WO2009001019A2 - Nanocapsules a coeur lipidique liquide chargees en actifs(s) hydrosoluble(s) ou hydrodispersible(s) - Google Patents

Nanocapsules a coeur lipidique liquide chargees en actifs(s) hydrosoluble(s) ou hydrodispersible(s) Download PDF

Info

Publication number
WO2009001019A2
WO2009001019A2 PCT/FR2008/051042 FR2008051042W WO2009001019A2 WO 2009001019 A2 WO2009001019 A2 WO 2009001019A2 FR 2008051042 W FR2008051042 W FR 2008051042W WO 2009001019 A2 WO2009001019 A2 WO 2009001019A2
Authority
WO
WIPO (PCT)
Prior art keywords
water
nanocapsules
temperature
surfactant
active
Prior art date
Application number
PCT/FR2008/051042
Other languages
English (en)
Other versions
WO2009001019A3 (fr
Inventor
Patrick Saulnier
Jean-Pierre Benoit
Nicolas Anton
Original Assignee
Universite D'angers
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite D'angers filed Critical Universite D'angers
Priority to CA2690471A priority Critical patent/CA2690471A1/fr
Priority to EP08805977A priority patent/EP2167053A2/fr
Priority to US12/663,937 priority patent/US9333180B2/en
Publication of WO2009001019A2 publication Critical patent/WO2009001019A2/fr
Publication of WO2009001019A3 publication Critical patent/WO2009001019A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5123Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention aims at providing nanocapsules with a liquid lipid core loaded with active agents at this core into at least one water-soluble or water-dispersible active agent.
  • Nanovesicular systems of nanocapsule or nanodroplet type whose size varies from 50 to 500 nanometers and formed of a liquid or solid core, surrounded by a hydrophobic outer membrane, are already known.
  • the constituents of their membrane may be synthetic, for example of polymeric, protein or lipid nature like liposomes.
  • liposomes which have a lamellar structure formed of a stack of lipid layers separated from one another by aqueous compartments always have an aqueous core.
  • nano-metric structures have also already been proposed for the purpose of encapsulating active agents either in their aqueous core when the active agent is water-soluble or water-dispersible, or in their lipid layer when the active ingredient is liposoluble or lipodispersible.
  • US Pat. No. 5,961,970 proposes, as an active agent, submicron-scale oil-in-water emulsions, that is to say mini-emulsions whose droplets have a hydrophobic core of lipidic nature and are stabilized. at the surface by amphiphilic and / or nonionic surfactants, like phospho lipid-type surfactants. These droplets are thus kept in suspension in an aqueous phase.
  • This type of submicron emulsion is obtained from a base emulsion by subjecting it to several successive cycles of homogenization under high shear.
  • US Patent 5,576,016 describes macroemulsions whose droplets are formed of a solid lipid core and which are stabilized by a phospholipid envelope.
  • This phospholipid envelope has a lamellar structure formed of one or more layers of phospholipid molecules like liposomes.
  • a highly hydrophobic active agent can be loaded at the core and a water-soluble active agent can be incorporated into the aqueous compartments present in the phospholipid envelope.
  • an emulsion for example W / O
  • a temperature which must be greater than the phase inversion temperature of the system ie the temperature at which the equilibrium between the hydrophilic and lipophilic properties of the surfactant system used is achieved.
  • the emulsion is of the water-in-oil type, and during its cooling, this emulsion is reversed. at the phase inversion temperature, to become an oil-in-water type emulsion, and this having previously passed through a microemulsion state.
  • This technique notably makes it possible to access an average size of the globules constituting the oily phase ranging from 0.1 to 4 ⁇ m (100 to 4000 nm).
  • nanocapsules thus obtained are only proposed for the purpose of encapsulation, within their oily heart, of lipophilic or lipodispersible active agents.
  • the water-dispersible active agent is advantageously a non-lipophilic active agent.
  • the present invention aims precisely to propose a solution for performing this type of encapsulation.
  • the present invention aims, according to a first aspect, with nanocapsules having a liquid lipid core and solid lipid shell and loaded within their lipid core with at least one water-soluble or water-dispersible active agent, said active being incorporated therein in the form of of a reverse micellar system.
  • the present invention relates to a method useful for preparing nanocapsules with liquid lipid core and solid lipid shell and loaded at their lipid core into at least one water-soluble or water-dispersible active agent, said process comprising at least the steps comprising: disposing of an oil-in-water emulsion containing at least one water-soluble or water-dispersible active agent in the form of a reverse micellar system and at least one surfactant system containing at least one thermosensitive, nonionic and hydrophilic surfactant, and if necessary a lipophilic surfactant increase its temperature to a temperature T 2 greater than its phase inversion temperature (TIP) to obtain a water-in-oil emulsion followed by a decrease in temperature to a temperature T 1 , Ti ⁇ TIP ⁇ T 2 to obtain an oil-in-water emulsion again, carry out one or more temperature cycles around the phase inversion zone between Ti and T 2 , and stabilizing said system at a temperature in or near the phase inversion
  • TIP phase in
  • an oil-in-water emulsion containing at least one water-soluble or water-dispersible active agent in the form of an inverse micellar system proves capable of forming, when it imposes at least a phase inversion operation temperature, a microemulsion whose quenching leads to the formation of nanocapsules containing within their lipid core micelles water soluble or hydrodispersible assets.
  • the progress of all the steps required to obtain the expected nanocapsules does not affect the stability of the reverse micellar system of the water-soluble or water-dispersible active.
  • the expression "reverse micellar system of water-soluble or water-dispersible active” designates an architecture in which the water-soluble or water-dispersible active agents are stabilized in an oily phase by means of the molecules of the surfactant or of the surfactant system forming the micellar system containing the active.
  • the water-dispersible active agent is advantageously a non-lipophilic active agent.
  • Reverse micelle systems are well known to those skilled in the art and in particular exploited to carry out selective extractions of proteins or enzymes of interest.
  • the choice of the surfactant system used to form the reverse micellar system must be carried out taking into account the solubility of the surfactant (s) forming it in the oily phase of the oil-in-water emulsion in which the asset is precisely intended to be formulated. This selection is clearly within the skill of those skilled in the art.
  • the surfactants used to develop these reverse micelles and suitable for the invention have an HLB value of less than 10, in particular less than or equal to 6. They may indifferently belong to the families of ionic, nonionic or amphoteric surfactants.
  • surfactants may be used in an active (s) / surfactant (s) weight ratio ranging from 0.01 to 0.3 and in particular from 0.05 to 0.1.
  • these surfactants may be combined with co-surfactants such as, for example, phospholipids.
  • co-surfactants such as, for example, phospholipids.
  • phosphatidylcholines lecithin are particularly interesting.
  • phospholipids suitable for the invention may be phosphatidylglycerol, phosphatidylinositol, phosphatidylserine, phosphatidic acid and phosphatidylethanolamine.
  • the reverse micellar system containing the water-soluble or water-dispersible active agent to be encapsulated is prepared before it is brought into contact with the emulsion so as to stabilize the inverse micelles in the oil.
  • This oily micellar suspension is then either incorporated at the beginning of the formulation before the thermal cycling (s) or else, added once the system is in its microemulsion form, that is to say in the phase inversion zone. of the emulsified system.
  • a hydrophilic active agent for example sodium fluororescein crystals, is incorporated under heating at 50 ° C. and with stirring in an oily phase, for example Labrafac containing inverse micelles of a surfactant such as Span 80® (10%). w / w).
  • water-soluble or water-dispersible active agents that can be encapsulated according to the invention include 5-fluorouracil, gemcitabine, doxorubicin and low molecular weight heparins.
  • the nanocapsules can of course contain other water-soluble active agents adsorbed on their bark or other liposoluble active agents encapsulated in their lipid core.
  • the term "adsorbed" means that the active ingredient is incorporated within the bark. This adsorption phenomenon is to be distinguished from a simple covalent bond established between a function present on said active agent and a function present on the surface of the bark of the nanocapsules.
  • the active agent may especially be a pharmaceutically active compound, cosmetically active or still active in a phytosanitary or food field.
  • this active ingredient is a pharmaceutically active ingredient.
  • the nanocapsules of the invention are more particularly suitable for the administration of the following active principles: anti-infectives including antimycotics, antibiotics, anticancer drugs, immunosuppressants, active principles for the Central Nervous System who must pass the blood-brain barrier, such as anti-Parkinson's, analgesics and more generally the active ingredients for treating neurodegenerative diseases.
  • anti-infectives including antimycotics, antibiotics, anticancer drugs, immunosuppressants, active principles for the Central Nervous System who must pass the blood-brain barrier, such as anti-Parkinson's, analgesics and more generally the active ingredients for treating neurodegenerative diseases.
  • Such an active ingredient may also be of protein or peptide nature. It may also be nucleic acids such as a DNA plasmid or an interference RNA.
  • the asset can also be a radiopharmaceutical. It can also be a gas or a fluid that can turn into gas.
  • a microemulsion is different from a miniemulsion and a macroemulsion, such as illustrated in US Pat. Nos. 5,961,971 and 5,576,016.
  • a microemulsion corresponds to a bicontinuous structuring of the material in the form of micellar structures swollen with oil or water. These micellar structures are strongly intertwined with each other and thus constitute a cohesive and stabilized homogeneous three-dimensional network. It is thus impossible to distinguish a dispersed phase from a continuous phase.
  • This microemulsion is in thermodynamic equilibrium and therefore can only exist under very precise conditions of temperature, pressure and composition.
  • the starting emulsion intended to form the microemulsion may comprise at least one oily fatty phase, an aqueous phase and a surfactant system comprising at least one heat-sensitive, hydrophilic and nonionic surfactant and, where appropriate, according to a preferred embodiment, a lipophilic surfactant.
  • the oily fatty phase is formed of at least one liquid or semi-liquid fatty substance at ambient temperature, and in particular at least one triglyceride, a fatty acid ester, or a mixture thereof.
  • the fatty acid ester may more particularly be chosen from C 8 to C 18 fatty acid esters, in particular C 8 to C 12 fatty acid esters, and in particular ethyl palmitate, ethyl oleate or myristate. ethyl, isopropyl myristate, octydodecyl myristate and mixtures thereof.
  • the triglycerides used may be synthetic triglycerides or triglycerides of natural origin.
  • Natural sources may include animal fats or vegetable oils eg soybean oils or sources of long chain triglycerides (LCTs).
  • MCT medium chain triglycerides
  • An oil to Medium chain triglycerides (MCT) is a triglyceride in which the carbohydrate chain has from 8 to 12 carbon atoms.
  • Such MCT oils are commercially available.
  • TCRs trade name of the industrial oilseeds company, France, for a mixture of triglycerides in which about 95% of the fatty acid chains have 8 or 10 carbon atoms.
  • Myglyol ® 812 triglyceride marketed by Dynamit Nobel, Sweden for a mixture of triesters of caprylic and capric acid glycerides.
  • the fatty acid units of these triglycerides may be unsaturated, monounsaturated or polyunsaturated. Mixtures of triglycerides with variable fatty acid units are also acceptable.
  • HLB index or hydrophilic-lipophilic balance is as defined by C. Larpent in the K.342 Treaty of TECHNIQUES DE L'INGENIEUR.
  • the triglyceride sold under the name Labrafac WL 1349 ® is particularly suitable for the invention.
