接收来自所述网络侧设 备的 HS-DSCH。
与现有技术相比, 本发明实施例至少具有以下优点:
UE可以根据基站分配的 HS-DSCH所在时隙确定其所在子帧; 当为 UE分配了 TS0的 HS-DSCH资源时, 为 UE预留了足够的对 HS-SCCH 的解码时间, 解决了 TD-SCDMA 系统中采用 TS0作为 HS-DSCH 资源时, 会出现 UE无法及时完成 HS-SCCH 的解码和 HS-DSCH数据接收的问题。
而且根据实际需要对 HS-SCCH与 HS-DSCH资源之间固定间隔 进行调整, 避免了网络侧设备为不同类型 UE 分配不同资源时 HS-SICH的冲突问题。 附图说明
图 1是现有技术中 TD-SCDMA移动通信系统中帧结构; 图 2是现有技术中基站分配的 HS-DSCH在 TS0时的定时关系; 图 3是现有技术中调度过程发生冲突情况的示意图;
图 4是本发明实施例一提供的一种确定资源位置的方法流程示 意图;
图 5 是本发明实施例二提供的一种确定资源位置的方法流程示 意图;
图 6是本发明实施例中 HS-SCCH和 HS-DSCH之间的定时关系 示意图; 图 7是本发明实施例中 HS-DSCH和 HS-SICH之间的定时关系示 意图;
图 8是本发明实施例三提供的一种 HS-DSCH位置、 HS-DSCH 位置以及 HS-SICH位置之间的对应关系示意图;
图 9是本发明实施例三提供的一种确定资源位置的方法流程示 意图;
图 10是本发明实施例四提供的一种 HS-DSCH位置、 HS-DSCH 位置以及 HS-SICH位置之间的对应关系示意图;
图 11是本发明实施例四提供的一种确定资源位置的方法流程示 意图;
图 12是本发明实施例五元提供的一种 HS-DSCH位置、 HS-DSCH 位置以及 HS-SICH位置之间的对应关系示意图;
图 13是本发明实施例五提供的一种确定资源位置的方法流程示 意图;
图 14是本发明实施例六提供的用户设备结构示意图;
图 15是本发明实施例七提供的一种网络侧设备结构示意图。 具体实施方式
下面将结合本发明中的附图,对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明的一部分实 施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技 术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属 于本发明实施例保护的范围。
如背景技术,当 TD-SCDMA系统中可以采用 TS0作为 HS-DSCH 资源时, 会出现 UE无法及时完成 HS-SCCH的解码和 HS-DSCH数 据接收的过程; 而且如果规定网络侧分配的 HS-DSCH包含 TS0时, HS-DSCH资源固定出现在 HS-SCCH的下下一个子帧, 而 HS-DSCH 与 HS-SICH的定时关系保持不变。
由于传统的 HSDPAUE (即不支持 HS-DSCH资源配置在 TS0的 UE ) 而言, 定时关系是不能改变的; 此时, 如果要求基站在调度时 区分传统的 HSDPA UE, 和支持 HS-DSCH配置在 TS0的 UE, 调度 过程比较复杂, 并且会发生冲突, 如图 3所示的一种冲突情况。 在子 帧 #n, 基站通过 HS-SCCH为 UE1分配了支持包含 TS0的 HS-DSCH 资源, 所述 HS-DSCH在子帧 #n+2的 TS0和 TS5; 根据 HS-DSCH与 HS-SICH ( High-Speed Shared Information Channel, 高速共享信息信 道) 的定时关系, UE1需要在子帧 #n+4进行 HS-SICH反馈。 而如果 基站在子帧 #n+l对一个传统的 HSDPA UE2也使用相同的 HS-SCCH 进行调度, 分配的资源为子帧 #n+2的时隙 4资源, 此时, UE2需要 在子帧 #n+4使用相同的 HS-SICH进行反馈, 可见, UE1和 UE2的反 馈发生了冲突。
