WO2009003395A1 - Dispositif et procédé de mesure de courant et de température en ligne à grande plage et grande précision - Google Patents

Dispositif et procédé de mesure de courant et de température en ligne à grande plage et grande précision Download PDF

Info

Publication number
WO2009003395A1
WO2009003395A1 PCT/CN2008/071456 CN2008071456W WO2009003395A1 WO 2009003395 A1 WO2009003395 A1 WO 2009003395A1 CN 2008071456 W CN2008071456 W CN 2008071456W WO 2009003395 A1 WO2009003395 A1 WO 2009003395A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
current
signal sampling
conductor
point
Prior art date
Application number
PCT/CN2008/071456
Other languages
English (en)
French (fr)
Inventor
Wei Wu
Original Assignee
Wei Wu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wei Wu filed Critical Wei Wu
Publication of WO2009003395A1 publication Critical patent/WO2009003395A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/32Compensating for temperature change

Definitions

  • the invention relates to a current and temperature detecting technology in the field of electrical technology, in particular to a wide range of high precision current and temperature on-line detecting device capable of simultaneously detecting AC and DC current and temperature change in high and low voltage electrical appliances And its method.
  • the same conductor has different resistance values at different ambient temperatures.
  • the temperature of the conductor is different, and the resistance values of the conductors are different, so that the same current passes through the same conductor.
  • Different voltage drops occur in different temperature environments. This phenomenon is temperature drift.
  • the effect of temperature compensation plays a decisive role in the accuracy of high-precision current detection.
  • the temperature response of the heat sensitive element is poor, because the thermal elements have thermal inertia.
  • the temperature of the measured electrical conductor changes, it takes a certain amount of time for the thermal element to reach the corresponding steady state value. Therefore, in the case of a large temperature change in a short time, the effect of such temperature compensation is not ideal.
  • Conductor temperature detection when energized also known as temperature on-line detection, usually uses an isolation detection method, that is, infrared detection, in an electric power generation system, a power transmission and transformation system, and a power supply system.
  • Infrared temperature on-line detection device is costly and bulky; there is also an additional dedicated thermocouple sampling, that is, a thermocouple isolation temperature detecting device that isolates and outputs a temperature signal after correlation processing, which is not only costly but also has a detection signal There is hysteresis.
  • Accurate detection of energized conductor current and on-line detection of rapid reaction temperature are two very important aspects in the intelligent management of power systems.
  • the current detection of the energized conductor in the power system and the on-line detection of the temperature are detected by a single function, and there is no detection device that has both functions at the same time.
  • the object of the present invention is to provide a wide-range, high-accuracy current detection and temperature on-line detecting device capable of simultaneously realizing the above two detections. And its sampling method.
  • the device of the invention comprises the following parts:
  • a signal sampling unit that collects a current signal and a temperature signal of the measured current conductor
  • a temperature compensation unit which is a combination structure of the first amplifier and the temperature compensation circuit, and amplifies the collected temperature signal
  • the current signal amplifying unit receives the current sampling signal output by the signal sampling unit through the second amplifier, and simultaneously receives the temperature sampling signal output by the temperature compensation unit through the FET to perform amplification processing;
  • the output ends of the temperature compensation unit and the current signal amplifying unit respectively send the measured temperature and current signals to the processing control unit via the respective modulation and demodulation units, and perform data processing and display output;
  • the signal sampling unit has a plurality of sampling end points, including a current signal sampling point and a temperature signal sampling point, and is connected to the measured conducting conductor by a point contact;
  • One of the temperature signal sampling points is used as a common pole, that is, one pole of the thermocouple is used to measure the temperature, and one pole of the detection current is used to detect the current.
  • the signal sampling unit, the current signal amplifying unit, and the temperature compensation unit are disposed in the casing; wherein the sampling points set by the signal sampling unit are protruded from the casing, are distributed on the same plane, and are in point contact with the measured conducting conductor, that is, The sampling point of the measured energized conductor coincides with a sampling point on the casing; the measured electrical current is connected to the casing through a fastening device or by an elastic device.
  • the method of the invention comprises the following steps:
  • the signal sampling unit has a plurality of sampling end points, including a current signal sampling point and a temperature signal sampling point, and is connected to the measured conducting conductor by a point contact;
  • One of the temperature signal sampling points is used as a common pole, that is, one pole of the thermocouple is used to measure the temperature, and one pole of the detection current is used to detect the current.
  • the setting structure is that two current signal sampling points are disposed along the current direction of the tested conducting conductor and the measured conducting conductor; the other two temperature signal sampling points Set in contact with the measured energized conductor, on any equipotential line of the current signal sampling point; the connecting conductors for connecting the temperature signal sampling point and the temperature compensating unit input end are different materials; they are used for temperature signal sampling points One of the connecting conductors may be the same as or different from the material of the conductor to be tested.
  • one of the two temperature signal sampling points is a coincidence point with one of the two current signal sampling points; or the two temperature signal sampling points coincide with one point setting;
  • the current signal sampling point is set along the direction of the current of the measured conducting conductor and the measured conducting conductor; the temperature signal sampling point is placed in contact with the measured conducting conductor, at any equipotential line of the current signal sampling point; for coupling the temperature signal sampling
  • the connecting conductors at the input end of the point and the temperature compensating unit are different materials from each other; one of the connecting conductors for the sampling point of the temperature signal may be the same as or different from the material of the conductor to be tested.
  • the sampling point When the sampling point is physically set to a two-point structure, the sampling point is set to a two-point (three-wire) structure, wherein one of the two current signal sampling points (one of the lines) and the two temperature signal sampling points (the two of the two) The line) is again overlapped; wherein: the current signal sampling point is placed in contact with the current conducting conductor along the measured current conducting conductor; the temperature signal sampling point is in contact with the measured conducting conductor, and any equipotential line is drawn at the current signal sampling point.
  • the coupling conductors for connecting the temperature signal sampling point and the temperature compensation unit input end are different materials; one of the connection conductors for the temperature signal sampling point may be the same as or different from the material of the conductor to be tested.
  • thermocouple temperature difference potential as a temperature compensation method for the temperature change of the conductor, taking a thermocouple formed by two points or a point on the conductor or directly
  • the thermoelectric potential of the thermocouple is placed on the conductor, and is connected with the corresponding electronic circuit to form a temperature difference using the thermoelectric potential of the thermocouple; the temperature drift due to the temperature change of the energized conductor, the thermal inertia is small, and the temperature changes and
  • the temperature compensation has good synchronism and fast response, realizing high-precision current detection.
  • the current detection range is wide. Since the current sampling of the device of the present invention is taken from the current conducting conductor itself, the magnitude of the current passing through the conductor at a certain temperature is linearly related to the voltage drop of the signal collecting point, and the thermocouple is used to perform the temperature differential potential synchronous compensation of the temperature, thereby solving the problem. The temperature drift phenomenon caused by the temperature change, and thus the present invention can achieve a wide range of current detection.