  • This surfactant system comprises at least one thermosensitive surfactant, hydrophilic and nonionic, which may be associated with a lipophilic surfactant.
  • the surfactant system used in the claimed process is formed only of hydrophilic (s) and nonionic (s) heat-sensitive surfactant (s).
  • the surfactant system used in the microemulsion may comprise one or more surfactants whose solubility in the oil increases with increasing temperature.
  • the HLB of these surfactants can vary from 8 to 18, and preferably from 10 to 16, and these surfactants can be chosen from ethoxylated fatty alcohols, ethoxylated fatty acids, partial glycerides of ethoxylated fatty acids, triglycerides of polyethoxylated fatty acids, and mixtures thereof.
  • ethylene oxide adducts with lauryl alcohol especially those containing from 9 to 50 oxyethylenated groups (Laureth-9 to Laureth-50 in CTFA names); adducts of ethylene oxide with behenyl alcohol, in particular those containing from 9 to 50 oxyethylenated groups (Beheneth-9 to Beheneth-50 in CTFA names); adducts of ethylene oxide with keto-stearyl alcohol (mixture of cetyl alcohol and stearyl alcohol), in particular those containing from 9 to 30 oxyethylenated groups (Ceteareth-9 to Ceteareth-30 in names) CTFA); adducts of ethylene oxide with cetyl alcohol, especially those containing from 9 to 30 oxyethylenated groups (Ceteth-9 to Ceteth- in CTFA names); adducts of ethylene oxide with stearyl alcohol, especially those containing those containing
  • ethoxylated fatty acids mention may be made, for example, of ethylene oxide adducts with lauric, palmitic, stearic or behenic acids, and mixtures thereof, in particular those comprising from 9 to 50 oxyethylenated groups such as laurates of PEG-9 to PEG-50 (CTFA names: PEG-9 laurate to PEG-50 laurate); palmitates of PEG-9 to PEG-50 (in CTFA names: PEG-9 palmitate to PEG-50 palmitate); stearates from PEG-9 to PEG-50 (CTFA names: PEG-9 stearate PEG-50 stearate); palmitostearate from PEG-9 to PEG-50; behenates from PEG-9 to PEG-50 (in CTFA names: PEG-9 behenate to PEG-50 behenate); and their mixtures.
  • CTFA names: PEG-9 laurate to PEG-50 laurate palmitates of PEG-9 to PEG-50 (in CTFA names: PEG-9 palmitate to
  • surfactants can also be either natural compounds such as echolate phospholipids or synthetic compounds such as polysorbates which are fatty acid esters of polyethoxylated sorbitol (Tween ®), polyethylene glycol fatty acid esters eg from castor oil (Cremophor ®), polyethoxylated fatty acids, eg stearic acid (Simulsol M-53 ®), fatty alcohol ethers polyoxyethylene (Brij ®), polyoxyethylene nonphenyl ethers (Triton ® N) of hydroxylphényle polyoxyethylene ethers (Triton ® X).
  • Teween ® polyethoxylated sorbitol
  • Polyethylene glycol fatty acid esters eg from castor oil (Cremophor ®
  • polyethoxylated fatty acids eg stearic acid
  • Simulsol M-53 ® fatty alcohol ethers polyoxyethylene
  • Brij ® polyoxyethylene nonphen
  • It can especially be a 2-hydroxystearate polyethylene glycol and in particular that marketed under the name Solutol ® HS 15 by BASF (Germany).
  • the surfactant system selected according to the invention advantageously comprises, besides the heat-sensitive, hydrophilic and non-ionic surfactant, at least one lipophilic surfactant.
  • the lipophilic surfactant is more particularly based on phospholipids which are advantageous in view of their biocompatible nature.
  • phosphatidylcholines are particularly interesting.
  • phospholipids may be phosphatidylglycerol, phosphatidylinositol, phosphatidylserine, phosphatidic acid and phosphatidylethanolamine.
  • Phospholipid derivatives can be isolated from natural sources or synthetically prepared.
  • EPICURON 120 ® (Lukas Meyer, Germany) which is a mixture of about 70% phosphatidylcholine, 12% phosphatidylethanolamine and about 15% other phospholipids;
  • - VO VOTINE 160 ® (Lukas Meyer, Germany) which is a mixture comprising about 60% phosphatidylcholine, 18% phosphatidylethanolamine and 12% other phospholipids,
  • the lipophilic surfactant is a lecithin whose proportion of phosphatidylcholine ranges from 40 to 80% by weight.
  • Lipoid S75-3 Lipoid S75-3 (Lipoid ® GmbH, Germany). This is soy lecithin. The latter contains about 69% phosphatidylcholine and 9% phosphatidylethanolamine. This component is the only solid component at 37 ° and at room temperature in the formulation.
  • the ratio of liquid fatty substance / lipid surfactant (s) may vary from 1 to 15, preferably from 1.5 to 13, more preferably from 3 to 8.
  • the particle size decreases when the proportion of hydrophilic surfactant increases and when the proportion of surfactants (hydrophilic and optionally lipophilic) increases.
  • the surfactant causes a decrease in the interfacial tension and thus a stabilization of the system which promotes the obtaining of small particles.
  • the aqueous phase of the microemulsion may also advantageously contain 1 to 4% of a particularly inorganic salt, such as sodium chloride.
  • a particularly inorganic salt such as sodium chloride.
  • the microemulsion advantageously contains from 1 to 3% of lipophilic surfactant (s), from 5 to 15% of hydrophilic surfactant (s), from 5 to 15% of an oily phase, from 64 to 89% of an aqueous phase (the percentages are expressed by weight relative to the total weight of the microemulsion).
  • a microemulsion of the invention may be formed of at least one fatty acid triglyceride and a 2-hydroxysterate derivative of polyethylene glycol, and optionally a lecithin.
  • the fatty phase is a fatty acid triglyceride
  • the lipophilic surfactant is a lecithin
  • the hydrophilic surfactant is a derivative of 2-hydroxystearate polyethylene glycol and in particular Solutol ® HS 15.
  • the emulsion considered according to the invention is converted into a microemulsion according to the phase inversion technique, in particular by temperature change.
  • This phase inversion in temperature is advantageously caused by imposing at least one cycle of rise and fall in temperature to the emulsion.
  • the temperature of the phase inversion zone tends to decrease as and when the temperature cycles imposed. This phenomenon is precisely advantageous when the asset that it is desired to encapsulate or adsorb is a temperature-sensitive asset. Under such conditions, it is preferred to introduce the asset at the time of a temperature-compatible cycle.
  • TIP phase inversion temperature
  • phase inversion zone between Ti and T 2 it is advantageous to carry out one or more temperature cycles around the phase inversion zone between Ti and T 2 , until a translucent suspension is observed, which corresponds to the formation of a microemulsion.
  • the system is then stabilized at a temperature which corresponds to the structure of the system in the expected microemulsion.
  • the phase inversion between the oil / water emulsion and the water / oil emulsion results in a decrease in conductivity as the temperature increases until it vanishes.
  • Ti is a temperature at which the conductivity is at least 90 - 95% of the conductivity measured at 20 0 C and T 2 is the temperature at which the conductivity vanishes and the water-in-oil emulsion is formed.
  • TIP phase inversion temperature
  • a microemulsion In the formation zone of a microemulsion (translucent mixture), the hydrophilic and hydrophobic interactions are balanced because the tendency of the surfactant system is to form both direct micelles and inverse micelles.
  • W / O emulsion opaque white mixture
  • the surfactant promotes the formation of a water-in-oil emulsion.
  • the emulsion becomes an O / W emulsion.
  • the number of cycles applied to the microemulsion depends on the amount of energy required to form the nanocapsules.
  • the mixture is homogenized, for example by means of a Rayneri 350 rpm, and heated by progressively increasing the temperature by means of a water bath to a temperature greater than or equal to the T2 phase inversion temperature, that is to say until a transparent or translucent phase is obtained (zone of microemulsion or lamellar phase) then of a more viscous white phase which indicates the obtaining of the inverse emulsion (E / H).
  • the heating is then stopped and the stirring maintained until it returns to ambient temperature, via the phase inversion temperature T1, that is to say the temperature at which the expected microemulsion is formed.
  • T1 phase inversion temperature
  • the microemulsion having formed subsequently undergoes quenching according to the invention.
  • This step intended to form the nanocapsules according to the invention consists in an abrupt cooling (or quenching) of the microemulsion at a temperature conducive to the solidification of the interfacial films comprising the microemulsion, advantageously at a temperature much lower than T1 under magnetic stirring.
  • This quenching can be carried out by diluting the medium 3 to 10 times with deionized water at 20 ° C +/- 1 ° C., which is thrown into the fine microemulsion.
  • the nanocapsules obtained are stirred for 5 minutes.
  • the organization of the system in the form of nanocapsules after soaking is reflected visually by a change of appearance of the initial system which changes from opaque white to translucent white with Tyndall effect (bluish tints). This change occurs at a temperature below the TIP. This temperature is generally between 6 to 15 0 C below the TIP.
  • nanocapsules loaded at their lipid core into at least one water-soluble active agent are obtained.
  • nanocapsules is to be distinguished from nanospheres.
  • Nanocapsules are understood to mean particles consisting of a liquid or semi-liquid core at ambient temperature, coated with a solid film at ambient temperature, as opposed to nanospheres which are matrix particles, ie whose whole mass is solid. .
  • the nanospheres contain a pharmaceutically active principle, it is finely dispersed in the solid matrix.
  • the nanocapsules obtained according to the invention have a mean size of less than 150 nm, preferably less than 100 nm, more preferably less than 50 nm. These sizes can be determined by photon correlation spectroscopy, scanning electron microscopy, transmission electron microscopy in cryoscopic mode.
  • the thickness of the solid film or bark is advantageously between 2 and 10 nm. It is equal to about one-tenth of the diameter of the particles. This thickness can be calculated by mass balance, or visualized by transmission electron microscopy. Negative shading or else by transmission electron microscopy in cryoscopic mode.
  • the nanocapsules of the invention are colloidal lipid particles.
  • the polydispersity index of the nanocapsules of the invention is advantageously between 5 and 15%. This index is determined on the size histogram obtained by photon correlation spectroscopy method.
  • the nanocapsules are each composed of a substantially liquid or semi-liquid lipid core at room temperature, coated with a substantially lipidic bark solid at room temperature.
  • the expression "essentially lipidic" means that the core and the bark forming the nanocapsules according to the invention consist of more than 50% by weight, in particular more than 75% by weight, in particular more than 80% by weight, or even more than 90%, more particularly more than 95% of their respective weight, or even all of one or more lipid compounds (hydrophobic).
  • a nanocapsule according to the invention may comprise a bark formed of at least one solid lipophilic surfactant at room temperature.
  • nanocapsules according to the invention are particularly advantageous as an asset formulation vehicle.
  • these nanocapsules may be useful for the manufacture of phytosanitary or pharmaceutical compositions.
  • the present invention also provides compositions containing nanocapsules according to the invention.
  • ambient temperature designates a temperature ranging from 18 to 25 ° C.
  • Example 1 Preparation of nanocapsules whose lipid core is loaded into a water-soluble active agent
  • sodium fluorescein crystals (10 mg) are incorporated under heating at 50 ° C. and with stirring in Labrafac (3 g) containing inverse micelles of Span 80 (0.6 g) (20% w / w). .
  • micellar suspension After homogenization of this micellar suspension, 0.25 ml are introduced into the preceding emulsion.
  • the whole is placed under magnetic stirring. Heating is applied until a temperature of 85 ° C. is reached. With magnetic stirring, the system is allowed to cool down to a temperature of 60 ° C. These thermal cycles (between 85 ° C. and 60 ° C.) are carried out. three times in order to obtain better and better structured microemulsions. The system is then maintained in its microemulsion form by stabilizing it at a temperature included in (or in the near vicinity) of the Phase Inversion Zone, in this case 65 ° C.
  • the nanocapsules are finalized by dipping in cold water (5 0 C).
  • the nanocapsules are separated from the medium by centrifugation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Medicinal Preparation (AREA)

Abstract

La présente invention concerne des nanocapsules à coer lipidique liquide et écorce lipidique solide et chargées au sein de leur coer lipidique en au moins un actif hydrosoluble ou hydrodispersible, ledit actif y étant présent sous la forme d'un système micellaire inverse.

Description

Nanocapsules à cœur lipidique liquide chargées en actiffs) hydrosoluble(s) ou hydrodispersible(s)
La présente invention vise à proposer des nanocapsules à cœur lipidique liquide chargées en actifs au niveau de ce cœur en au moins un actif hydrosoluble ou hydrodispersible.
Des systèmes nanovésiculaires, de type nanocapsules ou nanogouttelettes dont la taille varie de 50 à 500 nanomètres et formés d'un cœur liquide ou solide, enveloppé d'une membrane externe hydrophobe, sont déjà connus. Les constituants de leur membrane peuvent être synthétiques, par exemple de nature polymérique, protéique ou lipidique à l'image des liposomes. Par exemple, les liposomes qui présentent une structure lamellaire formée d'un empilement de couches lipidiques séparées l'une de l'autre par des compartiments aqueux possèdent toujours un cœur aqueux.
Ces structures nano métriques ont également déjà été proposées à des fins d'encapsulation d'actifs soit dans leur cœur aqueux lorsque l'actif est hydrosoluble ou hydrodispersible, soit dans leur couche lipidique lorsque l'actif est liposoluble ou lipodispersible.
Par exemple, le brevet US 5,961,970 propose à titre de véhicule d'actifs, des émulsions huile-dans-eau à échelle submicronique, c'est-à-dire des mini émulsions dont les gouttelettes possèdent un noyau hydrophobe de nature lipidique et sont stabilisées en surface par des tensioactifs amphiphiles et/ou non ioniques à l'image des tensioactifs de type phospho lipides. Ces gouttelettes sont ainsi maintenues en suspension dans une phase aqueuse. Ce type d'émulsion submicronique est obtenu à partir d'une émulsion de base en soumettant celle-ci à plusieurs cycles successifs d'homogénéisation sous fort cisaillement.
Quant au brevet US 5 576 016, il décrit des macroémulsions dont les gouttelettes sont formées d'un noyau lipidique solide et qui sont stabilisées par une enveloppe phospholipidique. Cette enveloppe phospho lipidique possède une structure lamellaire formée d'une ou plusieurs couches de molécules phospho lipides à l'image des liposomes. Un actif hautement hydrophobe peut être chargé au niveau du noyau et un actif hydrosoluble peut être en revanche incorporé dans les compartiments aqueux présents dans l'enveloppe phospholipidique.
Par ailleurs, les inventeurs ont également décrit dans le brevet EP 1 265 698 à titre de véhicule d'actifs liposolubles ou lipodispersibles, des nanocapsules à cœur liquide et écorce solide de nature lipidique et une technologie originale permettant d'y accéder. Plus précisément, ces nanocapsules sont obtenues à partir d'une microémulsion, cette microémulsion étant préparée par la technique d'inversion de phase par effet thermique (émulsion PIT).
Le principe d'émulsification par inversion de phase en température (en anglais : Phase Inversion Température ou PIT) est bien connu de l'homme de l'art ; il a été décrit en 1968 par K. Shinoda (J. Chem. Soc. Jpn., 1968, 89, 435). Il a été montré que cette technique d'émulsification permet d'obtenir des émulsions fines stables (K. Shinoda et H. Saito, J. Colloïd Interface ScL, 1969, 30, 258).
Le principe de cette technique est le suivant : on prépare une émulsion, par exemple E/H, à une température qui doit être supérieure à la température d'inversion de phase du système, c'est à dire la température à laquelle l'équilibre entre les propriétés hydrophile et lipophile du système tensioactif mis en œuvre est atteint. A température élevée, c'est-à-dire supérieure à la température d'inversion de phase (>PIT), l'émulsion est de type eau-dans-huile, et, au cours de son refroidissement, cette émulsion s'inverse à la température d'inversion de phase, pour devenir une émulsion de type huile-dans-eau, et ceci en étant passée auparavant par un état de microémulsion. Cette technique permet notamment d'accéder à une taille moyenne des globules constituant la phase huileuse variant de 0,1 à 4 μm (100 à 4000 nm).
Toutefois, les nanocapsules ainsi obtenues n'y sont proposées qu'à des fins d'encapsulation, au sein de leur cœur huileux, d'actifs lipophiles ou lipodispersibles. Or, pour des raisons évidentes, il serait avantageux de tirer également profit de ces nanocapsules pour l'encapsulation d'actifs hydrosolubles ou hydrodispersibles.
Au sens de la présente invention, l'actif hydrodispersible est avantageusement un actif non lipophile.
La présente invention vise précisément à proposer une solution permettant de réaliser ce type d'encapsulation.
Plus précisément, la présente invention vise, selon un premier de ses aspects, des nanocapsules à cœur lipidique liquide et écorce lipidique solide et chargées au sein de leur cœur lipidique en au moins un actif hydrosoluble ou hydrodispersible, ledit actif y étant incorporé sous la forme d'un système micellaire inverse. Selon un autre de ses aspects, la présente invention concerne un procédé utile pour préparer des nanocapsules à cœur lipidique liquide et écorce lipidique solide et chargées au niveau de leur cœur lipidique en au moins un actif hydrosoluble ou hydrodispersible, ledit procédé comprenant au moins les étapes consistant à : disposer d'une émulsion huile-dans-eau, contenant au moins un actif hydrosoluble ou hydrodispersible sous la forme d'un système micellaire inverse et au moins un système tensioactif contenant au moins un tensioactif thermosensible, non ionique et hydrophile, et le cas échéant un tensioactif lipophile augmenter sa température jusqu'à une température T2 supérieure à sa température d'inversion de phase (TIP) pour obtenir une émulsion eau-dans-huile suivie d'une diminution de la température jusqu'à une température T1, Ti<TIP<T2 pour obtenir de nouveau une émulsion huile-dans-eau, effectuer un ou plusieurs cycles de température autour de la zone d'inversion de phase entre Ti et T2, et stabiliser ledit système à une température située dans ou au proche voisinage de l'inversion de phase pour former la microémulsion attendue, et effectuer la trempe de ladite microémulsion de manière à obtenir des nanocapsules formées d'un cœur lipidique liquide à température ambiante enrobé d'une écorce lipidique solide à température ambiante et comprenant ledit actif sous la forme d'un système micellaire inverse.
La présente invention résulte plus particulièrement de l'observation par les inventeurs que contre tout attente, une émulsion huile dans eau contenant au moins un actif hydrosoluble ou hydrodispersible sous la forme d'un système micellaire inverse s'avère capable de former, lorsqu'on lui impose au moins une opération d'inversion de phase en température, une microémulsion dont la trempe conduit à la formation de nanocapsules contenant au sein de leur cœur lipidique les micelles d'actifs hydrosolubles ou hydrodispersibles. De manière surprenante, le déroulement de l'ensemble des étapes nécessaires à l'obtention des nanocapsules attendues n'affecte pas la stabilité du système micellaire inverse de l'actif hydrosoluble ou hydrodispersible. Actif
Au sens de l'invention, l'expression « système micellaire inverse d'actif hydrosoluble ou hydrodispersible » désigne une architecture dans laquelle les actifs hydrosolubles ou hydrodispersibles sont stabilisés dans une phase huileuse par l'intermédiaire des molécules du tensioactif ou du système tensioactif formant le système micellaire contenant l'actif.
Au sens de la présente invention, l'actif hydrodispersible est avantageusement un actif non lipophile.
Les systèmes micelles inverses sont bien connus de l'homme de l'art et notamment exploités pour réaliser des extractions sélectives de protéines ou enzymes d'intérêt.
Pour des raisons évidentes, le choix du système tensioactif mis en œuvre pour former le système micellaire inverse est à effectuer en tenant compte de la solubilité du ou des tensioactifs le formant, dans la phase huileuse de l'émulsion huile-dans-eau dans laquelle l'actif est précisément destiné à être formulé. Cette sélection relève clairement des compétences de l'homme de l'art.
Avantageusement, les tensioactifs utilisés pour élaborer ces micelles inverses et convenant à l'invention possèdent une valeur HLB inférieure à 10, en particulier inférieure ou égale à 6. Ils peuvent indifféremment appartenir aux familles des tensioactifs ioniques, non ioniques ou amphotères.
Ces tensioactifs peuvent être mis en œuvre dans un rapport pondéral actif(s)/tensioactif(s) variant de 0,01 à 0,3 et en particulier de 0,05 à 0,1.
Avantageusement, ces tensioactifs peuvent être associés à des co-tensioactifs comme par exemple des phospholipides. A ce titre, les phosphatidylcholines (lécithine) sont particulièrement intéressants.
D'autres phospholipides convenant à l'invention, peuvent être le phosphatidylglycérol, le phosphatidylinositol, la phosphatidylsérine, l'acide phosphatidique et la phosphatidyléthanolamine.
Le système micellaire inverse contenant l'actif hydrosoluble ou hydrodispersible à encapsuler est préparé antérieurement à sa mise en présence avec l'émulsion de manière à stabiliser les micelles inverses dans l'huile. Cette suspension micellaire huileuse est ensuite, soit incorporée en début de formulation avant le ou les cyclages thermiques ou alors, rajoutée une fois que le système est sous sa forme de microémulsion, c'est-à-dire dans la zone d'inversion de phase du système émulsionné.
Par exemple, ils peuvent être préparés comme suit :
Un actif hydrophile, comme par exemple des cristaux de fiuorescéine de sodium, est incorporé sous chauffage à 50 0C et sous agitation dans une phase huileuse par exemple du Labrafac contenant des micelles inverses d'un tensioactif tel que le Span 80® (10 % masse/masse).
A titre illustratif et non limitatif des actifs hydrosolubles ou hydrodispersibles pouvant être encapsulés selon l'invention, on peut notamment citer le 5-Fluoro-uracile, la gemcitabine, la doxorubicine et les héparines de bas poids moléculaire.
Outre cet actif hydrosoluble ou hydrodispersible encapsulé dans leur cœur lipidique, les nanocapsules peuvent bien entendu contenir d'autres actifs hydrosolubles adsorbés au niveau de leur écorce ou d'autres actifs liposolubles encapsulés dans leur cœur lipidique.
Au sens de l'invention, le terme « adsorbé » signifie que l'actif est incorporé au sein de l'écorce. Ce phénomène d'adsorption est à distinguer d'une simple liaison covalente établie entre une fonction présente sur ledit actif et une fonction présente en surface de l'écorce des nanocapsules.
L'actif peut notamment être un composé pharmaceutiquement actif, cosmétiquement actif ou encore actif dans un domaine phytosanitaire ou alimentaire.
Selon un mode réalisation préféré, cet actif est un principe pharmaceutiquement actif.
D'une manière générale, les nanocapsules de l'invention conviennent plus particulièrement pour l'administration des principes actifs suivants : les anti-infectieux parmi lesquels les antimycosiques, les antibiotiques, les anticancéreux, les immunosuppresseurs, les principes actifs destinés au Système Nerveux Central qui doivent passer la barrière hémato-encéphalique, tels que les antiparkinsoniens, les antalgiques et plus généralement les principes actifs pour traiter les maladies neurodégénératives.
Un tel actif peut être également de nature protéique, peptidique. Il peut aussi s'agir d'acides nucléiques tels qu'un plasmide d'ADN ou un ARN d'interférence. L'actif peut être aussi un radiopharmaceutique. Il peut également s'agir d'un gaz ou d'un fluide pouvant se transformer en gaz.
Emulsion et Microémulsion
Tout d'abord, il importe de noter qu'une microémulsion est différente d'une mini-émulsion et d'une macroémulsion notamment telles qu'illustrées dans les brevets US 5 961 971 et US 5 576 016. En effet, une microémulsion correspond à une structuration bicontinue de la matière sous forme de structures micellaires gonflées d'huile ou d'eau. Ces structures micellaires sont fortement imbriquées les unes par rapport aux autres et constituent ainsi un réseau tridimensionnel homogène cohésif et stabilisé. On ne peut ainsi y distinguer une phase dispersée d'une phase continue. Cette microémulsion est en équilibre thermodynamique et donc, ne peut exister que dans des conditions très précises de température, pression et composition.
L 'emulsion de départ destinée à former la microémulsion peut comprendre au moins une phase grasse huileuse, une phase aqueuse et un système tensioactif comprenant au moins un tensioactif thermosensible, hydrophile et non ionique, et le cas échéant, selon un mode de réalisation préféré, un tensioactif lipophile.
a-Phase grasse huileuse
La phase grasse huileuse est formée d'au moins un corps gras liquide ou semi- liquide à température ambiante, et en particulier d'au moins un triglycéride, d'un ester d'acide gras, ou d'un de leurs mélanges.
L'ester d'acide gras peut être plus particulièrement choisi parmi les esters d'acides gras en Cs à C18, notamment en Cs à C12 et notamment le palmitate d'éthyle, l'oléate d'éthyle, le myristate d'éthyle, le myristate d'isopropyle, le myristate d'octydodécyle et leurs mélanges.
Les triglycérides mis en œuvre peuvent être des triglycérides de synthèse ou des triglycérides d'origine naturelle. Les sources naturelles peuvent inclure les graisses animales ou les huiles végétales par exemple les huiles de soja ou les sources en triglycérides à longue chaîne (LCT).
D'autres triglycérides d'intérêt sont composés principalement d'acides gras de longueurs moyennes encore appelés triglycérides à chaîne moyenne (MCT). Une huile à triglycérides à chaîne moyenne (MCT) est un triglycéride dans lequel la chaîne carbohydrate à de 8 à 12 atomes de carbone.
De telles huiles MCT sont disponibles commercialement.
A titre d'exemple de ces huiles MCT, on peut citer les TCR (nom commercial de la société industrielle des oléagineux, France, pour un mélange de triglycérides dans lequel environ 95 % des chaînes d'acides gras possèdent 8 ou 10 atomes de carbone) et le Myglyol® 812 (triglycéride commercialisé par la société Dynamit Nobel, Suède pour un mélange de triesters de glycérides d'acide caprylique et caprique).
Les motifs d'acides gras de ces triglycérides peuvent être insaturés, monoinsaturés ou polyinsaturés. Les mélanges de triglycérides ayant des motifs d'acides gras variables sont également acceptables.
Il est à noter que plus l'indice HLB du corps gras liquide ou semi-liquide est élevé, plus la température d'inversion de phase est élevée. En revanche, la valeur de l'indice HLB du corps gras ne semble pas avoir d'influence sur la taille des nanocapsules.
Ainsi, lorsque la taille des groupements terminaux des triglycérides augmente, leur indice HLB diminue et la température d'inversion de phase diminue.
L'indice HLB ou balance hydrophile-lipophile est tel que défini par C. Larpent dans le Traité K.342 des Editions TECHNIQUES DE L'INGENIEUR.
Convient tout particulièrement à l'invention, le triglycéride commercialisé sous le nom Labrafac WL 1349®.
b-Svstème tensio-actif
Ce système tensioactif comprend au moins un tensioactif thermosensible, hydrophile et non ionique, pouvant être associé à un tensioactif lipophile.
Selon un mode de réalisation préféré, le système tensioactif mis en œuvre dans le procédé revendiqué n'est formé que de tensioactif(s) thermosensible(s) hydrophile(s) et non ionique(s).
Le tensioactif hydrophile est plus particulièrement choisi parmi les tensioactifs émulsionnants du type huile-dans-eau habituellement utilisés qui ont un HLB (HLB = Hydrophilic Lipophilic Balance) allant de 8 à 18. Ces émulsionnants, grâce à leur structure amphiphile, se placent à l'interface phase huileuse / phase aqueuse, et stabilisent ainsi les gouttelettes d'huiles dispersées. Le système tensioactif utilisé dans la microémulsion peut comprendre un ou plusieurs tensioactifs dont la solubilité dans l'huile augmente avec l'augmentation de la température. Le HLB de ces tensioactifs peut varier de 8 à 18, et de préférence de 10 à 16, et ces tensioactifs peuvent être choisis parmi les alcools gras éthoxylés, les acides gras éthoxylés, les glycérides partiels d'acides gras éthoxylés, les triglycérides d'acides gras polyéthoxylés, et leurs mélanges.
Comme alcools gras éthoxylés, on peut citer par exemple les produits d'addition d'oxyde d'éthylène avec l'alcool laurylique, notamment ceux comportant de 9 à 50 groupes oxyéthylénés (Laureth-9 à Laureth-50 en noms CTFA) ; les produits d'addition d'oxyde d'éthylène avec l'alcool béhénylique, notamment ceux comportant de 9 à 50 groupes oxyéthylénés (Beheneth-9 à Beheneth-50 en noms CTFA) ; les produits d'addition d'oxyde d'éthylène avec l'alcool céto-stéarylique (mélange d'alcool cétylique et d'alcool stéarylique), notamment ceux comportant de 9 à 30 groupes oxyéthylénés (Ceteareth-9 à Ceteareth-30 en noms CTFA) ; les produits d'addition d'oxyde d'éthylène avec l'alcool cétylique, notamment ceux comportant de 9 à 30 groupes oxyéthylénés (Ceteth-9 à Ceteth- 30 en noms CTFA) ; les produits d'addition d'oxyde d'éthylène avec l'alcool stéarylique, notamment ceux comportant de 9 à 30 groupes oxyéthylénés (Steareth-9 à Steareth-30 en noms CTFA) ; les produits d'addition d'oxyde d'éthylène avec l'alcool isostéarylique, notamment ceux comportant de 9 à 50 groupes oxyéthylénés (Isosteareth-9 à Isosteareth- 50 en noms CTFA) ; et leurs mélanges.
Comme acides gras éthoxylés, on peut citer par exemple les produits d'addition d'oxyde d'éthylène avec les acides laurique, palmitique, stéarique ou béhénique, et leurs mélanges, notamment ceux comportant de 9 à 50 groupes oxyéthylénés tels que les laurates de PEG-9 à PEG-50 (en noms CTFA : PEG-9 laurate à PEG-50 laurate) ; les palmitates de PEG-9 à PEG-50 (en noms CTFA : PEG-9 palmitate à PEG-50 palmitate) ; les stéarates de PEG-9 à PEG-50 (en noms CTFA : PEG-9 stéarate à PEG-50 stéarate) ; les palmito- stéarates de PEG-9 à PEG-50 ; les béhénates de PEG-9 à PEG-50 (en noms CTFA : PEG-9 béhénate à PEG-50 béhénate) ; et leurs mélanges.
On peut utiliser aussi des mélanges de ces dérivés oxyéthylénés d'alcools gras et d'acides gras.
Ces tensioactifs peuvent également être soit des composés naturels à l'image des phospho lipides écholates ou des composés synthétiques tels que les polysorbates qui sont des esters d'acide gras de sorbitol polyéthoxylé (Tween®), les esters de polyéthylène glycol d'acide gras provenant par exemple de l'huile de ricin (Crémophor®), des acides gras polyéthoxylés, par exemple de l'acide stéarique (Simulsol M-53®), des éthers d'alcool gras polyoxyéthylénés (Brij®), des éthers non phényles polyoxyéthylénés (Triton N®), des éthers hydroxylphényle polyoxyéthylénés (Triton X®).
Il peut plus particulièrement s'agir d'un 2-hydroxystéarate polyéthylène glycol et notamment celui commercialisé sous le nom Solutol® HS 15 par la société BASF (Allemagne).
Comme précisé précédemment, le système tensio actif retenu selon l'invention comprend avantageusement outre le tensioactif thermosensible, hydrophile et non ionique, au moins un tensioactif lipophile.
Le tensioactif lipophile est plus particulièrement à base de phospholipides qui sont avantageux au regard de leur caractère biocompatible.
Parmi les phospholipides, les phosphatidylcholines (lécithine) sont particulièrement intéressants.
D'autres phospholipides peuvent être le phosphatidylglycérol, le phosphatidylinositol, la phosphatidylsérine, l'acide phosphatidique et la phosphatidyléthanolamine.
Les dérivés phospholipides peuvent être isolés à partir de sources naturelles ou préparés par synthèse.
A titre de produits commerciaux dérivant des phospholipides, on peut plus particulièrement citer :
- l'EPICURON 120® (Lukas Meyer, Allemagne) qui est un mélange d'environ 70 % de phosphatidylcholine, 12 % de phosphatidyléthanolamine, et environ 15 % d'autres phospholipides ;
- VO VOTINE 160® (Lukas Meyer, Allemagne) qui est un mélange comprenant environ 60 % de phosphatidylcholine, 18 % de phosphatidyléthanolamine, et 12 % d'autres phospholipides,
- un mélange de phospholipides purifiés à l'image des produits Lipoïd E75 ou Lipoïds E-80 (Lipoïd®, Allemagne) qui est un mélange de phospholipides comprenant environ 80 % en poids de phosphatidylcholine, 8 % en poids de phosphatidyléthanolamine, 3,6 % en poids de lipides non polaires et 2 % de sphingomyéline. Selon un mode de réalisation préféré, le tensioactif lipophile est une lécithine dont la proportion en phosphatidylcholine varie de 40 à 80 % en poids.
Convient tout particulièrement comme source de phosphatidylcholine, le Lipoïd S75-3 (Lipoïd® GmbH, Allemagne). Il s'agit de lécithine de soja. Cette dernière contient environ 69 % de phosphatidylcholine et 9 % de phosphatidyléthanolamine. Ce constituant est le seul constituant solide à 37° et à température ambiante dans la formulation.
On peut également utiliser le polyglycéryl-6-dioléate (Plurol®).
Le rapport corps gras liquide/tensio-actif(s) lipidique(s) peut varier de 1 à 15, de préférence de 1,5 à 13, plus préférentiellement de 3 à 8.
Il est à noter que la taille des particules diminue quand la proportion en agent tensio-actif hydrophile augmente et quand la proportion en agents tensioactifs (hydrophile et le cas échéant lipophile) augmente. En effet, l'agent tensio-actif entraîne une diminution de la tension interfaciale et donc une stabilisation du système ce qui favorise l'obtention de petites particules.
Par ailleurs, la taille des particules augmente quand la proportion d'huile augmente.
Pour sa part, la phase aqueuse de la microémulsion peut également avantageusement contenir 1 à 4 % d'un sel notamment inorganique, comme par exemple le chlorure de sodium. En effet, la modification de la concentration en sel entraîne un déplacement de la zone d'inversion de phase. Ainsi, plus la concentration en sel augmente et plus la température d'inversion de phase est basse. Ce phénomène s'avère tout particulièrement intéressant pour l'encapsulation de principes actifs thermosensibles hydrophobes.
Selon un mode de réalisation particulier, la microémulsion contient avantageusement de 1 à 3 % de tensio-actif(s) lipophile(s), de 5 à 15 % de tensio-actif(s) hydrophile(s), de 5 à 15 % d'une phase huileuse, de 64 à 89 % d'une phase aqueuse (les pourcentages sont exprimés en poids par rapport au poids total de la microémulsion).
Selon un mode de réalisation, une microémulsion de l'invention peut être formée d'au moins un triglycéride d'acide gras et d'un dérivé 2-hydroxystérate de polyéthylène glycol, et le cas échéant d'une lécithine. Dans un mode de réalisation préféré, la phase grasse est un triglycéride d'acide gras, le tensio-actif lipophile est une lécithine et le tensio-actif hydrophile est un dérivé de 2-hydroxystéarate polyéthylène glycol et notamment le Solutol® HS 15.
Comme précisé précédemment, l'émulsion considérée selon l'invention est transformée en une microémulsion selon la technique d'inversion de phase, en particulier par changement de température.
Cette inversion de phase en température est avantageusement provoquée par en imposant au moins un cycle de montée et de descente en température à l'émulsion.
La répétition de cycles de température est avantageuse à plusieurs titres. Ainsi, il a été constaté qu'au cours des cycles de température, l'écorce des nanoparticules qui se forment après trempage gagne avantageusement en épaisseur et donc en stabilité.
De plus, il est à noter que la température de la zone d'inversion de phase a tendance à décroître au fur et à mesure des cycles de températures imposés. Ce phénomène est précisément avantageux lorsque l'actif que l'on souhaite encapsuler ou adsorber est un actif sensible à la température. Dans de telles conditions, on privilégie l'introduction de l'actif au moment d'un cycle compatible en température.
Plus précisément, il est imposé à l'émulsion considérée selon l'invention et avant la trempe destinée à former les nanocapsules chargées en au moins un actif hydrophile, au moins les étapes consistant à augmenter sa température jusqu'à une température T2 supérieure à sa température d'inversion de phase (TIP) pour obtenir une émulsion eau-dans-huile suivie d'une diminution de la température jusqu'à une température T1, Ti<TIP<T2 pour obtenir de nouveau une émulsion huile-dans-eau, le cas échéant, effectuer un ou plusieurs cycles de température autour de la zone d'inversion de phase entre Ti et T2 et stabiliser ledit système à une température située dans ou au proche voisinage de l'inversion de phase pour former la microémulsion attendue.
Ainsi, on peut avantageusement effectuer un ou plusieurs cycles de température autour de la zone d'inversion de phase entre Ti et T2, jusqu'à observer une suspension translucide, qui correspond à la formation d'une microémulsion. On stabilise alors le système à une température qui correspond à la structuration du système en la microémulsion attendue. Plus précisément, l'inversion de phase entre l'émulsion huile/eau et l'émulsion eau/huile se traduit par une diminution de la conductivité quand la température augmente jusqu'à ce qu'elle s'annule.
Ainsi, Ti est une température à laquelle la conductivité est au moins égale à 90 - 95 % de la conductivité mesurée à 20 0C et T2 est la température à laquelle la conductivité s'annule et l'émulsion eau dans huile se forme. La température moyenne de la zone d'inversion de phase correspond à la température d'inversion de phase (TIP).
Dans la zone de formation d'une microémulsion (mélange translucide), les interactions hydrophiles et hydrophobes sont équilibrées car la tendance du système tensioactif est de former aussi bien des micelles directes que des micelles inverses. Par chauffage au-delà de cette zone, il y a formation d'une émulsion E/H (mélange opaque blanc), car le tensioactif favorise la formation d'une émulsion eau dans huile. Puis lors du refroidissement en dessous de la zone d'inversion de phase, l'émulsion devient une émulsion H/E.
Le nombre de cycles appliqués à la microémulsion dépend de la quantité d'énergie nécessaire pour former les nanocapsules.
Cette technologie est plus particulièrement décrite dans le brevet EP 1 265 698 dont le contenu est intégré à la présente demande.
Ainsi, l'ensemble des constituants destinés à former la microémulsion est pesé dans un récipient. Le mélange est homogénéisé, par exemple au moyen d'un Rayneri 350 tours/min, et chauffé en augmentant progressivement la température au moyen d'un bain marie jusqu'à une température supérieure ou égale à la température d'inversion de phase T2, c'est-à-dire jusqu'à l'obtention d'une phase transparente ou translucide (zone de microémulsion ou de phase lamellaire) puis d'une phase blanche plus visqueuse qui indique l'obtention de l'émulsion inverse (E/H). Le chauffage est alors stoppé et l'agitation maintenue jusqu'à retour à la température ambiante, en passant par la température d'inversion de phase Tl, c'est-à-dire la température à laquelle se forme la microémulsion attendue. Lorsque la température est redescendue en dessous de la zone d'inversion de Phase en Température (Tl), on obtient cette microémulsion stable.
La microémulsion ayant formée subit consécutivement une trempe selon l'invention. Cette étape destinée à former les nanocapsules selon l'invention consiste en un refroidissement brusque (ou trempe) de la microémulsion à une température propice à la solidification des films interfaciaux composant la microémulsion, avantageusement à une température très inférieure à Tl sous agitation magnétique.
Par exemple, on peut effectuer la trempe de ladite microémulsion chargée en au moins ledit actif à une température au moins 30 0C inférieure à la TIP au moment du trempage.
Cette trempe peut être effectuée en diluant le milieu de 3 à 10 fois à l'aide d'eau désionisée à 2 0C +/- 1 0C jetée dans la microémulsion fine. Les nanocapsules obtenues sont maintenues sous agitation pendant 5 min.
L'organisation du système sous forme de nanocapsules après trempage se traduit visuellement par un changement d'aspect du système initial qui passe de blanc- opaque à blanc-translucide avec effet Tyndall (reflets bleutés). Ce changement se produit à une température inférieure à la TIP. Cette température est située généralement entre 6 à 15 0C en dessous de la TIP.
A l'issue du procédé selon l'invention, des nanocapsules chargés au niveau de leur cœur lipidique en au moins un actif hydrosoluble sont obtenues.
Au sens de l'invention le terme nanocapsules est à distinguer de nanosphères. On entend par nanocapsules des particules constituées d'un coeur liquide ou semi-liquide à température ambiante, enrobé d'un film solide à température ambiante, par opposition à des nanosphères qui sont des particules matricielles, i.e. dont la totalité de la masse est solide. Ainsi, lorsque les nanosphères contiennent un principe pharmaceutiquement actif, celui-ci est finement dispersé dans la matrice solide.
Avantageusement, les nanocapsules obtenues selon l'invention possèdent une taille moyenne inférieure à 150 nm, de préférence inférieure à 100 nm, de préférence encore inférieure à 50 nm. Ces tailles peuvent être déterminées par spectroscopie à corrélation de photons, microscopie électronique à balayage, microscopie électronique à transmission en mode cryoscopique.
L'épaisseur du film ou écorce solide est avantageusement comprise entre 2 à 10 nm. Elle est égale environ au dixième du diamètre des particules. Cette épaisseur peut être calculée par bilan de masse, ou visualisée par microscopie électronique à transmission par ombrage négatif ou alors par microscopie électronique à transmission en mode cryoscopique.
Compte-tenu de leur taille, les nanocapsules de l'invention sont des particules lipidiques colloïdales.
L'indice de polydispersité des nanocapsules de l'invention est avantageusement compris entre 5 et 15 %. Cet indice est déterminé sur l'histogramme de taille obtenu par méthode de spectroscopie à corrélation de photons.
Les nanocapsules sont chacunes constituées d'un coeur essentiellement lipidique liquide ou semi-liquide à température ambiante, enrobé d'une écorce essentiellement lipidique solide à température ambiante.
Au sens de l'invention, l'expression « essentiellement lipidique » signifie que le noyau et l' écorce formant les nanocapsules selon l'invention sont constituées à plus de 50 % en poids, en particulier à plus de 75 % en poids, notamment à plus de 80 % en poids, voire plus de 90 %, plus particulièrement plus de 95 % de leurs poids respectifs, voire en totalité d'un ou plusieurs composés lipidiques (hydrophobes).
Selon un mode de réalisation, une nanocapsule selon l'invention peut comprendre une écorce formée d'au moins un tensioactif lipophile solide à température ambiante.
Les nanocapsules conformes à l'invention sont particulièrement avantageuses à titre de véhicule de formulation d'actifs. Par exemple, ces nanocapsules peuvent être utiles pour la fabrication de compositions phytosanitaires ou pharmaceutiques.
La présente invention vise également des compositions contenant des nanocapsules conformes à l'invention.
Au sens de l'invention, l'expression température ambiante désigne une température variant de 18 à 25 0C.
La présente invention est illustrée par les exemples suivants qui sont présentés à titre illustratif et non limitatif du domaine de l'invention. Exemple 1 : Préparation de nanocapsules dont le cœur lipidique est chargée en un actif hydrosoluble
On réalise 5 g d'une émulsion contenant 75 mg de Lipoïd S75-3®, 504 mg de Labrafac WL 1349® lipophile, 504 mg de Solutol HS® 15,383 g d'eau et 88 mg de chlorure de sodium.
Parallèlement, des cristaux de fluorescéine de sodium (10 mg) sont incorporés sous chauffage à 50 0C et sous agitation dans le Labrafac (3 g) contenant des micelles inverses de Span 80 (0,6 g) (20 % masse/masse).
Après homogénéisation de cette suspension micellaire, 0,25 ml en sont introduits dans l'émulsion précédente.
L'ensemble est placé sous agitation magnétique. Un chauffage est appliqué jusqu'à atteindre une température de 85 0C. Toujours sous agitation magnétique, on laisse refroidir le système jusqu'à une température de 60 0C. Ces cycles thermiques (entre 85 0C et 60 0C) sont réalisés trois fois de façon à obtenir des microémulsions de mieux en mieux structurées. Le système est alors maintenu sous sa forme microémulsion en le stabilisant à une température comprise dans (ou au proche voisinage) de la Zone d'Inversion de Phase, en l'espèce 65 0C.
Les nanocapsules sont finalisées par trempage dans de l'eau froide (5 0C). Les nanocapsules sont séparées du milieu par centrifugation.

Claims

REVENDICATIONS
1. Nanocapsules à cœur lipidique liquide et écorce lipidique solide et chargées au sein de leur cœur lipidique en au moins un actif hydrosoluble ou hydrodispersible, ledit actif y étant présent sous la forme d'un système micellaire inverse.
2. Nanocapsules selon la revendication précédente, dans lesquelles le système micellaire inverse comprend un système tensioactif formé d'au moins un tensioactif possédant un HLB inférieur à 10.
3. Nanocapsules selon la revendication précédente, dans lesquelles le système tensioactif est mis en œuvre dans un rapport pondéral actif(s)/tensioactif(s) variant de 0,01 à 0,3 et en particulier de 0,05 à 0,1.
4. Nanocapsules selon l'une quelconque des revendications précédentes, dont le cœur est formé d'au moins un corps gras liquide ou semi-liquide.
5. Nanocapsules selon l'une quelconque des revendications précédentes, dont le coeur comprend au moins un triglycéride, un ester d'acide gras, ou un de leurs mélanges.
6. Nanocapsules selon l'une quelconque des revendications précédentes, dont l'écorce est formée d'au moins un tensioactif lipophile solide à température ambiante.
7. Nanocapsules selon la revendication précédente, dans lesquelles le tensioactif lipophile est à base de phospho lipide, et notamment est une lécithine dont la proportion en phosphatidylcholine est comprise entre 40 et 80 % en poids.
8. Nanocapsules selon la revendication 6 ou 7, dans lesquelles le rapport corps gras liquide/tensioactif lipophile varie de 1 à 15, notamment de 1,5 à 13 et plus particulièrement de 3 à 8.
9. Nanocapsules selon l'une quelconque des revendications précédentes, possédant une taille moyenne inférieure à 150 nm, notamment inférieure à 100 nm et plus particulièrement inférieure à 50 nm.
10. Nanocapsules selon l'une quelconque des revendications précédentes, possédant une épaisseur d'écorce solide variant de 2 à 10 nm.
11. Nanocapsules selon l'une quelconque des revendications précédentes, dans lesquelles l'actif est un composé pharmaceutiquement actif, cosmétiquement actif ou actif dans un domaine phytosanitaire ou alimentaire.
12. Procédé utile pour la préparation de nanocapsules à cœur lipidique liquide et écorce lipidique solide et chargées au niveau de leur cœur lipidique en au moins un actif hydrosoluble ou hydrodispersible, ledit procédé comprenant au moins les étapes consistant à : disposer d'une émulsion huile-dans-eau, contenant au moins un actif hydrosoluble ou hydrodispersible sous la forme d'un système micellaire inverse et au moins un système tensioactif contenant au moins un tensioactif thermosensible, non ionique et hydrophile, augmenter sa température jusqu'à une température T2 supérieure à sa température d'inversion de phase (TIP) pour obtenir une émulsion eau-dans-huile suivie d'une diminution de la température jusqu'à une température T1, Ti<TIP<T2 pour obtenir de nouveau une émulsion huile-dans-eau, le cas échéant, effectuer un ou plusieurs cycles de température autour de la zone d'inversion de phase entre Ti et T2, stabiliser ledit système à une température située dans ou au proche voisinage de l'inversion de phase pour former la microémulsion attendue, et effectuer la trempe de ladite microémulsion, de manière à obtenir des nanocapsules formées d'un cœur lipidique liquide à température ambiante enrobé d'une écorce lipidique solide à température ambiante, et contenant ledit actif sous la forme d'un système micellaire inverse.
13. Procédé selon la revendication précédente, dans lequel le tensioactif hydrophile possède un HLB allant de 8 à 18, notamment de 10 à 16.
14. Procédé selon la revendication 12 ou 13, dans lequel le tensioactif hydrophile est choisi parmi les alcools gras éthoxylés, les acides gras éthoxylés, les glycérides partiels d'acides gras éthoxylés, les triglycérides d'acides gras polyéthoxylés, et leurs mélanges.
15. Procédé selon l'une quelconque des revendications 12 à 14, dans lequel la phase grasse huileuse comprend au moins un composé gras liquide tel que défini en revendication 5.
16. Procédé selon la revendication précédente, dans lequel le système tensioactif comprend en outre au moins un tensioactif lipophile.
17. Procédé selon la revendication précédente, dans lequel le tensioactif lipophile est tel que défini en revendications 6 à 8.
18. Procédé selon l'une quelconque des revendications précédentes, dans lequel le système micellaire inverse est tel que défini en revendications 2 ou 3.
19. Procédé selon l'une quelconque des revendications 12 à 18, dans lequel la microémulsion est formée d'au moins un triglycéride d'acide gras et d'un dérivé 2- hydroxystérate de polyéthylène glycol, et le cas échéant d'une lécithine.
20. Composition contenant au moins des nanocapsules selon l'une quelconque des revendications 1 à 11.
PCT/FR2008/051042 2007-06-11 2008-06-11 Nanocapsules a coeur lipidique liquide chargees en actifs(s) hydrosoluble(s) ou hydrodispersible(s) WO2009001019A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA2690471A CA2690471A1 (fr) 2007-06-11 2008-06-11 Nanocapsules a coeur lipidique liquide chargees en actif(s) hydrosoluble(s) ou hydrodispersible(s)
EP08805977A EP2167053A2 (fr) 2007-06-11 2008-06-11 Nanocapsules a coeur lipidique liquide chargees en actif(s) hydrosoluble(s) ou hydrodispersible(s)
US12/663,937 US9333180B2 (en) 2007-06-11 2008-06-11 Nanocapsules with a liquid lipid core charged with water-soluble or water-dispersible active agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0755652 2007-06-11
FR0755652A FR2916973B1 (fr) 2007-06-11 2007-06-11 Nanocapsules a coeur lipidique chargees en actif(s) hydrosoluble(s) ou hydrodispersible(s)

Publications (2)

Publication Number Publication Date
WO2009001019A2 true WO2009001019A2 (fr) 2008-12-31
WO2009001019A3 WO2009001019A3 (fr) 2009-03-26

Family

ID=39046733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/051042 WO2009001019A2 (fr) 2007-06-11 2008-06-11 Nanocapsules a coeur lipidique liquide chargees en actifs(s) hydrosoluble(s) ou hydrodispersible(s)

Country Status (5)

Country Link
US (1) US9333180B2 (fr)
EP (1) EP2167053A2 (fr)
CA (1) CA2690471A1 (fr)
FR (1) FR2916973B1 (fr)
WO (1) WO2009001019A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067037A1 (fr) * 2008-12-12 2010-06-17 Universite D'angers Procede de preparation de nanoparticules lipidiques
WO2015118496A1 (fr) 2014-02-07 2015-08-13 Atlangram Nanocapsules lipidiques comprenant un antibiotique et leurs utilisations en therapie
WO2017153434A1 (fr) 2016-03-07 2017-09-14 Cryovac, Inc. Film à ouverture facile pour emballage moulant sous vide
WO2020021052A2 (fr) 2018-07-27 2020-01-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Utilisation d'alcools terpéniques acycliques pour améliorer l'activité antimicrobienne de la colistine
EP3679928A1 (fr) 2019-01-08 2020-07-15 Atlangram Composition pharmaceutique de type gel pour traiter/prevenir une infection
US12121615B2 (en) 2019-01-08 2024-10-22 Amokrane REGHAL Gel type pharmaceutical composition for treating/preventing an infection

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9393315B2 (en) 2011-06-08 2016-07-19 Nitto Denko Corporation Compounds for targeting drug delivery and enhancing siRNA activity
FR2943544B1 (fr) 2009-03-31 2012-04-20 Univ Angers Procede de preparation de capsules lipidiques fonctionnalisees.
US10196637B2 (en) 2011-06-08 2019-02-05 Nitto Denko Corporation Retinoid-lipid drug carrier
CN116459214A (zh) 2015-07-09 2023-07-21 麦迪西斯医药公司 在生物相容性反胶束系统内原位制备氰基桥接的金属纳米粒子的方法
GB201721832D0 (en) 2017-12-22 2018-02-07 Waterford Institute Of Tech Ocular drug delivery
BR112021025859A2 (pt) * 2019-06-21 2022-03-03 Univ Catholique Louvain Nanocápsulas de lipídeo carregadas com miméticos de incretina
US12090151B1 (en) 2023-05-12 2024-09-17 Michael Guarnieri Injectable sustained release buprenorphine formulation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805761A1 (fr) * 2000-03-02 2001-09-07 Mainelab Nanocapsules lipidiques, procede de preparation et utilisation comme medicament

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961970A (en) * 1993-10-29 1999-10-05 Pharmos Corporation Submicron emulsions as vaccine adjuvants
FR2840532B1 (fr) * 2002-06-11 2005-05-06 Ethypharm Sa Nanocapsules lipidiques furtives, procede de preparation et utilisation comme vecteur de principes(s) actif(s)
EP1955695A1 (fr) * 2007-02-06 2008-08-13 Institut National De La Sante Et De La Recherche Medicale (Inserm) Nanocapsules de complexes lipophiles d'acides nucléiques
FR2916974B1 (fr) * 2007-06-11 2010-11-26 Univ Angers Procede de preparation de nanoparticules lipidiques

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2805761A1 (fr) * 2000-03-02 2001-09-07 Mainelab Nanocapsules lipidiques, procede de preparation et utilisation comme medicament

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2167053A2 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010067037A1 (fr) * 2008-12-12 2010-06-17 Universite D'angers Procede de preparation de nanoparticules lipidiques
FR2939699A1 (fr) * 2008-12-12 2010-06-18 Univ Angers Procede de preparation de nanoparticules lipidiques
US9302241B2 (en) 2008-12-12 2016-04-05 Universite D'angers Method of preparing lipid nanoparticles
WO2015118496A1 (fr) 2014-02-07 2015-08-13 Atlangram Nanocapsules lipidiques comprenant un antibiotique et leurs utilisations en therapie
WO2017153434A1 (fr) 2016-03-07 2017-09-14 Cryovac, Inc. Film à ouverture facile pour emballage moulant sous vide
WO2020021052A2 (fr) 2018-07-27 2020-01-30 INSERM (Institut National de la Santé et de la Recherche Médicale) Utilisation d'alcools terpéniques acycliques pour améliorer l'activité antimicrobienne de la colistine
EP3679928A1 (fr) 2019-01-08 2020-07-15 Atlangram Composition pharmaceutique de type gel pour traiter/prevenir une infection
WO2020144201A1 (fr) 2019-01-08 2020-07-16 Atlangram Composition pharmaceutique de type gel pour traiter/prevenir une infection
US12121615B2 (en) 2019-01-08 2024-10-22 Amokrane REGHAL Gel type pharmaceutical composition for treating/preventing an infection

Also Published As

Publication number Publication date
CA2690471A1 (fr) 2008-12-31
WO2009001019A3 (fr) 2009-03-26
FR2916973B1 (fr) 2010-02-26
FR2916973A1 (fr) 2008-12-12
US9333180B2 (en) 2016-05-10
US20100266676A1 (en) 2010-10-21
EP2167053A2 (fr) 2010-03-31

Similar Documents

Publication Publication Date Title
FR2916974A1 (fr) Procede de preparation de nanoparticules lipidiques
EP2167053A2 (fr) Nanocapsules a coeur lipidique liquide chargees en actif(s) hydrosoluble(s) ou hydrodispersible(s)
CA2401766C (fr) Nanocapsules lipidiques, procede de preparation et utilisation comme medicament
EP2376218B1 (fr) Procede de preparation de nanoparticules lipidiques
US5139803A (en) Method and liposome composition for the stabilization of oxidizable substances
US5015483A (en) Liposome composition for the stabilization of oxidizable substances
EP2129455B1 (fr) Procédé de préparation de nano-émulsions
EP2413719B1 (fr) Procede de preparation de capsules lipidiques fonctionnalisees
EP0833573A1 (fr) Vehicules de principes actifs a base de tensioactifs non ioniques et leurs applications notamment dans les domaines alimentaire, cosmetique et pharmaceutique
EP1003488B1 (fr) Procede de preparation de nanocapsules de type vesiculaire
CH665772A5 (fr) Composition a usage cosmetique ou pharmaceutique contenant des niosomes et au moins un polyamide hydrosoluble et procede de preparation de cette composition.
FR2950253A1 (fr) Nanocapsules lipidiques, procede de preparation et utilisation comme medicament
FR2860717A1 (fr) Compositions de particules lipidiques solides monodisperses
FR3026009A1 (fr) Nanocapsules lipidiques, compositions pharmaceutiques, procede de preparation, et utilisations correspondants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08805977

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2008805977

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2690471

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12663937

Country of ref document: US