为了解决上述问题, 发明实施例提供了一种确定资源位置方法、 设备和系统, 在该确定资源位置的方法中, 网络侧设备向 UE发送了 HS-SCCH后, UE根据该 HS-SCCH的指示判断 HS-DSCH资源是否 包含时隙 0, 如果不包含时隙 0, 则 HS-DSCH所在子帧为 HS-SCCH 所在子帧 N 的下一个子帧 N+1; 如果包含时隙 0 , 则时隙 0 的 HS-DSCH所在子帧为 HS-SCCH所在子帧 N的下下一个子帧 N+2, 其它时隙的 HS-DSCH资源所在子帧为 HS-SCCH所在子帧 N的下一 个子帧 N+l。
通过使用上述方法, UE可以根据基站分配的 HS-DSCH所在时 隙确定其所在子帧; 当为 UE分配了 TS0的 HS-DSCH资源时, 为 UE预留了足够的对 HS-SCCH的解码时间,解决了 TD-SCDMA系统 中采用 TS0 作为 HS-DSCH 资源时, 会出现 UE 无法及时完成 HS-SCCH的解码和 HS-DSCH数据接收的问题。 而且本发明实施例 中, 可以根据实际需要对 HS-SCCH与 HS-DSCH资源之间固定间隔 进行调整, 避免了网络侧设备为不同类型 UE 分配不同资源时 HS-SICH的冲突问题。
本发明实施例一提供一种确定资源位置的方法, 如图 4所示, 包 括以下步骤: 步骤 401 , 用户设备 UE接收来自网络侧设备的高速共享控制信 道 HS-SCCH。
步骤 402, 所述 UE根据所述 HS-SCCH获取高速下行共享信道 HS-DSCH所在时隙。
其中, 所述 UE 根据所述 HS-SCCH 获取高速下行共享信道 HS-DSCH所在时隙具体包括; 所述 UE对所述 HS-SCCH进行解码, 所述解码后的 HS-SCCH中携带了所述 HS-DSCH的时隙信息。
步骤 403 , 所述 UE 根据所述 HS-DSCH 所在时隙确定所述 HS-DSCH所在子帧。
其中,所述 UE根据所述 HS-DSCH所在时隙确定所述 HS-DSCH 所在子帧具体包括:
所述 UE判断所述 HS-DSCH所在时隙是否包含时隙 0; 当所述 HS-DSCH所在时隙不包含时隙 0时,所述 UE确定所述 HS-DSCH所 在子帧为所述 HS-SCCH所在子帧 N 的下一个子帧 N+1 ; 当所述 HS-DSCH所在时隙只包含时隙 0时,所述 UE确定所述 HS-DSCH所 在子帧为所述 HS-SCCH所在子帧 N的下下一个子帧 N+2; 当所述 HS-DSCH所在时隙包含时隙 0和其他时隙时, 所述 UE确定时隙 0
N+2; 其它时隙的 HS-DSCH所在子帧为所述 HS-SCCH所在子帧 N 的下一个子帧 N+l。
步骤 404,所述 UE在所述 HS-DSCH所在子帧中的 HS-DSCH所 在时隙接收来自所述网络侧设备的 HS-DSCH。
进一步的, 所述 UE在所述 HS-DSCH所在子帧中的 HS-DSCH 所在时隙接收来自所述网络侧设备的 HS-DSCH之后, 还包括: 所述 UE在高速共享信息信道 HS-SICH上向所述网络侧设备返回响应信 息。
具体的, 所述 UE在高速共享信息信道 HS-SICH上向所述网络 侧设备返回响应信息具体包括: 所述 HS-DSCH所在时隙中不包含时 隙 0, 所述 UE在 HS-DSCH所在子帧的下下一个子帧的 HS-SICH上 向所述网络侧设备返回响应信息; 或 , 所述 HS-DSCH所在时隙中包 含时隙 0, 所述 UE在所述时隙 0对应的 HS-DSCH所在子帧的下一 个子帧的 HS-SICH上向所述网络侧设备返回响应信息。
所述 UE在高速共享信息信道 HS-SICH上向所述网络侧设备返 回响应信息还包括: 所述 UE在 HS-SICH上向所述网络侧设备返回 响应信息时, 所述 HS-DSCH 中的最后一个 HS-DSCH 和对应的 HS-SICH之间要有不小于 8的时隙偏移。
可见, 通过使用本发明实施例提供的方法, UE可以根据基站分 配的 HS-DSCH所在时隙确定其所在子帧; 当为 UE分配了 TS0的 HS-DSCH资源时, 为 UE预留了足够的对 HS-SCCH的解码时间,解 决了 TD-SCDMA系统中采用 TS0作为 HS-DSCH资源时,会出现 UE 无法及时完成 HS-SCCH的解码和 HS-DSCH数据接收的问题。 而且 根据实际需要对 HS-SCCH与 HS-DSCH资源之间固定间隔进行调整, 避免了网络侧设备为不同类型 UE分配不同资源时 HS-SICH的冲突 问题。
本发明实施例二提供一种确定资源位置方法,该方法可以应用于 TD-SCDMA系统中可以采用 TS0作为 HS-DSCH资源的应用场景中, 当然,对于不采用 TS0作为 HS-DSCH资源的应用场景以及其他系统 中对应的应用场景, 本发明实施例可以同样适用, 在此不再赘述。 如 图 5所示, 上述的确定资源位置方法包括以下步骤:
步骤 501 , 网络侧设备向 UE发送 HS-SCCH。
其中, 该 HS-SCCH上承载的内容包括但不限于 HS-DSCH所占 用的物理资源、 本次传输所采用的调制方式、 传输块大小、 HARQ ( Hybrid Automatic Repeat reQuest, 混合自动重传请求)信息、 新数 据指示以及 UE ID (标识 )等信息。
该网络侧设备包括但不限于 RNC ( Radio Network Controller, 无 线网络控制器)、 NB ( Node B, 节点 B )、 基站等, 需要说明的是, 该网络侧设备并不局限于上述设备,所有位于网络侧的设备均在本发 明实施例保护范围之内, 为了方便描述, 本发明实施例中的网络侧设 备以基站为例进行说明。
步骤 502 , UE 接收并解码该 HS-SCCH , 根据基站分配的 HS-DSCH所在时隙, 确定基站分配的 HS-DSCH所在子帧。
其中,当基站要给某个 UE在 HS-DSCH上发送下行增强数据时, 基站将首先向 UE发送 HS-SCCH。 而该 UE通过解码该 HS-SCCH, 确定 HS-DSCH 所在的时隙和子帧, 从而在该确定的位置接收 HS-DSCH资源。
具体的, 该 UE根据基站分配的 HS-DSCH所在时隙, 确定基站 分配的 HS-DSCH 所在子帧具体包括: UE判断 HS-SCCH指示的 HS-DSCH资源是否包含时隙 0, 如果不包含时隙 0, 则 HS-DSCH所 在子帧为 HS-SCCH所在子帧 N的下一个子帧 N+1;如果包含时隙 0, 则时隙 0的 HS-DSCH所在子帧为 HS-SCCH所在子帧 N的下下一个 子帧 N+2, 其它时隙的 HS-DSCH资源所在子帧为 HS-SCCH所在子 帧 N的下一个子帧 N+l。
进一步的, 当不包含时隙 0时, 判断出的 HS-DSCH所在子帧为 HS-SCCH所在子帧 N的下一个子帧 N+1 ,是根据现有的 HSDPA中, HS-SCCH与 HS-DSCH之间的定时关系确定的, 该定时关系具体为 对应下一次有效的 HS-DSCH 分配, HS-DSCH相应的时隙信息在 HS-SCCH上携带,所指示的 HS-DSCH将会在携带 HS-DSCH相应信 息的 HS-SCCH的下一个子帧上发送。
如图 6所示, 为一种 HS-SCCH和 HS-DSCH之间的定时关系。 其中,在该定时关系中不考虑 DwPTS (下行导频时隙 )时隙和 UpPTS (上行导频时隙)。
步骤 503 , UE根据该 HS-DSCH资源的时隙和子帧接收 HS-DSCH 数据。
其中,当 UE解码该 HS-SCCH时,可以获得基站分配的 HS-DSCH 所在时隙。 进一步的, 根据上述步骤 502 中的处理过程可以确定 HS-DSCH所在子帧,即 UE可以根据该时隙和子帧接收 HS-DSCH数 据。 步骤 504, UE对接收到的 HS-DSCH数据进行解调和解码,并在 HS-SICH上反馈 ACK ( ACKnowledge Character, 确认字符), 或者 NACK以及 CQI ( Channel Quality Indicator, 信道质量指示)信息; 即 UE在接收到 HS-DSCH数据时, 需要向基站返回响应信息。 需要 说明的是, 该 HS-SICH的位置是由网络侧设备预先通知 UE的, 本 发明实施例中不再赘述。
具体的, 对于该 HS-SICH所在的子帧, 也是有位置要求的, 当 HS-DSCH数据中不包含时隙 0时,该 HS-SICH所在的子帧为根据现 有的 HSDPA中, HS-DSCH与 HS-SICH的定时关系确定的; 该定时 关系具体为: HS-SCCH需要对应一个 HS-SICH, 并通过该 HS-SICH 携带 ACK/NACK信息和 CQI信息。 进一步的, 该 HS-SCCH 和 HS-SICH之间的对应关系是由网络侧设备预定义的, 对于所有的 UE 都是一样的; 其中, 对于 UE来说, HS-DSCH和对应的 HS-SICH之 间要有 nHS-SICH 大于等于 9 的时隙偏移, 即在接收到最后一个 HS-DSCH后, 需要经过 9个时隙之后才能发送 HS-SICH。 如图 7所 示为一种 HS-DSCH和 HS-SICH之间的定时关系。 同样的,在该定时 关系中不考虑 DwPTS和 UpPTS。 其中, 在 CELL-DCH (小区专用信 道)状态和 CELL_FACH ( forward access Channel, 前向接入信道) 的状态下, 具有专用标识的 UE将在下一个可用的 HS-SICH上发送 HS-DSCH所对应的 ACK/NACK, 本发明实施例中不再赘述。
本发明实施例中, 当 HS-DSCH数据中包含时隙 0 时, UE 的 HS-SICH反馈必须在时隙 0对应的 HS-DSCH所在子帧的下一个子帧 内发送, 从而避免了网络侧设备为不同类型 UE 分配不同资源时 HS-SICH的冲突问题。 例如, 对于图 3所示冲突情况; 在子帧 #n, 基 站通过 HS-SCCH为支持 HS-DSCH配置在 TS0的 UE1分配了子帧 #n+2的 TS0和 TS5的 HS-DSCH资源; 本发明实施例中, UE1将在 子帧 #n+3进行 HS-SICH反馈(现有技术中根据 HS-DSCH与 HS-SICH 的定时关系, UE1需要在子帧 #n+4进行 HS-SICH反馈)。 如果基站 在子帧 #n+l对一个传统的 HSDPA (没有配置 TS0的 UE ) UE2也使 用相同的 HS-SCCH进行调度,分配的资源为子帧 #n+2的时隙 4资源, 此时,根据 HS-DSCH与 HS-SICH的定时关系, UE2需要在子帧 #n+4 使用 HS-SICH进行反馈, 可见, 当 HS-DSCH数据中包含时隙 0时, UE的 HS-SICH反馈通过在时隙 0对应的 HS-DSCH所在子帧的下一 个子帧内发送, 避免了 UE1和 UE2之间的冲突。
可以看出, 由于一个子帧内有 7个时隙, UE的 HS-SICH反馈必 须在时隙 0对应的 HS-DSCH所在子帧的下一个子帧内发送, 即 UE 需要根据 nHS-SICH大于等于 8个时隙确定反馈的 HS-SICH所在子 帧; 其中, 该过程中 DwPTS和 UpPTS也不需要考虑。
以下结合 3 种具体的情况对本发明实施例中的确定资源位置方 法进行详细说明, 该 3种情况分别为 HS-DSCH资源不包含时隙 0; HS-DSCH资源只包含时隙 0; HS-DSCH资源包含时隙 0和其他时隙。 基于上述本发明实施例二中提供的确定资源位置方法,本发明实施例 三提供一种确定资源位置方法, 该方法是在实施例二的应用场景下, HS-DSCH资源中不包含时隙 0的情况; 如图 8所示一种 HS-DSCH 位置、 HS-DSCH位置以及 HS-SICH位置之间的对应关系, 该对应关 系只是一种示意情况, 根据实际需要还可以选择其他队应关系, 该确 定资源位置方法如图 9所示, 包括以下步骤:
步骤 901 ,基站向 UE发送 HS-SCCH,其中,基站通过该 HS-SCCH 向 UE指示为该 UE分配的 HS-DSCH位于时隙 3至时隙 5; 当然, 该时隙情况为根据实际需要任意选择的, 只需要该时隙不包括时隙 0 即可。
步骤 902, UE接收并解码该 HS-SCCH, 获得 HS-DSCH资源中 不包含时隙 0, 确定出 HS-DSCH所在子帧为 HS-SCCH所在子帧 N 的下一个子帧 N+l。
具体的, UE 正确解码 HS-SCCH后, 判断 HS-SCCH指示的 HS-DSCH资源中不包含时隙 0,则认为基站分配的 HS-DSCH所在子 帧为 HS-SCCH所在子帧 N的下一个子帧 N+l。 即 HS-DSCH在子帧 N+1的时隙 3至时隙 5。 步骤 903 , UE在 HS-SCCH所在子帧 N的下一个子帧 N+1接收 HS-DSCH数据,其中, UE接收 HS-DSCH数据的时隙已经预先约定, 在此不再赘述。
步骤 904, UE对 HS-DSCH数据进行解调和解码,并在 HS-SICH 上反馈 ACK/NACK以及 CQI信息, 其中, 该 HS-SICH上的反馈是 根据现有的定时关系在相应子帧进行反馈的。
基于上述本发明实施例二中提供的确定资源位置方法,本发明实 施例四提供一种确定资源位置方法, 该方法是 HS-DSCH资源中只包 含时隙 0的情况; 如图 10所示一种 HS-DSCH位置、 HS-DSCH位置 以及 HS-SICH位置之间的对应关系,该对应关系只是一种示意情况, 该确定资源位置方法如图 11所示, 包括以下步骤:
步骤 1101 , 基站向 UE 发送 HS-SCCH, 其中, 基站通过该 HS-SCCH向 UE指示为该 UE分配的 HS-DSCH位于时隙 0。
步骤 1102, UE接收并解码该 HS-SCCH, 获得 HS-DSCH资源为 时隙 0, 确定出 HS-DSCH所在子帧为 HS-SCCH所在子帧 N的下下 一个子帧 N+2。
步骤 1103 , UE在 HS-SCCH所在子帧 N的下下一个子帧 N+2接 收 HS-DSCH数据。
步骤 1104, UE对 HS-DSCH数据进行解调和解码,并在 HS-DSCH 的下一个子帧 N+3进行 HS-SICH反馈。
需要说明的是, 根据图 10中所示的对应关系, HS-SICH配置在 TS1 (为网络侧设备与 UE事先约定的),可见, HS-DSCH与 HS-SICH 之间只间隔 8个时隙;但为了保证 HS-SCCH与 HS-SICH之间的定时 关系, UE必须在子帧 #n+3进行 HS-SICH反馈。
基于上述本发明实施例二中提供的确定资源位置方法,本发明实 施例五提供一种确定资源位置方法, 该方法是 HS-DSCH资源中包含 时隙 0 和其他时隙的情况; 如图 12 所示一种 HS-DSCH位置、 HS-DSCH位置以及 HS-SICH位置之间的对应关系,该对应关系只是 一种示意情况, 该确定资源位置方法如图 13所示, 包括以下步骤: 步骤 1301 , 基站向 UE发送 HS-SCCH, 其中, 基站通过该 HS-SCCH 向 UE指示为该 UE分配的 HS-DSCH位于时隙 0和时隙 4、 时隙 5。 步骤 1302, UE接收并解码该 HS-SCCH, 获得 HS-DSCH资源为时隙 0和时隙 4、时隙 5,确定出时隙 0的 HS-DSCH所在子帧为 HS-SCCH 所在子帧 N的下下一个子帧 N+2,而时隙 4和时隙 5的 HS-DSCH资 源所在子帧为 HS-SCCH所在子帧 N的下一个子帧 N+l。
步骤 1303 , UE在 HS-SCCH所在子帧 N的下下一个子帧 N+2 接收时隙 0所对应的 HS-DSCH数据; 并在 HS-SCCH所在子帧 N的 下一个子帧 N+1接收时隙 4和时隙 5所对应的 HS-DSCH数据。
步骤 1304, UE对 HS-DSCH数据进行解调和解码, 并在时隙 0所对 应的 HS-DSCH数据的下一个子帧 N+3进行 HS-SICH反馈。
可见, 在上述 3种情况下, 通过使用本发明实施例提供的方法, 通过使用上述的 UE可以根据基站分配的 HS-DSCH所在时隙确定其 所在子帧; 当为 UE分配了 TS0的 HS-DSCH资源时, 为 UE预留了 足够的对 HS-SCCH的解码时间,解决了 TD-SCDMA系统中采用 TS0 作为 HS-DSCH资源时, 会出现 UE无法及时完成 HS-SCCH的解码 和 HS-DSCH数据接收的问题。 而且根据实际需要对 HS-SCCH与 HS-DSCH资源之间固定间隔进行调整, 避免了网络侧设备为不同类 型 UE分配不同资源时 HS-SICH的冲突问题。
本发明实施例六提供一种用户设备 UE, 如图 14所示, 包括: 获取模块 1401 , 用于根据 HS-SCCH获取 HS-DSCH所在时隙。 其中, 所述获取模块 1401具体用于对所述 HS-SCCH进行解码, 并根据所述解码后的 HS-SCCH获取 HS-DSCH所在时隙; 所述解码 后的 HS-SCCH中携带了所述 HS-DSCH所在时隙的信息。
确定模块 1402, 用于根据所述获取模块 1401获取的 HS-DSCH 所在时隙确定所述 HS-DSCH所在子帧。
其中, 所述确定模块 1402具体用于当所述 HS-DSCH所在时隙 只包含时隙 0时, 确定所述 HS-DSCH所在子帧为所述 HS-SCCH所 在子帧 N的下下一个子帧 N+2;当所述 HS-DSCH所在时隙包含时隙 0和其他时隙时,确定时隙 0的 HS-DSCH所在子帧为所述 HS-SCCH 所在子帧 N的下下一个子帧 N+2;其它时隙的 HS-DSCH所在子帧为 所述 HS-SCCH所在子帧 N的下一个子帧 N+l。
接收模块 1403 , 用于在所述 HS-DSCH所在子帧中的 HS-DSCH 所在时隙接收来自所述网络侧设备的 HS-DSCH;
发送模块 1404, 用于在 HS-SICH上向所述网络侧设备返回响应 信息。
其中, 所述发送模块 1404具体用于当所述 HS-DSCH所在时隙 中不包含时隙 0 时, 在 HS-DSCH 所在子帧的下下一个子帧的 HS-SICH上向所述网络侧设备返回响应信息; 或, 当所述 HS-DSCH 所在时隙中包含时隙 0时, 在所述时隙 0对应的 HS-DSCH所在子帧 的下一个子帧的 HS-SICH上向所述网络侧设备返回响应信息。
另外, 在 HS-SICH上向所述网络侧设备返回响应信息时, 所述 HS-DSCH中的最后一个 HS-DSCH和对应的 HS-SICH之间有不小于 8的时隙偏移。
其中, 本发明实施例的装置的各个模块可以集成于一体, 也可以 分离部署。 上述模块可以合并为一个模块, 也可以进一步拆分成多个 子模块。
本发明实施例七提供一种网络侧设备 15, 如图 15所示, 包括: 处理模块 1501 ,用于在 HS-SCCH中添加 HS-DSCH的时隙信息, 并将所述 HS-SCCH发送给 UE, 由所述 UE根据所述 HS-SCCH获取 所述 HS-DSCH所在时隙以及根据所述 HS-DSCH所在时隙确定所述 HS-DSCH所在子帧。
发送模块 1502, 用于根据所述处理模块 1501添加的 HS-DSCH 时隙信息向 UE发送所述 HS-DSCH, 由所述 UE在所述 HS-DSCH所 在子帧中的 HS-DSCH所在时隙接收来所述 HS-DSCH。
接收模块 1503, 用于接收来自 UE通过 HS-SICH返回的响应信 息; 其中, 所述 HS-DSCH所在时隙中不包含时隙 0, 接收来自所述 UE在 HS-DSCH所在子帧的下下一个子帧的 HS-SICH上返回的响应 信息; 或, 所述 HS-DSCH所在时隙中包含时隙 0, 接收来自所述 UE 在 HS-DSCH所在子帧的下一个子帧的 HS-SICH上返回的响应信息。
其中 ,本发明装置的各个模块可以集成于一体,也可以分离部署。 上述模块可以合并为一个模块, 也可以进一步拆分成多个子模块。
本发明实施例还提出了一种确定资源位置的系统, 包括: 网络侧设备, 用于向 UE发送 HS-SCCH。
UE, 用于根据所述 HS-SCCH获取 HS-DSCH所在时隙; 并根据所述 HS-DSCH 所在时隙确定所述 HS-DSCH 所在子帧; 并在所述 HS-DSCH所在子帧中的 HS-DSCH所在时隙接收来自所述网络侧设 备的 HS-DSCH。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解 到本发明可借助软件加必需的通用硬件平台的方式来实现,当然也可 以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解, 本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以 软件产品的形式体现出来, 该计算机软件产品存储在一个存储介质 中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服 务器, 或者网络设备等)执行本发明各个实施例所述的方法。
本领域技术人员可以理解附图只是一个优选实施例的示意图,附图中 的模块或流程并不一定是实施本发明所必须的。
本领域技术人员可以理解实施例中的装置中的模块可以按照实施例 描述进行分布于实施例的装置中,也可以进行相应变化位于不同于本 实施例的一个或多个装置中。 上述实施例的模块可以合并为一个模 块, 也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。 以上公开的仅为本发明的几个具体实施例, 但是, 本发明并非局限于 此, 任何本领域的技术人员能思之的变化都应落入本发明的保护范 围。

Claims

权利要求
1、 一种确定资源位置的方法, 其特征在于, 包括:
用户设备 UE根据高速共享控制信道 HS-SCCH获取高速下行共 享信道 HS-DSCH所在时隙;
所述 UE根据所述 HS-DSCH所在时隙确定所述 HS-DSCH所在 子帧。
2、 如权利要求 1 所述的方法, 其特征在于, 所述用户设备 UE 根据高速共享控制信道 HS-SCCH获取高速下行共享信道 HS-DSCH 所在时隙, 包括:
所述 UE 对所述 HS-SCCH 进行解码, 并根据所述解码后的 HS-SCCH获取 HS-DSCH所在时隙;所述解码后的 HS-SCCH中携带 了所述 HS-DSCH所在时隙的信息。
3、 如权利要求 1所述的方法, 其特征在于, 所述 UE根据所述 HS-DSCH所在时隙确定所述 HS-DSCH所在子帧, 包括:
当所述 HS-DSCH所在时隙只包含时隙 0时, 所述 UE确定所述 HS-DSCH所在子帧为所述 HS-SCCH所在子帧 N 的下下一个子帧 N+2;
当所述 HS-DSCH所在时隙包含时隙 0和其他时隙时, 所述 UE 确定时隙 0的 HS-DSCH所在子帧为所述 HS-SCCH所在子帧 N的下 下一个子帧 N+2; 其它时隙的 HS-DSCH所在子帧为所述 HS-SCCH 所在子帧 N的下一个子帧 N+l。
4、 如权利要求 3所述的方法, 其特征在于, 所述 UE根据所述 HS-DSCH所在时隙确定所述 HS-DSCH所在子帧, 之后还包括: 所述 UE在所述 HS-DSCH所在子帧中的 HS-DSCH所在时隙接 收来自所述网络侧设备的 HS-DSCH;
所述 UE在高速共享信息信道 HS-SICH上向所述网络侧设备返 回响应信息。
5、 如权利要求 4所述的方法, 其特征在于, 所述 UE在高速共 享信息信道 HS-SICH上向所述网络侧设备返回响应信息, 包括: 当所述 HS-DSCH所在时隙中包含时隙 0时, 所述 UE在所述时 隙 0对应的 HS-DSCH所在子帧的下一个子帧的 HS-SICH上向所述网 络侧设备返回响应信息。
6、 如权利要求 5所述的方法, 其特征在于, 所述 UE在高速共 享信息信道 HS-SICH上向所述网络侧设备返回响应信息, 包括: 所述 UE在 HS-SICH上向所述网络侧设备返回响应信息时, 所 述 HS-DSCH中的最后一个 HS-DSCH和对应的 HS-SICH之间有不小 于 8的时隙偏移。
7、 一种用户设备 UE, 其特征在于, 包括:
获取模块, 用于根据 HS-SCCH获取 HS-DSCH所在时隙; 确定模块, 用于根据所述获取模块获取的 HS-DSCH所在时隙确 定所述 HS-DSCH所在子帧。
8、 如权利要求 7所述的 UE, 其特征在于,
所述获取模块, 具体用于对所述 HS-SCCH进行解码, 并根据所 述解码后的 HS-SCCH 获取 HS-DSCH 所在时隙; 所述解码后的 HS-SCCH中携带了所述 HS-DSCH所在时隙的信息。
9、 如权利要求 7所述的 UE, 其特征在于,
所述确定模块, 具体用于当所述 HS-DSCH所在时隙只包含时隙 0时, 确定所述 HS-DSCH所在子帧为所述 HS-SCCH所在子帧 N的 下下一个子帧 N+2; 当所述 HS-DSCH所在时隙包含时隙 0和其他时 隙时, 确定时隙 0的 HS-DSCH所在子帧为所述 HS-SCCH所在子帧 N 的下下一个子帧 N+2; 其它时隙的 HS-DSCH 所在子帧为所述 HS-SCCH所在子帧 N的下一个子帧 N+l。
10、 如权利要求 9所述的 UE, 其特征在于, 还包括:
接收模块, 用于在所述 HS-DSCH所在子帧中的 HS-DSCH所在 时隙接收来自所述网络侧设备的 HS-DSCH;
发送模块,用于在 HS-SICH上向所述网络侧设备返回响应信息。
11、 如权利要求 10所述的 UE, 其特征在于, 所述发送模块, 具体用于当所述 HS-DSCH所在时隙中包含时隙 0 时, 在所述时隙 0 对应的 HS-DSCH 所在子帧的下一个子帧的 HS-SICH上向所述网络侧设备返回响应信息。
12、 如权利要求 11所述的 UE, 其特征在于, 在 HS-SICH上向 所述网络侧设备返回响应信息时, 所述 HS-DSCH 中的最后一个 HS-DSCH和对应的 HS-SICH之间有不小于 8的时隙偏移。
13、 一种网络侧设备, 其特征在于, 包括:
处理模块, 用于在 HS-SCCH中添加 HS-DSCH的时隙信息, 并 将所述 HS-SCCH发送给 UE, 由所述 UE根据所述 HS-SCCH获取所 述 HS-DSCH 所在时隙以及根据所述 HS-DSCH所在时隙确定所述 HS-DSCH所在子帧;
发送模块, 用于根据所述处理模块添加的 HS-DSCH时隙信息向 UE发送所述 HS-DSCH, 由所述 UE在所述 HS-DSCH所在子帧中的 HS-DSCH所在时隙接收来所述 HS-DSCH。
14、 如权利要求 13所述的网络侧设备, 其特征在于, 还包括: 接收模块, 用于接收来自 UE通过 HS-SICH返回的响应信息; 其中,
当所述 HS-DSCH所在时隙中不包含时隙 0 时, 接收来自所述 UE在 HS-DSCH所在子帧的下下一个子帧的 HS-SICH上返回的响应 信息; 或
当所述 HS-DSCH所在时隙中包含时隙 0时, 接收来自所述 UE 在 HS-DSCH所在子帧的下一个子帧的 HS-SICH上返回的响应信息。
15、 一种确定资源位置的系统, 其特征在于, 包括:
网络侧设备, 用于向 UE发送 HS-SCCH;
UE, 用于根据所述 HS-SCCH获取 HS-DSCH所在时隙; 并根据 所述 HS-DSCH所在时隙确定所述 HS-DSCH 所在子帧; 并在所述 HS-DSCH所在子帧中的 HS-DSCH所在时隙接收来自所述网络侧设 备的 HS-DSCH。
PCT/CN2010/075912 2009-08-11 2010-08-11 一种确定资源位置的方法、设备和系统 WO2011018038A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/382,524 US8948142B2 (en) 2009-08-11 2010-08-11 Method, device and system for determining resource locations
EP10807983.1A EP2466939B1 (en) 2009-08-11 2010-08-11 Method and user equipment for determining resource locations

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910090792.5 2009-08-11
CN2009100907925A CN101998653B (zh) 2009-08-11 2009-08-11 一种确定资源位置的方法、设备和系统

Publications (1)

Publication Number Publication Date
WO2011018038A1 true WO2011018038A1 (zh) 2011-02-17

Family

ID=43585967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/075912 WO2011018038A1 (zh) 2009-08-11 2010-08-11 一种确定资源位置的方法、设备和系统

Country Status (4)

Country Link
US (1) US8948142B2 (zh)
EP (1) EP2466939B1 (zh)
CN (1) CN101998653B (zh)
WO (1) WO2011018038A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103379640B (zh) * 2012-04-16 2018-08-28 马维尔国际有限公司 用于在hs-dsch/hs-sich信道传输中时隙分配的方法和设备
CN103379641B (zh) * 2012-04-27 2019-01-29 马维尔国际有限公司 配置射频的方法和装置
US20140086076A1 (en) * 2012-09-27 2014-03-27 Qualcomm Incorporated Idle time slot allocation for irat measurement in td-hsdpa
US9331818B2 (en) * 2014-04-23 2016-05-03 Qualcomm Incorporated Method and apparatus for optimized HARQ feedback with configured measurement gap
SG11202010244WA (en) * 2018-05-07 2020-11-27 Guangdong Oppo Mobile Telecommunications Corp Ltd Method for determining resource location, terminal apparatus, and network apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1430361A (zh) * 2001-12-30 2003-07-16 华为技术有限公司 高速数据接入系统下行高速共享信道的数据传输控制方法
CN1860820A (zh) * 2003-09-29 2006-11-08 西门子公司 以低错误拒斥数据的概率进行数据传输的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3887618B2 (ja) * 2003-08-08 2007-02-28 松下電器産業株式会社 移動局装置および移動局装置における受信方法
DE602005015773D1 (de) * 2005-11-28 2009-09-10 Telecom Italia Spa Verfahren und system zum senden von inhalt zu mehreren benutzern eines mobilkommunikationsnetzes
CN101272525B (zh) * 2007-03-19 2012-01-11 中兴通讯股份有限公司 一种高速下行分组接入时隙占用的动态指示方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1430361A (zh) * 2001-12-30 2003-07-16 华为技术有限公司 高速数据接入系统下行高速共享信道的数据传输控制方法
CN1860820A (zh) * 2003-09-29 2006-11-08 西门子公司 以低错误拒斥数据的概率进行数据传输的方法

Also Published As

Publication number Publication date
CN101998653B (zh) 2013-07-31
US20120106521A1 (en) 2012-05-03
EP2466939A4 (en) 2016-04-20
CN101998653A (zh) 2011-03-30
EP2466939B1 (en) 2018-02-28
EP2466939A1 (en) 2012-06-20
US8948142B2 (en) 2015-02-03

Similar Documents

Publication Publication Date Title
US11140690B2 (en) Method and apparatus for transmitting signal in unlicensed band communication system, method and apparatus for scheduling uplink, and method and apparatus for transmitting information about channel state measurement section
US11452139B2 (en) Random access procedure for latency reduction
US9591663B2 (en) Scheduling request method, apparatus and system
US8340030B2 (en) Method and apparatus for high-speed transmission on RACH
US9369980B2 (en) Method of handling random access response
CN111757459B (zh) 一种通信方法及装置
WO2018000398A1 (zh) 上行控制信道发送与接收方法及装置
KR20170052473A (ko) 비면허 대역을 지원하는 통신 네트워크를 위한 스케쥴링 방법
WO2013107214A1 (zh) 无线通信方法及装置
US20150195854A1 (en) Methods and apparatus for contention based transmission
KR20100138812A (ko) 멀티미디어 브로드캐스트/멀티캐스트 서비스에서 오류 패킷의 재전송 요구 정보 전송 방법 및 재전송 요구에 대한 오류 패킷 재전송 방법
WO2009105933A1 (zh) 一种多载波系统中确认时延的配置装置及方法
WO2011018038A1 (zh) 一种确定资源位置的方法、设备和系统
JP2022530508A (ja) 送受信処理を実行するユーザ装置及び基地局
WO2014000689A1 (zh) Tdd上下行配置的传输反馈方法及装置
WO2022023186A1 (en) Communications devices, network infrastructure equipment, wireless communications networks and methods
KR20170020237A (ko) 비면허 대역을 지원하는 통신 네트워크를 위한 스케쥴링 방법
WO2020199001A1 (zh) 信息发送方法、信息发送装置和通信系统
CN114828086A (zh) 一种数据传输方法以及通信装置
WO2014146304A1 (zh) 一种信号传输方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807983

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13382524

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010807983

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE