WO2009000198A1 - Procede, systeme et appareil d'etablissement de canal de longueur d'onde - Google Patents

Procede, systeme et appareil d'etablissement de canal de longueur d'onde Download PDF

Info

Publication number
WO2009000198A1
WO2009000198A1 PCT/CN2008/071402 CN2008071402W WO2009000198A1 WO 2009000198 A1 WO2009000198 A1 WO 2009000198A1 CN 2008071402 W CN2008071402 W CN 2008071402W WO 2009000198 A1 WO2009000198 A1 WO 2009000198A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
path
network node
wavelength path
damage
Prior art date
Application number
PCT/CN2008/071402
Other languages
English (en)
French (fr)
Inventor
Xiaobing Zi
Huiying Xu
Shuqiang Shen
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to EP08757811A priority Critical patent/EP2134012A4/en
Publication of WO2009000198A1 publication Critical patent/WO2009000198A1/zh
Priority to US12/501,826 priority patent/US20090274464A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0246Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU using one wavelength per ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/025Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU using one wavelength per ONU, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0257Wavelength assignment algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0271Impairment aware routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0258Wavelength identification or labelling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • H04J14/0269Optical signaling or routing using tables for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0279WDM point-to-point architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0081Fault tolerance; Redundancy; Recovery; Reconfigurability

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, system, and device for establishing a wavelength channel. Background technique
  • MPLmS Multi-Protocol label wavelength switching
  • OSPF-TE Open Shortest Path First with Traffic Engineering
  • OSPF-TE Open Shortest Path First with Traffic Engineering
  • a wavelength path can be obtained by using the Constrained Shortest Path First (CSPF) algorithm.
  • the signaling protocol such as the Resource Reservation Protocol with Traffic Engineering (RSVP) protocol, can automatically establish an end-to-end connection based on the calculated wavelength path to establish a wavelength channel.
  • the damages affecting the performance of the optical signal are: power attenuation, dispersion, noise, etc. These damages affect the performance of the optical signal.
  • a wavelength channel established according to the wavelength path will not be available. In order to make the established wavelength channel available, it is necessary to ensure that the damage of the wavelength path cannot exceed a certain value.
  • the method determines whether the damage on the path meets the requirements, and the method determines whether the calculated wavelength path satisfies the damage requirement, if not If it is satisfied, the path needs to be recalculated and selected until a path that satisfies the damage constraint is selected, and then the wavelength channel is established according to the path, and the established wavelength channel can be guaranteed.
  • Using the above method to establish a usable wavelength channel may require calculation and judgment many times in order to obtain a wavelength path that satisfies the damage requirement, and then the available wavelength channel can be established according to the wavelength path, and the workload is large. It takes a long time and is inefficient. Summary of the invention
  • embodiments of the present invention provide a method, system, and device for establishing a wavelength channel, which can efficiently and simply establish a usable wavelength channel.
  • the embodiment of the invention provides a method for establishing a wavelength channel, including:
  • an embodiment of the present invention provides a path calculation server, including:
  • a receiving unit configured to receive a wavelength path calculation request between network nodes, a wavelength path constraint condition, and resource information of each network node
  • a calculating unit configured to: when the receiving unit receives the wavelength path calculation request, calculate, according to the received wavelength path constraint condition and the resource information, the wavelength path between the network node and the wavelength path of the wavelength path Compensation information.
  • an embodiment of the present invention provides a network node device, including:
  • an obtaining unit configured to obtain a wavelength path constraint condition of the network node to the destination network node and resource information of each network node;
  • a calculating unit configured to calculate, according to the wavelength path constraint condition and the resource information obtained by the obtaining unit, a wavelength path and a wavelength damage compensation information of the wavelength path of the network node to the destination network node;
  • a connecting unit configured to connect the wavelengths of the different interfaces according to the wavelength path obtained by the calculation of the network node.
  • an embodiment of the present invention further provides a control server, including:
  • a receiving unit configured to receive wavelength path information between network nodes and wavelength damage compensation information of the wavelength path
  • control unit configured to control, according to the wavelength path information received by the receiving unit, to establish a wavelength channel between the network nodes, and according to wavelength damage compensation information of the wavelength path, Each network node on the wavelength channel performs damage compensation on the wavelength signals in the respective interfaces.
  • the embodiment of the present invention provides a network communication system, including multiple network nodes, where the network system further includes:
  • a path calculation server configured to receive a wavelength path calculation request, a wavelength path constraint condition, and network resource information between the network nodes, and obtain a wavelength path between the network nodes according to the wavelength path constraint condition and the resource information And the wavelength damage compensation information of the wavelength path; the network nodes sequentially perform wavelength connection according to the wavelength path calculated by the path calculation server, establish a wavelength channel, and according to the wavelength damage compensation information in the interface The wavelength signal is compensated for damage.
  • the embodiment of the present invention provides another network communication system, including multiple network nodes, where the network node includes:
  • an obtaining unit configured to obtain a wavelength path constraint condition of the network node to the destination network node and resource information of each network node;
  • a calculating unit configured to calculate, according to the wavelength path constraint condition and the resource information obtained by the obtaining unit, a wavelength path and a wavelength damage compensation information of the wavelength path of the network node to the destination network node;
  • a connecting unit configured to connect wavelengths of different interfaces according to the wavelength path calculated by each network node; and a compensation unit, configured to damage the wavelength signal in the interface of the network node according to the wavelength damage compensation information of the wavelength path calculated by each network node make up.
  • the wavelength path damage compensation information of the wavelength path is obtained while obtaining the wavelength path between the network nodes, and the wavelength of the transmission is determined according to the wavelength damage compensation information in the process of establishing the wavelength channel according to the wavelength path.
  • the signal is compensated for damage, creating a usable wavelength channel efficiently, simply and quickly.
  • 1 is a schematic structural diagram of an embodiment of a network communication system according to the present invention
  • 2 is a schematic structural diagram of another embodiment of a network communication system according to the present invention
  • FIG. 3 is a schematic diagram showing an embodiment of a network node in another embodiment of the network communication system of the present invention.
  • FIG. 4 is a schematic flow chart of an embodiment of a method for establishing a wavelength channel according to the present invention.
  • FIG. 5 is a flow chart showing another embodiment of a method for establishing a wavelength channel according to the present invention. detailed description
  • An embodiment of the network communication system of the present invention includes a path calculation server and a plurality of network nodes, wherein the path calculation server is configured to receive a wavelength path calculation request, a wavelength path constraint condition, and network resource information between the network nodes, and Calculating, according to the wavelength path constraint condition and the resource information, a wavelength path between the network node and wavelength damage compensation information of the wavelength path; and the plurality of network nodes calculate a wavelength path calculated by the path according to the path calculation server
  • the wavelength connection is sequentially performed to establish a wavelength channel, and the wavelength signal in the interface is damaged according to the wavelength damage compensation information of the wavelength path.
  • the establishment of a wavelength channel is taken as an example.
  • Figure 1 shows a first network node, an intermediate network node x, a destination network node, and a path computation server for a wavelength channel in the embodiment.
  • the path calculation server includes a receiving unit 20, a calculating unit 21, and a sending unit 22, where the receiving unit 20 is configured to receive a wavelength path calculation request, a wavelength path constraint condition, and a network in the network from the first network node to the destination network node.
  • the resource information of each network node; the receiving unit 20 can obtain the path calculation request and the wavelength path constraint condition through the extended Path Computation Element Communication Protocol (PCECP), and according to the practice, the damage affecting the optical signal mainly has power. Attenuation, dispersion, noise, etc., so the wavelength path constraints may include power loss tolerance of the path, optical signal noise ratio (OSNR) tolerance, dispersion tolerance, and polarization mode dispersion tolerance.
  • OSNR optical signal noise ratio
  • the path calculation server needs to know the network resource information, so as to calculate an available wavelength path by using the CSPF algorithm, and the network resource information includes the interface information of the network node, the bandwidth information of the corresponding link of the interface, and the cost information of the corresponding link of the interface.
  • the power parameter is adjustable
  • the adjustable range of the power parameter, the dispersion, the dispersion compensation parameter is adjustable
  • the adjustable range of the dispersion compensation parameter, the polarization mode dispersion, and the polarization mode dispersion compensation parameter are adjustable.
  • the receiving unit 20 can obtain the resource information of all network nodes from any network node by using a routing protocol (such as extended OSPF-TE) (as shown in FIG. 1 , the receiving unit 20 obtains network resources from the network node 1 through OSPF-TE.
  • a routing protocol such as extended OSPF-TE
  • the resource information may also be obtained by other means, such as each network node registering the resource information with the path calculation server.
  • the calculating unit 21 calculates the wavelength path between the network nodes and the wavelength damage compensation information of the wavelength path according to the received wavelength path constraint condition and the resource information.
  • the wavelength damage compensation information includes power and/or dispersion compensation and/or polarization mode dispersion compensation value or adjustment amount of the wavelength signal in the interface of the network node.
  • the wavelength damage compensation information of the wavelength path is calculated by the calculating unit 21, so that the adjustable damage compensation device is used on the network node. If the calculated path does not meet the damage requirement, the network node may be established when the wavelength channel is established. According to the path calculation compensation server, the wavelength damage compensation information obtained by the path calculation server adjusts some parameters affecting the damage to satisfy the damage constraint condition, and does not need to recalculate and select the path as in the prior art.
  • calculation unit 21 includes a first calculation unit 211, a second calculation unit 212, a determination unit 213, and an indication unit 214, where:
  • a first calculating unit 211 configured to calculate, according to the resource information, a wavelength path between the two network nodes
  • the second calculating unit 212 is configured to calculate a damage parameter of the wavelength path obtained by the first calculating unit 211.
  • the damage affecting the optical signal mainly includes power loss, dispersion, noise, and the like, and thus the wavelength path is
  • the constraints may include one or more of a path's power loss tolerance, optical signal noise ratio (OSNR) tolerance, dispersion tolerance, and polarization mode dispersion tolerance.
  • OSNR optical signal noise ratio
  • dispersion tolerance dispersion tolerance
  • polarization mode dispersion tolerance polarization mode dispersion tolerance
  • OS R out - lOlog Where Pinl, Pin2, and PinN are the powers entering the amplifiers in the wavelength path; NF1,
  • NF2, ..., NFN is the noise figure of the corresponding amplifier; h is a constant; w is a fixed value associated with the wavelength.
  • network nodes are interconnected by a pair of optical fibers, which are responsible for transmitting signals to and receiving signals from the other party.
  • a pair of optical fibers are assigned an interface number, that is, one interface corresponds to two optical fiber sockets, which are a transmitting end and a receiving end (ie, an output end and an input end).
  • Input power or dispersion compensation can be adjusted for a single wavelength when an adjustable power conditioning unit or dispersion compensation unit is used.
  • the path calculation server needs to know the input power Pin of the amplifier in each network node and whether it is adjustable, adjustable range, noise coefficient and other resource information.
  • the acquisition of these resource information can be achieved through a routing protocol.
  • each network node can flood the power of its interface and its adjustable, adjustable range, and noise figure to the path computation server through the OSPF-TE protocol.
  • This requires extending the existing OSPF-TE protocol and adding a sub-TLV to the OSPF-TE link-type length-value (TLV, Type-Length-Value) parameter.
  • TLV Type-Length-Value
  • Parameter Type indicates the parameter type
  • definition 1 indicates the interface power parameter
  • the F flag indicates whether the parameter is adjustable: 0 means not adjustable, 1 means adjustable.
  • the ⁇ flag indicates location information: 0 indicates the power information of the receiver amplifier, and 1 indicates the power information of the transmitter amplifier. If you need to simultaneously release the power parameters of the receiving end and the transmitting end of a certain wavelength, you need to bring two interface power parameter sub-TLVs. NF indicates the noise figure of the corresponding amplifier of this interface.
  • Valuel indicates that the interface corresponds to the default value of the amplifier input power; Value2 indicates its adjustable range.
  • each network node can flood the optical signal power parameters in its interface to the path calculation server, and the path calculation server can use the information to calculate the OSNR of the path.
  • the path calculation server needs to be able to calculate the dispersion of the path.
  • the dispersion of the path is mainly derived from the dispersion introduced by the fiber, and the amount of dispersion introduced by the fiber is equal to the dispersion coefficient of the fiber multiplied by the length of the fiber. Therefore, the amount of dispersion introduced by the fiber can be obtained by knowing the length of the fiber.
  • various optical components on the path also introduce a certain amount of dispersion, which can be obtained through the parameter table of the optical component.
  • the amount of dispersion introduced by each segment of the fiber and the amount of dispersion introduced by each of the optical components are accumulated to obtain the amount of dispersion of the entire path. Since the optical signal has a certain dispersion tolerance, when the path dispersion amount exceeds the signal dispersion tolerance, the signal will not be correctly received. Therefore, in the optical transmission system, there is generally a dispersion compensation device, and the dispersion compensation device may be optical compensation. It can also be electrical compensation; there is a fixed dispersion compensation device, and there is also a tonable dispersion compensation device. When there is a dispersion compensating means in the transmission system, the final amount of dispersion of the path is the above-described dispersion accumulation and subtraction of the compensation amount of the dispersion compensating means.
  • the dispersion compensation information of the optical signal in each network node interface can also be flooded to the path calculation server by extending the OSPF-TE protocol, and the method is similar to the flooding power parameter.
  • the processing method in consideration of other constraint conditions of the path is similar to the above-described processing method, and the description will not be repeated here.
  • the determining unit 213 is configured to determine, by the second calculating unit 212, whether the damage parameter of the obtained wavelength path satisfies the damage requirement indicated by the wavelength path constraint condition received by the receiving unit 20; the indicating unit 214 is configured to receive When the determination unit 213 outputs a negative determination result, the corresponding wavelength damage compensation information is generated according to the wavelength path constraint condition and the resource information.
  • the wavelength damage compensation information may include the value of at least one of power, dispersion compensation or polarization mode dispersion compensation of the wavelength signal in the interface of the network node, and may also include power, dispersion compensation or polarization of the wavelength signal in the interface of the network node. The amount of adjustment of at least one of the modulo dispersion compensation.
  • the wavelength path constraint condition that the channel needs to satisfy is the OSNR value of the established wavelength channel.
  • the power of the first network node is adjustable, the adjustable range is 1-6DB, and the power of the intermediate network node X is also adjustable, and the adjustable range is 0.1-20DB.
  • the element 213 determines that the OSNR of the calculated wavelength path does not meet the requirement of at least OSNR1, and the indication unit 214 can generate the first network node to increase the power 2DB when establishing the wavelength channel by using the above-mentioned wavelength path constraint condition and resource information, and the intermediate network node
  • the corresponding network node can adjust the corresponding damage parameter through the compensation information during the wavelength channel establishment process to satisfy the wavelength damage constraint of the wavelength path.
  • the indicated constraints require the establishment of a usable wavelength channel.
  • the sending unit 22 is configured to send, by the calculating unit 21, the obtained wavelength path and the wavelength damage compensation information of the wavelength path.
  • the wavelength path impairment compensation information may be transmitted by an extended path calculation response message.
  • each of the network nodes (the first network node of the one wavelength channel, the intermediate network node X and the destination network node) further includes a connection unit 10 and a compensation unit 11, and the compensation unit 11 calculates and obtains according to the path calculation server.
  • the wavelength damage compensation information adjusts the relevant parameters of the network node so that the damage of the wavelength path satisfies the wavelength path damage constraint
  • the connecting unit 10 connects the wavelength information compensated by the compensation unit 11 according to the calculated wavelength path information to establish a usable wavelength. aisle.
  • the RSVP-TE protocol can be extended to notify the automatic connection of the wavelengths of the interfaces in the wavelength path and notify each network node to adjust the relevant parameters of the relevant wavelengths in each interface to make the damage of the wavelength path meet the requirements.
  • Type is set to 5; Parameter Type is the parameter type (1 is the adjustment power, 2 is the adjustment dispersion compensation, 3 is the PMD compensation), and the P flag indicates the adjusted position (0 means adjust the receiving end, 1 means adjust the transmitting end; if necessary At the same time, adjusting the receiving end and the transmitting end of an interface requires two adjustment parameter sub-objects, and Value indicates the adjustment value.
  • the meaning of other fields can be found in RFC3209.
  • the label sub-objects (wavelength sub-objects, draft-rabbat-ccamp-gmpls-lambda-labels-OO.txt), and the tuning parameter sub-objects defined above, can be complete Express the available path information.
  • Each network node along the way can view the sub-objects in the ERO to complete the connection of wavelengths in different interfaces and adjust related parameters.
  • the RS VP-TE protocol signaling can be used to instruct the network node to connect the wavelengths in different interfaces, and adjust the power, dispersion compensation, polarization mode dispersion compensation, and the like for the wavelength.
  • FIG. 2 shows a first network node, an intermediate network node x, a destination network node, and a wavelength channel of the embodiment.
  • Path calculation server and a control server The difference between the embodiment and the embodiment shown in FIG. 1 is that the establishment of the wavelength channel in this embodiment is not automatically connected by signaling the wavelength; but the automatic connection of the wavelengths of the interfaces in the wavelength path is controlled by the control server. And notifying each network node to adjust related parameters of related wavelengths in each interface, so that the damage of the wavelength path satisfies the requirement.
  • the path calculation server sends the calculated wavelength path and the damage compensation information of the wavelength path to the control server, and the control server further controls the obtained wavelength path according to the path calculation server, and controls the multiple The network nodes sequentially perform wavelength connection, establish a wavelength channel, and control the network node to damage the wavelength signal in the interface according to the wavelength damage compensation information of the wavelength path.
  • the control server further includes a receiving unit 30, configured to receive wavelength path information between network nodes obtained by the path calculation server and wavelength damage compensation information of the wavelength path, and a control unit 31, configured to be used according to the receiving unit
  • the received wavelength path information controls the establishment of a wavelength channel between the network nodes, and the network node in the control channel of the wavelength path performs damage compensation on the wavelength signal in the interface according to the wavelength damage compensation information of the wavelength path.
  • the wavelength path and the wavelength damage compensation information of the wavelength path are calculated by a path calculation server in the network.
  • the wavelength path and the wavelength damage compensation information of the wavelength path may be
  • the network manager setting can also be obtained through the first network node of the specific wavelength channel, and is similar to the path calculation server by the first network node.
  • another embodiment of the network communication system of the present invention includes a plurality of network nodes, and FIG. 3 shows a schematic structural diagram of one of the plurality of network nodes.
  • the network node includes an obtaining unit 50, a calculating unit 51, a connecting unit 52, and a compensating unit 53, the obtaining unit 50, configured to obtain a wavelength path constraint condition and network resource information of the network node to the destination network node, and a calculating unit 51, configured to obtain, according to the obtaining unit
  • the wavelength path constraint condition and the resource information calculation Obtaining the wavelength path of the network node to the destination network node and the wavelength damage compensation information of the wavelength path; the connecting unit 52, configured to connect the wavelengths of the different interfaces according to the wavelength path calculated by the network node, and the compensation unit 53
  • the wavelength damage compensation information of the wavelength path calculated according to each network node in the network is used to perform damage compensation on the wavelength in the interface.
  • the connection unit 52 and the compensation unit 53 can also satisfy the requirements of the wavelength path damage according to the automatic connection of the interface wavelengths in the wavelength path and the related parameters of the relevant wavelengths in the automatic adjustment interface according to the extended RSVP-TE protocol.
  • another embodiment of the network communication system of the present invention includes a plurality of network nodes and a control server, and the control server controls the plurality of network nodes to perform wavelength connection according to the wavelength path calculated by the network node, and establishes a wavelength.
  • the control server controls the plurality of network nodes to perform wavelength connection according to the wavelength path calculated by the network node, and establishes a wavelength.
  • FIG. 4 is a schematic flowchart of an embodiment of a method for establishing a wavelength channel according to the present invention.
  • the method in this embodiment specifically includes: Step 600, path calculation
  • the server receives the wavelength path calculation request, the wavelength path constraint condition, and the resource information of each network node in the network; the path calculation server may obtain the path calculation request and the wavelength path by using an extended Path Computation Element Communication Protocol (PCECP) Constraints, practice has proved that the damage affecting the optical signal mainly includes power loss, dispersion and noise.
  • PCECP Path Computation Element Communication Protocol
  • the wavelength path constraints can include the power loss tolerance of the path and the optical signal to noise ratio (OSNR, Optical Signal Noise Ratio).
  • OSNR optical signal to noise ratio
  • the path calculation server needs to know the network resource information, so as to calculate an available wavelength path by using the CSPF algorithm, and the network resource information includes the interface information of the network node, the bandwidth information of the corresponding link of the interface, and the cost information of the corresponding link of the interface.
  • the power parameter is adjustable
  • the adjustable range of the power parameter, the dispersion, the dispersion compensation parameter is adjustable
  • the adjustable range of the dispersion compensation parameter, the polarization mode dispersion, and the polarization mode dispersion compensation parameter are adjustable.
  • the polarization mode dispersion compensation parameter adjustable range, the power loss of the link connecting the interface, the dispersion of the link connecting the interface, and the polarization mode dispersion of the link connecting the interface.