  • the temperature difference potential change of the thermocouple as a temperature compensation directly reflects the temperature change of the conductor, so the temperature difference potential of the thermocouple can be output as a temperature detection signal. It can quickly and accurately reflect the temperature change of the energized conductor and realize on-line temperature detection.
  • both current detection and temperature online detection are performed independently, and the devices are self-contained, and the devices are independent of each other.
  • the device and method of the present invention integrates the two organically, thereby reducing the volume of the corresponding detecting device and improving the working efficiency of the detecting device.
  • thermoelectric potential of the temperature difference is only related to the temperature of the current conducting conductor and the current of the current conducting conductor, and the thermocouple is directly mounted or contacted on the conductor, or the body of the detected conducting conductor is skillfully utilized. A thermocouple is formed directly.
  • the 6 device structure has flexibility.
  • the device of the invention has two forms of integral or split type, and the integrated structure is fixed for the relative position of the measured energized conductor and the four, three or two points of the signal sampling; the split structure is the measured energizing conductor The four points, three points or two points of the signal sampling can be separated, that is, the relative position of the measured energized conductor and the four, three or two points of the signal sampling can be different. Once installed, the relative position will be determined at the same time. Moreover, the installation is flexible, and the utility of the device of the present invention is improved.
  • FIG. 1 is a schematic diagram of a four-point structure of current sampling and temperature online detection signal sampling according to the present invention
  • FIG. 2A is a schematic diagram of a three-point structure of electrical signal sampling according to the present invention (1);
  • 2B is a schematic diagram of a three-point structure of signal sampling according to the present invention (2);
  • 2C is a schematic diagram of a three-point structure of signal sampling according to the present invention (3);
  • FIG. 3 is a schematic structural diagram of two points of current sampling and temperature online detection signal sampling according to the present invention.
  • FIG. 4 is a block diagram showing the structure of the device of the present invention.
  • Figure 5 is a schematic diagram of the circuit of the device of the present invention.
  • Figure 6 is a schematic view showing the external structure of the apparatus of the present invention.
  • FIG. 7 is a diagram showing the voltage vector relationship of the working mode of the signal sampling unit of the present invention physically set to a four-point structure.
  • FIG. 8 is a diagram showing the working mode voltage vector relationship of the sampling point of the signal sampling unit of the present invention physically set to a two-point structure.
  • FIG. 9 is a diagram showing the voltage vector relationship of another embodiment of the working mode of the sampling unit of the signal sampling unit of the present invention.
  • the apparatus of the present invention comprises the following parts: a signal sampling unit that collects current and temperature signals of the measured energized conductor 1; a temperature compensation unit having a first amplifier ici for amplifying the collected temperature signal
  • the current signal amplifying unit has a second amplifier IC2, receives the current sampling signal output by the signal sampling unit, and receives the temperature sampling signal output by the temperature compensation unit through the field effect transistor M for amplification processing; the temperature compensation unit and the current signal
  • the output ends of the amplifying unit respectively connect the measured temperature and current signals to the processing control unit via respective modulation and demodulation units, and the processing control unit processes the received signal data and outputs the display;
  • the signal output by the temperature compensation unit can also Connected to the thermometer for temperature display, the signal output from the current signal amplifying unit can also be connected to an ammeter or a multimeter for current display. This display mode is suitable for experiment.
  • the signal sampling unit, the current signal amplifying unit, and the temperature compensation unit are all disposed in the housing 4 , wherein the signal sampling unit has sampling points protruding from the housing 4 and distributed on the same plane, and The energized conductor 1 to be tested is in point contact.
  • the sampling points of the signal sampling unit are four, and two current signal sampling points A and B are set along the current direction of the measured conducting conductor 1 and the measured conducting conductor 1 is connected, and the current signal sampling points A and B are respectively connected to The positive and negative input terminals of the second amplifier IC2 in the current signal amplifying unit; the two temperature signal sampling points C, D are set on the voltage equipotential line of the tested conducting conductor (ie, perpendicular to the current direction) and the measured conducting conductor 1 contact setting, the temperature signal sampling points C, D are respectively connected to the input end of the temperature compensation unit and the heat through two different material connecting conductors Galvanic cold junction temperature compensation circuit.
  • the electric conductor 1 to be tested and the casing 4 and the internal units of the casing 4 are solidified by the epoxy resin 5, or the electric conductor 1 to be tested and the casing 4 are integrally connected by the fastening device 2.
  • the device of the invention comprises an integrated structure and a split structure, wherein the integrated structure is that the relative position of the measured electric conductor 1 and the housing is fixed, that is to say, a section of the device is solidified with the housing 4
  • the measured energization conductor 1 can be connected in series with the measured line conductor when the installation is performed.
  • the split structure refers to a form in which the measured energization conductor 1 and the housing 4 can be separated, that is, the relative position of the measured energization conductor 1 and the housing 4 can be changed, and the housing 4 is mounted in the form of a circuit board.
  • the circuit board 3 (including the signal sampling unit, the temperature compensation unit, and the current signal amplifying unit) formed by each of the internal detecting units is integrally molded by epoxy resin, and the housing is directly mounted on the line to be tested by the fastening device 2.
  • the signal sampling unit selects four points on the measured energized conductor 1 as sampling points, as shown in Fig. 1, two of which are used for detecting current, and the other two points are used for temperature compensation and temperature online detection, specifically Therefore, in this embodiment, two sampling points are selected as the current signal sampling points A and B in the current direction of the current conducting conductor 1 to be tested, and the connecting conductors of the same material are respectively connected to the positive and negative input ends of the current signal amplifying unit; Take two sampling points on the voltage equipotential line of the measured conducting conductor 1 as the temperature signal sampling points C and D, and pass different materials (for example: copper for temperature signal sampling point C, alloy copper for temperature signal sampling point D)
  • the connecting conductor is used as a lead wire and connected to the negative input end of the temperature compensating unit; the connecting line of the current signal sampling points A and B is in the same direction as the current of the measured conducting conductor, and is used for current detection; the temperature signal sampling points C and D are measured.
  • the vertical direction of the current flow of the energized conductor that is, the direction of the equipotential line, the shortest distance between the two points can be zero, and the wires led by these two points are used.
  • thermocouple into temperature compensation while the temperature of the measuring point signal sample points C, D by two points as a temperature detecting line.
  • the method of the present invention directly performs current detection by taking a resistance value of a conductor on the conductor 1 to be tested, that is, intercepting any of the 4 and B points in the current direction of the conductor to be tested.
  • the voltage drop of the conductor is proportional to the magnitude of the current passing through the measured conductor, and the law of variation conforms to Ohm's law.
  • the current signal is taken from two points A and B on the tested conducting conductor 1, and the voltage drop is U AB .
  • the temperature signal is taken from the thermocouple formed by connecting the connecting conductors of different materials to the two points C and D on the tested conducting conductor 1. Or independent thermocouple temperature difference potential.
  • the current signal is at different temperatures, a corresponding temperature drift occurs, and the temperature difference potential in the temperature compensation circuit.
  • the changed temperature difference potential U CD is amplified by the first amplifier to form a temperature compensation potential V F , and the temperature compensation potential V F and the current detection signal voltage drop U AB are drifted with temperature.
  • the varying amount of drift is compensated to eliminate the effect of temperature changes on the output signal.
  • the compensated signal input amplifier IC 2 amplifies and outputs a high-precision current signal U. .
  • a cold junction bridge compensation circuit is connected to the terminals of the connection conductors of different materials or the terminals of the thermocouples.
  • the cold junction bridge compensation circuit is composed of a wide 5th resistor ⁇ ? ⁇ and a temperature compensation resistor R T connected between the positive and negative input terminals of the first amplifier, and the temperature is compensated by the cold junction. Or the accuracy of current detection will be further improved.
  • the working mode voltage vector relationship when the sampling point of the signal sampling unit is physically set to the four-point structure is shown in Fig. 7.
  • the two points of the current signal sampling points A and B are any two points parallel to the direction of the current of the conductor;
  • the two points of the sampling points C and D are perpendicular to the direction of the current flowing through the conductor.
  • the temperature signal sampling point C (or the temperature signal sampling point D) to be a common pole, and its function 1 can be used as a pole of the thermocouple to measure the temperature; the second function can be used as a pole of the detection current, thereby changing the original thermocouple.
  • the electrode can only be used for temperature measurement, and the current detection pole can only be used as a single function for detecting current. details as follows:
  • the selected point is (T is assumed as the hypothesis point.
  • the vector diagram made by this point can prove the mathematical relationship between the temperature signal sampling point C and the other sampling points in the vector diagram formed by the measured current.
  • Ten UCB because the voltage direction is perpendicular to the direction of the current flowing through the conductor;
  • the common current transformer used in current detection because of its poor linearity, can only detect the current rating of 0.2 times to 1. 2 times the rated current in the current detection.
  • the thermocouple Since the current sampling of the device of the present invention is taken from the current conducting conductor itself, the magnitude of the current passing through the conductor at a certain temperature is linearly related to the voltage drop of the signal collecting point, and the thermocouple is used to perform the temperature differential potential synchronous compensation of the temperature, thereby solving the problem.
  • the temperature drift phenomenon caused by the temperature change so that the device of the present invention can ensure the detection accuracy of the current not only when detecting a small current, but also when the large current is detected, that is, the current passed by the current conductor is large.
  • the present invention utilizes the temperature differential potential synchronous compensation of the thermocouple implementation temperature, eliminating the The signal distortion phenomenon caused by temperature drift, so the device of the present invention achieves a wide range of current detection.
  • the sampling point is set to a three-point structure, wherein one of the two temperature signal sampling points and one of the two current signal sampling points serve as a coincidence point; or the two temperature signal sampling points can be Set to coincide for a point.
  • the current signal sampling point, the B and the temperature signal sampling points C and D are specifically positioned as follows: the current flow of the current conducting conductor 1 is taken up, and two points of B (not perpendicular to the current flow of the measured current conducting current) Take two points C and D on the same equipotential line of the measured energized conductor voltage. The connection between the two points is perpendicular to the current direction of the measured conductor. The measured current is included in the current signal sampling points A and B.
  • Two points are selected as the temperature signal sampling points C and D at any equipotential line on the conductor 1, wherein the temperature signal sampling points C, D may coincide with one point, and there may be A and C (or A and D) and B and C ( Or where B and D) coincide (in other words, A+B+CD, AC+B+D, AD+B+C, A+BC+D, A+BD+C).
  • a and C or A and D
  • B and C Or where B and D
  • B and D coincide (in other words, A+B+CD, AC+B+D, AD+B+C, A+BC+D, A+BD+C).
  • the temperature signal sampling points C and D are coincident.
  • the two different material coupling conductors are direct contact with the thermocouple disposed on the tested electrical conductor 1, that is, the hot end of the thermocouple.
  • the contact is disposed on the electric conductor 1 to be tested, one end of the thermocouple terminal is connected to the negative input end of the first amplifier IC1 in the temperature compensating unit, and the other end is connected to the thermocouple cold end compensating circuit in the temperature compensating unit.
  • a three-point structure diagram for sampling the on-line detection signal shows that the device of the present invention has A and D (or A and C), and B and D (or B and C) coincide.
  • the temperature difference corresponding to the temperature difference potential is different, and the resistor R 3 provided at the negative input terminal of the first amplifier IC1 can be adjusted. , or adjust the resistor R 6 provided at the negative input terminal and the output terminal of the first amplifier IC1 to change the amplification factor of the first amplifier, so that the detected temperature value is accurate.
  • thermocouple temperature difference thermoelectric potential is only related to the temperature of the measured energization conductor 1, and is measured.
  • the magnitude of the current of the electrical conductor 1 is irrelevant; and the temperature drift of the voltage drop of the measured conducting conductor is only related to the temperature of the conducting conductor to be tested, so that the temperature difference potential is used to compensate the temperature of the measured conducting conductor, and the pair can be realized.
  • the accurate detection of the energization current of the energized conductor is measured, and the temperature of the energized conductor can also be detected to realize the on-line detection of the temperature of the energized conductor to be tested.
  • Fig. 7 The distance between the two points of the temperature signal sampling points C and D is shortened to zero.
  • the voltage vector diagram of the three-point operation mode is the same as the voltage vector diagram 7 of the four-point operation mode, except that the temperature signal sampling points C and D coincide, and the other sampling points are not different (see Embodiment 1 for details).
  • Embodiment 1 The difference from Embodiment 1 is that:
  • the sampling point is set to a two-point (three-wire) structure, that is, one of the two current signal sampling points (one of the coupling conductors) is coincident with the two temperature signal sampling points (two of the two coupling conductors) that are placed in series.
  • the two temperature signal sampling points C and D are overlapped and set again with the current signal sampling point A (or the two temperature signal sampling points C and D are coincidently set and then coincide with the current signal sampling point B). See Figure 3 for details.
  • the connection conductors of the two temperature signal sampling points are different from the material of the conductor (1) to be tested.
  • connection conductor combination of the two temperature signal sampling points may be the same as the material of the conductor to be tested (1), or the sampling point of the signal sampling unit is physically set to a two-point structure.
  • the voltage vector relationship of the working mode is shown in Figures 8 and 9: It can be seen from the figure that the sampling points, C and D coincide to one point; the sampling points A and C become one point and one line (refer to the sampling point connecting one connecting conductor, the same below), and the sampling point D is one point and the other line.
  • the temperature signal sampling point A and the temperature signal sampling point are common to point C, so that it can be used as the same line for temperature measurement and current measurement. See Principle 1 for the principle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Current Or Voltage (AREA)

Description

一种宽范围高精度电流和温度在线检测装置及其方法 技术领域
本发明涉及电气技术领域中电流及温度检测技术, 具体地说是可以同时对高低压电 器中的交、直流电流检测和温度变化检测所实施的一种宽范围高精确度电流和温度在线 检测装置及其方法。
背景技术
通常, 同一导体在不同环境温度中的电阻值不同, 在同样的温度环境下通以不同的 电流时,导体的温度不同,其导体的电阻值也不同,这样使相同的电流通过同一导体时, 在不同的温度环境下会产生不同的电压降, 这个现象即为温度漂移。
当选取一段通电导体的电压降作为检测电流的采样信号时,温度漂移现象对电流检 测的准确度影响很大。 所以在利用一段导体的电压降来进行电流测量时, 必须对温度漂 移进行同步温度补偿, 用以保证导体的输出信号在温度变化时不受温度变化的影响, 准 确跟踪被检测的输入电流。 为解决这个问题, 通常在被测量回路中, 采用附加热敏元件 做温度补偿, 利用热敏元件组成反馈电路, 修正由温度造成的温度漂移量, 以提高信号 输出的准确度。
温度补偿的效果如何, 对高精度电流检测的准确度起着决定性的作用。 目前采用热 敏元件进行温度补偿的响应速度较差, 原因在于这些热敏元件存在着热惯性。 当所测通 电导体的温度发生变化时, 这些热敏元件须经过一定的时间, 才能达到相应的稳态值。 所以对短时间内温度变化大的场合, 这种温度补偿的效果很不理想。
通电时的导体温度检测,也称为温度在线检测,通常在电力发电系统、输变电系统、 供电系统采用隔离检测方法, 即红外线检测。红外线温度在线检测装置成本高、体积大; 也有采用附加的专用热电偶采样, 即: 经相关处理后将温度信号隔离输出的热电偶隔离 温度检测装置, 这种检测装置不仅成本高, 而且检测信号存在滞后现象。
通电导体电流的精确检测和快速反应温度的在线检测,在电力系统的智能化管理中 是两个非常重要的环节。 目前电力系统中的通电导体电流检测和温度在线检测, 均采用 单一功能的检测, 尚无两者功能同时具备的检测装置。
发明内容
针对现有技术中不能同时对通电导体同时实施电流在线检测及温度在线检测的不 足,本发明的目的在于提供一种能同时实现上述两种检测的宽范围高精确度电流检测和 温度在线检测装置及其采样方法。
为实现上述目的, 本发明采用的技术方案是:
本发明装置包括以下部分:
信号取样单元, 采集被测通电导体的电流信号及温度信号;
一温度补偿单元, 为第 1放大器与温度补偿电路组合结构, 对上述采集到的温度信号 进行放大;
电流信号放大单元, 通过第 2放大器接收上述信号取样单元输出的电流采样信号, 同时通过场效应管接收温度补偿单元输出的温度采样信号进行放大处理;
所述温度补偿单元及电流信号放大单元的输出端分别经各自的调制解调单元将被 测温度、 电流信号送至处理控制单元, 进行数据处理及显示输出;
其中信号取样单元的具有多个采样端点, 包括电流信号采样点、 温度信号采样点, 与被测通电导体为点接触连接;
以温度信号采样点之一作为公共极, 即作为热电偶的一极用来测量温度, 同时作为 检测电流的一极用来检测电流。 所述信号取样单元、 电流信号放大单元、 温度补偿单元设于壳体内; 其中信号取样 单元所设的采样点突设于壳体, 分布于同一平面上, 与被测通电导体为点接触, 即所述 被测通电导体的采样点与壳体上的采样点为相重合; 所述被测通电与壳体通过紧固装置 连接或通过弹性器件压接。
本发明方法包括以下步骤:
在被测通电导体上沿电流方向选取两点作为电流信号采样点,对所采样的检测电流 进行信号放大;
在包括电流信号采样点在内的被测通电导体上的任一等电位线处选取两点作为温 度信号采样点, 分别进行温度补偿及温度测量;
其中信号取样单元的具有多个采样端点, 包括电流信号采样点、 温度信号采样点, 与被测通电导体为点接触连接;
以温度信号采样点之一作为公共极, 即作为热电偶的一极用来测量温度, 同时作为 检测电流的一极用来检测电流。
其中: 所述信号取样单元采样点物理设置为四点结构时, 其设置结构为两个电流信 号采样点沿被测通电导体的电流方向与被测通电导体接触设置; 另外两个温度信号采样 点与被测通电导体接触设置, 于电流信号采样点任一等电位线上; 用于联接温度信号采 样点与温度补偿单元输入端的联接导体相互之间为不同材质; 其用于温度信号采样点的 联接导体之一与被测导体材质可以相同也可不同。
所述采样点物理设置为三点结构时,其中两个温度信号采样点之一与两个电流信号 采样点之一为一重合点; 或所述两个温度信号采样点重合为一点设置; 其中电流信号采 样点沿被测通电导体的电流方向与被测通电导体接触设置;温度信号采样点与被测通电 导体接触设置, 于电流信号采样点任一等电位线上; 用于联接温度信号采样点与温度补 偿单元输入端的联接导体相互之间为不同材质; 其用于温度信号采样点的联接导体之一 与被测导体材质可以相同也可不同。
采样点物理设置为二点结构时, 采样点设置为二点 (三线)结构, 其中两个电流信号 采样点(中的一条线)之一与重合设置的两个温度信号采样点(中的二条线)再度重合设 置; 其中: 电流信号采样点沿被测通电导体的电流方向与被测通电导体接触设置; 温度 信号采样点与被测通电导体接触设置, 于电流信号采样点任一等电位线上; 用于联接温 度信号采样点与温度补偿单元输入端的联接导体相互之间为不同材质; 其用于温度信号 采样点的联接导体之一与被测导体材质可以相同也可不同。
本发明具有以下有益效果及优点:
1. 电流检测精确度高。 由于导体通过电流时导体的温度是变化的, 使被测电流的 采样电压信号产生偏差。 为了解决这一问题, 需从温度入手。 与通常采用的附加热敏元 件检测技术相比,本发明对导体的温度变化采用以热电偶的温差电势作为温度补偿的方 法, 取导体上的两个点或一个点所形成的热电偶或直接在导体上放置热电偶的温差电 势, 通过与相应的电子电路连接, 形成了利用热电偶的温差电势进行温度补偿;由于通 电导体因温度变化产生的温度漂移量, 热惯性小, 具有温度变化与温度补偿同步性好, 响应速度快, 实现了高精度的电流检测。
2. 电流检测范围宽。 由于本发明装置的电流采样取自于通电导体本身, 在某一温 度下通过导体中的电流的大小与信号采集点的电压降呈线性关系,利用热电偶实施温度 的温差电势同步补偿, 解决了由温度变化所产生的温度漂移现象, 因而本发明能实现宽 范围的电流检测。
3. 可同时实现温度在线检测。 由于本发明中, 作为温度补偿的热电偶的温差电势 变化直接反映了导体的温度变化, 因此该热电偶的温差电势可作为温度检测信号输出, 可以迅速、 准确地反映通电导体的温度变化, 实现温度在线检测。
4现有技术中不论是电流检测,还是温度在线检测都属于各自独立进行, 自成体系, 其装置相互独立。 而本发明装置及方法是将两者有机的融为一体, 既减小了相应检测装 置的体积, 又提高了检测装置的工作效率。
5检测手段可以多样。 本发明方法依据温差热电势仅与被测通电导体的温度有关、 与被检测通电导体的电流大小无关的原理,在导体上直接安装或接触设置热电偶, 或巧 妙地利用被检测通电导体的本体直接形成热电偶。
6装置结构具有灵活性。 本发明装置具有一体式或分体式两种形式, 一体式结构为 所测的通电导体与信号采样的四点、 三点或两点的相对位置固定不变; 分体式结构为所 测的通电导体与信号采样的四点、 三点或两点可以分离, 即所测的通电导体与信号采样 的四点、 三点或两点的相对位置可以不同, 一经安装, 其相对位置将同时被确定, 且安 装灵活, 提高了本发明装置的实用性。
附图说明
图 1为本发明电流检测及温度在线检测信号采样的四点结构示意图;
图 2A为本发明电信号采样的三点结构示意图 (一);
图 2B为本发明信号采样的三点结构示意图 (二);
图 2C为本发明信号采样的三点结构示意图 (三);
图 3为本发明电流检测及温度在线检测信号采样的两点结构示意图;
图 4为本发明装置结构框图;
图 5为本发明装置电路原理图;
图 6为本发明装置外部结构示意图。
图 7 为本发明信号取样单元采样点物理设置为四点结构的工作方式电压矢量关系 图。
图 8 为本发明信号取样单元采样点物理设置为二点结构的工作方式电压矢量关系 图。
图 9为本发明信号取样单元采样点物理设置为二点结构的工作方式另一实施例电压 矢量关系图。
具体实施方式
实施例 1
如图 4、 5所示, 本发明装置包括以下部分: 信号采样单元, 采集被测通电导体 1 的电流及温度信号; 温度补偿单元, 具有第 1放大器 ici, 对上述采集到的温度信号进 行放大; 电流信号放大单元, 具有第 2放大器 IC2, 接收上述信号取样单元输出的电流 采样信号, 同时通过场效应管 M接收温度补偿单元输出的温度采样信号进行放大处理; 所述温度补偿单元及电流信号放大单元的输出端分别经各自的调制解调单元将被测温 度、 电流信号接至处理控制单元, 该处理控制单元对接收的信号数据进行处理, 并输出 显示; 温度补偿单元输出的信号也可以接至温度表进行温度显示, 电流信号放大单元输 出的信号也可以接至电流表或万用表进行电流显示, 这种显示方式适合于实验时采用。
如图 1所示, 所述信号采样单元、 电流信号放大单元、 温度补偿单元均设于壳体 4 内, 其中信号取样单元具有采样点, 凸出于壳体 4, 分布于同一平面上, 与被测通电导 体 1为点接触。信号取样单元的采样点为 4个, 其中两个电流信号采样点 A、 B, 沿被测 通电导体 1的电流方向与被测通电导体 1接触设置, 该电流信号采样点 A、 B分别接至 电流信号放大单元中第 2放大器 IC2的正、 负输入端; 两个温度信号采样点 C、 D, 设在 被测通电导体的电压等位线 (即与电流方向垂直)上与被测通电导体 1接触设置, 该温 度信号采样点 C、 D通过两个不同材质的联接导体分别接至温度补偿单元的输入端及热 电偶冷端温度补偿电路。
如图 6所示,被测通电导体 1与壳体 4以及壳体 4内部各单元通过环氧树脂 5固化 为一体, 或者被测通电导体 1与壳体 4通过固紧装置 2连接为一体。 本发明装置包括一 体式结构及分体式结构,所述一体式结构为被测通电导体 1与壳体的相对位置是固定不 变的, 也就是说装置中带有一段与壳体 4固化成一体的被测通电导体 1, 使用安装时, 将该段被测通电导体 1与所测线路导体串联连接即可。
所述分体式结构是指被测通电导体 1与壳体 4可以是分离的形式, 即被测通电导体 1与壳体 4的相对位置可以变化, 而壳体 4与以线路板形式安装在其内部的各检测单元 构成的线路板 3 (包括信号取样单元、 温度补偿单元及电流信号放大单元) 通过环氧树 脂浇注为一体, 由固紧装置 2将壳体直接安装于被测现场线路中。
本发明方法: 信号取样单元在被测通电导体 1上选取四个点作为采样点, 如图 1所 示, 其中两点用来检测电流, 另外两点用来做温度补偿和温度在线检测, 具体为: 本实施例在被测通电导体 1的电流方向选取两个采样点作为电流信号采样点 A、 B, 通过同一种材质的联接导体分别接至电流信号放大单元的正、 负输入端; 在被测通电导 体 1的电压等电位线上取两个采样点作为温度信号采样点 C、 D, 通过不同材质(如: 温 度信号采样点 C采用铜, 温度信号采样点 D采用合金康铜) 的联接导体作为引线, 接至 温度补偿单元的负输入端; 电流信号采样点 A、 B的连线与被测通电导体的电流同向, 作为电流检测用; 温度信号采样点 C、 D取被测通电导体电流流向的垂直方向, 也就是 等电位线方向, 两点间距离最短可以为零, 利用这两点引出的导线形成的热电偶作温度 补偿, 同时该温度信号采样点 C、 D两点作为温度在线检测的测量点。
本发明方法通过在被测通电导体 1上取一段导体的阻值, 即在被测通电导体沿电流 方向上截取任意 4、 B两点, 直接进行电流检测。 该段导体的电压降, 与通过被测通电 导体的电流大小成正比, 变化规律符合欧姆定律。
本发明工作原理如下:
电流信号取自被测通电导体 1上的 A、 B两点, 电压降为 UAB, 温度信号取自由不同 材质的联接导体与被测通电导体 1上的 C、 D两点相连形成的热电偶或独立的热电偶温 差电势 。, 当电流信号在不同的温度下, 产生相应的温度漂移, 温度补偿电路中温差电 势 。随被测通电导体温度也发生变化, 其变化的温差电势 UCD经第 1放大器 放大后 形成温度补偿电势 VF,温度补偿电势 VF与电流检测信号的电压降 UAB随温度产生的漂移量 成比例变化, 方向相反, 在 M0S场效应管 M的作用下, 改变电流信号放大单元中第 2放 大器 IC2负输入端的阻值以控制信号放大系数,用温度补偿电压 VF为被测通电导体温度 变化的漂移量进行补偿, 以消除温度变化对输出信号的影响。 补偿后的信号输入放大器 IC2放大, 输出高精度的电流信号 U。。 在不同材质的联接导体的引出端或热电偶的接线 端接有冷端桥式补偿电路。 本实施例中, 该冷端桥式补偿电路为由接于第 1放大器 正、 负输入端之间的第广 5电阻 Ι?Γ 及温度补偿电阻 RT组成结构, 经过冷端补偿后, 温度或电流的检测精度会进一步提高。
信号取样单元采样点物理设置为四点结构时的工作方式电压矢量关系如图 7所示, 其中电流信号采样点 A、 B两点为与导体的通电电流方向相平行的任意两点; 温度信号 采样点 C、 D两点与导体的通电电流方向垂直的任意两点。
设温度信号采样点 C (或温度信号采样点 D) 为公共极, 其作用一可以作为热电偶 的一极来测量温度; 其作用二可以作为检测电流的一极, 从而改变了原来热电偶的电极 只能用作测温, 电流检测极只能作为检测电流的单一功能。 具体如下:
如图 7所示, 选一点为(T作为假设点, 通过这一点做的矢量图可以证明被测电流 所构成的矢量图中温度信号采样点 C与其他各采样点的数学关系。 十 UCB 因为 电压方向与导体的通电电流方向垂直;
所以 在导体的通电电流方向上的电压降为零; 因为 ―
所以 ϋ« =
Figure imgf000007_0001
!?, # = 0.ί¾十 '十 fI?::R
与 大小相等, 方向相反。
所以
目前电流检测所采用的普通电流互感器, 由于其线性度不好, 在电流检测中, 仅可 以对通电导体的 0. 2倍〜 1. 2倍额定电流进行检测。
由于本发明装置的电流采样取自于通电导体本身,在某一温度下通过导体中的电流 的大小与信号采集点的电压降呈线性关系, 利用热电偶实施温度的温差电势同步补偿, 解决了由温度变化所产生的温度漂移现象, 因而本发明装置在检测电流中, 不仅在检测 较小电流时, 能保证电流的检测精度; 而且在检测大电流时, 即通电导体所通过的电流 很大如额定电流的十倍以上, 或更高时, 由于通电导体所通过的电流很大, 致使导体的 温度会升的很高, 但是本发明利用了热电偶实施温度的温差电势同步补偿, 消除了由温 度漂移带来的信号失真现象, 所以本发明装置实现了宽范围的电流检测。
实施例 2
与实施例 1不同之处在于: 采样点设置为三点结构, 其中两个温度信号采样点之一 与两个电流信号采样点之一作为一重合点; 或所述两个温度信号采样点可为重合为一点 设置。
本实施例上述电流信号采样点 、 B及温度信号采样点 C、 D具体定位为: 在被测通 电导体 1的电流流向上取 、 B两点 (不垂直于所测通电导体电流流向的两点) 在被测 通电导体电压的同一等位线上取 C、 D两点, 该两点的连线垂直于被测通电导体电流方 向; 在包括电流信号采样点 A、 B在内的被测通电导体 1上任一等电位线处选取两点作 为温度信号采样点 C、 D, 其中温度信号采样点 C、 D可以重合为一点, 还可以存在 A与 C (或 A与 D)以及 B与 C (或 B与 D)重合的情况(换言之, A+B+CD, AC+B+D, AD+B+C, A+BC+D, A+BD+C)。(其用于联接两个温度信号采样点的两个联接导体之一与被测通电导体 1材料 不同)。
如图 2A所示, 所述温度信号采样点 C、 D为重合一点, 此时两个不同材质的联接导 体为直接接触设置于被测通电导体 1上的热电偶, 即将该热电偶的热端接触设置于被测 通电导体 1上,热电偶接线端的一端接至温度补偿单元中的第 1放大器 IC1的负输入端, 另一端接至温度补偿单元中的热电偶冷端补偿电路。
如图 2B、 2C所示, 为在线检测信号采样的三点结构示意图, 可见本发明装置存在 A 与 D (或 A与 C)、 以及 B与 D (或 B与 C) 重合的情况。
由于在 C、 D两点 (或重合为一点) 的温度信号由不同材料的导线引出, 其温差电 势对应的温度值会有所不同, 可以通过调整设于第 1放大器 IC1负输入端的电阻 R3, 或 调整设于第 1放大器 IC1负输入端与输出端的电阻 R6来改变第 1放大器 的放大倍数, 使检测出的温度值准确无误。
总之, 采用本发明, 热电偶温差热电势仅与被测通电导体 1的温度有关, 与被测通 电导体 1的电流大小无关; 而被测通电导体的电压降的温度漂移量也仅与被测通电导体 的温度有关, 因此用温差电势来做被测通电导体的温度同步补偿, 可实现对被测通电导 体通电电流的精确检测, 同时还可以检测通电导体的温度, 实现被测通电导体的温度在 线检测。
信号取样单元采样点物理设置为三点结构时, 工作方式电压矢量关系参见图 7 : 温 度信号采样点 C、 D两点的距离最短缩短至为零。
信号取样单元采样点物理设置为二点结构时, 工作方式电压矢量关系参见图 7 : 温 度信号采样点 C、 D两点的距离最短缩短至为零后, 与电流信号采样点 A、 B两点的任意 点相重合。
三点工作方式的电压矢量图与四点工作方式的电压矢量图 7相同, 只是温度信号采 样点 C和 D重合, 其他各采样点没有区别 (具体参见实施例 1 )。
实施例 3
与实施例 1不同之处在于:
采样点设置为二点 (三线)结构, 即两个电流信号采样点(的一条联接导体)之一与重 合设置的两个温度信号采样点(中的二条联接导体)重合设置。
本实施例为两个温度信号采样点 C、 D重合设置后再度与电流信号采样点 A重合设 置 (亦可两个温度信号采样点 C、 D重合设置后再度与电流信号采样点 B重合设置), 具 体参见图 3。 其两个温度信号采样点的联接导体均与被测导体 (1 ) 材质不同。
其两个温度信号采样点的联接导体组合与被测导体 (1 ) 材质可以相同也可不同 信号取样单元采样点物理设置为二点结构时工作方式电压矢量关系参见如图 8、 9 所示: 从图中可以看出采样点 、 C、 D重合为一点; 采样点 A、 C变成一个点一条线(指 采样点连接一个联接导体, 下同), 采样点 D为一个点另一条线。 温度信号采样点 A和 温度信号采样点 C点通用, 这样就可以作为测温和测电流的同一条线, 原理参见实施例 1。

Claims

权 利 要 求 书
1. 一种高精度电流和温度在线检测装置, 其特征在于包括以下部分:
信号取样单元, 采集被测通电导体 (1 ) 的电流信号及温度信号;
温度补偿单元, 为第 1放大器 (IC1 ) 与温度补偿电路组合结构, 对上述采集到的 温度信号进行放大;
电流信号放大单元, 通过第 2放大器 (IC2) 接收上述信号取样单元输出的电流采 样信号, 同时通过场效应管 (M)接收温度补偿单元输出的温度采样信号进行放大处理; 所述温度补偿单元及电流信号放大单元的输出端分别经各自的调制解调单元将被 测温度、 电流信号送至处理控制单元, 进行数据处理及显示输出;
其中信号取样单元的具有多个采样端点, 包括电流信号采样点、 温度信号采样点, 与被测通电导体 (1 ) 为点接触连接;
以温度信号采样点之一作为公共极, 即作为热电偶的一极用来测量温度, 同时作为 检测电流的一极用来检测电流。
2. 按权利要求 1所述高精度电流和温度在线检测装置, 其特征在于: 信号取样单 元采样点物理设置为四点结构时, 其设置结构为两个电流信号采样点沿被测通电导体 ( 1 ) 的电流方向与被测通电导体(1 )接触设置, 该两个电流信号采样点分别通过联接 导体接至电流信号放大单元; 另外两个温度信号采样点与被测通电导体(1 )接触设置, 于电流信号采样点任一等电位线上, 通过联接导体分别接至温度补偿单元输入端。
3. 按权利要求 2所述高精度电流和温度在线检测装置, 其特征在于: 用于联接两 个温度信号采样点与温度补偿单元输入端的联接导体为不同材质; 其两个温度信号采样 点的联接导体之一与被测导体 (1 ) 材质可以相同也可不同; 其两个温度信号采样点的 联接导体均与被测导体 (1 ) 材质不同;其中:
所述不同材质的联接导线作为直接接触设置于被测通电导体 (1 ) 上的热电偶, 该 热电偶的热端接触设置于被测通电导体 (1 ) 上, 热电偶接线端的一端接至温度补偿单 元中的第 1放大器 (IC1 ) 的负输入端, 另一端接至温度补偿单元中的热电偶冷端补偿 电路。
4. 按权利要求 1所述高精度电流和温度在线检测装置, 其特征在于: 所述采样点 物理设置为三点结构时,其中两个温度信号采样点之一与两个电流信号采样点之一为一 重合点; 或所述两个温度信号采样点重合为一点设置; 连接方式: 电流信号采样点沿被 测通电导体 (1 ) 的电流方向与被测通电导体 (1 )接触设置, 并通过联接导体接至电流 信号放大单元; 温度信号采样点与被测通电导体 (1 ) 接触设置, 于电流信号采样点任 一等电位线上, 并通过联接导体接至温度补偿单元。
5. 按权利要求 4所述高精度电流和温度在线检测装置, 其特征在于: 用于联接温 度信号采样点与温度补偿单元输入端的联接导体相互之间为不同材质; 其用于温度信号 采样点的联接导体之一与被测导体 (1 ) 材质可以相同也可不同; 其两个温度信号采样 点的联接导体均与被测导体 (1 ) 材质不同;其中:
所述两个温度信号采样点的重合点为通过不同材质的联接导线接触设置于被测通 电导体 (1 ) 上的热电偶, 该热电偶的热端接触设置于被测通电导体 (1 ) 上, 热电偶接 线端的一端接至温度补偿单元中的第 1放大器 (IC1 ) 的负输入端, 另一端接至温度补 偿单元中的热电偶冷端补偿电路。
6. 按权利要求 1所述高精度电流和温度在线检测装置, 其特征在于: 采样点物理 设置为二点结构,其中两个电流信号采样点之一与重合设置的两个温度信号采样点再度 重合设置; 连接方式: 电流信号采样点沿被测通电导体 (1 ) 的电流方向与被测通电导 体 (1 ) 接触设置, 并通过联接导体接至电流信号放大单元; 温度信号采样点与被测通 电导体 (1 ) 接触设置, 于电流信号采样点同一等电位线上, 并通过联接导体接至温度 补偿单元。
7. 按权利要求 6所述高精度电流和温度在线检测装置, 其特征在于: 用于联接温 度信号采样点与温度补偿单元输入端的联接导体相互之间为不同材质; 其用于温度信号 采样点的联接导体之一与被测导体 (1 ) 材质可以相同也可不同;其中:
所述两个温度信号采样点之一与重合设置的两个电流信号采样点再度重合设置的 重合点为通过不同材质的联接导线接触设置于被测通电导体 (1 ) 上的热电偶, 该热电 偶的热端接触设置于被测通电导体 (1 ) 上, 热电偶接线端的一端接至温度补偿单元中 的第 1放大器(IC1 ) 的负输入端, 另一端接至温度补偿单元中的热电偶冷端补偿电路。
8. 按权利要求 1所述高精度电流和温度在线检测装置, 其特征在于: 所述信号取 样单元、 电流信号放大单元、 温度补偿单元设于壳体内; 其中信号取样单元所设的采样 点突设于壳体 (4), 分布于同一平面上, 与被测通电导体 (1 ) 为点接触, 即所述被测 通电导体 (1 ) 的采样点与壳体 (4) 上的采样点为相重合; 所述被测通电导体 (1 ) 与 壳体 (4) 通过紧固装置连接或通过弹性器件压接。
9. 一种按权利要求 1所述应用高精度电流和温度在线检测装置的方法, 其特征在 于包括以下步骤: 在被测通电导体 (1 ) 上沿电流方向选取两点作为电流信号采样点, 对所采样的检测电流进行信号放大;
在包括电流信号采样点在内的被测通电导体上的任一等电位线处选取两点作为温 度信号采样点, 分别进行温度补偿及温度测量;
其中信号取样单元的具有多个采样端点, 包括电流信号采样点、 温度信号采样点, 与被测通电导体 (1 ) 为点接触连接;
以温度信号采样点之一作为公共极, 即作为热电偶的一极用来测量温度, 同时作为 检测电流的一极用来检测电流。
10. 按权利要求 9所述方法, 其特征在于: 信号取样单元采样点物理设置为四点结 构时, 其设置结构为两个电流信号采样点沿被测通电导体 (1 ) 的电流方向与被测通电 导体 (1 )接触设置; 另外两个温度信号采样点与被测通电导体 (1 )接触设置, 于电流 信号采样点任一等电位线上; 用于联接温度信号采样点与温度补偿单元输入端的联接导 体相互之间为不同材质; 其用于温度信号采样点的联接导体之一与被测导体 (1 ) 材质 可以相同也可不同。
11. 按权利要求 9所述方法, 其特征在于: 所述采样点物理设置为三点结构时, 其 中两个温度信号采样点之一与两个电流信号采样点之一为一重合点; 或所述两个温度信 号采样点重合为一点设置; 其中电流信号采样点沿被测通电导体 (1 ) 的电流方向与被 测通电导体 (1 )接触设置; 温度信号采样点与被测通电导体 (1 )接触设置, 于电流信 号采样点任一等电位线上; 用于联接温度信号采样点与温度补偿单元输入端的联接导体 相互之间为不同材质; 其用于温度信号采样点的联接导体之一与被测导体 (1 ) 材质可 以相同也可不同。
12. 按权利要求 9所述方法, 其特征在于: 采样点物理设置为二点结构时, 采样点 设置为二点结构,其中两个电流信号采样点之一与重合设置的两个温度信号采样点再度 重合设置; 其中: 电流信号采样点沿被测通电导体(1 )的电流方向与被测通电导体(1 ) 接触设置; 温度信号采样点与被测通电导体 (1 ) 接触设置于电流信号采样点任一等电 位线上; 用于联接温度信号采样点与温度补偿单元输入端的联接导体相互之间为不同材 质; 其用于温度信号采样点的联接导体之一与被测导体 (1 ) 材质可以相同也可不同。
PCT/CN2008/071456 2007-06-29 2008-06-27 Dispositif et procédé de mesure de courant et de température en ligne à grande plage et grande précision WO2009003395A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710011910XA CN101334430B (zh) 2007-06-29 2007-06-29 一种高精确度电流检测和温度在线检测装置及其采样方法
CN200710011910.X 2007-06-29

Publications (1)

Publication Number Publication Date
WO2009003395A1 true WO2009003395A1 (fr) 2009-01-08

Family

ID=40197157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071456 WO2009003395A1 (fr) 2007-06-29 2008-06-27 Dispositif et procédé de mesure de courant et de température en ligne à grande plage et grande précision

Country Status (2)

Country Link
CN (1) CN101334430B (zh)
WO (1) WO2009003395A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112362946A (zh) * 2020-11-27 2021-02-12 湖南新海讯光电有限公司 一种基于分流器的电流测量方法及装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924547B (zh) * 2009-06-12 2012-02-15 苏州源赋创盈微电子科技有限公司 电流采样装置
CN101988960B (zh) * 2009-08-07 2013-03-06 铨盛电子股份有限公司 可动态补偿修正读数之数字电表
CN102809682A (zh) * 2011-06-03 2012-12-05 新科实业有限公司 电流感应电路、印刷电路板组件以及电流传感器装置
CN103760413A (zh) * 2013-12-27 2014-04-30 航天科工深圳(集团)有限公司 故障指示器电流检测系统及电流检测低温补偿方法
DE102015115860A1 (de) * 2015-09-21 2017-03-23 Robert Bosch Automotive Steering Gmbh Kompensation des Zeitverzugs bei einer Rotorlagewinkelmessung
JP6584911B2 (ja) 2015-10-19 2019-10-02 三菱重工サーマルシステムズ株式会社 インバータ一体型電動圧縮機及び回路基板、並びに回路基板の製造方法
CN110431427A (zh) * 2017-03-17 2019-11-08 三洋电机株式会社 电流检测器
CN109085487A (zh) * 2018-08-07 2018-12-25 河海大学常州校区 一种led电热信号在线收集装置
CN109716410A (zh) * 2018-11-29 2019-05-03 深圳市泰和安科技有限公司 一种烟雾探测器的火警确认方法、装置及终端设备
CN110146739A (zh) * 2019-06-21 2019-08-20 沃尔特电子(苏州)有限公司 一种功率测量装置及方法
DE102019210566B4 (de) * 2019-07-17 2022-03-17 Conti Temic Microelectronic Gmbh Vorrichtung und Verfahren zum Messen eines durch eine PWM-angesteuerte induktive Last fließenden Stromes

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1306198A (zh) * 1970-06-11 1973-02-07
JPH01105177A (ja) * 1987-10-19 1989-04-21 Asahi Chem Ind Co Ltd 電流センサー駆動回路
JPH0454458A (ja) * 1990-06-22 1992-02-21 Hitachi Ltd 電流検出装置
JPH06102292A (ja) * 1992-09-18 1994-04-15 Matsushita Electric Ind Co Ltd 電流検出装置
CN2278939Y (zh) * 1996-09-01 1998-04-15 武汉科泰克新技术有限公司 交直流钳形多用表
WO1999009421A1 (en) * 1997-08-20 1999-02-25 Cambridge Consultants Limited Current monitoring device
CN1427264A (zh) * 2001-12-21 2003-07-02 吴伟 一种电流检测方法
CN1502996A (zh) * 2002-11-20 2004-06-09 伟 吴 一种电压电流信号的检测隔离及传输装置
JP2004340917A (ja) * 2003-04-24 2004-12-02 Auto Network Gijutsu Kenkyusho:Kk 電圧降下式電流計測装置
JP2005003601A (ja) * 2003-06-13 2005-01-06 Fuji Electric Holdings Co Ltd ハイブリッドセンサ
CN1573339A (zh) * 2002-06-19 2005-02-02 吴伟 一种高压电流检测方法及装置
US20070115009A1 (en) * 2005-10-28 2007-05-24 Infineon Technologies Ag Circuit arrangement of the temperature compensation of a measuring resistor structure
CN201060231Y (zh) * 2007-06-29 2008-05-14 吴伟 一种高精确度电流检测和温度在线检测装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2059503U (zh) * 1989-12-11 1990-07-18 北京科技大学 钨铼热电偶数字温度表
CN1029873C (zh) * 1993-09-10 1995-09-27 徐州电极实业集团公司 一种直流大电流测量方法及测量设备
JP3124506B2 (ja) * 1997-03-14 2001-01-15 白光株式会社 ヒータ・センサ複合体

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1306198A (zh) * 1970-06-11 1973-02-07
JPH01105177A (ja) * 1987-10-19 1989-04-21 Asahi Chem Ind Co Ltd 電流センサー駆動回路
JPH0454458A (ja) * 1990-06-22 1992-02-21 Hitachi Ltd 電流検出装置
JPH06102292A (ja) * 1992-09-18 1994-04-15 Matsushita Electric Ind Co Ltd 電流検出装置
CN2278939Y (zh) * 1996-09-01 1998-04-15 武汉科泰克新技术有限公司 交直流钳形多用表
WO1999009421A1 (en) * 1997-08-20 1999-02-25 Cambridge Consultants Limited Current monitoring device
CN1427264A (zh) * 2001-12-21 2003-07-02 吴伟 一种电流检测方法
CN1573339A (zh) * 2002-06-19 2005-02-02 吴伟 一种高压电流检测方法及装置
CN1502996A (zh) * 2002-11-20 2004-06-09 伟 吴 一种电压电流信号的检测隔离及传输装置
JP2004340917A (ja) * 2003-04-24 2004-12-02 Auto Network Gijutsu Kenkyusho:Kk 電圧降下式電流計測装置
JP2005003601A (ja) * 2003-06-13 2005-01-06 Fuji Electric Holdings Co Ltd ハイブリッドセンサ
US20070115009A1 (en) * 2005-10-28 2007-05-24 Infineon Technologies Ag Circuit arrangement of the temperature compensation of a measuring resistor structure
CN201060231Y (zh) * 2007-06-29 2008-05-14 吴伟 一种高精确度电流检测和温度在线检测装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112362946A (zh) * 2020-11-27 2021-02-12 湖南新海讯光电有限公司 一种基于分流器的电流测量方法及装置

Also Published As

Publication number Publication date
CN101334430A (zh) 2008-12-31
CN101334430B (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2009003395A1 (fr) Dispositif et procédé de mesure de courant et de température en ligne à grande plage et grande précision
CN105247355B (zh) 用于测量气体混合物的气体组份的导热能力的装置
CN102269630B (zh) 具有热电偶极性检测的过程变量变送器
CN105651409B (zh) 热电偶冷端补偿测温电路和装置
CN103323486B (zh) 一种高阻值材料的塞贝克系数的测试芯片
US8461825B2 (en) Current measurement apparatus with shunt resistor and heat sink
CN111238672B (zh) 一种基于磁显微法的超导带材动态温度测量方法
CN108061738A (zh) 一种样品热导率和热电势的测量装置及方法
CN211528262U (zh) 一种材料导热性能测试系统
CN109884366A (zh) 电流传感器以及用于测量电流的方法
CN110530927A (zh) 一种热电材料塞贝克系数测试装置及方法
CN106840441B (zh) 多路温度检测装置及方法
CN109655654B (zh) 一种基于旁路分流技术的大电流测量方法及装置
CN201060231Y (zh) 一种高精确度电流检测和温度在线检测装置
CN110275077A (zh) 一种宽温区强磁场中热电效应的电学测量方法
CN202886017U (zh) 一种便捷式热电偶检定极性延伸连接器
CN213022006U (zh) 一种基于热电偶冷端补偿的母排测温系统
US3111844A (en) Heat rate measuring apparatus
CN110265539A (zh) 一种铜镍合金薄膜热电偶及其制备方法
CN109115835A (zh) 硅锗硅多量子阱红外敏感材料电学参数测试装置及方法
Katzmann et al. Thin-film AC-DC converter with thermoresistive sensing
CN206740263U (zh) 一种热电偶测温装置
CN206348428U (zh) 一种二极管测量仪及其系统
Zhuo et al. Design of Calibration System for Multi-Channel Thermostatic Metal Bath
CN205027462U (zh) 一种热电偶定标实验教学仪器电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08757855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08757855

Country of ref document: EP

Kind code of ref document: A1