  • the path calculation server may obtain resource information of all network nodes from any network node (such as extended OSPF-TE) through a routing protocol, or may obtain the resource information of other network nodes by other means, such as each network node registers the resource information with the path calculation server.
  • a network node can flood the power of each network node interface with its adjustable, adjustable range, noise figure and other information to the path calculation server through the OSPF-TE protocol. This requires extending the existing OSPF-TE protocol and adding OSPF-TE link TLVs.
  • a sub-TLV. The Value part of the sub-TLV is formatted as follows:
  • Parameter Type indicates the parameter type
  • definition 1 indicates the interface power parameter
  • the F flag indicates whether the parameter is adjustable: 0 means not adjustable, 1 means adjustable.
  • the ⁇ flag indicates position information: 0 indicates the power information of the receiver amplifier, and 1 indicates the power information of the transmitter at the transmitter. If you need to simultaneously release the power parameters of the receiving end and the transmitting end of a certain wavelength, you need to bring two interface power parameter sub-TLVs.
  • NF indicates the noise figure of the corresponding amplifier of this interface.
  • Valuel indicates that the interface corresponds to the default value of the amplifier input power; Value2 indicates its adjustable range.
  • each network node can flood the power parameters of its own interface to the path calculation server.
  • the dispersion of the path is mainly derived from the dispersion introduced by the fiber.
  • the amount of dispersion introduced by the fiber is equal to the dispersion coefficient of the fiber multiplied by the length of the fiber. Therefore, the amount of dispersion introduced by the fiber can be obtained by knowing the length of the fiber.
  • various optical components on the path also introduce a certain amount of dispersion, which can be obtained through the parameter table of the optical component.
  • Step S601 calculating wavelength path between the network nodes and wavelength damage compensation information of the wavelength path according to the received wavelength path constraint condition and the resource information; obtaining the wavelength path is the same as the prior art manner, where
  • the obtaining of the wavelength damage compensation information of the wavelength path specifically includes calculating a damage parameter of the wavelength path; determining whether the damage parameter satisfies the damage requirement indicated by the wavelength path constraint; and when the determination result is no, Corresponding wavelength damage compensation information is generated according to the wavelength path constraint condition and the resource information.
  • the damage affecting the optical signal mainly includes power loss, dispersion, noise, etc.
  • the wavelength path constraint may include the power loss tolerance of the path and the optical signal noise ratio (OSNR).
  • OSNR optical signal noise ratio
  • the damage parameter to be calculated is determined according to the constraint condition.
  • the OSNR value of the wavelength path needs to be calculated, and the formula of the OSNR value of the calculation path is as follows:
  • OS R out - lOlog where Pinl, Pin2, , PinN are the input power of each amplifier in the wavelength path; NF1,
  • NF2, ..., NFN is the noise figure of the corresponding amplifier; h is a constant; w is a fixed value associated with the wavelength.
  • network nodes are interconnected by a pair of optical fibers, which are responsible for transmitting signals to and receiving signals from the other party.
  • a pair of optical fibers are assigned an interface number, that is, one interface corresponds to two optical fiber sockets, which are a transmitting end and a receiving end (ie, an output end and an input end).
  • Input power or dispersion compensation can be adjusted for a single wavelength when an adjustable power conditioning unit or dispersion compensation unit is used.
  • the path calculation server needs to know the input power Pin of the amplifier in each network node and whether it is adjustable, adjustable range, noise coefficient and other resource information.
  • the acquisition of these resource information can be achieved through a routing protocol.
  • each network node can flood the power of its interface and its adjustable, adjustable range, and noise figure to the path computation server through the 0SPF-TE protocol.
  • This requires extending the existing 0SPF-TE protocol to add a sub-TLV to the link TLV of the 0SPF-TE.
  • the Value part of this sub-TLV is formatted as follows:
  • Parameter Type indicates the parameter type
  • definition 1 indicates the interface power parameter.
  • the F flag indicates whether the parameter is adjustable: 0 means not adjustable, 1 means adjustable.
  • the P flag indicates location information: 0 indicates the power information of the receiver amplifier, and 1 indicates the power information of the transmitter at the transmitter. If you need to simultaneously release the power parameters of the receiving end and the transmitting end of a certain wavelength, you need to bring two interface power parameter sub-TLVs.
  • NF indicates the noise figure of the corresponding amplifier of this interface.
  • Valuel indicates that the interface corresponds to the default value of the amplifier input power; Value2 indicates its adjustable range.
  • each network node can flood the power parameters of its interface to the path calculation server, and the path calculation server can use this information to calculate the OSNR of the path.
  • the path calculation server needs to be able to calculate the dispersion of the path.
  • the dispersion of the path is mainly derived from the dispersion introduced by the fiber.
  • the amount of dispersion introduced by the fiber is equal to the dispersion coefficient of the fiber multiplied by the length of the fiber. Therefore, the amount of dispersion introduced by the fiber can be obtained by knowing the length of the fiber.
  • various optical components on the path also introduce a certain amount of dispersion, which can be obtained through the parameter table of the optical component.
  • the amount of dispersion introduced by each segment of the fiber and the amount of dispersion introduced by each of the optical components are accumulated to obtain the amount of dispersion of the entire path. Since the optical signal has a certain dispersion tolerance, when the path dispersion amount exceeds the signal dispersion tolerance, the optical signal will not be correctly received. Therefore, in the optical transmission system, there is generally a dispersion compensation device, and the dispersion compensation device may be light. The compensation can also be electrical compensation; there is a fixed dispersion compensation device, and there is also a tonable dispersion compensation device. When there is a dispersion compensation device in the transmission system, the final dispersion amount of the path is the above-described dispersion accumulation and subtraction of the compensation amount of the dispersion compensation device.
  • the dispersion compensation information of the optical signal in each network node interface can also be flooded to the path calculation server by extending the OSPF-TE protocol, and the method is similar to the flooding power parameter.
  • the processing method when considering other constraint conditions of the path is similar to the above-described processing method, and the description will not be repeated here.
  • the wavelength path constraint that the channel needs to satisfy is that the established OSNR value of the wavelength channel is at least For OSNR1, according to the resource information, the power of the first network node can be adjusted, the adjustable range is 1-6DB, and the power of the intermediate network node X is also adjustable, the adjustable range is 0.1-20DB, and the calculated wavelength is obtained through judgment.
  • the above-mentioned wavelength path constraint condition and resource information can be used to generate the power network 2DB when the first network node establishes the wavelength channel, and the intermediate network node X adjusts the power 1DB when establishing the wavelength channel. Damage compensation information.
  • the path calculation server sends the calculated wavelength path and the wavelength damage compensation information of the wavelength path to the corresponding wavelength path calculation requesting network node;
  • Step S603 The network nodes sequentially perform wavelength connection according to the calculated wavelength path, establish a wavelength channel, and perform damage compensation on the wavelength signal in the interface according to the wavelength damage compensation information of the wavelength path.
  • the RSVP-TE protocol can be extended to notify the automatic connection of the wavelengths of the interfaces in the wavelength path and to inform each network node to adjust the relevant parameters of the relevant wavelengths in each interface so that the damage of the wavelength path satisfies the requirements.
  • By adding an adjustment parameter sub-object to the ERO object of the RSVP-TE protocol it is possible to notify each network node to adjust the relevant parameters of the relevant wavelengths in each interface so that the damage of the wavelength path satisfies the required function.
  • the object is expanded to form the following:
  • Parameter Type is set to 5; Parameter Type is the parameter type (1 is the adjustment power, 2 is the adjustment dispersion compensation, 3 is the PMD compensation), and the P flag indicates the adjusted position (0 means adjust the receiving end, 1 means adjust the transmitting end; if necessary At the same time, adjusting the receiving end and the transmitting end of an interface requires two adjustment parameter sub-objects, and Value indicates the adjustment value.
  • Parameter Type is the parameter type (1 is the adjustment power, 2 is the adjustment dispersion compensation, 3 is the PMD compensation), and the P flag indicates the adjusted position (0 means adjust the receiving end, 1 means adjust the transmitting end; if necessary
  • adjusting the receiving end and the transmitting end of an interface requires two adjustment parameter sub-objects, and Value indicates the adjustment value.
  • Value indicates the adjustment value.
  • the label sub-objects (wavelength sub-objects, draft-rabbat-ccamp-gmpls-lambda-labels-OO.txt), and the tuning parameter sub-objects defined above, can be complete Express the available path information.
  • Each network node along the way can view the sub-objects in the ERO to complete the connection of wavelengths in different interfaces and adjust related parameters.
  • the RSVP-TE protocol signaling can be used to instruct the network node to connect the wavelengths in different interfaces, and adjust the power, dispersion compensation, polarization mode dispersion compensation, and the like for the wavelength.
  • the control server can also control the automatic connection of the wavelengths of the interfaces in the wavelength path and notify each network node to adjust the relevant parameters of the relevant wavelengths in each interface to make the damage of the wavelength path meet the requirements.
  • the path calculation server sends the calculated wavelength path and the damage compensation information of the wavelength path to the Controlling the server, the control server further controlling the plurality of network nodes to perform wavelength connection according to the wavelength path calculated by the path calculation server, establishing a wavelength channel, and controlling the network node according to the wavelength damage compensation information of the wavelength path Damage compensation for wavelength signals in the interface.
  • FIG. 5 is a schematic flowchart of another embodiment of a method for establishing a wavelength channel according to the present invention. As shown in the figure, the method in this embodiment specifically includes:
  • Step S700 The first network node obtains a wavelength path constraint condition of the network node to the destination network node, and resource information of each network node in the network.
  • Step S701 Calculate, according to the received wavelength path constraint condition and the resource information, a wavelength path between the network node and the destination network node, and wavelength damage compensation information of the wavelength path.
  • each network node is configured according to the The wavelength path obtained by the calculation is sequentially connected to the wavelength, the wavelength channel is established, and the wavelength signal in the interface is damaged according to the wavelength damage compensation information of the wavelength path.
  • the difference between the embodiment and the embodiment shown in FIG. 4 is that the wavelength path and the wavelength damage compensation information of the wavelength path are calculated by the first network node of the wavelength channel, and the other is the same as the embodiment shown in FIG. Do not repeat the narrative.
  • the embodiment of the present invention obtains the wavelength path damage compensation information of the wavelength path while obtaining the wavelength path between the network nodes, and in the process of establishing the wavelength channel according to the wavelength path, according to the wavelength damage compensation information in the interface
  • the wavelength is compensated for damage, and a usable wavelength channel can be established efficiently, simply and quickly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

一种波长通道的建立方法、 系统及设备 本申请要求于 2007年 6月 22日提交中国专利局、申请号为 200710028772.6、 发明名称为 "一种波长通道的建立方法、 系统及设备" 的中国专利申请的优先 权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信领域, 尤其涉及一种波长通道的建立方法、 系统及设备。 背景技术
为了使光网络的业务调度更加灵活, 扩展了应用于分组交换网的多协议标 签交换(MPLS, Multi-Protocol Label Switching )协议, 形成适用于光网络的多 协议标签波长交换(MPLmS , Multi-Protocol Lambda-label Switching )协议, MPLmS把 MPLS标签交换的基本概念应用到了光域, 釆用光波长作为交换的标 签, 各网络节点通过路由协议例如带流量工程的开放式最短路径优先 ( OSPF-TE, Open Shortest Path First with Traffic Engineering )协议把各自接口 上的波长以及代价等 TE信息洪泛到网络中。 在计算一条端到端的波长路由时, 根据这些 TE信息, 使用受限的最短路径优先(CSPF, Constrained Shortest Path First )算法, 就可以得到一条波长路径。 然后信令协议例如带流量工程的资源预 留 ( RSVP-TE, Resource Reservation Protocol with Traffic Engineering )协议可以 根据计算出来的波长路径自动建立端到端的连接, 建立波长通道。 但是, 光波 长信号在传输的过程存在损伤, 影响光信号性能的损伤主要有: 功率衰耗, 色 散, 噪声等, 这些损伤会影响光信号的性能, 当路径上的损伤达到一定值的时 候, 根据所述波长路径建立的波长通道将不可用。 为了使建立的波长通道可用, 需要保证波长路径的损伤不能超过一定值, 目前已有方法来判断路径上的损伤 是否符合要求, 通过该方法判断计算出来的波长路径是否满足损伤的要求, 如 果不满足就需重新计算和选择路径, 直到选出一条满足损伤约束的路径出来, 再根据该路径建立波长通道, 就可以保证建立的波长通道可用。 使用上述方法 来建立一条可用的波长通道, 可能需要计算和判断很多次, 才能得到满足损伤 要求的波长路径, 然后才能根据所述波长路径建立可用的波长通道, 工作量大, 花费的时间长, 效率低。 发明内容
鉴于此, 本发明实施例提供了一种波长通道的建立方法、 系统及设备, 可 高效、 简单以及快速建立一条可用的波长通道。
本发明实施例提供了一种波长通道的建立方法, 包括:
获得首网络节点到目的网络节点的波长路径和所述波长路径的波长损伤补 偿信息;
根据所述波长路径建立所述首网络节点到目的网络节点的波长通道, 并在 所述波长通道的建立过程中, 根据所述波长损伤补偿信息, 对所述波长路径上 的各网络节点的接口中的波长信号进行损伤补偿。
相应的, 本发明实施例提供了一种路径计算服务器, 包括:
接收单元, 用于接收网络节点间的波长路径计算请求、 波长路径约束条件 以及各网络节点的资源信息;
计算单元, 用于在所述接收单元接收到波长路径计算请求时, 根据所述接 收的波长路径约束条件和所述资源信息计算获得所述网络节点间的波长路径和 所述波长路径的波长损伤补偿信息。
相应的, 本发明实施例提供了一种网络节点设备, 包括:
获得单元, 用于获得本网络节点到目的网络节点的波长路径约束条件和各 网络节点的资源信息;
计算单元, 用于根据所述获得单元获得的所述波长路径约束条件和所述资 源信息计算获得本网络节点到目的网络节点的波长路径和所述波长路径的波长 损伤补偿信息;
连接单元, 用于根据本网络节点计算获得的所述波长路径连接不同接口的 波长。
相应的, 本发明实施例还提供了一种控制服务器, 包括:
接收单元, 用于接收网络节点间的波长路径信息和所述波长路径的波长损 伤补偿信息;
控制单元, 用于根据所述接收单元接收到的所述波长路径信息控制建立所 述网络节点间的波长通道, 并根据所述波长路径的波长损伤补偿信息, 控制所 述波长通道上的各网络节点对各自的接口中的波长信号进行损伤补偿。
相应的, 本发明实施例提供了一种网络通信系统, 包括有多个网络节点, 所述网络系统还包括:
路径计算服务器, 用于接收所述网络节点间的波长路径计算请求、 波长路 径约束条件以及网络资源信息, 并根据所述波长路径约束条件和所述资源信息 计算获得所述网络节点间的波长路径和所述波长路径的波长损伤补偿信息; 所述各网络节点根据所述路径计算服务器计算获得的波长路径依次进行波 长连接, 建立波长通道, 并根据所述波长路径的波长损伤补偿信息对接口中的 波长信号进行损伤补偿。
相应的, 本发明实施例提供了另一种网络通信系统, 包括有多个网络节点, 所述网络节点包括:
获得单元, 用于获得本网络节点到目的网络节点的波长路径约束条件和各 网络节点的资源信息;
计算单元, 用于根据所述获得单元获得的所述波长路径约束条件和所述资 源信息计算获得本网络节点到目的网络节点的波长路径和所述波长路径的波长 损伤补偿信息;
连接单元, 用于根据各网络节点计算获得的波长路径连接不同接口的波长; 补偿单元, 用于根据各网络节点计算获得的波长路径的波长损伤补偿信息 对本网络节点的接口中的波长信号进行损伤补偿。
本发明实施例通过获得网络节点间波长路径的同时获得所述波长路径的波 长路径损伤补偿信息, 并在根据所述波长路径建立波长通道的过程中, 根据所 述波长损伤补偿信息对传输的波长信号进行相应的损伤补偿, 可高效、 简单及 快速地建立一条可用的波长通道。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实施 例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付 出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明网络通信系统的一个实施例结构组成示意图; 图 2是本发明网络通信系统的另一个实施例结构组成示意图;
图 3 是本发明网络通信系统的另一个实施例中网络节点的一个实施例组成 示意图;
图 4是本发明波长通道建立的方法的一个实施例流程示意图;
图 5是本发明波长通道建立的方法的另一个实施例流程示意图。 具体实施方式
下面将结合附图对本发明实施例作进一步地详细描述。
本发明网络通信系统的一个实施例包括路径计算服务器和多个网络节点, 其中, 所述路径计算服务器用于接收所述网络节点间的波长路径计算请求、 波 长路径约束条件以及网络资源信息, 并根据所述波长路径约束条件和所述资源 信息计算获得所述网络节点间的波长路径和所述波长路径的波长损伤补偿信 息; 所述多个网络节点根据所述路径计算服务器计算获得的波长路径依次进行 波长连接, 建立波长通道, 并根据所述波长路径的波长损伤补偿信息对接口中 的波长信号进行损伤补偿。 为方便说明, 以一个波长通道的建立为例。 图 1 示 出该实施例中一个波长通道的首网络节点、 中间网络节点 x、 目的网络节点以及 一个路径计算服务器,
其中, 所述路径计算服务器包括接收单元 20、 计算单元 21 以及发送单元 22 , 接收单元 20用于接收所述首网络节点到所述目的网络节点的波长路径计算 请求、 波长路径约束条件以及网络中各网络节点的资源信息; 接收单元 20可以 通过扩展的路径计算单元通信协议 ( PCECP , Path Computation Element Communication Protocol )获得路径计算请求和波长路径约束条件, 根据实践证 明, 影响光信号的损伤主要有功率衰耗、 色散以及噪声等, 因此所述的波长路 径约束条件可包括路径的功率损耗容限、光信噪比(OSNR, Optical Signal Noise Ratio )容限、 色散容限以及偏振模色散容限中的一种或多种。 同时, 路径计算 服务器需要知道网络资源信息, 以便通过 CSPF 算法计算出一条可用的波长路 径, 这些网络资源信息包括网络节点的接口信息、 接口对应链路的带宽信息、 接口对应链路的代价信息, 接口中光信号的功率损耗、 功率参数是否可调、 功 率参数的可调范围、 色散、 色散补偿参数是否可调、 色散补偿参数的可调范围、 偏振模色散、 偏振模色散补偿参数是否可调、 偏振模色散补偿参数可调范围、 连接接口的链路的功率损耗、 连接接口的链路的色散以及连接接口的链路的偏 振模色散。 接收单元 20可以通过路由协议(如扩展的 OSPF-TE )从任意一网络 节点来得到所有网络节点的所述的资源信息 (如图 1 中接收单元 20 通过 OSPF-TE从网络节点 1得到网络资源信息), 具体实现中, 也可以通过其他方式 (如各网络节点向路径计算服务器注册这些资源信息) 来获取这些资源信息。
计算单元 21在所述接收单元 20接收到波长路径计算请求时, 根据所述接 收的波长路径约束条件和所述资源信息计算获得各网络节点间的波长路径和所 述波长路径的波长损伤补偿信息。 所述的波长损伤补偿信息包括网络节点的接 口中波长信号的功率和 /或色散补偿和 /或偏振模色散补偿的取值或调节量。 现有 技术,通过 CSPF计算出一条波长路径后,判断波长路径上的波长信号损伤是否 符合波长路径约束条件所指示的损伤要求, 如果不满足就需重新计算和选择路 径, 直到选出一条满足损伤约束的路径出来, 再根据该路径建立波长通道。 使 用上述方法来建立一条可用的波长通道, 可能需要计算和判断很多次才能得到 满足损伤要求的波长路径, 然后才能根据所述波长路径建立可用的波长通道, 工作量大, 花费的时间长, 效率低。 本实施例通过计算单元 21计算获得波长路 径的波长损伤补偿信息, 这样在网络节点上使用可调的损伤补偿器件, 如果计 算出的路径不满足损伤要求, 则在建立波长通道时, 网络节点可根据路径计算 服务器计算获得的所述波长损伤补偿信息调节路径中某些影响损伤的参数, 以 满足损伤约束条件, 不需要像现有技术那样重新计算和选择路径。
进一步, 计算单元 21 包括第一计算单元 211、 第二计算单元 212、 判断单 元 213以及指示单元 214, 其中:
第一计算单元 211 ,用于根据所述资源信息计算获得所述两网络节点间的波 长路径;
第二计算单元 212, 用于计算所述第一计算单元 211获得的波长路径的损伤 参数; 根据实践证明, 影响光信号的损伤主要有功率衰耗、 色散以及噪声等, 因此所述的波长路径约束条件可包括路径的功率损耗容限、 光信噪比 (OSNR, Optical Signal Noise Ratio )容限、色散容限以及偏振模色散容限中的一种或多种。 则需计算的损伤参数根据所述约束条件确定,在对波长路径的 OSNR有约束的情 况下, 需要计算波长路径的 OSNR值, 一种计算路径的 OSNR值的公式如下:
'Pml— N^— 101og(hwr )) _( Pm2 - N¾- 101og(hwr )) _( PmN-NPN-101og(hv
OS Rout = - lOlog 其中, Pinl, Pin2, , PinN是波长路径中进入各放大器的功率; NF1,
NF2, ...... , NFN是相应放大器的噪声系数; h是一个常数; w则是和波长相关 的一个定值。
一般情况下, 网络节点之间会通过一对光纤互连, 两条光纤分别负责向对 方传送信号及从对方接收信号。 这样的一对光纤被分配一个接口编号, 即一个 接口对应两个光纤插口, 分别为发送端和接收端 (即输出端和输入端) 。 每个 接口的发送端和接收端都会有放大器, 放大器的输入功率有一个默认值。 在使 用了可调的功率调节单元或色散补偿单元时, 可以对单个波长调节输入功率或 色散补偿。
根据上述 OSNR的计算公式可知,路径计算服务器需要知道各网络节点中放 大器的输入功率 Pin及其是否可调、 可调范围, 噪声系数等资源信息。 这些资源 信息的获得可以通过路由协议来实现。 例如, 各网络节点可以通过 OSPF-TE协 议, 把自身接口的功率及其是否可调、 可调范围, 噪声系数等信息洪泛到路径 计算服务器。这需要扩展现有的 OSPF-TE协议,给 OSPF-TE的链路类型长度取值 (TLV, Type-Length- Value )参数增加一个子 TLV。 该子 TLV的 Value部分格式 下:
0 1 2 3
01234567890123456789012345678901
+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+
I Parameter Type|F| Reserved |P| NF |
+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+
I Value 1 | Value2 |
+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+
Parameter Type表示参数类型, 定义 1表示接口功率参数。
F标志位指示该参数是否可调: 0表示不可调, 1表示可调。
Ρ标志位指示位置信息: 0表示接收端放大器的功率信息, 1表示发送端放大 器的功率信息。 如果需要同时发布某波长的接收端和发送端的功率参数, 需要 带两个接口功率参数子 TLV。 NF表示该接口对应放大器的噪声系数。
Valuel表示该接口对应放大器输入功率的默认值; Value2表示其可调的范 围。
通过上述扩展, 各网络节点就可以把自身接口中的光信号功率参数洪泛到 路径计算服务器, 路径计算服务器就可以利用这些信息来计算路径的 OSNR。
与之类似, 在需要考虑路径上色散的情况下, 路径计算服务器需要能计算 出路径的色散。 路径的色散主要来源于光纤引入的色散, 光纤引入的色散量等 于光纤的色散系数乘以光纤长度。 因此, 得知光纤长度就可以获得光纤引入的 色散量。 同时路径上的各种光部件也会引入一定的色散量, 这些色散量可以通 过光部件的参数表获得。 将各段光纤引入的色散量以及各个光部件引入的色散 量累加就可以得到整个路径的色散量。 由于光信号都有一定的色散容限, 当路 径色散量超过信号色散容限时, 信号将不能被正确接收, 因此在光传输系统中 一般情况下都存在色散补偿装置, 色散补偿装置可以是光补偿, 也可以是电补 偿; 存在固定色散补偿装置, 也存在可调色散补偿装置。 当传输系统中存在色 散补偿装置时, 路径最终的色散量为上述色散累加和减去色散补偿装置的补偿 量。
各网络节点接口中的光信号的色散补偿信息也可以通过扩展 OSPF-TE协议 来洪泛到路径计算服务器, 方法与洪泛功率参数类似。 在考虑路径的其它约束 条件时的处理方式和上述的处理方式类似, 在此, 不重复叙述。
判断单元 213 ,用于判断所述第二计算单元 212计算获得的波长路径的损伤 参数是否满足所述接收单元 20接收的波长路径约束条件所指示的损伤要求; 指示单元 214, 用于在接收到所述判断单元 213输出的否定判断结果时, 根 据所述波长路径约束条件和所述资源信息生成相应的波长损伤补偿信息。 所述 的波长损伤补偿信息可以包括网络节点的接口中波长信号的功率、 色散补偿或 偏振模色散补偿中至少一个的取值, 也可以包括网络节点的接口中波长信号的 功率、 色散补偿或偏振模色散补偿中至少一个的调节量。 比如, 本实施例中, 假设需要建立首网络节点到目的网络节点的一条波长通道, 该波长通道需经过 中间网络节点 X , 且本通道需满足的波长路径约束条件为建立的波长通道的 OSNR值至少为 OSNR1 , 根据资源信息可知首网络节点的功率可调、 可调范围 为 1-6DB, 中间网络节点 X的功率也可调, 可调范围为 0.1-20DB, 通过判断单 元 213判断得出计算的波长路径的 OSNR不符合最少为 OSNR1的要求,指示单 元 214通过上述的波长路径约束条件和资源信息就可生成首网络节点建立波长 通道时调高功率 2DB, 中间网络节点 X建立波长通道时调高功率 1DB的损伤补 偿信息, 则在波长通道建立过程中相应的网络节点就可以通过所述补偿信息对 相应的损伤参数进行调节, 使其满足波长路径的波长损伤约束条件所指示的约 束要求, 建立可用的波长通道。
发送单元 22,用于发送所述计算单元 21计算获得的所述波长路径和所述波 长路径的波长损伤补偿信息。 可以通过扩展路径计算响应消息来发送所述的波 长路径损伤补偿信息。
相应的, 所述每个网络节点 (图中示出一个波长通道的首网络节点、 中间 网络节点 X以及目的网络节点)进一步包括连接单元 10和补偿单元 11, 补偿单元 11根据路径计算服务器计算获得的波长损伤补偿信息调节网络节点的相关参数 使波长路径的损伤满足波长路径损伤约束条件, 连接单元 10则根据计算获得的 波长路径信息连接经过所述补偿单元 11补偿的波长信息, 建立可用的波长通道。 可以通过扩展 RSVP-TE协议来通知波长路径中各接口波长的自动连接和通知各 网络节点调节各接口中相关波长的相关参数使波长路径的损伤满足要求。 可以 通过为 RSVP-TE协议的 ERO对象增加调节参数子对象以实现通知各网络节点调 节各接口中相关波长的相关参数使波长路径的损伤满足要求的功能。 该对象扩 展后组成如下:
0 1 2 3
01234567890123456789012345678901
+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+
|L| Type | Length |U| Reserved | C-Type | +■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+
I Parameter Type| Reserved |P| Value |
+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+
Type定为 5; Parameter Type即参数类型 ( 1为调节功率, 2为调节色散补偿, 3为 PMD补偿) , P标志位表示调节的位置 (0表示调节接收端, 1表示调节发送 端;如果需要同时调节某接口的接收端和发送端,需要带两个调节参数子对象), Value表示调节值。 其他字段的含义可以参考 RFC3209。 使用 RSVP-TE协议中已经定义的接口子对象、 标签子对象(波长子对象, draft-rabbat-ccamp-gmpls-lambda-labels-OO.txt ) , 以及上面定义的调节参数 子对象, 就可以完整的表述可用路径信息。 沿途各网络节点可以查看 ERO中的 子对象, 以完成不同接口中波长的连接, 并调节相关参数。
通过上述扩展, 就可以通过 RS VP-TE协议信令指示网络节点连接不同接口 中的波长, 并为波长调节功率、 色散补偿、 偏振模色散补偿等等。
本发明网络通信系统的另一个实施例包括多个网络节点、 路径计算服务器 以及一控制服务器, 图 2 示出该实施例中一个波长通道的首网络节点、 中间网 络节点 x、 目的网络节点、 一个路径计算服务器以及一个控制服务器。 本实施例 与图 1 所示实施例的不同之处在于, 本实施例波长通道的建立不是通过信令指 示波长进行自动连接; 而是通过控制服务器, 控制波长路径中各接口波长的自 动连接, 和通知各网络节点调节各接口中相关波长的相关参数, 使波长路径的 损伤满足要求。 具体的, 路径计算服务器会将计算获得的波长路径及所述波长 路径的损伤补偿信息发送给所述控制服务器, 所述控制服务器进一步根据所述 路径计算服务器计算获得的波长路径, 控制所述多个网络节点依次进行波长连 接, 建立波长通道, 并根据所述波长路径的波长损伤补偿信息, 控制网络节点 对接口中的波长信号进行损伤补偿。 所述控制服务器进一步包括接收单元 30, 用于接收所述路径计算服务器计算获得的网络节点间的波长路径信息和所述波 长路径的波长损伤补偿信息; 控制单元 31 , 用于根据所述接收单元 30接收到的 所述波长路径信息控制建立所述网络节点间的波长通道, 并根据所述波长路径 的波长损伤补偿信息控制通道中网络节点对接口中的波长信号进行损伤补偿。
上述两个实施例中, 波长路径及所述波长路径的波长损伤补偿信息均是通 过网络中的路径计算服务器计算获得的, 具体实现中, 波长路径及所述波长路 径的波长损伤补偿信息可以由网络管理者设置, 也可以通过特定波长通道的首 网络节点计算获得, 通过首网络节点釆用的方式与路径计算服务器相似。 鉴于 此, 本发明网络通信系统的另一个实施例包括多个网络节点、 图 3 示出所述多 个网络节点中一个网络节点的结构组成示意图, 如图所示, 网络节点包括获得 单元 50、 计算单元 51、 连接单元 52及补偿单元 53 , 所述获得单元 50, 用于获 得本网络节点到目的网络节点的波长路径约束条件和网络资源信息; 计算单元 51 , 用于根据所述获得单元获得的所述波长路径约束条件和所述资源信息计算 获得本网络节点到目的网络节点的波长路径和所述波长路径的波长损伤补偿信 息; 连接单元 52, 用于根据本网络节点计算获得的所述波长路径连接不同接口 的波长; 补偿单元 53 , 用于根据网络中各网络节点计算获得的波长路径的波长 损伤补偿信息对接口中的波长进行损伤补偿。 连接单元 52和补偿单元 53也可 根据扩展 RSVP-TE协议对波长路径中各接口波长的自动连接和自动调节接口中 相关波长的相关参数使波长路径的损伤满足要求。
相应的, 本发明网络通信系统的另一个实施例包括多个网络节点和控制服 务器, 所述控制服务器根据所述网络节点计算获得的波长路径控制所述多个网 络节点依次进行波长连接, 建立波长通道, 并根据所述波长路径的波长损伤补 偿信息控制相应的网络节点对接口中的波长进行损伤补偿。
相应的, 本发明实施例还提供了波长通道建立的方法, 图 4是本发明波长 通道建立方法的一个实施例流程示意图, 如图所示, 本实施例的方法具体包括: 步骤 600, 路径计算服务器接收到波长路径计算请求、 波长路径约束条件以 及网络中各网络节点的资源信息; 路径计算服务器可以通过扩展的路径计算单 元通信协议 ( PCECP, Path Computation Element Communication Protocol )获得 路径计算请求和波长路径约束条件, 实践证明, 影响光信号的损伤主要有功率 衰耗、 色散以及噪声等, 因此所述的波长路径约束条件可包括路径的功率损耗 容限、 光信噪比 (OSNR, Optical Signal Noise Ratio )容限、 色散容限以及偏振 模色散容限中的一种或多种。 同时, 路径计算服务器需要知道网络资源信息, 以便通过 CSPF算法计算出一条可用的波长路径,这些网络资源信息包括网络节 点的接口信息、 接口对应链路的带宽信息、 接口对应链路的代价信息, 接口中 光信号的功率损耗、 功率参数是否可调、 功率参数的可调范围、 色散、 色散补 偿参数是否可调、 色散补偿参数的可调范围、 偏振模色散、 偏振模色散补偿参 数是否可调、 偏振模色散补偿参数可调范围、 连接接口的链路的功率损耗、 连 接接口的链路的色散以及连接接口的链路的偏振模色散。 路径计算服务器可以 通过路由协议从任意网络节点中 (如扩展的 OSPF-TE )来得到所有网络节点的 资源信息, 也可以通过其他方式(如各网络节点向路径计算服务器注册这些资 源信息)来获取这些资源信息。 例如, 某网络节点可以通过 OSPF-TE协议, 把 各网络节点接口的功率及其是否可调、 可调范围, 噪声系数等信息洪泛到路径 计算服务器。 这需要扩展现有的 OSPF-TE协议, 给 OSPF-TE的链路 TLV增加 一个子 TLV。 该子 TLV的 Value部分格式如下:
0 1 2 3
01234567890123456789012345678901
+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+
I Parameter Type|F| Reserved |P| NF |
+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+
I Value 1 | Value2 |
+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+
Parameter Type表示参数类型, 定义 1表示接口功率参数。
F标志位指示该参数是否可调: 0表示不可调, 1表示可调。
Ρ标志位指示位置信息: 0表示接收端放大器的功率信息, 1表示发送端放大 器的功率信息。 如果需要同时发布某波长的接收端和发送端的功率参数, 需要 带两个接口功率参数子 TLV。
NF表示该接口对应放大器的噪声系数。
Valuel表示该接口对应放大器输入功率的默认值; Value2表示其可调的范 围。
通过上述扩展, 各网络节点就可以把自身接口的功率参数洪泛到路径计算 服务器。
与之类似, 路径的色散主要来源于光纤引入的色散, 光纤引入的色散量等 于光纤的色散系数乘以光纤长度。 因此, 得知光纤长度就可以获得光纤引入的 色散量。 同时路径上的各种光部件也会引入一定的色散量, 这些色散量可以通 过光部件的参数表获得。
步骤 S601 , 根据所述接收的波长路径约束条件和所述资源信息计算获得网 络节点间的波长路径和所述波长路径的波长损伤补偿信息; 波长路径的获得与 现有技术方式相同, 在此不重复叙述, 波长路径的波长损伤补偿信息的获得具 体包括计算所述波长路径的损伤参数; 判断所述损伤参数是否满足所述波长路 径约束条件所指示的损伤要求; 并在判断结果为否时, 根据所述波长路径约束 条件和所述资源信息生成相应的波长损伤补偿信息。 根据实践证明, 影响光信 号的损伤主要有功率衰耗、 色散以及噪声等, 因此所述的波长路径约束条件可 包括路径的功率损耗容限、 光信噪比(OSNR, Optical Signal Noise Ratio)容限、 色散容限以及偏振模色散容限中的一种或多种。 则需计算的损伤参数根据所述 约束条件确定, 在对波长路径的 OSNR有约束的情况下, 需要计算波长路径的 OSNR值, 一种计算路径的 OSNR值的公式如下:
'Pml— N^— 101og(hwr)) Pm2- N¾- 101og(hwr)) PmN-NPN-101og(hv
OS Rout = - lOlog 其中, Pinl, Pin2, , PinN是波长路径中各放大器的输入功率; NF1,
NF2, ...... , NFN是相应放大器的噪声系数; h是一个常数; w则是和波长相关 的一个定值。
一般情况下, 网络节点之间会通过一对光纤互连, 两条光纤分别负责向对 方传送信号及从对方接收信号。 这样的一对光纤被分配一个接口编号, 即一个 接口对应两个光纤插口, 分别为发送端和接收端 (即输出端和输入端) 。 每个 接口的发送端和接收端都会有放大器, 放大器的输入功率有一个默认值。 在使 用了可调的功率调节单元或色散补偿单元时, 可以对单个波长调节输入功率或 色散补偿。
根据上述 OSNR的计算公式可知,路径计算服务器需要知道各网络节点中放 大器的输入功率 Pin及其是否可调、 可调范围, 噪声系数等资源信息。 这些资源 信息的获得可以通过路由协议来实现。 例如, 各网络节点可以通过 0SPF-TE协 议, 把自身接口的功率及其是否可调、 可调范围, 噪声系数等信息洪泛到路径 计算服务器。这需要扩展现有的 0SPF-TE协议,给 0SPF-TE的链路 TLV增加一个 子 TLV。 该子 TLV的 Value部分格式如下:
0 1 2 3
01234567890123456789012345678901
+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+
I Parameter Type|F| Reserved |P| NF |
+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+
I Value 1 | Value2 |
+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+
Parameter Type表示参数类型, 定义 1表示接口功率参数。 F标志位指示该参数是否可调: 0表示不可调, 1表示可调。
P标志位指示位置信息: 0表示接收端放大器的功率信息, 1表示发送端放大 器的功率信息。 如果需要同时发布某波长的接收端和发送端的功率参数, 需要 带两个接口功率参数子 TLV。
NF表示该接口对应放大器的噪声系数。
Valuel表示该接口对应放大器输入功率的默认值; Value2表示其可调的范 围。
通过上述扩展, 各网络节点就可以把自身接口的功率参数洪泛到路径计算 服务器, 路径计算服务器就可以利用这些信息来计算路径的 OSNR。
与之类似, 在需要考虑波长路径上色散的情况下, 路径计算服务器需要能 计算出路径的色散。 路径的色散主要来源于光纤引入的色散, 光纤引入的色散 量等于光纤的色散系数乘以光纤长度。 因此, 得知光纤长度就可以获得光纤引 入的色散量。 同时路径上的各种光部件也会引入一定的色散量, 这些色散量可 以通过光部件的参数表获得。 将各段光纤引入的色散量以及各个光部件引入的 色散量累加就可以得到整个路径的色散量。 由于光信号都有一定的色散容限, 当路径色散量超过信号色散容限时, 光信号将不能被正确接收, 因此在光传输 系统中一般情况下都存在色散补偿装置, 色散补偿装置可以是光补偿, 也可以 是电补偿; 存在固定色散补偿装置, 也存在可调色散补偿装置。 当传输系统中 存在色散补偿装置时, 路径最终的色散量为上述色散累加和减去色散补偿装置 的补偿量。
各网络节点接口中光信号的色散补偿信息也可以通过扩展 OSPF-TE协议来 洪泛到路径计算服务器, 方法与洪泛功率参数类似。 在考虑路径的其它约束条 件时的处理方式和上述的处理方式类似, 在此, 不重复叙述。
在本实施例中, 假设需要建立首网络节点到目的网络节点的一条波长通道, 该波长通道需经过中间网络节点 X,且本通道需满足的波长路径约束条件为建立 的波长通道的 OSNR值至少为 OSNR1 , 才艮据资源信息可知首网络节点的功率可 调、 可调范围为 1-6DB, 中间网络节点 X的功率也可调, 可调范围为 0.1-20DB, 通过判断得出计算的波长路径的 OSNR不符合最少为 OSNR1的要求,则通过上 述的波长路径约束条件和资源信息就可生成首网络节点建立波长通道时调高功 率 2DB, 中间网络节点 X建立波长通道时调高功率 1DB的损伤补偿信息。 步骤 S602, 路径计算服务器将所述计算获得的波长路径和所述波长路径的 波长损伤补偿信息发送给相应的波长路径计算请求网络节点;
步骤 S603 , 各网络节点根据所述计算获得的所述波长路径依次进行波长连 接, 建立波长通道, 并根据所述波长路径的波长损伤补偿信息对接口中的波长 信号进行损伤补偿。
可以通过扩展 RSVP-TE协议来通知波长路径中各接口波长的自动连接和通 知各网络节点调节各接口中相关波长的相关参数使波长路径的损伤满足要求。 可以通过为 RSVP-TE协议的 ERO对象增加调节参数子对象以实现通知各网络节 点调节各接口中相关波长的相关参数使波长路径的损伤满足要求的功能。 该对 象扩展后组成如下:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+
|L| Type | Length |U| Reserved | C-Type | +■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+
1 Parameter Type| Reserved |P| Value | +■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+■+
Type定为 5; Parameter Type即参数类型 ( 1为调节功率, 2为调节色散补偿, 3为 PMD补偿) , P标志位表示调节的位置 (0表示调节接收端, 1表示调节发送 端;如果需要同时调节某接口的接收端和发送端,需要带两个调节参数子对象), Value表示调节值。 其他字段的含义可以参考 RFC3209。
使用 RSVP-TE协议中已经定义的接口子对象、 标签子对象(波长子对象, draft-rabbat-ccamp-gmpls-lambda-labels-OO.txt ) , 以及上面定义的调节参数 子对象, 就可以完整的表述可用路径信息。 沿途各网络节点可以查看 ERO中的 子对象, 以完成不同接口中波长的连接, 并调节相关参数。
通过上述扩展, 就可以通过 RSVP-TE协议信令指示网络节点连接不同接口 中的波长, 并为波长调节功率、 色散补偿、 偏振模色散补偿等等。 具体实现时, 也可通过控制服务器控制波长路径中各接口波长的自动连接和通知各网络节点 调节各接口中相关波长的相关参数使波长路径的损伤满足要求。 具体的, 路经 计算服务器会将计算获得的波长路径及所述波长路径的损伤补偿信息发送给所 述控制服务器, 所述控制服务器进一步根据所述路径计算服务器计算获得的波 长路径控制所述多个网络节点依次进行波长连接, 建立波长通道, 并根据所述 波长路径的波长损伤补偿信息控制网络节点对接口中的波长信号进行损伤补 偿。
图 5是本发明波长通道建立方法的另一个实施例流程示意图, 如图所示, 本实施例的方法具体包括:
步骤 S700, 首网络节点获得本网络节点到目的网络节点的波长路径约束条 件以及网络中各网络节点的资源信息;
步骤 S701 , 根据所述接收的波长路径约束条件和所述资源信息计算获得本 网络节点到目的网络节点间的波长路径和所述波长路径的波长损伤补偿信息; 步骤 S702, 各网络节点根据所述计算获得的所述波长路径依次进行波长连 接, 建立波长通道, 并根据所述波长路径的波长损伤补偿信息对接口中的波长 信号进行损伤补偿。
本实施例与图 4 所示实施例的不同之处在于, 通过波长通道的首网络节点 自行计算波长路径和所述波长路径的波长损伤补偿信息, 其他与图 4 所示实施 例相同, 在此不重复叙述。
本发明实施例通过在获得网络节点间波长路径的同时获得所述波长路径的 波长路径损伤补偿信息, 并在根据所述波长路径建立波长通道的过程中, 根据 所述波长损伤补偿信息对接口中的波长进行损伤补偿, 可高效、 简单及快速建 立一条可用的波长通道。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到本发明 可借助软件加必需的硬件平台的方式来实现, 当然也可以全部通过硬件来实施。 基于这样的理解, 本发明的技术方案对背景技术做出贡献的全部或者部分可以 以软件产品的形式体现出来, 该计算机软件产品可以存储在存储介质中, 如 ROM/RAM, 磁碟、 光盘等, 包括若干指令用以使得一台计算机设备(可以是个 人计算机, 服务器, 或者网络设备等)执行本发明各个实施例或者实施例的某 些部分所述的方法。
以上揭露的仅为本发明的较佳实施例而已, 当然不能以此来限定本发明之 权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、 一种波长通道的建立方法, 其特征在于, 包括:
获得首网络节点到目的网络节点的波长路径和所述波长路径的波长损伤补 偿信息;
根据所述波长路径建立所述首网络节点到目的网络节点的波长通道, 并在 所述波长通道的建立过程中, 根据所述波长损伤补偿信息, 对所述波长路径上 的各网络节点的接口中的波长信号进行损伤补偿。
2、 如权利要求 1 所述的波长通道的建立方法, 其特征在于, 所述获得首 网络节点到目的网络节点的波长路径和所述波长路径的波长损伤补偿信息, 包 括:
获得首网络节点到目的网络节点的波长路径约束条件和网络资源信息; 根据所述波长路径约束条件和所述网络资源信息, 计算获得所述首网络节 点到目的网络节点的波长路径和所述波长路径的波长损伤补偿信息。
3、 如权利要求 1或 2所述的波长通道的建立方法, 其特征在于, 所述的波 长损伤补偿信息包括网络节点的接口中波长信号的功率、 色散补偿或偏振模色 散补偿中至少一个的取值。
4、 如权利要求 1或 2所述的波长通道的建立方法, 其特征在于, 所述的波 长损伤补偿信息包括网络节点的接口中波长信号的功率、 色散补偿或偏振模色 散补偿中至少一个的调节量。
5、 如权利要求 2所述的波长通道的建立方法, 其特征在于, 所述的波长路 径约束条件包括波长路径的功率损耗容限、 光信噪比容限、 色散容限以及偏振 模色散容限中的一种或多种。
6、 一种路径计算服务器, 其特征在于, 包括:
接收单元, 用于接收网络节点间的波长路径计算请求、 波长路径约束条件 以及网络资源信息;
计算单元, 用于在所述接收单元接收到所述波长路径计算请求时, 根据所 述接收的波长路径约束条件和所述网络资源信息计算获得所述网络节点间的波 长路径和所述波长路径的波长损伤补偿信息。
7、 如权利要求 6所述的路径计算服务器, 其特征在于, 还包括: 发送单元, 用于发送所述计算单元计算获得的所述波长路径和所述波长路 径的波长损伤补偿信息。
8、 如权利要求 6或 7所述的路径计算服务器, 其特征在于, 所述的计算单 元进一步包括:
第一计算单元, 用于根据所述网络资源信息计算获得网络节点间的波长路 径;
第二计算单元, 用于计算所述第一计算单元获得的波长路径的损伤参数; 判断单元, 用于判断所述第二计算单元获得的波长路径的损伤参数是否满 足所述接收单元接收的波长路径约束条件所指示的损伤要求;
指示单元, 用于在接收到所述判断单元输出的否定判断结果时, 根据所述 波长路径约束条件和所述资源信息生成相应的波长损伤补偿信息。
9、 一种网络节点设备, 其特征在于, 包括:
获得单元, 用于获得本网络节点到目的网络节点的波长路径约束条件和网 络中各网络节点的资源信息;
计算单元, 用于根据所述获得单元获得的所述波长路径约束条件和所述资 源信息计算获得本网络节点到目的网络节点的波长路径和所述波长路径的波长 损伤补偿信息;
连接单元, 用于根据本网络节点计算获得的所述波长路径连接不同接口的 波长。
10、 如权利要求 9所述的网络节点设备, 其特征在于, 还包括:
补偿单元, 用于根据所述波长路径的波长损伤补偿信息对本网络节点的接 口中的波长信号进行损伤补偿。
11、 一种控制服务器, 其特征在于, 包括:
接收单元, 用于接收网络节点间的波长路径信息和所述波长路径的波长损 伤补偿信息;
控制单元, 用于根据所述接收单元接收到的所述波长路径信息控制建立所 述网络节点间的波长通道, 并根据所述波长路径的波长损伤补偿信息, 控制所 述波长通道上的各网络节点对各自的接口中的波长信号进行损伤补偿。
12、 一种网络通信系统, 包括有多个网络节点, 其特征在于, 还包括: 路径计算服务器, 用于接收所述网络节点间的波长路径计算请求、 波长路 径约束条件以及网络资源信息, 并根据所述波长路径约束条件和所述资源信息 计算获得所述网络节点间的波长路径和所述波长路径的波长损伤补偿信息; 所述各网络节点根据所述路径计算服务器计算获得的波长路径依次进行波 长连接, 建立波长通道, 并根据所述波长路径的波长损伤补偿信息对接口中的 波长信号进行损伤补偿。
13、 如权利要求 12所述的网络通信系统, 其特征在于, 还包括:
控制服务器, 用于根据所述路径计算服务器计算获得的波长路径控制所述 各网络节点依次进行波长连接, 建立波长通道, 并根据所述波长路径的波长损 伤补偿信息控制网络节点对接口中的波长信号进行损伤补偿。
14、 一种网络通信系统, 包括有多个网络节点, 其特征在于, 所述网络节 点包括:
获得单元, 用于获得本网络节点到目的网络节点的波长路径约束条件和网 络中各网络节点的资源信息;
计算单元, 用于根据所述获得单元获得的所述波长路径约束条件和所述资 源信息计算获得本网络节点到目的网络节点的波长路径和所述波长路径的波长 损伤补偿信息;
连接单元, 用于根据各网络节点计算获得的波长路径连接不同接口的波长; 补偿单元, 用于根据各网络节点计算获得的波长路径的波长损伤补偿信息 对本网络节点的接口中的波长信号进行损伤补偿。
15、 如权利要求 14所述的网络通信系统, 其特征在于, 还包括: 控制服务器, 用于根据所述各网络节点计算获得的波长路径, 控制所述多 个网络节点依次进行波长连接, 建立波长通道, 并根据所述波长路径的波长损 伤补偿信息, 控制所述波长路径上各网络节点对各自接口中的波长信号进行损 伤补偿。
PCT/CN2008/071402 2007-06-22 2008-06-20 Procede, systeme et appareil d'etablissement de canal de longueur d'onde WO2009000198A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08757811A EP2134012A4 (en) 2007-06-22 2008-06-20 METHOD, SYSTEM AND APPARATUS FOR WAVELENGTH CHANNEL ESTABLISHMENT
US12/501,826 US20090274464A1 (en) 2007-06-22 2009-07-13 Method, system and device for setting up wavelength connection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200710028772.6 2007-06-22
CN200710028772.6A CN101075956B (zh) 2007-06-22 2007-06-22 一种波长通道的建立方法、系统及设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/501,826 Continuation US20090274464A1 (en) 2007-06-22 2009-07-13 Method, system and device for setting up wavelength connection

Publications (1)

Publication Number Publication Date
WO2009000198A1 true WO2009000198A1 (fr) 2008-12-31

Family

ID=38976782

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/071402 WO2009000198A1 (fr) 2007-06-22 2008-06-20 Procede, systeme et appareil d'etablissement de canal de longueur d'onde

Country Status (4)

Country Link
US (1) US20090274464A1 (zh)
EP (1) EP2134012A4 (zh)
CN (1) CN101075956B (zh)
WO (1) WO2009000198A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101075956B (zh) * 2007-06-22 2010-08-04 华为技术有限公司 一种波长通道的建立方法、系统及设备
CN101621446B (zh) * 2008-06-30 2011-08-24 华为技术有限公司 一种路径计算方法及装置
US8396364B2 (en) * 2009-02-06 2013-03-12 Futurewei Technologies, Inc. System and method for impairment-aware routing and wavelength assignment in wavelength switched optical networks
US8831424B2 (en) * 2009-04-28 2014-09-09 Cisco Technology, Inc. Channel validation in optical networks using multi-channel impairment evaluation
CN101908942B (zh) 2009-06-05 2014-10-08 华为技术有限公司 一种损伤信息传送方法、节点和网络系统
WO2011021976A1 (en) * 2009-08-21 2011-02-24 Telefonaktiebolaget L M Ericsson (Publ) Methods and node entities in optical networks
CN102238060B (zh) * 2010-04-21 2014-03-05 华为技术有限公司 一种路由选择方法和装置
CN103370893B (zh) * 2011-02-04 2017-03-08 瑞典爱立信有限公司 配置光路的方法、装置以及光通信网络节点
CN102655472B (zh) * 2011-03-04 2017-07-14 中兴通讯股份有限公司 一种利用分布式信令建立标签交换路径的方法及系统
RU2584448C2 (ru) 2011-05-24 2016-05-20 Хуавэй Текнолоджиз Ко., Лтд. Способ и устройство выбора маршрута
CN103931123B (zh) * 2011-09-15 2017-06-09 瑞典爱立信有限公司 Wson复原
US8902788B2 (en) * 2012-01-11 2014-12-02 Alcatel Lucent Method and system for energy efficient routing of IP packets over optical backbone networks
CN102665148A (zh) * 2012-04-20 2012-09-12 北京联合大学 一种提高网络负载均衡性的波长分配方法及装置
US20160308786A1 (en) * 2015-04-17 2016-10-20 Futurewei Technologies, Inc. Temporal Tunnel Services
US10547543B2 (en) 2015-06-24 2020-01-28 Futurewei Technologies, Inc. Elegant temporal label switched path tunnel service controller
US10200280B2 (en) 2015-06-25 2019-02-05 Futurewei Technologies, Inc. Software-defined network for temporal label switched path tunnels
US10498640B2 (en) 2015-09-04 2019-12-03 Futurewei Technologies, Inc. PCE for temporal tunnel services
US10841183B1 (en) * 2019-10-18 2020-11-17 Huawei Technologies Canada Co., Ltd. Method and system for reliability-aware embedding of a virtual network onto an elastic optical network
CN113972949A (zh) * 2020-07-23 2022-01-25 中兴通讯股份有限公司 业务单板配置方法、装置、设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039703A1 (en) * 2004-08-20 2006-02-23 Fujitsu Limited Wavelength division multiplexing optical transmission system
CN1897506A (zh) * 2005-07-15 2007-01-17 日立通讯技术株式会社 光网络装置和光网络
CN101075956A (zh) * 2007-06-22 2007-11-21 华为技术有限公司 一种波长通道的建立方法、系统及设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7599621B2 (en) * 2001-07-19 2009-10-06 Alcatel-Lucent Usa Inc. Trail engineering in agile photonic networks
CA2418384A1 (en) * 2002-02-06 2003-08-06 Nippon Telegraph And Telephone Corporation Optical network, optical cross-connect apparatus, photonic-ip network, and node
CN1878047A (zh) * 2006-07-19 2006-12-13 华为技术有限公司 扩散波分设备的交叉限制信息的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039703A1 (en) * 2004-08-20 2006-02-23 Fujitsu Limited Wavelength division multiplexing optical transmission system
CN1897506A (zh) * 2005-07-15 2007-01-17 日立通讯技术株式会社 光网络装置和光网络
CN101075956A (zh) * 2007-06-22 2007-11-21 华为技术有限公司 一种波长通道的建立方法、系统及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2134012A4 *

Also Published As

Publication number Publication date
EP2134012A4 (en) 2010-05-26
US20090274464A1 (en) 2009-11-05
CN101075956B (zh) 2010-08-04
EP2134012A1 (en) 2009-12-16
CN101075956A (zh) 2007-11-21

Similar Documents

Publication Publication Date Title
WO2009000198A1 (fr) Procede, systeme et appareil d'etablissement de canal de longueur d'onde
US7848648B2 (en) Optical network equipment and optical network
EP3151457B1 (en) Packet routing using optical supervisory channel data for an optical transport system
US8270831B2 (en) Use of pre-validated paths in a WDM network
US8903241B2 (en) Registration of device characteristics with optical layer for use in establishing connections through an optical network
US20060222360A1 (en) System and method for protecting optical light-trails
JP2009118101A (ja) 光波長多重伝送装置
WO2011110110A1 (zh) 一种建立标签交换路径的方法、系统和节点设备
CN101415131B (zh) 一种光网络中基于信令的自适应传输控制方法
Castoldi et al. Centralized vs. distributed approaches for encompassing physical impairments in transparent optical networks
WO2014086044A1 (zh) 自动功率调测方法和第一roadm站点
JP2004274238A (ja) 動的な制御を行う光通信路の分散補償方法及びシステム
WO2010130177A1 (zh) 业务连接建立方法、路径计算单元设备及网络系统
Ferrari et al. A two-layer network solution for reliable and efficient host-to-host transfer of big data
EP3419228A1 (en) Service path establishment method, node device, and system
JP4252020B2 (ja) 光伝送システムの伝送品質補償方法及び光伝送システム
Muñoz et al. Control plane solutions for dynamic and adaptive flexi-grid optical networks
CN102835078B (zh) 用于控制传输网络之中的连接建立的方法
CN107786908B (zh) 一种建立路径的方法及装置
EP2928090B1 (en) Optical network element, electric network element and signaling establishment method when electric relay is in electric network element
Morea et al. Cost benefits of asymmetric IP-over-DWDM networks with elastic transceivers
JP2004297178A (ja) ネットワークトラヒック制御方法及びその装置
JP2006279726A (ja) 光ネットワークシステム
EP1289207A2 (en) A method of deriving a route through a network
WO2009026853A1 (fr) Procédé, dispositif et système pour établir et maintenir un trajet de longueur d'onde

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08757811

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008757811

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE