WO2014086044A1 - 自动功率调测方法和第一roadm站点 - Google Patents

自动功率调测方法和第一roadm站点 Download PDF

Info

Publication number
WO2014086044A1
WO2014086044A1 PCT/CN2012/086207 CN2012086207W WO2014086044A1 WO 2014086044 A1 WO2014086044 A1 WO 2014086044A1 CN 2012086207 W CN2012086207 W CN 2012086207W WO 2014086044 A1 WO2014086044 A1 WO 2014086044A1
Authority
WO
WIPO (PCT)
Prior art keywords
service
wavelength
optical
services
roadm
Prior art date
Application number
PCT/CN2012/086207
Other languages
English (en)
French (fr)
Inventor
陈春晖
张英华
闫啸
胡林强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/086207 priority Critical patent/WO2014086044A1/zh
Priority to BR112015013162A priority patent/BR112015013162A2/pt
Priority to CN201280002235.3A priority patent/CN103222215B/zh
Priority to EP12889429.2A priority patent/EP2924891A4/en
Publication of WO2014086044A1 publication Critical patent/WO2014086044A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • H04J14/02216Power control, e.g. to keep the total optical power constant by gain equalization

Definitions

  • the present invention relates to the field of communications, and in particular, to an automatic power modulation method and a first
  • a wavelength division network is an optical network that uses the principle of WDM (Wavelength Division Multipleing) transmission.
  • WDM Widelength Division Multipleing
  • ASON Automatically Switched Optical Network
  • the first ROADM (Reconfiguration Optical Add/drop Multiplexer) site of the service is added to the tail ROADM site of the service to establish an optical crossover for the wavelength of the newly added service.
  • the single-wave attenuation of the wavelength of the newly added service is automatically set according to the fixed single-wave nominal power.
  • the optical multiplexer corresponding to the wavelength of the service is deleted from the first ROADM site of the service to the tail ROADM site of the service, and the wavelength of the deleted service is released.
  • this method does not consider adding or subtracting when establishing and deleting two-way optical crossover.
  • the wavelength affects the performance of the existing wavelength, resulting in a decrease in the quality of the received signal at some of the service wavelengths in the network.
  • Embodiments of the present invention provide an automatic power modulation method and a first dynamic optical add/drop multiplexing
  • the ROADM site can improve the reception quality of signals.
  • an automatic power commissioning method is provided, which is applied to a first dynamic optical add/drop multiplex ROADM station in an automatic switched optical network.
  • the method includes: receiving a first service request message, where the first service request message requests to establish an optical crossover at a wavelength of the first service at the first ROADM station;
  • the first optical multiplex section refers to an optical multiplex section between the first ROADM station of the first service and the next ROADM site of the first service;
  • a single wave attenuation amount of the wavelength of the all services is adjusted according to the first outbound target power.
  • the method before the optical crossover is established for the wavelength of the first service, the method further includes:
  • the first indication message requests, at the first ROADM station, to adjust an outbound power of a wavelength of an existing service on a second optical multiplex section to a wavelength of the existing service.
  • a second outbound target power of a ROADM site where the second optical multiplex section refers to a first ROADM site of the first service
  • an optical multiplex section between the previous R0ADM site of the first service where the existing service refers to another service except the first service of the second optical multiplex section, the second outbound target
  • the power is the outbound power of the wavelength of the existing service at the first ROADM station when the previous ROADM station does not establish an optical crossover for the wavelength of the first service;
  • the outbound power of the wavelength of the existing service is adjusted to the wavelength of the existing service at the first ROADM station.
  • the second outbound target power of the ROADM site is adjusted to the wavelength of the existing service at the first ROADM station.
  • a single wave attenuation amount of the wavelength of the all services is adjusted according to the third outbound target power.
  • the method further includes: A wavelength resource that establishes optical crossover for the wavelength of the first service is reserved.
  • an automatic power commissioning method is provided.
  • the method is applied to a first dynamic optical add/drop multiplex ROADM station in an automatic switched optical network, where the method includes: receiving, sent by a next ROADM station of the first service a first service request message, the first service request message requesting to delete an optical cross established for a wavelength of the first service at the first ROADM station;
  • the first optical multiplex section refers to optical multiplexing between the first ROADM station of the first service and the next ROADM site of the first service
  • the optical signal-to-noise ratio of the first ROADM site and the optical signal of the next ROADM site according to the wavelength of other services on the first optical multiplex section And obtaining a degradation equalization value of a third optical signal to noise ratio of wavelengths of other services on the first optical multiplex section;
  • a single wave attenuation amount of a wavelength of the other service is adjusted according to the fourth outbound target power.
  • the method further includes: sending an operation request message to the The next ROADM site of the first service, the operation request message requesting, at the next ROADM site, adjusting the outbound power of the wavelength of the other service to the wavelength of the other service at the next ROADM site a fifth outbound target power, where the fifth outbound target power is that when the first ROADM site does not delete the optical crossover established for the wavelength of the first service, the wavelength of the other service is in the Outbound power for the next ROADM site.
  • the first service request message further requests the first in the first service.
  • the ROADM station switches the wavelength of the first service from the first optical multiplex section to the third optical multiplex section, where the third optical multiplex section refers to the first ROADM station of the first service and the switchover An optical multiplexing segment between the first next ROADM site of the first service;
  • the method also includes:
  • a single wave attenuation amount of the wavelength of the all services is adjusted according to the sixth outbound target power.
  • the acquiring the wavelength resource of the first service at the first ROADM site according to the second possible implementation manner specifically includes: deleting the wavelength of the first service in the deleting After the established optical crossover, acquiring a wavelength resource of the first service at the first ROADM site;
  • a first dynamic optical add/drop multiplex ROADM station is provided, where the first ROADM station includes a receiver and a processor;
  • the receiver is configured to receive a first service request message, and the first service Sending a request message to the processor, the first service request cancels, and the packet requests to establish an optical crossover at a wavelength of the first service at the first ROADM station;
  • the processor is configured to receive the first service request message sent by the receiver, and establish an optical crossover for a wavelength of the first service;
  • the processor is further configured to acquire, according to an optical signal-to-noise ratio of the first ROADM site and an optical signal-to-noise ratio of a next ROADM station, according to wavelengths of all services passing through the first optical multiplex section, acquiring the first optical complex Degrading the equalized value of the first optical signal to noise ratio of the wavelengths of all services on the segment, where the first optical multiplexing segment refers to the first ROADM site of the first service and the next ROADM site of the first service.
  • the optical multiplex section the processor is further configured to acquire the foregoing services according to the degraded equalization value of the first optical SNR of the wavelengths of all services on the first optical multiplex section obtained The wavelength of the first outbound target power at the first ROADM site;
  • the processor is further configured to adjust a single wave attenuation amount of a wavelength of the all services according to the first outbound target power.
  • the receiver is further configured to receive a first indication message, and send the first indication message to the processor, where the first indication message is Requesting, at the first ROADM station, to adjust an outbound power of a wavelength of an existing service on the second optical multiplex section to a second outbound target power of the wavelength of the existing service at the first ROADM station, where
  • the second optical multiplex section refers to an optical multiplex section between the first ROADM site of the first service and the previous ROADM site of the first service, where the existing service refers to the second optical multiplexing.
  • the second outbound target power of the segment is that, when the previous ROADM site does not establish an optical crossover for the wavelength of the first service, the wavelength of the existing service is Outbound power of the first ROADM site;
  • the processor is configured to receive the first indication message sent by the receiver, if there is a wavelength of an existing service on the second optical multiplex section, at the first ROADM site, the existing The outbound power of the wavelength of the service is adjusted to the second outbound target power of the wavelength of the existing service at the first ROADM site.
  • the processor is further configured to adjust a wavelength of the all services according to the first outbound target power according to the third aspect or the first possible implementation manner. After the single-wave attenuation, obtaining the current outbound power of the wavelength of the all services at the first ROADM station;
  • the processor is further configured to determine whether a difference between the current outbound power of the wavelength of the all services and the first outbound target power is within a preset range;
  • the processor is further configured to: if the difference between the current outbound power and the first outbound target power of the wavelength of all services is not within a preset range, according to the first optical multiplexing segment again Determining the second optical signal-to-noise ratio of the wavelength of all services on the first optical multiplex section by the optical signal-to-noise ratio of the first ROADM station and the optical signal-to-noise ratio of the next ROADM station Equilibrium value
  • the processor is further configured to acquire, according to the obtained degradation balance value of the second optical signal-to-noise ratio of the wavelength of all services on the first optical multiplex section, the wavelengths of all the services in the first The third outbound target power of the ROADM site;
  • the processor is further configured to adjust a single wave attenuation amount of a wavelength of the all services according to the third outbound target power.
  • the first ROADM site further includes a memory
  • the memory is configured to reserve a wavelength resource that crosses the wavelength of the first service before establishing optical crossing of the wavelength of the first service.
  • a first dynamic optical add/drop multiplex ROADM station is provided, where the first ROADM station includes a receiver and a processor;
  • the receiver is configured to receive a first service request message sent by a next ROADM station of the first service, and send the request message of the first service to the processor, where the first service request message is requested.
  • the first ROADM station deletes an optical cross established for a wavelength of the first service;
  • the processor is configured to receive a first service request message sent by the receiver, where Deleting an optical cross established for a wavelength of the first service;
  • the processor is further configured to determine whether there is a wavelength of another service on the first optical multiplex section, where the first optical multiplex section refers to the first ROADM site of the first service and the first service An optical multiplex section between a ROADM site;
  • the processor is further configured to: if there is a wavelength of another service on the first optical multiplex section, the optical signal to noise ratio of the first ROADM station is currently according to a wavelength of another service on the first optical multiplex section And obtaining, by the optical signal to noise ratio of the next ROADM station, a degradation equalization value of the third optical signal to noise ratio of the wavelength of the other services on the first optical multiplex section;
  • the processor is further configured to acquire, according to the obtained degradation balance value of the third optical signal to noise ratio of the wavelength of other services on the first optical multiplex section, the wavelengths of the other services are respectively in the first The fourth outbound target power of the ROADM site;
  • the processor is further configured to adjust a single wave attenuation amount of a wavelength of the other service according to the fourth outbound target power.
  • the first ROADM site further includes a transmitter
  • the transmitter configured to send an operation request message to a next ROADM station of the first service after adjusting a single-wave attenuation amount of the wavelength of the other service according to the fourth outbound target power,
  • An operation request message requesting, at the next ROADM site, adjusting an outbound power of a wavelength of the other service to a fifth outbound target power of a wavelength of the other service at the next ROADM site, where
  • the fifth outbound target power is an outbound power of the wavelength of the other service at the next ROADM site when the first ROADM site does not delete the optical crossover established for the wavelength of the first service.
  • the first service request message further requests, at the first ROADM site of the first service, the first service according to the fourth aspect or the first possible implementation manner.
  • Switching from the first optical multiplex section to the third optical multiplex section, where the third optical multiplex section refers to the first of the first service An optical multiplexing segment between the ROADM site and the first next RO ADM site of the first service after the handover;
  • the processor is further configured to acquire a wavelength resource of the first service at the first ROADM site;
  • the processor is further configured to establish, according to the wavelength resource, a light crossing of a wavelength of the first service in the third optical multiplex section;
  • the processor is further configured to acquire, according to an optical signal-to-noise ratio of the first ROADM station and the next ROADM station, all the services on the third optical multiplex section according to wavelengths of all services that pass through the third optical multiplex section Degraded equalization value of the fourth optical signal to noise ratio of the wavelength;
  • the processor is further configured to acquire, according to the obtained degradation balance value of the fourth optical signal to noise ratio of the wavelength of all services on the third optical multiplex section, respectively, to obtain all services on the third optical multiplex section a sixth outbound target power of the wavelength at the first ROADM site;
  • the processor is further configured to adjust a single wave attenuation amount of a wavelength of the all services according to the sixth outbound target power.
  • the acquiring, by the processor, the wavelength resource of the first service at the first ROADM site, according to the second possible implementation manner includes:
  • An embodiment of the present invention provides an automatic power commissioning method and a first dynamic optical add/drop multiplex ROADM station. After receiving the first service request message, the method establishes an optical crossover for the wavelength of the first service, and then according to the The wavelength of all services of an optical multiplex section is currently at the optical SNR of the first ROADM site and the next ROADM site And obtaining, by the optical signal-to-noise ratio, a degradation equalization value of the first optical signal-to-noise ratio of the wavelengths of all services on the first optical multiplex section, and then, according to the obtained wavelengths of all services on the first optical multiplex section a degraded equalization value of an optical signal to noise ratio, respectively acquiring a first outbound target power of the wavelength of the all services at the first ROADM station; and finally adjusting the all services according to the first outbound target power The amount of single-wave attenuation of the wavelength.
  • the method further deletes the optical crossover established for the wavelength of the first service; and then determines whether there are wavelengths of other services on the first optical multiplex section. If there is a wavelength of another service on the first optical multiplex section, the optical signal-to-noise ratio of the first ROADM site and the light of the next ROADM site are currently according to wavelengths of other services on the first optical multiplex section.
  • the method uses the corresponding modulation method for the wavelength of each service to adjust the transmission characteristics of different wavelengths. Therefore, when the wavelengths are transmitted, the optical multiplex section is balanced and is not interfered by the increase or decrease of the wavelength. , to improve the reception quality of the signal.
  • FIG. 1 is an automatic power commissioning method according to an embodiment of the present invention
  • FIG. 2 is another automatic power commissioning method according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a service scenario in an automatic switched optical network according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an automatic power commissioning method of a first R0ADM station when adding services according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of an automatic power commissioning method of a first R0ADM station when deleting a service according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a first R0ADM site according to an embodiment of the present invention
  • FIG. 7 is a schematic diagram of another -ORADM site provided by an embodiment of the present invention
  • FIG. 8 is a schematic diagram of an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a first ROADM site according to an embodiment of the present invention
  • FIG. 10 is a schematic diagram of still another first ROADM site according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of still another first ROADM site according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram of still another first ROADM site according to an embodiment of the present invention.
  • An embodiment of the present invention provides an automatic power commissioning method, which is applied to a first dynamic optical add/drop multiplex ROADM site in an automatic switched optical network, as shown in FIG. 1 , the method includes:
  • first in the first service request message described herein does not have any special meaning, and only refers to the service currently processed at the first ROADM site. The wavelength.
  • the "first" in the first ROADM site also has no special meaning, and only refers to the RO ADM site currently passing by the first service.
  • the first optical multiplex section refers to an optical multiplex section between the first ROADM station of the first service and the next ROADM site of the first service.
  • the degradation refers to a difference between an optical signal-to-noise ratio of a wavelength of a certain service at the first ROADM site and an optical signal-to-noise ratio of a next ROADM site, after establishing optical crossover for the wavelength of the first service. Because the wavelength is increased, the optical signal-to-noise ratio degradation of the wavelengths of all services passing through the first optical multiplex section may not be equalized. In order to ensure the quality of the received signal, the first optical multiplex section should be first acquired. Degraded equalization value of the first optical signal to noise ratio of the wavelength of all services.
  • the "first" in the degradation equalization value of the first optical signal-to-noise ratio does not have any special meaning, only to distinguish the deterioration of the optical signal-to-noise ratio at different times.
  • the wavelengths of all services on the first optical multiplex section each have a corresponding first outbound target power, which is determined by the degradation equalization value of the first optical signal to noise ratio.
  • the "first" in the first outbound target power does not have any special meaning, only to distinguish the outbound target power at different times.
  • the wavelengths of all the services on the first optical multiplex section are modulated, and the wavelengths of the services are set to a corresponding attenuation amount for different wavelength transmission characteristics, so
  • the wavelength of the other services on the first optical multiplex section is not affected by the increase of the wavelength added by the first service, and the optical multiplex section can maintain a better optical signal-to-noise ratio degradation balance and improve the signal.
  • An embodiment of the present invention provides an automatic power commissioning method, after receiving a first service request message, establishing an optical crossover for the wavelength of the first service, and then according to wavelengths of all services passing through the first optical multiplex section Obtaining an optical signal-to-noise ratio of the first ROADM station and an optical signal-to-noise ratio of the next ROADM station, acquiring a degradation balance value of the first optical signal-to-noise ratio of the wavelength of all services on the first optical multiplex section, and then Obtaining, according to the obtained degradation balance value of the first optical signal-to-noise ratio of the wavelengths of all services on the first optical multiplex section, respectively, acquiring the first outbound target of the wavelength of all the services at the first ROADM station Power; finally, according to the first outbound target power, the single wave attenuation of the wavelengths of all services is adjusted.
  • the wavelength of the newly added service on the first optical multiplex section and the wavelength wave of the existing service are all modulated, and the transmission characteristics are different for different wavelengths.
  • the difference is set to the corresponding attenuation of each service wavelength, so that the optical multiplex section is balanced during transmission, and is not interfered by the wavelength increase, so that the reception quality of the signal is improved.
  • the embodiment of the invention further provides an automatic power commissioning method, which is specifically shown in FIG. 2, and the method includes:
  • deleting the optical crossover established for the wavelength of the first service is reversely deleted from the last ROADM site of the first service to the first ROADM site, So the first ROADM The station receives the first service request message sent by the next R0ADM station of the first service.
  • the first next VOADM site can be understood as the last R0ADM site of the first service.
  • the first optical multiplex section refers to an optical multiplex section between the first ROADM site of the first service and the next RO ADM site of the first service.
  • step 204 is performed; if there is no wavelength of other services on the first optical multiplex section, it is not processed.
  • the optical signal to noise ratio of the first ROOADM site and the next R0ADM site according to the wavelength of other services on the first optical multiplex section obtains a degradation equalization value of the third optical signal to noise ratio of the wavelength of the other services on the first optical multiplex section.
  • the degradation refers to the difference between the optical signal-to-noise ratio of the wavelength of a certain service at the first ROADM site and the optical signal-to-noise ratio of the next ROADM site, and the light established for the wavelength of the first service is deleted. After the crossover, the optical signal-to-noise ratio degradation of the wavelengths of other services on the first optical multiplex section may not be equalized because the wavelength is reduced. In order to ensure the quality of the received signal, the first optical multiplexing should be first acquired. The degradation equalization value of the third optical signal to noise ratio of the wavelength of other services on the segment.
  • the "third” in the degradation equalization value of the third optical signal-to-noise ratio does not have any special meaning, only to distinguish the degradation of the optical signal-to-noise ratio at different times.
  • the wavelengths of other services on the first optical multiplex section each have a corresponding fourth outbound target power, which is determined by the degradation equalization value of the third optical signal to noise ratio.
  • the "fourth" in the fourth outbound target power does not have any special meaning, only to distinguish the outbound target power at different times.
  • the wavelengths of other services on the first optical multiplex section are also power-measured, and the wavelengths of the services are set to a corresponding attenuation amount for different wavelength transmission characteristics, so The wavelength of the other services on the first optical multiplex section is not affected by the wavelength reduction caused by deleting the first service, and the optical multiplex section can maintain a better optical signal-to-noise ratio degradation balance and improve the signal. Receive quality.
  • each of the first RO ADM sites receives a first service request message sent by the next RO ADM site, and the request is in the first
  • the ROADM site deletes the optical crossover established for the wavelength of the first service.
  • the method of deleting the wavelength of the service one by one from the downstream site of the service to the upstream site will also prevent the wavelength of the deleted first service from interfering with the wavelength of other services, and the prior art does not delete the service from the upstream site. Wavelength caused by multiple downstream waves that affect the wavelength of other services.
  • An embodiment of the present invention provides an automatic power commissioning method, after receiving a first service request message sent by a next ROADM station of a first service, deleting an optical cross established for a wavelength of the first service; Determining whether there is a wavelength of another service on the first optical multiplex section, if there is a wavelength of another service on the first optical multiplex section, the wavelength of other services on the first optical multiplex section is currently in the first ROADM And obtaining, by the optical signal-to-noise ratio of the station, an optical signal-to-noise ratio of the next ROADM station, a degradation equalization value of the third optical signal-to-noise ratio of the wavelength of the other service on the first optical multiplex section; a degradation equalization value of a third optical signal-to-noise ratio of wavelengths of other services on the first optical multiplex section, respectively acquiring a fourth outbound target power of the wavelength of the other service at the first ROADM station; The fourth outbound target power adjusts the single wave attenuation of
  • the method is further characterized in that after the light established by the wavelength of the first service is deleted, Debugging the wavelengths of the remaining services on the first optical multiplex section, and setting a corresponding attenuation amount for each service wavelength for different wavelength transmission characteristics, so that each wavelength is transmitted, optical multiplexing
  • the segments are balanced and are not subject to wavelength reduction, resulting in improved signal reception quality.
  • An embodiment of the present invention further provides an automatic power commissioning method, which is based on a first dynamic optical add/drop multiplex ROADM station in an automatic switched optical network, as shown in FIG. 3, assuming that A-BCD is an existing wavelength. For the service, the E-BCF wavelength service will be added.
  • the method of automatic power commissioning at the B site is explained. As shown in Figure 4, the method includes:
  • the second optical multiplex section refers to an optical multiplex section between the first ROADM station of the first service and the previous ROADM site of the first service, where the existing service refers to the second optical recovery
  • the second outbound target power is the wavelength of the existing service when the previous ROADM station does not establish optical crossover for the wavelength of the first service. Outbound power at the first ROADM site.
  • the second optical multiplex section is the EB segment, and the existing service refers to other services except the first service through the EB segment.
  • the EB segment has only the wavelength of the first service, and there is no other time.
  • the wavelength of the service, the second outbound target power is the outbound power of the existing service at the second station on the second optical multiplex section EB when the E station does not establish an optical crossover for the wavelength of the first service.
  • the ROADM station adjusts the outbound power of the wavelength of the existing service to the second outbound target power of the wavelength of the existing service at the first RO ADM site.
  • the wavelength of the existing service exists on the second optical multiplex section, after the wavelength of the first service is established at the previous ROADM site, the wavelength of the newly added service is added,
  • the wavelength of each service on the second optical multiplex section is power-tuned, so that when the wavelength of the existing service on the second optical multiplex section enters the first ROADM site, the inbound power is relatively higher.
  • the ROADM site changes when the wavelength of the first service is not established, which means that the outbound power changes when the wavelength of the first service is not established at the previous ROADM site, in order to ensure the second optical recovery.
  • the wavelength of the existing service on the segment is not affected by this, and the outbound power of the wavelength of the existing service is adjusted to the second outbound target power of the wavelength of the existing service at the first ROADM station.
  • the second outbound target power is that when the previous ROADM station does not establish optical crossover for the wavelength of the first service, the wavelength of the existing service is at the first ROADM site. Outbound power. By commissioning, the wavelength of the existing service on the second optical multiplex section can be prevented from being affected by the wavelength increase caused by the newly added service.
  • step 403 is not performed.
  • the first optical multiplex section refers to an optical multiplex section between the first ROADM station of the first service and the next ROADM site of the first service.
  • the degradation refers to a difference between an optical signal-to-noise ratio of a wavelength of a certain service at the first ROADM site and an optical signal-to-noise ratio of a next ROADM site, after establishing optical crossover for the wavelength of the first service. Passing the first optical multiplex section because the wavelength is increased
  • the optical signal-to-noise ratio degradation of the wavelengths of all the services may be no longer balanced.
  • the first optical signal-to-noise ratio degradation of the wavelengths of all services on the first optical multiplex section may be first obtained. value.
  • all services that pass through the first optical multiplex section are A-B-C-D wavelength services and E-B-C-F wavelength services.
  • So ⁇ according to the wavelength of the A-BCD service, the optical signal-to-noise ratio of the first RO ADM site and the optical signal-to-noise ratio of the next RO ADM site, and the wavelength of the E-BCF service are currently in the first
  • the optical signal to noise ratio of the ROADM station and the optical signal to noise ratio of the next ROADM station acquire the degradation equalization value of the first optical signal to noise ratio.
  • the wavelengths of all services on the first optical multiplex section each have a corresponding first outbound target power, which is determined by the degradation equalization value of the first optical signal to noise ratio.
  • the "first" in the first outbound target power does not have any special meaning, only to distinguish the outbound target power at different times.
  • the first outbound target power of the A-B-C-D service at the B site and the first outbound target power of the E-B-C-F service at the B site are obtained.
  • Adjusting the single-wave attenuation of the wavelengths of all the services ensures that other service wavelengths of the first optical multiplex section are not affected by the wavelength increase caused by the newly added services, and the optical signal-to-noise ratio degradation balance of the optical multiplex section is ensured. , improve the reception quality of the signal.
  • step 403 is not executed, and the E station performs 401, 402, 404, 405, 406, 407 of the above steps.
  • the E-BCF wavelength service is added, for the C site, since the wavelength of the existing service exists on the BC on the second optical multiplex section, which is the wavelength of the A-BCD service, the C station performs the above steps 401 and 402. , 403, 404, 405, 406, 407.
  • the F site serves as the last site of the E-BCF service, and the existing service does not exist on the CF on the corresponding second optical multiplex section, so only the first service request message and the first An indication message and an action of establishing a light crossing for the wavelength of the first service.
  • the method further includes:
  • the current The optical signal to noise ratio of the first ROADM station and the optical signal to noise ratio of the next ROADM station acquire the degradation equalization value of the second optical signal to noise ratio of the wavelengths of all services on the first optical multiplex section.
  • a single wave attenuation amount of the wavelength of the all services is adjusted according to the third outbound target power.
  • the “second” in the degradation equalization value of the second optical signal to noise ratio is There is no special meaning, only to distinguish the degradation equilibrium value of the optical signal-to-noise ratio at different times.
  • the "third" in the third outbound target power also has no special meaning, only to distinguish the outbound target power at different times.
  • the method before establishing optical crossover for the wavelength of the first service, the method further includes:
  • a wavelength resource that establishes optical crossover for the wavelength of the first service is reserved.
  • the RSVP Resource Reservation Protocol
  • LSP Label Switched Path
  • the embodiment of the present invention further provides an automatic power commissioning method, which is based on a first dynamic optical add/drop multiplex ROADM site in an automatic switched optical network, specifically, based on the existing service shown in FIG.
  • the automatic power commissioning method of the B site is described when the wavelength of the ABCD service is deleted. Specifically, as shown in FIG. 5, the method includes:
  • 501 Receive a first service request message sent by a next ROADM station of the first service, where the first service request message requests to delete an optical cross established for a wavelength of the first service at the first ROADM station.
  • the first service request message requests to delete an optical cross established for a wavelength of the first service at the first ROADM station.
  • deleting the optical crossover established for the wavelength of the first service is reversely deleted from the last ROADM site of the first service to the first ROADM site, So the first ROADM The station receives the first service request message sent by the next ROADM station of the first service.
  • the first next ROADM site can be understood as the last ROADM site of the first service.
  • the next ROADM site of the first service is a C site, so the B site receives the first service request message sent by the C site.
  • the first optical multiplex section refers to an optical multiplex section between the first ROADM station of the first service and the next ROADM site of the first service.
  • step 504 is performed; if there is no wavelength of other services on the first optical multiplex section, it is not processed. Specifically, as shown in FIG. 3, for the B site, after the wavelength of the A-B-C-D service is deleted, the wavelength of the E-B-C-F service is also included in the first optical multiplex section.
  • the optical signal to noise ratio of the first ROADM site and the next ROADM site according to the wavelength of other services on the first optical multiplex section obtains a degradation equalization value of the third optical signal to noise ratio of the wavelength of the other services on the first optical multiplex section.
  • the degradation refers to the difference between the optical signal-to-noise ratio of the wavelength of a certain service at the first ROADM site and the optical signal-to-noise ratio of the next ROADM site, and the light established for the wavelength of the first service is deleted. After the crossover, the optical signal-to-noise ratio degradation of the wavelengths of other services on the first optical multiplex section may not be equalized because the wavelength is reduced. In order to ensure the quality of the received signal, the first optical multiplexing should be first acquired. The degradation equalization value of the third optical signal to noise ratio of the wavelength of other services on the segment.
  • the "third” in the degradation equalization value of the third optical signal-to-noise ratio does not have any special meaning, only to distinguish the degradation of the optical signal-to-noise ratio at different times.
  • the third light of the wavelength of the EBCF service on the first optical multiplex section is obtained. Degraded equalization value of the signal to noise ratio.
  • wavelengths of other services on the first optical multiplex section each have a corresponding fourth outbound target power, which is determined by the degradation equalization value of the third optical signal to noise ratio.
  • the "fourth" in the fourth outbound target power does not have any special meaning, only to distinguish the outbound target power at different times.
  • the fourth outbound target power of the wavelength of the E-B-C-F service at the B site is obtained at this time.
  • the wavelength of the other services on the first optical multiplex section is further tuned, and the wavelength of each service is set to a corresponding attenuation amount for the difference of the transmission characteristics of the different wavelengths. Therefore, it is ensured that the wavelength of other services on the first optical multiplex section is not affected by the wavelength reduction caused by deleting the first service, and the optical multiplex section can maintain a better optical signal-to-noise ratio degradation balance and improve the signal. The quality of reception.
  • the fifth outbound target power is an outbound of the wavelength of the other service at the next ROADM site when the first ROADM site does not delete the optical crossover established for the wavelength of the first service. power.
  • the wavelength of the first service is deleted After the established optical crossover, the wavelengths of other services on the first optical multiplex section are modulated, so that when the wavelength of the other service enters the next ROADM site, the inbound power is relative to the first ROADM site.
  • a change occurs when the optical crossover established for the first service is not deleted, which means that the outbound power changes when the first ROADM site does not delete the light established by the first service.
  • the wavelengths of other services on the first optical multiplex section are not affected by this, and an operation request message should be sent to the next ROADM site of the first service, requesting the other ROADM site to
  • the outbound power of the wavelength of the traffic is adjusted to the fifth outbound target power of the wavelength of the other traffic at the next ROADM site. This ensures that the power of the next ROADM station continues to change downstream. Otherwise, the power of the CF optical multiplex section changes, affecting the degradation equalization of the optical multiplex section and the quality of the received signal.
  • the C station determines that there is no wavelength of other services on the first optical multiplex section CD when performing step 503, it is not processed yet.
  • the site only performs 501, 502, 503 of the above steps.
  • the A station When the A-BCD wavelength service is deleted, for the A station, because the A station determines that there is no wavelength of other services on the first optical multiplex section AB when performing step 503, the A station only performs the processing. 501, 502, 503 of the above steps. At this point, the signal source receives the delete first service request message, indicating that the A-B-C-D wavelength service is deleted.
  • each of the first ROADM stations receives a first service request message sent by the next ROADM station, requesting at the first ROADM site.
  • the optical crossover established for the wavelength of the first service is deleted.
  • the method of deleting the wavelength of the service one by one from the downstream site of the service to the upstream site also causes the wavelength wave of the deleted first service to not interfere with the wavelength of other services, and the prior art does not delete the service from the upstream site.
  • the downstream wavelengths caused by the wavelength drop affecting the wavelength of other services.
  • the first service request message further requests the first in the first service.
  • the ROADM station changes the wavelength of the first service from the first optical multiplex section to the third optical multiplex section, where the third optical multiplex section refers to the first ROADM site of the first service and after the handover An optical multiplex section between the first next ROADM sites of the first service.
  • the method also includes:
  • a single wave attenuation amount of the wavelength of the all services is adjusted according to the sixth outbound target power.
  • the first next ROADM site is a ROADM site different from the next ROADM site, and the next ROADM site is the next ROADM site of the first service before the link switching;
  • the first next ROADM site is the next ROADM site of the first service after the link switch.
  • obtaining the wavelength resource of the first service at the first ROADM site specifically includes:
  • the demultiplexing board is like a WSD (Wavelength Selective Switching Demultiplexing Board), it does not have the function of copying light waves.
  • the first service is obtained at the first ROOADM site according to the wavelength resource of the first service released by the first optical multiplex section. Wavelength resources. In this way, when the link is switched, the optical crossover established for the wavelength of the first service must be deleted first, and then the optical crossover is established for the wavelength of the first service.
  • the demodulation board has the same function as the RDU (ROADM Demultiplexing Board), it can be reserved according to the reservation.
  • the wavelength resource obtains the wavelength resource of the first service at the first ROOADM site.
  • the embodiment of the present invention provides an automatic power commissioning method. After receiving the first service request message, the method establishes an optical crossover for the wavelength of the first service, and then according to the wavelength of all services passing through the first optical multiplex section. Acquiring the optical signal-to-noise ratio of the first OFDM station and the optical signal-to-noise ratio of the next OFDM station to obtain the degradation balance value of the first optical signal-to-noise ratio of the wavelength of all services on the first optical multiplex section, and then according to the Deriving a degradation equalization value of the first optical signal to noise ratio of the wavelengths of all the services on the first optical multiplex section, respectively acquiring the first outbound target power of the wavelength of the all services at the first ROOADM station; Finally, adjusting all the industries according to the first outbound target power The amount of single-wave attenuation of the wavelength of the service.
  • the method further deletes the optical crossover established for the wavelength of the first service; and then determines whether there are wavelengths of other services on the first optical multiplex section. If there is a wavelength of another service on the first optical multiplex section, the optical signal-to-noise ratio of the first ROADM site and the light of the next ROADM site are currently according to wavelengths of other services on the first optical multiplex section.
  • the wavelengths of the respective services are modulated by the corresponding modulation methods for different wavelength transmission characteristics, so that the optical multiplexing sections are balanced when the wavelengths are transmitted. , without interference from increasing or decreasing wavelength, which improves the reception quality of the signal.
  • the embodiment of the present invention provides a first dynamic optical add/drop multiplex ROADM station 60.
  • the first ROADM station 60 includes a receiver 61 and a processor 62.
  • the receiver 61 is configured to receive a first service request message, and send the first service request message to the processor 62, where the first service request message requests the first ROADM site to The wavelength of the first service establishes an optical cross.
  • first in the first service request message described herein does not have any special meaning, and only refers to the wavelength of the service currently processed at the first ROADM site.
  • the "first" in the first ROADM site also has no special meaning, and only refers to the ROADM site currently passing by the first service.
  • the processor 62 is configured to receive the first service sent by the receiver 61 Requesting a message and establishing an optical crossover for the wavelength of the first service.
  • the processor 62 is further configured to obtain, according to an optical signal to noise ratio of the first RO ADM site and an optical signal to noise ratio of a next RO ADM site, according to wavelengths of all services passing through the first optical multiplexing segment. Degradation equalization value of the first optical signal to noise ratio of the wavelength of all services on the first optical multiplex section, where the first optical multiplex section refers to the first ROADM site of the first service and the first service An optical multiplex section between a RO ADM site.
  • the degradation refers to a difference between an optical signal-to-noise ratio of a wavelength of a certain service at the first ROADM site and an optical signal-to-noise ratio of a next ROADM site, after establishing optical crossover for the wavelength of the first service. Because the wavelength is increased, the optical signal-to-noise ratio degradation of the wavelengths of all services passing through the first optical multiplex section may not be equalized. In order to ensure the quality of the received signal, the first optical multiplex section should be first acquired. Degraded equalization value of the first optical signal to noise ratio of the wavelength of all services.
  • the "first" in the degradation equalization value of the first optical signal-to-noise ratio does not have any special meaning, only to distinguish the deterioration of the optical signal-to-noise ratio at different times.
  • the processor 62 is further configured to acquire, according to the obtained degradation balance value of the first optical signal-to-noise ratio of the wavelengths of all services on the first optical multiplex section, the wavelengths of the all services in the first The first outbound target power of a ROADM site.
  • the wavelengths of all services on the first optical multiplex section each have a corresponding first outbound target power, which is determined by the degradation equalization value of the first optical signal to noise ratio.
  • the "first" in the first outbound target power does not have any special meaning, only to distinguish the outbound target power at different times.
  • the processor 62 is further configured to adjust a single wave attenuation amount of the wavelength of the all services according to the first outbound target power.
  • the processor 62 After the first service is added, the processor 62 performs the debugging on the wavelengths of all the services on the first optical multiplex section, and sets the corresponding wavelengths of the services for the difference of the transmission characteristics of the different wavelengths.
  • the receiver 61 is further configured to receive the first indication message, and send the first indication message to the processor 62, where the first indication message is requested at the first ROADM site,
  • the outbound power of the wavelength of the existing service on the second optical multiplex section is adjusted to the second outbound target power of the wavelength of the existing service at the first ROADM station.
  • the second optical multiplex section refers to an optical multiplex section between the first ROADM station of the first service and the previous ROADM site of the first service, where the existing service refers to the second optical recovery
  • the second outbound target power is the wavelength of the existing service when the previous ROADM station does not establish optical crossover for the wavelength of the first service. Outbound power at the first ROADM site.
  • the processor 62 is configured to receive the first indication message sent by the receiver 61, if there is a wavelength of an existing service on the second optical multiplex section, at the first ROADM site, The outbound power of the wavelength of the existing service is adjusted to the second outbound target power of the wavelength of the existing service at the first ROADM station.
  • the wavelength of the existing service exists on the second optical multiplex section, after the wavelength of the first service is established at the previous ROADM site, the wavelength of the newly added service is added,
  • the wavelength of each service on the second optical multiplex section is power-tuned, so that when the wavelength of the existing service on the second optical multiplex section enters the first ROADM site, the inbound power is relatively higher.
  • the ROADM site changes when the wavelength of the first service is not established, which means that the outbound power changes when the wavelength of the first service is not established at the previous ROADM site, in order to ensure the second optical recovery.
  • the wavelength of the existing service on the segment is not affected by this, and the outbound power of the wavelength of the existing service is adjusted to the second outbound target power of the wavelength of the existing service at the first ROADM station.
  • the wavelength of the existing service on the second optical multiplex section can be made new Increase the impact of wavelength increase caused by the business.
  • the wavelength of the existing service does not exist on the second optical multiplex section, the wavelength of the existing service is not included in the second optical multiplex section before the first service is added.
  • the first ROADM station does not need to adjust the outbound power of the wavelength of the existing service to the second outbound target power of the wavelength of the existing service at the first ROADM station.
  • the processor 62 is further configured to: after adjusting a single-wave attenuation of the wavelength of the all services according to the first outbound target power, acquire the wavelength of all the services in the first ROADM The current outbound power of the site.
  • the processor 62 is further configured to determine whether a difference between the current outbound power of the wavelengths of the all services and the first outbound target power is within a preset range.
  • the processor 62 is further configured to: if the difference between the current outbound power and the first outbound target power of the wavelength of all services is not within a preset range, and again according to the first optical multiplexing segment
  • the wavelength of all services is currently at the optical SNR of the first ROADM site and the optical signal to noise ratio of the next ROADM site, and the second optical signal to noise ratio of the wavelengths of all services on the first optical multiplex section is obtained. Degraded equalization value.
  • the processor 62 is further configured to acquire, according to the obtained degradation balance value of the second optical signal-to-noise ratio of the wavelength of all services on the first optical multiplex section, the wavelengths of the all services in the first The third outbound target power of a ROADM site.
  • the processor 62 is further configured to adjust a single wave attenuation amount of the wavelength of the all services according to the third outbound target power.
  • the "second" in the degradation equalization value of the second optical signal-to-noise ratio does not have any special meaning, only to distinguish the deterioration of the optical signal-to-noise ratio at different times.
  • the "third" in the third outbound target power also has no special meaning, only to distinguish the outbound target power at different times.
  • the feedback adjustment may be repeated until the current outbound power of the wavelength of all services
  • the difference between the outbound target power and the outbound target power is within a preset range, which is not specifically limited in this embodiment of the present invention.
  • the first ROADM site further includes a memory 63.
  • the memory 63 is configured to reserve a wavelength resource that establishes optical crossover for the wavelength of the first service before establishing optical crossover for the wavelength of the first service.
  • the RSVP Resource Reservation Protocol
  • LSP Label Switched Path
  • An embodiment of the present invention provides a first ROADM site, where the first ROADM site includes a receiver and a processor. After the receiver receives the first service request message, the processor establishes optical crossover for the wavelength of the first service, and then the processor is currently in the first according to the wavelength of all services passing through the first optical multiplex section.
  • the processor Acquiring an optical signal-to-noise ratio of a ROADM station and an optical signal-to-noise ratio of a next ROADM station, acquiring a degradation balance value of a first optical signal-to-noise ratio of wavelengths of all services on the first optical multiplex section, and then the processor is configured according to Obtaining a first optical signal to noise ratio degradation equalization value of the wavelengths of all services on the first optical multiplex section, respectively acquiring the first outbound target power of the wavelength of the all services at the first ROADM station Finally, the processor adjusts a single-wave attenuation of the wavelength of the all services according to the first outbound target power.
  • the wavelength of the newly added service on the first optical multiplex section and the wavelength wave of the existing service are both The commissioning is performed, and the corresponding attenuation amount is set for the wavelength of each service for the difference of the transmission characteristics of different wavelengths, so that the optical multiplex section is balanced while transmitting, and the signal is not interfered by the wavelength increase, so that the signal The quality of reception is improved.
  • the embodiment of the present invention further provides a first dynamic optical add/drop multiplexing R0ADM station 80.
  • the first ROADM station includes a receiver 81 and a processor 82.
  • the receiver 81 is configured to receive a first service request message sent by the next ROADM station of the first service, and send the request message of the first service to the processor 82, where the first service request message is requested. And deleting, at the first ROADM site, an optical crossover established for a wavelength of the first service.
  • the receiver 81 receives the first service request message sent by the next ROADM station of the first service.
  • the first next ROADM site can be understood as the last ROADM site of the first service.
  • the processor 82 is configured to receive a first service request message sent by the receiver 81, and delete an optical crossover established for a wavelength of the first service.
  • the processor 82 is further configured to determine whether there is a wavelength of another service on the first optical multiplex section, where the first optical multiplex section refers to the first ROADM site of the first service and the first service Optical multiplex section between next ROADM sites.
  • the processor 82 is further configured to: if there is a wavelength of another service on the first optical multiplex section, according to the wavelength of other services on the first optical multiplex section, currently the optical signal and noise at the first ROADM station Obtaining a degradation equalization value of a third optical signal to noise ratio of wavelengths of other services on the first optical multiplex section and an optical signal to noise ratio of the next ROADM station.
  • the degradation refers to the difference between the optical signal-to-noise ratio of the wavelength of a certain service at the first ROADM site and the optical signal-to-noise ratio of the next ROADM site, and the light established for the wavelength of the first service is deleted. After the intersection, the first optical multiplexing is performed because the wavelength is reduced.
  • the optical signal-to-noise ratio degradation of the wavelengths of other services on the segment may not be equalized.
  • the third optical signal-to-noise ratio of the wavelength of other services on the first optical multiplex section should be first obtained. Degraded equilibrium value.
  • the "third” in the degradation equalization value of the third optical signal-to-noise ratio does not have any special meaning, only to distinguish the degradation of the optical signal-to-noise ratio at different times.
  • the processor 82 is further configured to acquire, according to the obtained degradation balance value of the third optical signal-to-noise ratio of the wavelength of the other service on the first optical multiplex section, the wavelength of the other service in the first The fourth outbound target power of a RO ADM site.
  • wavelengths of other services on the first optical multiplex section each have a corresponding fourth outbound target power, which is determined by the degradation equalization value of the third optical signal to noise ratio.
  • the "fourth" in the fourth outbound target power does not have any special meaning, only to distinguish the outbound target power at different times.
  • the processor 82 is further configured to adjust a single wave attenuation amount of a wavelength of the other service according to the fourth outbound target power.
  • the processor 82 After the first service is deleted, the processor 82 further performs power adjustment on wavelengths of other services on the first optical multiplex section, and sets corresponding wavelengths for each service according to differences in transmission characteristics of different wavelengths.
  • the first ROADM site further includes a transmitter.
  • the transmitter 83 is configured to send an operation request message to the first service after the processor 82 adjusts a single wave attenuation amount of the wavelength of the other service according to the fourth outbound target power.
  • the operation request message request is The next ROADM station adjusts the outbound power of the wavelength of the other service to the fifth outbound target power of the wavelength of the other service at the next ROADM station.
  • the fifth outbound target power is an outbound of the wavelength of the other service at the next ROADM site when the first ROADM site does not delete the optical crossover established for the wavelength of the first service. power.
  • the wavelength of the other service on the first optical multiplex section is modulated after the optical traversing of the first service multiplex is deleted at the first ROADM site, so that the wavelength of the other service is
  • the inbound power changes when the first ROADM site does not delete the optical crossover established for the first service, which means that the outbound power is relative to the first ROADM.
  • the transmitter 83 should send an operation request message to ensure that the wavelength of other services on the first optical multiplex section is not affected by the impact.
  • the next ROADM station of the first service requests to adjust, at the next ROADM site, the outbound power of the wavelength of the other service to the wavelength of the other service at the fifth out of the next ROADM site.
  • the target power of the station ensures that the power of the next ROADM station continues to change downstream.
  • the first service request message further requests that the wavelength of the first service is switched from the first optical multiplexing segment to the third optical multiplexing segment at a first ROADM site of the first service, where
  • the third optical multiplex section refers to an optical multiplex section between the first ROADM site of the first service and the first next ROADM site of the first service after handover.
  • the processor 82 is further configured to acquire a wavelength resource of the first service at the first ROADM site.
  • the processor 82 is further configured to establish, according to the wavelength resource, an optical cross of the wavelength of the first service in the third optical multiplex section.
  • the processor 82 is further configured to: at an optical signal to noise ratio of the first ROADM site and the next ROADM site according to wavelengths of all services passing through the third optical multiplex section, Obtaining a degradation equalization value of a fourth optical signal to noise ratio of wavelengths of all services on the third optical multiplex section.
  • the processor 82 is further configured to acquire, according to the obtained degradation balance value of the fourth optical signal to noise ratio of the wavelength of all services on the third optical multiplex section, respectively, all services on the third optical multiplex section The wavelength of the sixth outbound target power at the first ROADM site.
  • the processor 82 is further configured to adjust a single wave attenuation amount of the wavelength of the all services according to the sixth outbound target power.
  • the first next ROADM site is a ROADM site different from the next ROADM site, and the next ROADM site is the next ROADM site of the first service before the link switching;
  • the first next ROADM site is the next ROADM site of the first service after the link switch.
  • the acquiring, by the processor 82, the wavelength resource of the first service at the first ROADM site includes:
  • the demultiplexing board is like a Wavelength Selective Switching Demultiplexing Board (WSD), it does not have the function of replicating light waves.
  • WSD Wavelength Selective Switching Demultiplexing Board
  • the first service may be obtained at the first ROADM site according to the wavelength resource of the first service released by the first optical multiplex section. Wavelength resources. This also determines that when the link is switched, the optical crossover established for the wavelength of the first service must be deleted, and then the optical crossover is established for the wavelength of the first service.
  • the wavelength of the first service at the first ROADM station may be obtained according to the reserved wavelength resource. Resources.
  • the process of deleting the optical crossover established by the wavelength of the first service and the process of establishing the optical crossover of the wavelength of the first service is not determined, which is not specifically limited in this embodiment of the present invention.
  • An embodiment of the present invention provides a first ROADM site, where the first ROADM site includes a receiver and a processor. Receiving, by the receiver, a first service request message sent by a next ROADM station of the first service, where the processor deletes an optical crossover established for a wavelength of the first service; and then the processor determines the first optical multiplex section Whether there are wavelengths of other services, if there are wavelengths of other services on the first optical multiplex section, the optical signal to noise ratio of the first ROADM site is currently according to the wavelength of other services on the first optical multiplex section.
  • the processor According to the acquired a third optical signal-to-noise ratio degradation equalization value of a wavelength of another service on an optical multiplex section, respectively acquiring a fourth outbound target power of the wavelength of the other service at the first ROADM station; and finally the processor is configured according to The fourth outbound target power adjusts a single wave attenuation of the wavelength of the other service.
  • the first ROADM station after the first ROADM station deletes the optical crossover established for the wavelength of the first service, the first ROADM station further performs the commissioning of the wavelengths of the remaining services on the first optical multiplex section, and is different for The difference in wavelength transmission characteristics is set to a corresponding attenuation amount for each service wavelength, so that when the wavelengths are transmitted, the optical multiplex section is balanced and is not interfered by the wavelength reduction, so that the reception quality of the signal is improved.
  • Embodiments of the present invention provide a first dynamic optical add/drop multiplex ROADM site
  • the first ROADM station 100 includes a receiving unit.
  • Processing unit 102 Processing unit 102. Acquiring unit 103.
  • the receiving unit 101 is configured to receive a first service request message, where the first service request message requests to establish an optical crossover of the wavelength of the first service at the first ROADM station.
  • the processing unit 102 is configured to establish optical crossover for the wavelength of the first service.
  • the obtaining unit 103 is configured to acquire, according to an optical signal to noise ratio of the first ROADM station and an optical signal to noise ratio of a next ROADM station, according to wavelengths of all services passing through the first optical multiplex section, acquiring the first optical complex Degrading the equalized value of the first optical signal to noise ratio of the wavelengths of all services on the segment, where the first optical multiplexing segment refers to the first ROADM site of the first service and the next ROADM site of the first service The optical multiplex section between.
  • the acquiring unit 103 is further configured to acquire, according to the obtained degradation balance value of the first optical signal-to-noise ratio of the wavelength of all services on the first optical multiplex section, the wavelengths of the all services in the first The first outbound target power of a ROADM site.
  • the processing unit 102 is further configured to adjust, according to the first outbound target power, a single wave attenuation amount of the wavelength of the all services.
  • the receiving unit 101 further receives a first indication message before the processing unit 102 establishes optical crossover for the wavelength of the first service, where the first indication message is requested at the first ROADM site, and
  • the outbound power of the wavelength of the existing service on the second optical multiplex section is adjusted to be the second outbound target power of the wavelength of the existing service at the first ROADM station, where the second optical multiplex section refers to the An optical multiplex section between the first ROADM site of the first service and the previous ROADM site of the first service, where the existing service refers to other than the first service of the second optical multiplex section
  • the second outbound target power is the wavelength of the existing service when the previous ROADM station does not establish an optical crossover for the wavelength of the first service.
  • the outbound power of the first ROADM site is the wavelength of the existing service when the previous ROADM station does not establish an optical crossover for the wavelength of the first service.
  • the processing unit 102 is further configured to: if the wavelength of the existing service exists on the second optical multiplex section, adjust the outbound power of the wavelength of the existing service to the The second outbound target power of the wavelength of the service at the first ROADM site.
  • the first ROADM site 100 further includes a determining unit 104.
  • the obtaining unit 103 is further configured to: after the processing unit 102 adjusts a single-wave attenuation amount of the wavelength of the all services according to the first outbound target power, acquire the wavelength of all the services in the first The current outbound power of a ROADM site.
  • the determining unit 104 is configured to determine whether a difference between the current outbound power of the wavelengths of the all services and the first outbound target power is within a preset range.
  • the obtaining unit 103 is further configured to: if the difference between the current outbound power of the wavelength of the all services and the first outbound target power is not within a preset range, and again according to the first optical multiplexing segment
  • the wavelength of all services is currently at the optical signal to noise ratio of the first ROADM site and the optical signal to noise ratio of the next ROADM site, and the second optical signal to noise ratio of the wavelengths of all services on the first optical multiplex section is obtained. Degraded equalization value.
  • the acquiring unit 103 is further configured to acquire, according to the obtained degradation balance value of the second optical signal-to-noise ratio of the wavelength of all services on the first optical multiplex section, the wavelengths of the all services in the first The third outbound target power of a ROADM site.
  • the processing unit 102 is further configured to adjust, according to the third outbound target power, a single wave attenuation amount of the wavelength of the all services.
  • the first ROADM station 100 further includes a storage unit 105.
  • the storage unit 105 is configured to reserve a wavelength resource that establishes optical crossover for the wavelength of the first service before the processing unit 102 establishes optical crossover for the wavelength of the first service.
  • the method for performing automatic power adjustment on the first ROADM station 100 can be referred to The description of the embodiment shown in FIG. 1 and FIG. 4 is omitted for the embodiment of the present invention.
  • An embodiment of the present invention provides a first ROADM site, where the first ROADM site includes a receiving unit, a processing unit, and an acquiring unit.
  • the processing unit establishes optical crossover for the wavelength of the first service, and then the acquiring unit is currently in the first according to the wavelength of all services that pass through the first optical multiplex section.
  • the processing unit adjusts a single wave attenuation amount of the wavelength of the all services according to the first outbound target power.
  • the wavelength of the newly added service on the first optical multiplex section and the wavelength wave of the existing service are both The commissioning is performed, and the corresponding attenuation amount is set for the wavelength of each service for the difference of the transmission characteristics of different wavelengths, so that the optical multiplex section is balanced while transmitting, and the signal is not interfered by the wavelength increase, so that the signal The quality of reception is improved.
  • the embodiment of the invention further provides a first dynamic optical add/drop multiplexing ROADM station
  • the first ROADM station 120 includes a receiving unit.
  • the receiving unit 121 is configured to receive a first service request message sent by a next ROADM station of the first service, where the first service request message requests to delete a wavelength establishment of the first service at the first ROADM station. The light crosses.
  • the processing unit 122 is configured to delete an optical cross established for a wavelength of the first service.
  • the determining unit 123 is configured to determine whether there is a wavelength of another service on the first optical multiplex section, where the first optical multiplex section refers to the first ROADM site of the first service and the first service An optical multiplex section between a ROADM site.
  • the obtaining unit 124 is configured to: if the wavelength of the other service exists on the first optical multiplex section, the optical signal to noise ratio of the first ROADM station according to the wavelength of the other service on the first optical multiplex section And obtaining, by the optical signal to noise ratio of the next ROADM station, a degradation equalization value of the third optical signal to noise ratio of the wavelength of the other services on the first optical multiplex section.
  • the acquiring unit 124 is further configured to acquire, according to the obtained degradation balance value of the third optical signal-to-noise ratio of the wavelength of the other service on the first optical multiplex section, the wavelength of the other service in the first The fourth outbound target power of a ROADM site.
  • the processing unit is further configured to adjust a single wave attenuation amount of a wavelength of the other service according to the fourth outbound target power.
  • the first ROADM site 120 further includes a sending unit 125.
  • the sending unit 125 is configured to: after the processing unit 122 adjusts the single-wave attenuation amount of the wavelength of the other service according to the fourth outbound target power, send an operation request message to the first service a ROADM station, the operation request message requesting, at the next ROADM site, adjusting an outbound power of a wavelength of the other service to a wavelength of the other service at a fifth outbound target of the next ROADM site Power, wherein the fifth outbound target power is when the first ROADM site does not delete the optical crossover established for the wavelength of the first service, and the wavelength of the other service is at the next ROADM site Outbound power.
  • the first service request message further requests that the wavelength of the first service is switched from the first optical multiplexing segment to the third optical multiplexing segment at a first ROADM site of the first service, where
  • the third optical multiplex section refers to an optical multiplex section between the first ROADM site of the first service and the first next ROADM site of the first service after handover.
  • the obtaining unit 124 is further configured to acquire a wavelength resource of the first service at the first OFDM station.
  • the processing unit 122 is further configured to establish, according to the wavelength resource, an optical cross of the wavelength of the first service in the third optical multiplex section.
  • the obtaining unit 124 is further configured to acquire the third optical multiplex section according to an optical signal to noise ratio of the first RO ADM site and the next RO ADM site according to wavelengths of all services passing through the third optical multiplex section.
  • the degradation equalization value of the fourth optical signal to noise ratio of the wavelengths of all services is further configured to acquire the third optical multiplex section according to an optical signal to noise ratio of the first RO ADM site and the next RO ADM site according to wavelengths of all services passing through the third optical multiplex section.
  • the acquiring unit 124 is further configured to acquire, according to the obtained degradation balance value of the fourth optical signal to noise ratio of the wavelength of all services on the third optical multiplex section, respectively, all services on the third optical multiplex section The wavelength of the sixth outbound target power at the first ROADM site.
  • the processing unit 122 is further configured to adjust a single-wave attenuation amount of the wavelength of the all services according to the sixth outbound target power.
  • the obtaining, by the acquiring unit 124, the wavelength resource of the first service at the first ROADM site includes:
  • An embodiment of the present invention provides a first ROADM site, where the first ROADM site includes a receiving unit, a processing unit, a determining unit, and an acquiring unit.
  • the unit determines whether there is a wavelength of another service on the first optical multiplex section. If the wavelength of the other service exists on the first optical multiplex section, the acquiring unit is currently according to the wavelength of other services on the first optical multiplex section.
  • the first ROADM station after the first ROADM station deletes the optical crossover established for the wavelength of the first service, the first ROADM station further performs the commissioning of the wavelengths of the remaining services on the first optical multiplex section, and is different for The difference in wavelength transmission characteristics is set to a corresponding attenuation amount for each service wavelength, so that when the wavelengths are transmitted, the optical multiplex section is balanced and is not interfered by the wavelength reduction, so that the reception quality of the signal is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例提供了自动功率调测方法和第一动态光分插复用ROADM站点,能够使得信号的接收质量提升。该方法包括:在接收第一业务请求消息后,对所述第一业务的波长建立光交叉,然后根据经过第一光复用段的所有业务的波长当前在所述第一ROADM站点的光信噪比和下一ROADM站点的光信噪比,获取所述第一光复用段上所有业务的波长的第一光信噪比的劣化均衡值;根据所述获取的所述第一光复用段上所有业务的波长的第一光信噪比的劣化均衡值,分别获取所述所有业务的波长在所述第一ROADM站点的第一出站目标功率;最后根据所述第一出站目标功率,调节所述所有业务的波长的单波衰减量。本发明适用于通信领域。

Description

自动功率调测方法和第一 ROADM站点 技术领域
本发明涉及通信领域, 尤其涉及自 动功率调测方法和第一
ROADM站点。
背景技术
波分网络是指釆用 WDM ( Wavelength Division Multipleing , 波 分复用 ) 传输原理的光网络。 随着 WDM 组网技术的成熟和应用, WDM网络管理也随之发生变化, 逐步向可调度、 智能化、 面向业务 运营的 WDM 网络管理方向发展。 自 动交换光网络 ( ASON , Automatically SwitchedOptical Network ) 给光网络增力口了控制平面, 通过信令实现了 自动连接管理。
现有技术自动交换光网络中 自动功率调测的方法如下:
若 新 增 一 条 业 务 的 波 长 , 则 从该 业 务 的 首 ROADM ( Reconfiguration Optical Add/drop Multiplexer , 动态光分插复用 ) 站点到该业务的尾 ROADM站点依次对所述新增业务的波长建立光 交叉, 同时根据固定的单波标称功率自动设置所述新增业务的波长 的单波衰减量。
若删除一条业务的波长, 则从该业务的首 ROADM站点到该业 务的尾 ROADM站点顺次删除该业务的波长对应的光交叉, 同时释 放被删除的业务的波长的光波资源。
但是, 该方法中由于没有考虑不同波长间传输性能的差异, 比 如不同波长在器件中的衰减不同, 计算待设置的衰减量的单波标称 功率不同, 从而造成各波长实际出站功率不能达到标称功率, 或即 使达到标称功率, 经过长纤传输后, 不同波长的功率也会变得不均 衡, 从而导致接收信号质量不理想。
而且, 该方法没有考虑建立、 删除双向光交叉时, 新增、 减少 的波长对已有波长性能的影响, 从而导致网络中部分业务波长的接 收信号的质量下降。
发明内容
本发明实施例提供了 自动功率调测方法和第一动态光分插复用
ROADM站点, 能够使得信号的接收质量提升。
为达到上述目 的, 本发明的实施例釆用如下技术方案: 第一方面, 提供了一种自动功率调测方法, 该方法应用于自动 交换光网络中的第一动态光分插复用 ROADM站点, 该方法包括: 接收第一业务请求消息, 所述第一业务请求消息请求在所述第 一 ROADM站点对所述第一业务的波长建立光交叉;
对所述第一业务的波长建立光交叉;
根据经过第一光复用段的所有业务的波长当前在所述第一 ROADM 站点的光信噪比和下一 ROADM 站点的光信噪比, 获取所 述第一光复用段上所有业务的波长的第一光信噪比的劣化均衡值, 其中, 所述第一光复用段指所述第一业务的第一 ROADM站点和所 述第一业务的下一 ROADM站点之间的光复用段;
根据所述获取的所述第一光复用段上所有业务的波长的第一光 信噪比的劣化均衡值, 分别获取所述所有业务的波长在所述第一 ROADM站点的第一出站目标功率;
根据所述第一出站目标功率, 调节所述所有业务的波长的单波 衰减量。
在第一种可能的实现方式中, 根据第一方面, 在对所述第一业 务的波长建立光交叉前, 还包括:
接收第一指示消 息, 所述第一指示消 息请求在所述第一 ROADM 站点, 将第二光复用段上已有业务的波长的出站功率调节 为所述已有业务的波长在所述第一 ROADM站点的第二出站目标功 率, 其中, 所述第二光复用段指所述第一业务的第一 ROADM站点 和所述第一业务的上一 R0ADM站点之间的光复用段, 所述已有业 务指经过所述第二光复用段的除了第一业务之外的其它业务, 所述 第二出站目标功率为在所述上一 ROADM站点没有对所述第一业务 的波长建立光交叉时, 所述已有业务的波长在所述第一 ROADM站 点的出站功率;
若所述第二光复用段上存在已有业务的波长, 在所述第一 ROADM 站点, 将所述已有业务的波长的出站功率调节为所述已有 业务的波长在所述第一 ROADM站点的第二出站目标功率。
在第二种可能的实现方式中, 根据第一方面或第一种可能的实 现方式, 在根据所述第一出站目标功率, 调节所述所有业务的波长 的单波衰减量后, 还包括:
获取所述所有业务的波长在所述第一 ROADM站点的当前出站 功率;
判断所述所有业务的波长的所述当前出站功率和所述第一出站 目标功率的差值是否在预设的范围内;
若所述所有业务的波长的所述当前出站功率和所述第一出站目 标功率的差值不在预设的范围内, 再次根据经过第一光复用段的所 有业务的波长当前在所述第一 ROADM 站点的光信噪比和下一 ROADM 站点的光信噪比, 获取所述第一光复用段上所有业务的波 长的第二光信噪比的劣化均衡值;
根据所述获取的所述第一光复用段上所有业务的波长的第二光 信噪比的劣化均衡值, 分别获取所述所有业务的波长在所述第一 ROADM站点的第三出站目标功率;
根据所述第三出站目标功率, 调节所述所有业务的波长的单波 衰减量。
在第三种可能的实现方式中, 根据第一方面或第一种可能的实 现方式或第二种可能的实现方式, 在对所述第一业务的波长建立光 交叉前, 还包括: 预留对所述第一业务的波长建立光交叉的波长资源。
第二方面, 提供了一种自动功率调测方法, 该方法应用于自动 交换光网络中的第一动态光分插复用 ROADM站点, 该方法包括: 接收第一业务的下一 ROADM站点发送的第一业务请求消息, 所述第一业务请求消息请求在所述第一 ROADM站点删除对所述第 一业务的波长建立的光交叉;
删除对所述第一业务的波长建立的光交叉;
判断第一光复用段上是否存在其它业务的波长, 其中, 所述第 一光复用段指所述第一业务的第一 ROADM站点和所述第一业务的 下一 ROADM站点之间的光复用段;
若所述第一光复用段上存在其它业务的波长, 根据所述第一光 复用段上的其它业务的波长当前在所述第一 ROADM站点的光信噪 比和下一 ROADM站点的光信噪比, 获取所述第一光复用段上的其 它业务的波长的第三光信噪比的劣化均衡值;
根据所述获取的所述第一光复用段上其它业务的波长的第三光 信噪比的劣化均衡值, 分别获取所述其它业务的波长在所述第一 ROADM站点的第四出站目标功率;
根据所述第四出站目标功率, 调节所述其它业务的波长的单波 衰减量。
在第一种可能的实现方式中, 根据第二方面, 在根据所述第四 出站目标功率, 调节所述其它业务的波长的单波衰减量后, 还包括: 发送操作请求消息给所述第一业务的下一 ROADM站点, 所述 操作请求消息请求在所述下一 ROADM站点, 将所述其它业务的波 长的出站功率调节为所述其它业务的波长在所述下一 ROADM站点 的第五出站目标功率, 其中, 所述第五出站目标功率为在所述第一 ROADM 站点没有删除对所述第一业务的波长建立的光交叉时, 所 述其它业务的波长在所述下一 ROADM站点的出站功率。
在第二种可能的实现方式中, 根据第二方面或第一种可能的实 现方式, 所述第一业务请求消息还请求在所述第一业务的第一
ROADM 站点将所述第一业务的波长从所述第一光复用段切换至第 三光复用段, 其中 , 所述第三光复用段指所述第一业务的第一 ROADM 站点和切换后所述第一业务的第一下一 ROADM 站点之间 的光复用段;
该方法还包括:
获取所述第一业务在所述第一 ROADM站点的波长资源; 根据所述波长资源, 建立所述第一业务的波长在所述第三光复 用段的光交叉;
根据经过第三光复用段的所有业务的波长当前在所述第一 ROADM 站点和下一 ROADM 站点的光信噪比, 获取所述第三光复 用段上所有业务的波长的第四光信噪比的劣化均衡值;
根据所述获取的所述第三光复用段上所有业务的波长的第四光 信噪比的劣化均衡值, 分别获取所述第三光复用段上所有业务的波 长在所述第一 ROADM站点的第六出站目标功率;
根据所述第六出站目标功率, 调节所述所有业务的波长的单波 衰减量。
在第三种可能的实现方式中, 根据第二种可能的实现方式, 获 取所述第一业务在所述第一 ROADM站点的波长资源具体包括: 在所述删除对所述第一业务的波长建立的光交叉后, 获取所述 第一业务在所述第一 ROADM站点的波长资源;
根据预留的波长资源, 获取所述第一业务在所述第一 ROADM 站点的波长资源。
第三方面, 提供了一种第一动态光分插复用 ROADM站点, 所 述第一 ROADM站点包括接收器、 处理器;
所述接收器, 用于接收第一业务请求消息, 并将所述第一业务 请求消息发送给所述处理器, 所述第一业务请求消,包、请求在所述第 一 ROADM站点对所述第一业务的波长建立光交叉;
所述处理器, 用于接收所述接收器发送的所述第一业务请求消 息, 并对所述第一业务的波长建立光交叉;
所述处理器, 还用于根据经过第一光复用段的所有业务的波长 当前在所述第一 ROADM站点的光信噪比和下一 ROADM站点的光 信噪比, 获取所述第一光复用段上所有业务的波长的第一光信噪比 的劣化均衡值, 其中, 所述第一光复用段指所述第一业务的第一 ROADM站点和所述第一业务的下一 ROADM站点之间的光复用段; 所述处理器, 还用于根据所述获取的所述第一光复用段上所有 业务的波长的第一光信噪比的劣化均衡值, 分别获取所述所有业务 的波长在所述第一 ROADM站点的第一出站目标功率;
所述处理器, 还用于根据所述第一出站目标功率, 调节所述所 有业务的波长的单波衰减量。
在第一种可能的实现方式中, 根据第三方面, 所述接收器, 还 用于接收第一指示消息, 并将所述第一指示消息发送给所述处理器, 所述第一指示消息请求在所述第一 ROADM站点, 将第二光复用段 上已有业务的波长的出站功率调节为所述已有业务的波长在所述第 一 ROADM站点的第二出站目标功率, 其中, 所述第二光复用段指 所述第一业务的第一 ROADM 站点和所述第一业务的上一 ROADM 站点之间的光复用段, 所述已有业务指经过所述第二光复用段的除 了第一业务之外的其它业务, 所述第二出站目标功率为在所述上一 ROADM 站点没有对所述第一业务的波长建立光交叉时, 所述已有 业务的波长在所述第一 ROADM站点的出站功率;
所述处理器, 用于接收所述接收器发送的所述第一指示消息, 若所述第二光复用段上存在已有业务的波长, 在所述第一 ROADM 站点, 将所述已有业务的波长的出站功率调节为所述已有业务的波 长在所述第一 ROADM站点的第二出站目标功率。 在第二种可能的实现方式中, 根据第三方面或第一种可能的实 现方式, 所述处理器, 还用于在根据所述第一出站目标功率, 调节 所述所有业务的波长的单波衰减量后, 获取所述所有业务的波长在 所述第一 ROADM站点的当前出站功率;
所述处理器, 还用于判断所述所有业务的波长的所述当前出站 功率和所述第一出站目标功率的差值是否在预设的范围内;
所述处理器, 还用于若所述所有业务的波长的所述当前出站功 率和所述第一出站目标功率的差值不在预设的范围内, 再次根据经 过第一光复用段的所有业务的波长当前在所述第一 ROADM站点的 光信噪比和下一 ROADM站点的光信噪比, 获取所述第一光复用段 上所有业务的波长的第二光信噪比的劣化均衡值;
所述处理器, 还用于根据所述获取的所述第一光复用段上所有 业务的波长的第二光信噪比的劣化均衡值, 分别获取所述所有业务 的波长在所述第一 ROADM站点的第三出站目标功率;
所述处理器, 还用于根据所述第三出站目标功率, 调节所述所 有业务的波长的单波衰减量。
在第三种可能的实现方式中, 根据第三方面或第一种可能的实 现方式或第二种可能的实现方式, 所述第一 ROADM站点还包括存 储器;
所述存储器, 用于在对所述第一业务的波长建立光交叉前, 预 留对所述第一业务的波长建立光交叉的波长资源。
第四方面, 提供了一种第一动态光分插复用 ROADM站点, 所 述第一 ROADM站点包括接收器、 处理器;
所述接收器, 用于接收第一业务的下一 ROADM站点发送的第 一业务请求消息, 并将所述第一业务的请求消息发送给所述处理器, 所述第一业务请求消息请求在所述第一 ROADM站点删除对所述第 一业务的波长建立的光交叉;
所述处理器, 用于接收所述接收器发送的第一业务请求消息, 删除对所述第一业务的波长建立的光交叉;
所述处理器, 还用于判断第一光复用段上是否存在其它业务的 波长, 其中, 所述第一光复用段指所述第一业务的第一 ROADM站 点和所述第一业务的下一 ROADM站点之间的光复用段;
所述处理器, 还用于若所述第一光复用段上存在其它业务的波 长, 根据所述第一光复用段上的其它业务的波长当前在所述第一 ROADM 站点的光信噪比和下一 ROADM 站点的光信噪比, 获取所 述第一光复用段上的其它业务的波长的第三光信噪比的劣化均衡 值;
所述处理器, 还用于根据所述获取的所述第一光复用段上其它 业务的波长的第三光信噪比的劣化均衡值, 分别获取所述其它业务 的波长在所述第一 ROADM站点的第四出站目标功率;
所述处理器, 还用于根据所述第四出站目标功率, 调节所述其 它业务的波长的单波衰减量。
在第一种可能的实现方式中,根据第四方面,所述第一 ROADM 站点还包括发送器;
所述发送器, 用于在根据所述第四出站目标功率, 调节所述其 它业务的波长的单波衰减量后, 发送操作请求消息给所述第一业务 的下一 ROADM 站点, 所述操作请求消息请求在所述下一 ROADM 站点, 将所述其它业务的波长的出站功率调节为所述其它业务的波 长在所述下一 ROADM站点的第五出站目标功率, 其中, 所述第五 出站目标功率为在所述第一 ROADM站点没有删除对所述第一业务 的波长建立的光交叉时, 所述其它业务的波长在所述下一 ROADM 站点的出站功率。
在第二种可能的实现方式中, 根据第四方面或第一种可能的实 现方式, 所述第一业务请求消息还请求在所述第一业务的第一 ROADM 站点将所述第一业务的波长从所述第一光复用段切换至第 三光复用段, 其中 , 所述第三光复用段指所述第一业务的第一 ROADM 站点和切换后所述第一业务的第一下一 RO ADM 站点之间 的光复用段;
所述处理器, 还用于获取所述第一业务在所述第一 ROADM站 点的波长资源;
所述处理器, 还用于根据所述波长资源, 建立所述第一业务的 波长在所述第三光复用段的光交叉;
所述处理器, 还用于根据经过第三光复用段的所有业务的波长 当前在所述第一 ROADM站点和下一 ROADM站点的光信噪比, 获 取所述第三光复用段上所有业务的波长的第四光信噪比的劣化均衡 值;
所述处理器, 还用于根据所述获取的所述第三光复用段上所有 业务的波长的第四光信噪比的劣化均衡值, 分别获取所述第三光复 用段上所有业务的波长在所述第一 ROADM站点的第六出站目标功 率;
所述处理器, 还用于根据所述第六出站目标功率, 调节所述所 有业务的波长的单波衰减量。
在第三种可能的实现方式中, 根据第二种可能的实现方式, 所 述处理器获取所述第一业务在所述第一 ROADM站点的波长资源具 体包括:
在所述删除对所述第一业务的波长建立的光交叉后, 获取所述 第一业务在所述第一 ROADM站点的波长资源;
根据预留的波长资源, 获取所述第一业务在所述第一 ROADM 站点的波长资源。
本发明实施例提供了 自动功率调测方法和第一动态光分插复用 ROADM 站点, 该方法在接收第一业务请求消息后, 对所述第一业 务的波长建立光交叉, 然后根据经过第一光复用段的所有业务的波 长当前在所述第一 ROADM站点的光信噪比和下一 ROADM站点的 光信噪比, 获取所述第一光复用段上所有业务的波长的第一光信噪 比的劣化均衡值, 接着根据所述获取的所述第一光复用段上所有业 务的波长的第一光信噪比的劣化均衡值, 分别获取所述所有业务的 波长在所述第一 ROADM站点的第一出站目标功率; 最后根据所述 第一出站目标功率, 调节所述所有业务的波长的单波衰减量。
该方法还在接收第一业务的下一 ROADM站点发送的第一业务 请求消息后, 删除对所述第一业务的波长建立的光交叉; 然后判断 第一光复用段上是否存在其它业务的波长, 若所述第一光复用段上 存在其它业务的波长, 根据所述第一光复用段上的其它业务的波长 当前在所述第一 ROADM站点的光信噪比和下一 ROADM站点的光 信噪比, 获取所述第一光复用段上的其它业务的波长的第三光信噪 比的劣化均衡值; 接着根据所述获取的所述第一光复用段上其它业 务的波长的第三光信噪比的劣化均衡值, 分别获取所述其它业务的 波长在所述第一 ROADM站点的第四出站目标功率; 最后根据所述 第四出站目标功率, 调节所述其它业务的波长的单波衰减量。
该方法由于针对不同波长传输特性的差异对各业务的波长均釆 用了相应的调测方法进行调测, 因此使得各波长在传输时, 光复用 段保持均衡, 不受波长增加或减少的干扰, 使得信号的接收质量提 升。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1 为本发明实施例提供的一种自动功率调测方法;
图 2为本发明实施例提供的另一种自动功率调测方法; 图 3 为本发明实施例提供的一种自动交换光网络中的业务场景 图;
图 4为本发明实施例提供的一种增加业务时第一 R0ADM站点 的自动功率调测方法;
图 5为本发明实施例提供的一种删除业务时第一 R0ADM站点 的自动功率调测方法;
6为本发明实施例提供的一种第一 R0ADM站点示意图; 图 7为本发明实施例提供的另 - -种第- - R0ADM站点示意图; 图 8为本发明实施例提供的又- -种第- - R0ADM站点示意图; 图 9为本发明实施例提供的又- -种第- - ROADM站点示意图; 图 10为本发明实施例提供的又一种第一 ROADM站点示意图; 图 11 为本发明实施例提供的又一种第一 ROADM站点示意图; 图 12为本发明实施例提供的又一种第一 ROADM站点示意图; 图 13为本发明实施例提供的又一种第一 ROADM站点示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
实施例一、
本发明实施例提供了一种自动功率调测方法, 该方法应用于自 动交换光网络中的第一动态光分插复用 ROADM 站点, 具体如图 1 所示, 该方法包括:
101、 接收第一业务请求消息, 所述第一业务请求消息请求在所 述第一 ROADM站点对所述第一业务的波长建立光交叉。
需要说明的是, 文中所述第一业务请求消息中的 "第一" 没有 任何特殊的含义, 仅指代当前在所述第一 ROADM站点处理的业务 的波长。
所述第一 ROADM站点中的 "第一" 也没有任何特殊的含义, 仅指代所述第一业务当前经过的 RO ADM站点。
102、 对所述第一业务的波长建立光交叉。
103、根据经过第一光复用段的所有业务的波长当前在所述第一 ROADM 站点的光信噪比和下一 RO ADM 站点的光信噪比, 获取所 述第一光复用段上所有业务的波长的第一光信噪比的劣化均衡值。
其中, 所述第一光复用段指所述第一业务的第一 ROADM站点 和所述第一业务的下一 ROADM站点之间的光复用段。
所述劣化指的是某一业务的波长在所述第一 ROADM站点的光 信噪比和下一 ROADM站点的光信噪比的差值, 在对所述第一业务 的波长建立光交叉后, 因为波长增加, 所以经过所述第一光复用段 的所有业务的波长的光信噪比劣化可能不再均衡, 此时为了保证接 收信号的质量, 应首先获取所述第一光复用段上所有业务的波长的 第一光信噪比的劣化均衡值。
需要说明的是, 所述第一光信噪比的劣化均衡值中的 "第一" 没有任何特殊的含义, 仅为了 区别是不同时刻的光信噪比的劣化均 衡值。
104、根据所述获取的所述第一光复用段上所有业务的波长的第 一光信噪比的劣化均衡值, 分别获取所述所有业务的波长在所述第 一 ROADM站点的第一出站目标功率。
需要说明的是, 所述第一光复用段上所有业务的波长都有各自 对应的第一出站目标功率, 是由第一光信噪比的劣化均衡值决定的。
所述第一出站目标功率中的 "第一" 没有任何特殊的含义, 仅 为了区别是不同时刻的出站目标功率。
105、 根据所述第一出站目标功率, 调节所述所有业务的波长的 单波衰减量。 在新增所述第一业务后, 对所述第一光复用段上所有业务的波 长都进行了调测, 并且针对不同波长传输特性的差异对各业务的波 长设置了相应的衰减量, 所以保证了所述第一光复用段上的其它业 务的波长不受到新增所述第一业务带来的波长增加的影响, 可以使 光复用段保持更好的光信噪比劣化均衡, 提高信号的接收质量。
本发明实施例提供了一种自动功率调测方法, 该方法在接收第 一业务请求消息后, 对所述第一业务的波长建立光交叉, 然后根据 经过第一光复用段的所有业务的波长当前在所述第一 ROADM站点 的光信噪比和下一 ROADM站点的光信噪比, 获取所述第一光复用 段上所有业务的波长的第一光信噪比的劣化均衡值, 接着根据所述 获取的所述第一光复用段上所有业务的波长的第一光信噪比的劣化 均衡值, 分别获取所述所有业务的波长在所述第一 ROADM站点的 第一出站目标功率; 最后根据所述第一出站目标功率, 调节所述所 有业务的波长的单波衰减量。
该方法由于在对所述第一业务的波长建立光交叉后, 对所述第 一光复用段上新增业务的波长和已有业务的波长波都进行调测, 并 且针对不同波长传输特性的差异对各业务的波长设置了相应的衰减 量进行调测, 因此使得各波长在传输时, 光复用段保持均衡, 不受 波长增加的干扰, 使得信号的接收质量提升。
实施例二、
本发明实施例还提供了一种自动功率调测方法, 具体如图 2所 示, 该方法包括:
201、接收第一业务的下一 ROADM站点发送的第一业务请求消 息, 所述第一业务请求消息请求在所述第一 ROADM站点删除对所 述第一业务的波长建立的光交叉。
需要说明的是, 因为该自动功率调测方法中, 删除对所述第一 业务的波长建立的光交叉是从所述第一业务的最后一个 ROADM站 点到第一个 ROADM 站点依次逆向删除的, 所以所述第一 ROADM 站点接收第一业务的下一 R0ADM站点发送的第一业务请求消息, 具体的, 第一个下一 R0ADM站点可以理解为所述第一业务的最后 一个 R0ADM站点。
202、 删除对所述第一业务的波长建立的光交叉。
203、 判断第一光复用段上是否存在其它业务的波长。
其中, 所述第一光复用段指所述第一业务的第一 R0ADM站点 和所述第一业务的下一 RO ADM站点之间的光复用段。
若所述第一光复用段上存在其它业务的波长, 执行步骤 204 ; 若所述第一光复用段上不存在其它业务的波长, 则暂不处理。
204、 若所述第一光复用段上存在其它业务的波长, 根据所述第 一光复用段上的其它业务的波长当前在所述第一 R0ADM站点的光 信噪比和下一 R0ADM站点的光信噪比, 获取所述第一光复用段上 的其它业务的波长的第三光信噪比的劣化均衡值。
所述劣化指的是某一业务的波长在所述第一 ROADM站点的光 信噪比和下一 ROADM站点的光信噪比的差值, 在删除对所述第一 业务的波长建立的光交叉后, 因为波长减少, 所以所述第一光复用 段上的其它业务的波长的光信噪比劣化可能不再均衡, 此时为了保 证接收信号的质量, 应首先获取所述第一光复用段上的其它业务的 波长的第三光信噪比的劣化均衡值。
需要说明的是, 所述第三光信噪比的劣化均衡值中的 "第三" 没有任何特殊的含义, 仅为了 区别是不同时刻的光信噪比的劣化均 衡值。
205、根据所述获取的所述第一光复用段上其它业务的波长的第 三光信噪比的劣化均衡值, 分别获取所述其它业务的波长在所述第 一 ROADM站点的第四出站目标功率。
需要说明的是, 所述第一光复用段上其它业务的波长都有各自 对应的第四出站目标功率, 是由第三光信噪比的劣化均衡值决定的。 所述第四出站目标功率中的 "第四" 没有任何特殊的含义, 仅 为了区别是不同时刻的出站目标功率。
206、 根据所述第四出站目标功率, 调节所述其它业务的波长的 单波衰减量。
在删除所述第一业务后, 还对所述第一光复用段上其它业务的 波长进行了功率调测, 并且针对不同波长传输特性的差异对各业务 的波长设置了相应的衰减量, 所以保证了所述第一光复用段上的其 它业务的波长不受到删除所述第一业务带来的波长减少的影响, 可 以使光复用段保持更好的光信噪比劣化均衡, 提高信号的接收质量。
在该方法中, 删除对所述第一业务的波长建立的光交叉时, 每 一所述第一 RO ADM站点都接收下一 RO ADM站点发送的第一业务 请求消息, 请求在所述第一 ROADM站点删除对所述第一业务的波 长建立的光交叉。 这种从业务的下游站点向上游站点逐一删除业务 的波长的方法也会使所述删除的第一业务的波长不干扰其它的业务 的波长, 不会出现现有技术中从上游站点删除业务的波长所造成的 下游多段掉波, 影响其它业务的波长的情况。
本发明实施例提供了一种自动功率调测方法, 该方法在接收第 一业务的下一 ROADM站点发送的第一业务请求消息后, 删除对所 述第一业务的波长建立的光交叉; 然后判断第一光复用段上是否存 在其它业务的波长, 若所述第一光复用段上存在其它业务的波长, 根据所述第一光复用段上的其它业务的波长当前在所述第一 ROADM 站点的光信噪比和下一 ROADM 站点的光信噪比, 获取所 述第一光复用段上的其它业务的波长的第三光信噪比的劣化均衡 值; 接着根据所述获取的所述第一光复用段上其它业务的波长的第 三光信噪比的劣化均衡值, 分别获取所述其它业务的波长在所述第 一 ROADM站点的第四出站目标功率; 最后根据所述第四出站目标 功率, 调节所述其它业务的波长的单波衰减量。
该方法由于在删除对所述第一业务的波长建立的光交叉后, 还 对所述第一光复用段上剩余业务的波长进行调测, 并且针对不同波 长传输特性的差异对各业务的波长设置了相应的衰减量进行调测, 因此使得各波长在传输时, 光复用段保持均衡, 不受波长减少的干 扰, 使得信号的接收质量提升。
实施例三、
本发明实施例还提供了一种自动功率调测方法, 该方法基于自 动交换光网络中的第一动态光分插复用 ROADM 站点, 具体如图 3 所示, 假设 A- B-C-D为已有波长业务, 即将新增 E- B-C-F波长业 务, 以 B站点进行自动功率调测的方法进行说明, 如图 4所示, 该 方法包括:
401、 接收第一业务请求消息, 所述第一业务请求消息请求在所 述第一 ROADM站点对所述第一业务的波长建立光交叉。
402、 接收第一指示消息, 所述第一指示消息请求在所述第一 ROADM 站点, 将第二光复用段上已有业务的波长的出站功率调节 为所述已有业务的波长在所述第一 ROADM站点的第二出站目标功 率。
其中, 所述第二光复用段指所述第一业务的第一 ROADM站点 和所述第一业务的上一 ROADM站点之间的光复用段, 所述已有业 务指经过所述第二光复用段的除了第一业务之外的其它业务, 所述 第二出站目标功率为在所述上一 ROADM站点没有对所述第一业务 的波长建立光交叉时, 所述已有业务的波长在所述第一 ROADM站 点的出站功率。
对于 B站点来说, 此时第二光复用段为 E-B段, 已有业务指经 过 E-B段的除了第一业务之外的其它业务, 此时 E-B段仅有第一业 务的波长, 暂时没有其它业务的波长, 第二出站目标功率为 E站点 没有对所述第一业务的波长建立光交叉时, 第二光复用段 E-B上的 已有业务在 B站点的出站功率。
403、 若所述第二光复用段上存在已有业务的波长, 在所述第一 ROADM 站点, 将所述已有业务的波长的出站功率调节为所述已有 业务的波长在所述第一 RO ADM站点的第二出站目标功率。
具体的, 若所述第二光复用段上存在已有业务的波长, 考虑到 在上一 ROADM站点, 对所述第一业务的波长建立光交叉后, 由于 新增业务的波长的加入, 对所述第二光复用段上的各业务的波长进 行了功率调测, 使得所述第二光复用段上已有业务的波长在进入所 述第一 ROADM站点时, 入站功率相对在上一 ROADM站点未建立 所述第一业务的波长时发生了变化, 也就意味着出站功率相对在上 一 ROADM站点未建立所述第一业务的波长时发生了变化, 为了保 证所述第二光复用段上已有业务的波长不受此影响, 此时将所述已 有业务的波长的出站功率调节为所述已有业务的波长在所述第一 ROADM站点的第二出站目标功率。
需要说明的是, 所述第二出站目标功率为在所述上一 ROADM 站点没有对所述第一业务的波长建立光交叉时, 所述已有业务的波 长在所述第一 ROADM站点的出站功率。 通过调测, 可以使所述第 二光复用段上已有业务的波长不受新增业务带来的波长增加的影 响。
具体的, 对于 B站点来说, 因为所述第二光复用段 E-B上并不 存在已有业务, 所以不执行步骤 403。
404、 对所述第一业务的波长建立光交叉。
405、根据经过第一光复用段的所有业务的波长当前在所述第一 ROADM 站点的光信噪比和下一 ROADM 站点的光信噪比, 获取所 述第一光复用段上所有业务的波长的第一光信噪比的劣化均衡值。
其中, 所述第一光复用段指所述第一业务的第一 ROADM站点 和所述第一业务的下一 ROADM站点之间的光复用段。
所述劣化指的是某一业务的波长在所述第一 ROADM站点的光 信噪比和下一 ROADM站点的光信噪比的差值, 在对所述第一业务 的波长建立光交叉后, 因为波长增加, 所以经过所述第一光复用段 的所有业务的波长的光信噪比劣化可能不再均衡, 此时为了保证接 收信号的质量, 应首先获取所述第一光复用段上所有业务的波长的 第一光信噪比的劣化均衡值。
具体的, 对于 B站点来说, 经过第一光复用段的所有业务为 A- B-C-D波长业务和 E-B-C-F波长业务。 所以^ =艮据 A- B-C-D业务的波 长当前在所述第一 RO ADM站点的光信噪比和下一 RO ADM站点的 光信噪比, 以及 E- B-C-F业务的波长当前在所述第一 ROADM站点 的光信噪比和下一 ROADM站点的光信噪比, 获取所述第一光信噪 比的劣化均衡值。
406、根据所述获取的所述第一光复用段上所有业务的波长的第 一光信噪比的劣化均衡值, 分别获取所述所有业务的波长在所述第 一 ROADM站点的第一出站目标功率。
需要说明的是, 所述第一光复用段上所有业务的波长都有各自 对应的第一出站目标功率, 是由第一光信噪比的劣化均衡值决定的。
所述第一出站目标功率中的 "第一" 没有任何特殊的含义, 仅 为了区别是不同时刻的出站目标功率。
具体的, 对于 B站点来说, 分别获取的是 A- B-C-D业务的波 长在 B站点的第一出站目标功率, 以及 E- B-C-F业务的波长在 B站 点的第一出站目标功率。
407、 根据所述第一出站目标功率, 调节所述所有业务的波长的 单波衰减量。
调节所述所有业务的波长的单波衰减量保证了所述第一光复用 段的其它业务波长的不受新增业务带来的波长增加的影响, 保证光 复用段的光信噪比劣化均衡, 提升信号的接收质量。
同样的, 在新增 E- B-C-F波长业务时, 对于 E站点, 因为 E站 点为第一业务的首站点, 不存在所述第二光复用段, 不满足所述第 二光复用段上存在已有业务的波长的条件, 所以不执行步骤 403 , E 站点执行上述步骤的 401、 402、 404、 405、 406、 407。 在新增 E- B-C-F波长业务时, 对于 C站点, 因为所述第二光复 用段上 B-C上存在已有业务的波长, 为 A- B-C-D业务的波长, 所以 C站点执行上述步骤的 401、 402、 403、 404、 405、 406、 407。
在新增 E- B-C-F波长业务时, F站点作为 E- B-C-F业务的最后 一个站点, 并且相应的第二光复用段上 C-F 上不存在已有业务, 所 以仅执行接收第一业务请求消息和第一指示消息, 并对第一业务的 波长建立光交叉的动作。
至此, 整个 E- B-C-F波长业务建立完毕。
进一步的, 考虑到在根据所述第一出站目标功率, 调节所述所 有业务的波长的单波衰减量后, 可能所述所有业务的波长的的当前 实际出站功率并不和所述第一出站目标功率相同, 因此还需进行反 馈调节, 即在根据所述第一出站目标功率, 调节所述所有业务的波 长的单波衰减量后, 还包括:
获取所述所有业务的波长在所述第一 ROADM站点的当前出站 功率。
判断所述所有业务的波长的所述当前出站功率和所述第一出站 目标功率的差值是否在预设的范围内。
若所述所有业务的波长的所述当前出站功率和所述第一出站目 标功率的差值不在预设的范围内, 再次根据经过第一光复用段的所 有业务的波长当前在所述第一 ROADM 站点的光信噪比和下一 ROADM 站点的光信噪比, 获取所述第一光复用段上所有业务的波 长的第二光信噪比的劣化均衡值。
根据所述获取的所述第一光复用段上所有业务的波长的第二光 信噪比的劣化均衡值, 分别获取所述所有业务的波长在所述第一 ROADM站点的第三出站目标功率。
根据所述第三出站目标功率, 调节所述所有业务的波长的单波 衰减量。
需要说明的是, 所述第二光信噪比的劣化均衡值中的 "第二" 没有任何特殊的含义, 仅为了 区别是不同时刻的光信噪比的劣化均 衡值。
所述第三出站目标功率中的 "第三" 也没有任何特殊的含义, 仅为了区别是不同时刻的出站目标功率。
当然, 如果进行一次反馈调节后还未到达期望的效果, 还可以 反复进行反馈调节, 直至所述所有业务的波长的所述当前出站功率 和所述出站目标功率的差值在预设的范围内, 本发明实施例对此不 作具体限定。 可选的, 在对所述第一业务的波长建立光交叉前, 该方法还包 括:
预留对所述第一业务的波长建立光交叉的波长资源。
通过 RSVP ( Resource Reservation Protocol , 资源预留协议), 可以在新建一条业务波前, 先在新路径上建立逻辑 LSP ( Label Switched Path , 标签交换路径), 即只分配并预留波长业务所需的波 长资源, 而不建立实际的光交叉。 这样先完整的预留业务所需的资 源, 可以保证后续建立光交叉和调测功率的过程不会因为资源冲突 而失败。
本发明实施例还提供了一种自动功率调测方法, 该方法基于自 动交换光网络中的第一动态光分插复用 ROADM站点, 具体的, 以 在图 3所示的已有业务的基础上, 删除 A-B-C-D业务的波长时, B 站点的自动功率调测方法进行说明, 具体的, 如图 5 所示, 该方法 包括:
501、接收第一业务的下一 ROADM站点发送的第一业务请求消 息, 所述第一业务请求消息请求在所述第一 ROADM站点删除对所 述第一业务的波长建立的光交叉。 需要说明的是, 因为该自动功率调测方法中, 删除对所述第一 业务的波长建立的光交叉是从所述第一业务的最后一个 ROADM站 点到第一个 ROADM 站点依次逆向删除的, 所以所述第一 ROADM 站点接收第一业务的下一 ROADM站点发送的第一业务请求消息, 具体的, 第一个下一 ROADM站点可以理解为所述第一业务的最后 一个 ROADM站点。
具体的, 对于 B站点来说, 所述第一业务的下一 ROADM站点 为 C站点, 所以 B站点接收 C站点发送的第一业务请求消息。
502、 删除对所述第一业务的波长建立的光交叉。
503、 判断第一光复用段上是否存在其它业务的波长。
其中, 所述第一光复用段指所述第一业务的第一 ROADM站点 和所述第一业务的下一 ROADM站点之间的光复用段。
若所述第一光复用段上存在其它业务的波长, 执行步骤 504 ; 若所述第一光复用段上不存在其它业务的波长, 则暂不处理。 具体的, 如图 3所示, 对于 B站点来说, 在删除 A-B-C-D业务 的波长后, 所述第一光复用段上还有 E-B-C-F业务的波长。
504、 若所述第一光复用段上存在其它业务的波长, 根据所述第 一光复用段上的其它业务的波长当前在所述第一 ROADM站点的光 信噪比和下一 ROADM站点的光信噪比, 获取所述第一光复用段上 的其它业务的波长的第三光信噪比的劣化均衡值。
所述劣化指的是某一业务的波长在所述第一 ROADM站点的光 信噪比和下一 ROADM站点的光信噪比的差值, 在删除对所述第一 业务的波长建立的光交叉后, 因为波长减少, 所以所述第一光复用 段上的其它业务的波长的光信噪比劣化可能不再均衡, 此时为了保 证接收信号的质量, 应首先获取所述第一光复用段上的其它业务的 波长的第三光信噪比的劣化均衡值。
需要说明的是, 所述第三光信噪比的劣化均衡值中的 "第三" 没有任何特殊的含义, 仅为了 区别是不同时刻的光信噪比的劣化均 衡值。
具体的, 对于 B 站点来说, 因为所述第一光复用段上还有 E-B-C-F 业务的波长, 所以此时才艮据 E-B-C-F 业务的波长当前在 B 站点的光信噪比和 C 站点的光信噪比, 获取所述第一光复用段上 E-B-C-F业务的波长的第三光信噪比的劣化均衡值。
505、根据所述获取的所述第一光复用段上其它业务的波长的第 三光信噪比的劣化均衡值, 分别获取所述其它业务的波长在所述第 一 ROADM站点的第四出站目标功率。
需要说明的是, 所述第一光复用段上其它业务的波长都有各自 对应的第四出站目标功率, 是由第三光信噪比的劣化均衡值决定的。
所述第四出站目标功率中的 "第四" 没有任何特殊的含义, 仅 为了区别是不同时刻的出站目标功率。
具体的, 对于 B站点, 此时获取的是 E-B-C-F业务的波长在 B 站点的第四出站目标功率。
506、 根据所述第四出站目标功率, 调节所述其它业务的波长的 单波衰减量。
这里在删除所述第一业务后, 还对所述第一光复用段上其它业 务的波长进行了功率调测, 并且针对不同波长传输特性的差异对各 业务的波长设置了相应的衰减量, 所以保证了所述第一光复用段上 的其它业务的波长不受到删除所述第一业务带来的波长减少的影 响, 可以使光复用段保持更好的光信噪比劣化均衡, 提高信号的接 收质量。
507、 发送操作请求消息给所述第一业务的下一 ROADM站点, 所述操作请求消息请求在所述下一 ROADM站点, 将所述其它业务 的波长的出站功率调节为所述其它业务的波长在所述下一 ROADM 站点的第五出站目标功率。
其中, 所述第五出站目标功率为在所述第一 ROADM站点没有 删除对所述第一业务的波长建立的光交叉时, 所述其它业务的波长 在所述下一 ROADM站点的出站功率。
由于在所述第一 ROADM站点, 在删除对所述第一业务的波长 建立的光交叉后, 对所述第一光复用段上其它业务的波长进行了调 测, 使得所述其他业务的波长在进入下一 ROADM站点时, 入站功 率相对在所述第一 ROADM站点未删除对所述第一业务建立的光交 叉时发生了变化, 也就意味着出站功率相对在所述第一 ROADM站 点未删除对所述第一业务建立的光交叉时发生了变化, 为了保证所 述第一光复用段上其它业务的波长不受此影响, 此时应发送操作请 求消息给所述第一业务的下一 ROADM 站点, 请求在所述下一 ROADM 站点, 将所述其它业务的波长的出站功率调节为所述其它 业务的波长在所述下一 ROADM站点的第五出站目标功率。 这样保 证了下一 ROADM站点继续往下游的功率不发生变化, 否则的话, C-F 光复用段的功率会发生变化, 影响光复用段的劣化均衡和接收 信号的质量。
同样的, 在删除 A- B-C-D波长业务时, 对于 C站点来说, 因 为在执行步骤 503 时, C站点判断所述第一光复用段 C-D上不存在 其它业务的波长,所以暂不处理, C站点仅执行上述步骤的 501、 502、 503。
在删除 A- B-C-D波长业务时, 对于 A站点来说, 因为在执行 步骤 503 时, A站点判断所述第一光复用段 A-B上不存在其它业务 的波长, 所以暂不处理, A站点仅执行上述步骤的 501、 502、 503。 此时信号源收到删除第一业务请求消息, 表明删除 A- B-C-D波长业 务结束。
在该方法中, 删除对所述第一业务的波长建立的光交叉时, 每 一所述第一 ROADM站点都接收下一 ROADM站点发送的第一业务 请求消息, 请求在所述第一 ROADM站点删除对所述第一业务的波 长建立的光交叉。 这种从业务的下游站点向上游站点逐一删除业务 的波长的方法也会使所述删除的第一业务的波长波不干扰其它的业 务的波长, 不会出现现有技术中从上游站点删除业务的波长所造成 的下游多段掉波, 影响其它业务的波长的情况。
可选的, 所述第一业务请求消息还请求在所述第一业务的第一 ROADM 站点将所述第一业务的波长从所述第一光复用段却换至第 三光复用段, 其中 , 所述第三光复用段指所述第一业务的第一 ROADM 站点和切换后所述第一业务的第一下一 ROADM 站点之间 的光复用段。
该方法还包括:
获取所述第一业务在所述第一 ROADM站点的波长资源。
根据所述波长资源, 建立所述第一业务的波长在所述第三光复 用段的光交叉。
根据经过第三光复用段的所有业务的波长当前在所述第一 ROADM 站点和下一 ROADM 站点的光信噪比, 获取所述第三光复 用段上所有业务的波长的第四光信噪比的劣化均衡值。
根据所述获取的所述第三光复用段上所有业务的波长的第四光 信噪比的劣化均衡值, 分别获取所述第三光复用段上所有业务的波 长在所述第一 ROADM站点的第六出站目标功率。
根据所述第六出站目标功率, 调节所述所有业务的波长的单波 衰减量。
需要说明的是, 所述第一下一 ROADM 站点是区别于下一 ROADM站点的某个 ROADM站点, 所述下一 ROADM站点是链路 切换前所述第一业务的下一个 ROADM站点;所述第一下一 ROADM 站点是链路切换后所述第一业务的下一个 ROADM站点。
进一步的, 获取所述第一业务在所述第一 ROADM站点的波长 资源具体包括:
在所述删除对所述第一业务的波长建立的光交叉后, 获取所述 第一业务在所述第一 ROADM站点的波长资源;
根据预留的波长资源, 获取所述第一业务在所述第一 ROADM 站点的波长资源。 链路切换过程中, 根据所述第一 R0ADM站点分波板的特性, 如 果 该 分 波 板 像 WSD ( Wavelength Selective Switching Demultiplexing Board,波长选择性倒换分波板) 一样, 不具有复制光 波的功能, 则必须先删除对所述第一业务的波长建立的光交叉后, 才能根据所述第一光复用段释放的第一业务的波长资源, 获取所述 第一业务在所述第一 R0ADM站点的波长资源。 这样也决定了链路 切换时, 必须先删除对所述第一业务的波长建立的光交叉, 然后再 对所述第一业务的波长建立光交叉。
当然, 链路切换过程中, 根据所述第一 R0ADM站点分波板的 特性, 如果该分波板像 RDU ( ROADM Demultiplexing Board , 分波 板) 一样, 具有复制光波的功能, 则可以根据预留的波长资源, 获 取所述第一业务在所述第一 R0ADM站点的波长资源。 这样, 删除 对所述第一业务的波长建立的光交叉与对所述第一业务的波长建立 光交叉的过程没有确定的先后顺序, 本发明实施例对此不作具体限 定。
链路切换过程中在所述第一 R0ADM站点删除对所述第一业务 的波长建立的光交叉的过程可参见图 2和图 5所示的实施例的描述, 本发明实施例在此不再赘述;
链路切换过程中在所述第一 R0ADM站点建立所述第一业务的 波长在所述第三光复用段的光交叉的过程可参见图 1 和图 4 所示的 实施例的描述, 本发明实施例在此不再赘述。
本发明实施例提供了 自动功率调测方法, 该方法在接收第一业 务请求消息后, 对所述第一业务的波长建立光交叉, 然后根据经过 第一光复用段的所有业务的波长当前在所述第一 R0ADM站点的光 信噪比和下一 R0ADM站点的光信噪比, 获取所述第一光复用段上 所有业务的波长的第一光信噪比的劣化均衡值, 接着根据所述获取 的所述第一光复用段上所有业务的波长的第一光信噪比的劣化均衡 值, 分别获取所述所有业务的波长在所述第一 R0ADM站点的第一 出站目标功率; 最后根据所述第一出站目标功率, 调节所述所有业 务的波长的单波衰减量。
该方法还在接收第一业务的下一 ROADM站点发送的第一业务 请求消息后, 删除对所述第一业务的波长建立的光交叉; 然后判断 第一光复用段上是否存在其它业务的波长, 若所述第一光复用段上 存在其它业务的波长, 根据所述第一光复用段上的其它业务的波长 当前在所述第一 ROADM站点的光信噪比和下一 ROADM站点的光 信噪比, 获取所述第一光复用段上的其它业务的波长的第三光信噪 比的劣化均衡值; 接着根据所述获取的所述第一光复用段上其它业 务的波长的第三光信噪比的劣化均衡值, 分别获取所述其它业务的 波长在所述第一 ROADM站点的第四出站目标功率; 最后根据所述 第四出站目标功率, 调节所述其它业务的波长的单波衰减量。
基于以上实施例的自动功率调测方法, 由于针对不同波长传输 特性的差异对各业务的波长均釆用了相应的调测方法进行调测, 因 此使得各波长在传输时, 光复用段保持均衡, 不受波长增加或减少 的干扰, 使得信号的接收质量提升。
实施例四、
本发明实施例提供了一种第一动态光分插复用 ROADM 站点 60 , 具体如图 6 所示, 所述第一 ROADM站点 60 包括接收器 61、 处理器 62。
所述接收器 61 , 用于接收第一业务请求消息, 并将所述第一业 务请求消息发送给所述处理器 62 , 所述第一业务请求消息请求在所 述第一 ROADM站点对所述第一业务的波长建立光交叉。
需要说明的是, 文中所述第一业务请求消息中的 "第一" 没有 任何特殊的含义, 仅指代当前在所述第一 ROADM站点处理的业务 的波长。
所述第一 ROADM站点中的 "第一" 也没有任何特殊的含义, 仅指代所述第一业务当前经过的 ROADM站点。
所述处理器 62 , 用于接收所述接收器 61 发送的所述第一业务 请求消息, 并对所述第一业务的波长建立光交叉。
所述处理器 62 , 还用于根据经过第一光复用段的所有业务的波 长当前在所述第一 RO ADM站点的光信噪比和下一 RO ADM站点的 光信噪比, 获取所述第一光复用段上所有业务的波长的第一光信噪 比的劣化均衡值, 其中, 所述第一光复用段指所述第一业务的第一 ROADM站点和所述第一业务的下一 RO ADM站点之间的光复用段。
所述劣化指的是某一业务的波长在所述第一 ROADM站点的光 信噪比和下一 ROADM站点的光信噪比的差值, 在对所述第一业务 的波长建立光交叉后, 因为波长增加, 所以经过所述第一光复用段 的所有业务的波长的光信噪比劣化可能不再均衡, 此时为了保证接 收信号的质量, 应首先获取所述第一光复用段上所有业务的波长的 第一光信噪比的劣化均衡值。
需要说明的是, 所述第一光信噪比的劣化均衡值中的 "第一" 没有任何特殊的含义, 仅为了 区别是不同时刻的光信噪比的劣化均 衡值。
所述处理器 62 , 还用于根据所述获取的所述第一光复用段上所 有业务的波长的第一光信噪比的劣化均衡值, 分别获取所述所有业 务的波长在所述第一 ROADM站点的第一出站目标功率。
需要说明的是, 所述第一光复用段上所有业务的波长都有各自 对应的第一出站目标功率, 是由第一光信噪比的劣化均衡值决定的。
所述第一出站目标功率中的 "第一" 没有任何特殊的含义, 仅 为了区别是不同时刻的出站目标功率。
所述处理器 62 , 还用于根据所述第一出站目标功率, 调节所述 所有业务的波长的单波衰减量。
在新增所述第一业务后,所述处理器 62对所述第一光复用段上 所有业务的波长都进行了调测, 并且针对不同波长传输特性的差异 对各业务的波长设置了相应的衰减量, 所以保证了所述第一光复用 段上的其它业务的波长不受到新增所述第一业务带来的波长增加的 影响, 可以使光复用段保持更好的光信噪比劣化均衡, 提高信号的 接收质量。
进一步的, 所述接收器 61 , 还用于接收第一指示消息, 并将所 述第一指示消息发送给所述处理器 62 , 所述第一指示消息请求在所 述第一 ROADM站点, 将第二光复用段上已有业务的波长的出站功 率调节为所述已有业务的波长在所述第一 ROADM站点的第二出站 目标功率。
其中, 所述第二光复用段指所述第一业务的第一 ROADM站点 和所述第一业务的上一 ROADM站点之间的光复用段, 所述已有业 务指经过所述第二光复用段的除了第一业务之外的其它业务, 所述 第二出站目标功率为在所述上一 ROADM站点没有对所述第一业务 的波长建立光交叉时, 所述已有业务的波长在所述第一 ROADM站 点的出站功率。
所述处理器 62 , 用于接收所述接收器 61 发送的所述第一指示 消息, 若所述第二光复用段上存在已有业务的波长, 在所述第一 ROADM 站点, 将所述已有业务的波长的出站功率调节为所述已有 业务的波长在所述第一 ROADM站点的第二出站目标功率。
具体的, 若所述第二光复用段上存在已有业务的波长, 考虑到 在上一 ROADM站点, 对所述第一业务的波长建立光交叉后, 由于 新增业务的波长的加入, 对所述第二光复用段上的各业务的波长进 行了功率调测, 使得所述第二光复用段上已有业务的波长在进入所 述第一 ROADM站点时, 入站功率相对在上一 ROADM站点未建立 所述第一业务的波长时发生了变化, 也就意味着出站功率相对在上 一 ROADM站点未建立所述第一业务的波长时发生了变化, 为了保 证所述第二光复用段上已有业务的波长不受此影响, 此时将所述已 有业务的波长的出站功率调节为所述已有业务的波长在所述第一 ROADM站点的第二出站目标功率。
通过调测, 可以使所述第二光复用段上已有业务的波长不受新 增业务带来的波长增加的影响。
当然, 若所述第二光复用段上不存在已有业务的波长, 说明在 新增所述第一业务前, 所述第二光复用段上没有已有业务的波长, 则新增所述第一业务后, 所述第一 ROADM站点也不需要将所述已 有业务的波长的出站功率调节为所述已有业务的波长在所述第一 ROADM站点的第二出站目标功率。
进一步的, 所述处理器 62 , 还用于在根据所述第一出站目标功 率, 调节所述所有业务的波长的单波衰减量后, 获取所述所有业务 的波长在所述第一 ROADM站点的当前出站功率。
所述处理器 62 , 还用于判断所述所有业务的波长的所述当前出 站功率和所述第一出站目标功率的差值是否在预设的范围内。
所述处理器 62 , 还用于若所述所有业务的波长的所述当前出站 功率和所述第一出站目标功率的差值不在预设的范围内, 再次根据 经过第一光复用段的所有业务的波长当前在所述第一 ROADM站点 的光信噪比和下一 ROADM站点的光信噪比, 获取所述第一光复用 段上所有业务的波长的第二光信噪比的劣化均衡值。
所述处理器 62 , 还用于根据所述获取的所述第一光复用段上所 有业务的波长的第二光信噪比的劣化均衡值, 分别获取所述所有业 务的波长在所述第一 ROADM站点的第三出站目标功率。
所述处理器 62 , 还用于根据所述第三出站目标功率, 调节所述 所有业务的波长的单波衰减量。
需要说明的是, 所述第二光信噪比的劣化均衡值中的 "第二" 没有任何特殊的含义, 仅为了 区别是不同时刻的光信噪比的劣化均 衡值。
所述第三出站目标功率中的 "第三" 也没有任何特殊的含义, 仅为了区别是不同时刻的出站目标功率。
当然, 如果进行一次反馈调节后还未到达期望的效果, 还可以 反复进行反馈调节, 直至所述所有业务的波长的所述当前出站功率 和所述出站目标功率的差值在预设的范围内, 本发明实施例对此不 作具体限定。
可选的,如图 7所示,所述第一 ROADM站点还包括存储器 63。 所述存储器 63 , 用于在对所述第一业务的波长建立光交叉前, 预留对所述第一业务的波长建立光交叉的波长资源。
通过 RSVP ( Resource Reservation Protocol , 资源预留协议), 可以在新建一条业务波前, 先在新路径上建立逻辑 LSP ( Label Switched Path , 标签交换路径), 即只分配并预留波长业务所需的波 长资源, 而不建立实际的光交叉。 这样先完整的预留业务所需的资 源, 可以保证后续建立光交叉和调测功率的过程不会因为资源冲突 而失败。
站点新建业务的详细过程可参见图 1 和图 4所述的实施例的描 述, 本发明实施例在此不再赘述。
本发明实施例提供了一种第一 ROADM站点,所述第一 ROADM 站点包括接收器、 处理器。 所述接收器接收第一业务请求消息后, 所述处理器对所述第一业务的波长建立光交叉, 然后所述处理器根 据经过第一光复用段的所有业务的波长当前在所述第一 ROADM站 点的光信噪比和下一 ROADM站点的光信噪比, 获取所述第一光复 用段上所有业务的波长的第一光信噪比的劣化均衡值, 接着所述处 理器根据所述获取的所述第一光复用段上所有业务的波长的第一光 信噪比的劣化均衡值, 分别获取所述所有业务的波长在所述第一 ROADM 站点的第一出站目标功率; 最后所述处理器根据所述第一 出站目标功率, 调节所述所有业务的波长的单波衰减量。
基于上述实施例的描述, 所述第一 ROADM站点在对所述第一 业务的波长建立光交叉后, 还对所述第一光复用段上新增业务的波 长和已有业务的波长波都进行调测, 并且针对不同波长传输特性的 差异对各业务的波长设置了相应的衰减量进行调测, 因此使得各波 长在传输时, 光复用段保持均衡, 不受波长增加的干扰, 使得信号 的接收质量提升。
实施例五、
本发明实施例还提供了一种第一动态光分插复用 R0ADM站点 80 , 具体如图 8所示, 所述第一 ROADM站点包括接收器 81、 处理 器 82。
所述接收器 81 , 于接收第一业务的下一 ROADM站点发送的第 一业务请求消息, 并将所述第一业务的请求消息发送给所述处理器 82 , 所述第一业务请求消息请求在所述第一 ROADM站点删除对所 述第一业务的波长建立的光交叉。
需要说明的是, 因为在自动功率调测方法中, 删除对所述第一 业务的波长建立的光交叉是从所述第一业务的最后一个 ROADM站 点到第一个 ROADM站点依次逆向删除的, 所以所述接收器 81接收 第一业务的下一 ROADM站点发送的第一业务请求消息, 具体的, 第一个下一 ROADM 站点可以理解为所述第一业务的最后一个 ROADM站点。
所述处理器 82 , 用于接收所述接收器 81 发送的第一业务请求 消息, 删除对所述第一业务的波长建立的光交叉。
所述处理器 82 , 还用于判断第一光复用段上是否存在其它业务 的波长, 其中, 所述第一光复用段指所述第一业务的第一 ROADM 站点和所述第一业务的下一 ROADM站点之间的光复用段。
所述处理器 82 , 还用于若所述第一光复用段上存在其它业务的 波长, 根据所述第一光复用段上的其它业务的波长当前在所述第一 ROADM 站点的光信噪比和下一 ROADM 站点的光信噪比, 获取所 述第一光复用段上的其它业务的波长的第三光信噪比的劣化均衡 值。
所述劣化指的是某一业务的波长在所述第一 ROADM站点的光 信噪比和下一 ROADM站点的光信噪比的差值, 在删除对所述第一 业务的波长建立的光交叉后, 因为波长减少, 所以所述第一光复用 段上的其它业务的波长的光信噪比劣化可能不再均衡, 此时为了保 证接收信号的质量, 应首先获取所述第一光复用段上的其它业务的 波长的第三光信噪比的劣化均衡值。
需要说明的是, 所述第三光信噪比的劣化均衡值中的 "第三" 没有任何特殊的含义, 仅为了 区别是不同时刻的光信噪比的劣化均 衡值。
当然, 若所述第一光复用段上不存在其它业务的波长, 则暂不 处理。
所述处理器 82 , 还用于根据所述获取的所述第一光复用段上其 它业务的波长的第三光信噪比的劣化均衡值, 分别获取所述其它业 务的波长在所述第一 RO ADM站点的第四出站目标功率。
需要说明的是, 所述第一光复用段上其它业务的波长都有各自 对应的第四出站目标功率, 是由第三光信噪比的劣化均衡值决定的。
所述第四出站目标功率中的 "第四" 没有任何特殊的含义, 仅 为了区别是不同时刻的出站目标功率。
所述处理器 82 , 还用于根据所述第四出站目标功率, 调节所述 其它业务的波长的单波衰减量。
在删除所述第一业务后,所述处理器 82还对所述第一光复用段 上其它业务的波长进行了功率调测, 并且针对不同波长传输特性的 差异对各业务的波长设置了相应的衰减量, 所以保证了所述第一光 复用段上的其它业务的波长不受到删除所述第一业务带来的波长减 少的影响, 可以使光复用段保持更好的光信噪比劣化均衡, 提高信 号的接收质量。
进一步的, 如图 9所示, 所述第一 ROADM站点还包括发送器
83。
所述发送器 83 , 用于在所述处理器 82 根据所述第四出站目标 功率, 调节所述其它业务的波长的单波衰减量后, 发送操作请求消 息给所述第一业务的下一 ROADM站点, 所述操作请求消息请求在 所述下一 ROADM站点, 将所述其它业务的波长的出站功率调节为 所述其它业务的波长在所述下一 ROADM 站点的第五出站目标功 率。
其中, 所述第五出站目标功率为在所述第一 ROADM站点没有 删除对所述第一业务的波长建立的光交叉时, 所述其它业务的波长 在所述下一 ROADM站点的出站功率。
由于在所述第一 ROADM站点, 在删除对所述第一业务的波长 建立的光交叉后, 对所述第一光复用段上其它业务的波长进行了调 测, 使得所述其他业务的波长在进入下一 ROADM站点时, 入站功 率相对在所述第一 ROADM站点未删除对所述第一业务建立的光交 叉时发生了变化, 也就意味着出站功率相对在所述第一 ROADM站 点未删除对所述第一业务建立的光交叉时发生了变化, 为了保证所 述第一光复用段上其它业务的波长不受此影响, 此时所述发送器 83 应发送操作请求消息给所述第一业务的下一 ROADM站点, 请求在 所述下一 ROADM站点, 将所述其它业务的波长的出站功率调节为 所述其它业务的波长在所述下一 ROADM 站点的第五出站目标功 率, 这样保证了下一 ROADM站点继续往下游的功率不发生变化。
可选的, 所述第一业务请求消息还请求在所述第一业务的第一 ROADM 站点将所述第一业务的波长从所述第一光复用段切换至第 三光复用段, 其中 , 所述第三光复用段指所述第一业务的第一 ROADM 站点和切换后所述第一业务的第一下一 ROADM 站点之间 的光复用段。
所述处理器 82 , 还用于获取所述第一业务在所述第一 ROADM 站点的波长资源。
所述处理器 82 , 还用于根据所述波长资源, 建立所述第一业务 的波长在所述第三光复用段的光交叉。
所述处理器 82 , 还用于根据经过第三光复用段的所有业务的波 长当前在所述第一 ROADM站点和下一 ROADM站点的光信噪比, 获取所述第三光复用段上所有业务的波长的第四光信噪比的劣化均 衡值。
所述处理器 82 , 还用于根据所述获取的所述第三光复用段上所 有业务的波长的第四光信噪比的劣化均衡值, 分别获取所述第三光 复用段上所有业务的波长在所述第一 ROADM站点的第六出站目标 功率。
所述处理器 82 , 还用于根据所述第六出站目标功率, 调节所述 所有业务的波长的单波衰减量。
需要说明的是, 所述第一下一 ROADM 站点是区别于下一 ROADM站点的某个 ROADM站点, 所述下一 ROADM站点是链路 切换前所述第一业务的下一个 ROADM站点;所述第一下一 ROADM 站点是链路切换后所述第一业务的下一个 ROADM站点。
进一步的, 所述处理器 82 获取所述第一业务在所述第一 ROADM站点的波长资源具体包括:
在所述删除对所述第一业务的波长建立的光交叉后, 获取所述 第一业务在所述第一 ROADM站点的波长资源;
根据预留的波长资源, 获取所述第一业务在所述第一 ROADM 站点的波长资源。
链路切换过程中, 根据所述第一 ROADM站点分波板的特性, 如 果 该 分 波 板 像 WSD ( Wavelength Selective Switching Demultiplexing Board,波长选择性倒换分波板) 一样, 不具有复制光 波的功能, 则必须先删除对所述第一业务的波长建立的光交叉后, 才能根据所述第一光复用段释放的第一业务的波长资源, 获取所述 第一业务在所述第一 ROADM站点的波长资源。 这样也决定了链路 切换时, 必须先删除对所述第一业务的波长建立的光交叉, 然后再 对所述第一业务的波长建立光交叉。
当然, 链路切换过程中, 根据所述第一 ROADM站点分波板的 特性, 如果该分波板像 RDU ( ROADM Demultiplexing Board , 分波 板) 一样, 具有复制光波的功能, 则可以根据预留的波长资源, 获 取所述第一业务在所述第一 ROADM站点的波长资源。 这样, 删除 对所述第一业务的波长建立的光交叉与对所述第一业务的波长建立 光交叉的过程没有确定的先后顺序, 本发明实施例对此不作具体限 定。
链路切换过程中在所述第一 ROADM站点删除对所述第一业务 的波长建立的光交叉的过程可参见图 2和图 5所述的实施例的描述, 本发明实施例在此不再赘述;
链路切换过程中在所述第一 ROADM站点建立所述第一业务的 波长在所述第三光复用段的光交叉的过程可参见图 1 和图 4 所述的 实施例的描述, 本发明实施例在此不再赘述。
本发明实施例提供了一种第一 ROADM站点,所述第一 ROADM 站点包括接收器、 处理器。 所述接收器接收第一业务的下一 ROADM 站点发送的第一业务请求消息, 所述处理器删除对所述第一业务的 波长建立的光交叉; 然后所述处理器判断第一光复用段上是否存在 其它业务的波长, 若所述第一光复用段上存在其它业务的波长, 根 据所述第一光复用段上的其它业务的波长当前在所述第一 ROADM 站点的光信噪比和下一 ROADM站点的光信噪比, 获取所述第一光 复用段上的其它业务的波长的第三光信噪比的劣化均衡值; 接着所 述处理器根据所述获取的所述第一光复用段上其它业务的波长的第 三光信噪比的劣化均衡值, 分别获取所述其它业务的波长在所述第 一 ROADM站点的第四出站目标功率; 最后所述处理器根据所述第 四出站目标功率, 调节所述其它业务的波长的单波衰减量。
基于上述实施例的描述, 所述第一 ROADM站点在删除对所述 第一业务的波长建立的光交叉后, 还对所述第一光复用段上剩余业 务的波长进行调测, 并且针对不同波长传输特性的差异对各业务的 波长设置了相应的衰减量进行调测, 因此使得各波长在传输时, 光 复用段保持均衡, 不受波长减少的干扰, 使得信号的接收质量提升。 实施例六、
本发明实施例提供了一种第一动态光分插复用 ROADM 站点
100 , 具体如图 10所示, 所述第一 ROADM站点 100 包括接收单元
101、 处理单元 102、 获取单元 103。
所述接收单元 101 , 用于接收第一业务请求消息, 所述第一业 务请求消息请求在所述第一 ROADM站点对所述第一业务的波长建 立光交叉。
所述处理单元 102 , 用于对所述第一业务的波长建立光交叉。 所述获取单元 103 , 用于根据经过第一光复用段的所有业务的 波长当前在所述第一 ROADM站点的光信噪比和下一 ROADM站点 的光信噪比, 获取所述第一光复用段上所有业务的波长的第一光信 噪比的劣化均衡值, 其中, 所述第一光复用段指所述第一业务的第 一 ROADM站点和所述第一业务的下一 ROADM站点之间的光复用 段。
所述获取单元 103 , 还用于根据所述获取的所述第一光复用段 上所有业务的波长的第一光信噪比的劣化均衡值, 分别获取所述所 有业务的波长在所述第一 ROADM站点的第一出站目标功率。
所述处理单元 102 , 还用于根据所述第一出站目标功率, 调节 所述所有业务的波长的单波衰减量。
进一步的, 所述接收单元 101还在所述处理单元 102对所述第 一业务的波长建立光交叉前, 接收第一指示消息, 所述第一指示消 息请求在所述第一 ROADM站点, 将第二光复用段上已有业务的波 长的出站功率调节为所述已有业务的波长在所述第一 ROADM站点 的第二出站目标功率, 其中, 所述第二光复用段指所述第一业务的 第一 ROADM站点和所述第一业务的上一 ROADM站点之间的光复 用段, 所述已有业务指经过所述第二光复用段的除了第一业务之外 的其它业务, 所述第二出站目标功率为在所述上一 ROADM站点没 有对所述第一业务的波长建立光交叉时, 所述已有业务的波长在所 述第一 ROADM站点的出站功率。
所述处理单元 102 , 还用于若所述第二光复用段上存在已有业 务的波长, 在所述第一 ROADM站点, 将所述已有业务的波长的出 站功率调节为所述已有业务的波长在所述第一 ROADM站点的第二 出站目标功率。
进一步的, 如图 11 所示, 所述所述第一 ROADM站点 100还包 括判断单元 104。
所述获取单元 103 , 还用于在所述处理单元 102 根据所述第一 出站目标功率, 调节所述所有业务的波长的单波衰减量后, 获取所 述所有业务的波长在所述第一 ROADM站点的当前出站功率。
所述判断单元 104 , 用于判断所述所有业务的波长的所述当前 出站功率和所述第一出站目标功率的差值是否在预设的范围内。
所述获取单元 103 , 还用于若所述所有业务的波长的所述当前 出站功率和所述第一出站目标功率的差值不在预设的范围内, 再次 根据经过第一光复用段的所有业务的波长当前在所述第一 ROADM 站点的光信噪比和下一 ROADM站点的光信噪比, 获取所述第一光 复用段上所有业务的波长的第二光信噪比的劣化均衡值。
所述获取单元 103 , 还用于根据所述获取的所述第一光复用段 上所有业务的波长的第二光信噪比的劣化均衡值, 分别获取所述所 有业务的波长在所述第一 ROADM站点的第三出站目标功率。
所述处理单元 102 , 还用于根据所述第三出站目标功率, 调节 所述所有业务的波长的单波衰减量。
可选的, 如图 1 1所示, 所述所述第一 ROADM站点 100还包括 存储单元 105。
所述存储单元 105 , 用于在所述处理单元 102 对所述第一业务 的波长建立光交叉前, 预留对所述第一业务的波长建立光交叉的波 长资源。
关于所述第一 ROADM站点 100进行自动功率调测的方法可参 考实施例图 1 和图 4所示的实施例的描述, 本发明实施例对此不再 赘述。
本发明实施例提供了一种第一 ROADM站点,所述第一 ROADM 站点包括接收单元、 处理单元、 获取单元。 所述接收单元接收第一 业务请求消息后, 所述处理单元对所述第一业务的波长建立光交叉, 然后所述获取单元根据经过第一光复用段的所有业务的波长当前在 所述第一 ROADM站点的光信噪比和下一 ROADM站点的光信噪比, 获取所述第一光复用段上所有业务的波长的第一光信噪比的劣化均 衡值, 接着所述获取单元根据所述获取的所述第一光复用段上所有 业务的波长的第一光信噪比的劣化均衡值, 分别获取所述所有业务 的波长在所述第一 ROADM站点的第一出站目标功率; 最后所述处 理单元根据所述第一出站目标功率, 调节所述所有业务的波长的单 波衰减量。
基于上述实施例的描述, 所述第一 ROADM站点在对所述第一 业务的波长建立光交叉后, 还对所述第一光复用段上新增业务的波 长和已有业务的波长波都进行调测, 并且针对不同波长传输特性的 差异对各业务的波长设置了相应的衰减量进行调测, 因此使得各波 长在传输时, 光复用段保持均衡, 不受波长增加的干扰, 使得信号 的接收质量提升。
实施例七、
本发明实施例还提供了一种第一动态光分插复用 ROADM站点
120 , 具体如图 12所示, 所述第一 ROADM站点 120 包括接收单元
121、 处理单元 122、 判断单元 123、 获取单元 124。
所述接收单元 121 , 用于接收第一业务的下一 ROADM站点发 送的第一业务请求消息, 所述第一业务请求消息请求在所述第一 ROADM站点删除对所述第一业务的波长建立的光交叉。
所述处理单元 122 , 用于删除对所述第一业务的波长建立的光 交叉。 所述判断单元 123 , 用于判断第一光复用段上是否存在其它业 务的波长, 其中, 所述第一光复用段指所述第一业务的第一 ROADM 站点和所述第一业务的下一 ROADM站点之间的光复用段。
所述获取单元 124 , 用于若所述第一光复用段上存在其它业务 的波长, 根据所述第一光复用段上的其它业务的波长当前在所述第 一 ROADM站点的光信噪比和下一 ROADM站点的光信噪比, 获取 所述第一光复用段上的其它业务的波长的第三光信噪比的劣化均衡 值。
所述获取单元 124 , 还用于根据所述获取的所述第一光复用段 上其它业务的波长的第三光信噪比的劣化均衡值, 分别获取所述其 它业务的波长在所述第一 ROADM站点的第四出站目标功率。
所述处理单元, 还用于根据所述第四出站目标功率, 调节所述 其它业务的波长的单波衰减量。
进一步的, 如图 13所示, 所述第一 ROADM站点 120还包括发 送单元 125。
所述发送单元 125 , 用于在所述处理单元 122 根据所述第四出 站目标功率, 调节所述其它业务的波长的单波衰减量后, 发送操作 请求消息给所述第一业务的下一 ROADM站点, 所述操作请求消息 请求在所述下一 ROADM站点, 将所述其它业务的波长的出站功率 调节为所述其它业务的波长在所述下一 ROADM站点的第五出站目 标功率, 其中, 所述第五出站目标功率为在所述第一 ROADM站点 没有删除对所述第一业务的波长建立的光交叉时, 所述其它业务的 波长在所述下一 ROADM站点的出站功率。
可选的, 所述第一业务请求消息还请求在所述第一业务的第一 ROADM 站点将所述第一业务的波长从所述第一光复用段切换至第 三光复用段, 其中 , 所述第三光复用段指所述第一业务的第一 ROADM 站点和切换后所述第一业务的第一下一 ROADM 站点之间 的光复用段。 所述获取单元 124 , 还用 于获取所述第一业务在所述第一 R0ADM站点的波长资源。
所述处理单元 122 , 还用于根据所述波长资源, 建立所述第一 业务的波长在所述第三光复用段的光交叉。
所述获取单元 124 , 还用于根据经过第三光复用段的所有业务 的波长当前在所述第一 RO ADM站点和下一 RO ADM站点的光信噪 比, 获取所述第三光复用段上所有业务的波长的第四光信噪比的劣 化均衡值。
所述获取单元 124 , 还用于根据所述获取的所述第三光复用段 上所有业务的波长的第四光信噪比的劣化均衡值, 分别获取所述第 三光复用段上所有业务的波长在所述第一 ROADM站点的第六出站 目标功率。
所述处理单元 122 , 还用于根据所述第六出站目标功率, 调节 所述所有业务的波长的单波衰减量。
进一步的, 所述获取单元 124 获取所述第一业务在所述第一 ROADM站点的波长资源具体包括:
在所述删除对所述第一业务的波长建立的光交叉后, 获取所述 第一业务在所述第一 ROADM站点的波长资源。
根据预留的波长资源, 获取所述第一业务在所述第一 ROADM 站点的波长资源。
关于所述第一 ROADM站点 120进行自动功率调测的方法可参 考实施例图 2和图 5 所示的实施例的描述, 本发明实施例对此不再 赘述。
本发明实施例提供了一种第一 ROADM站点,所述第一 ROADM 站点包括接收单元、 处理单元、 判断单元、 获取单元。 所述接单元 接收第一业务的下一 ROADM站点发送的第一业务请求消息, 所述 处理单元删除对所述第一业务的波长建立的光交叉; 然后所述判断 单元判断第一光复用段上是否存在其它业务的波长, 若所述第一光 复用段上存在其它业务的波长, 所述获取单元根据所述第一光复用 段上的其它业务的波长当前在所述第一 ROADM站点的光信噪比和 下一 ROADM站点的光信噪比, 获取所述第一光复用段上的其它业 务的波长的第三光信噪比的劣化均衡值; 接着所述获取单元根据所 述获取的所述第一光复用段上其它业务的波长的第三光信噪比的劣 化均衡值, 分别获取所述其它业务的波长在所述第一 ROADM站点 的第四出站目标功率; 最后所述处理单元根据所述第四出站目标功 率, 调节所述其它业务的波长的单波衰减量。
基于上述实施例的描述, 所述第一 ROADM站点在删除对所述 第一业务的波长建立的光交叉后, 还对所述第一光复用段上剩余业 务的波长进行调测, 并且针对不同波长传输特性的差异对各业务的 波长设置了相应的衰减量进行调测, 因此使得各波长在传输时, 光 复用段保持均衡, 不受波长减少的干扰, 使得信号的接收质量提升。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种自动功率调测方法, 其特征在于, 该方法应用于自动交 换光网络中的第一动态光分插复用 ROADM站点, 该方法包括: 接收第一业务请求消息,所述第一业务请求消息请求在所述第一 ROADM站点对所述第一业务的波长建立光交叉;
对所述第一业务的波长建立光交叉;
根据经过第一光复用段的所有业务的波长当前在所述第一 ROADM站点的光信噪比和下一 ROADM站点的光信噪比, 获取所述 第一光复用段上所有业务的波长的第一光信噪比的劣化均衡值, 其 中, 所述第一光复用段指所述第一业务的第一 ROADM站点和所述第 一业务的下一 ROADM站点之间的光复用段;
根据所述获取的所述第一光复用段上所有业务的波长的第一光 信噪比的劣化均衡值, 分别获取所述所有业务的波长在所述第一 ROADM站点的第一出站目标功率;
根据所述第一出站目标功率,调节所述所有业务的波长的单波衰 减量。
2、 根据权利要求 1 所述的方法, 其特征在于, 在对所述第一业 务的波长建立光交叉前, 还包括:
接收第一指示消息, 所述第一指示消息请求在所述第一 R 0 A D M 站点, 将第二光复用段上已有业务的波长的出站功率调节为所述已有 业务的波长在所述第一 ROADM站点的第二出站目标功率, 其中, 所 述第二光复用段指所述第一业务的第一 ROADM 站点和所述第一业 务的上一 ROADM站点之间的光复用段, 所述已有业务指经过所述第 二光复用段的除了第一业务之外的其它业务, 所述第二出站目标功率 为在所述上一 ROADM 站点没有对所述第一业务的波长建立光交叉 时, 所述已有业务的波长在所述第一 ROADM站点的出站功率; 若所述第二光复用段上存在已有业务的波长, 在所述第一 ROADM站点, 将所述已有业务的波长的出站功率调节为所述已有业 务的波长在所述第一 ROADM站点的第二出站目标功率。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 在根据所述 第一出站目标功率, 调节所述所有业务的波长的单波衰减量后, 还包 括:
获取所述所有业务的波长在所述第一 ROADM 站点的当前出站 功率;
判断所述所有业务的波长的所述当前出站功率和所述第一出站 目标功率的差值是否在预设的范围内;
若所述所有业务的波长的所述当前出站功率和所述第一出站目 标功率的差值不在预设的范围内, 再次根据经过第一光复用段的所有 业务的波长当前在所述第一 ROADM站点的光信噪比和下一 ROADM 站点的光信噪比, 获取所述第一光复用段上所有业务的波长的第二光 信噪比的劣化均衡值;
根据所述获取的所述第一光复用段上所有业务的波长的第二光 信噪比的劣化均衡值, 分别获取所述所有业务的波长在所述第一 ROADM站点的第三出站目标功率;
根据所述第三出站目标功率,调节所述所有业务的波长的单波衰 减量。
4、 根据权利要求 1 -3 任一项所述的方法, 其特征在于, 在对所 述第一业务的波长建立光交叉前, 该方法还包括:
预留对所述第一业务的波长建立光交叉的波长资源。
5、 一种自动功率调测方法, 其特征在于, 该方法应用于自动交 换光网络中的第一动态光分插复用 ROADM站点, 该方法包括:
接收第一业务的下一 ROADM站点发送的第一业务请求消息,所 述第一业务请求消息请求在所述第一 ROADM 站点删除对所述第一 业务的波长建立的光交叉;
删除对所述第一业务的波长建立的光交叉;
判断第一光复用段上是否存在其它业务的波长, 其中, 所述第一 光复用段指所述第一业务的第一 ROADM 站点和所述第一业务的下 一 ROADM站点之间的光复用段; 若所述第一光复用段上存在其它业务的波长,根据所述第一光复 用段上的其它业务的波长当前在所述第一 ROADM 站点的光信噪比 和下一 ROADM站点的光信噪比,获取所述第一光复用段上的其它业 务的波长的第三光信噪比的劣化均衡值;
根据所述获取的所述第一光复用段上其它业务的波长的第三光 信噪比的劣化均衡值, 分别获取所述其它业务的波长在所述第一 ROADM站点的第四出站目标功率;
根据所述第四出站目标功率,调节所述其它业务的波长的单波衰 减量。
6、 根据权利要求 5所述的方法, 其特征在于, 在根据所述第四 出站目标功率, 调节所述其它业务的波长的单波衰减量后, 还包括: 发送操作请求消息给所述第一业务的下一 ROADM站点,所述操 作请求消息请求在所述下一 ROADM站点,将所述其它业务的波长的 出站功率调节为所述其它业务的波长在所述下一 ROADM 站点的第 五出站目标功率,其中,所述第五出站目标功率为在所述第一 ROADM 站点没有删除对所述第一业务的波长建立的光交叉时, 所述其它业务 的波长在所述下一 ROADM站点的出站功率。
7、 根据权利要求 5或 6所述的方法, 其特征在于, 所述第一业 务请求消息还请求在所述第一业务的第一 ROADM 站点将所述第一 业务的波长从所述第一光复用段切换至第三光复用段, 其中, 所述第 三光复用段指所述第一业务的第一 ROADM 站点和切换后所述第一 业务的第一下一 ROADM站点之间的光复用段;
该方法还包括:
获取所述第一业务在所述第一 ROADM站点的波长资源; 根据所述波长资源,建立所述第一业务的波长在所述第三光复用 段的光交叉;
根据经过第三光复用段的所有业务的波长当前在所述第一 ROADM站点和下一 ROADM站点的光信噪比, 获取所述第三光复用 段上所有业务的波长的第四光信噪比的劣化均衡值; 根据所述获取的所述第三光复用段上所有业务的波长的第四光 信噪比的劣化均衡值, 分别获取所述第三光复用段上所有业务的波长 在所述第一 RO ADM站点的第六出站目标功率;
根据所述第六出站目标功率,调节所述所有业务的波长的单波衰 减量。
8、 根据权利要求 7所述的方法, 其特征在于, 获取所述第一业 务在所述第一 ROADM站点的波长资源具体包括:
在所述删除对所述第一业务的波长建立的光交叉后,获取所述第 一业务在所述第一 ROADM站点的波长资源;
根据预留的波长资源,获取所述第一业务在所述第一 ROADM站 点的波长资源。
9、 一种第一动态光分插复用 ROADM站点, 其特征在于, 所述 第一 ROADM站点包括接收器、 处理器;
所述接收器, 用于接收第一业务请求消息, 并将所述第一业务请 求消息发送给所述处理器, 所述第一业务请求消息请求在所述第一 ROADM站点对所述第一业务的波长建立光交叉;
所述处理器, 用于接收所述接收器发送的所述第一业务请求消 息, 并对所述第一业务的波长建立光交叉;
所述处理器,还用于根据经过第一光复用段的所有业务的波长当 前在所述第一 ROADM站点的光信噪比和下一 ROADM站点的光信噪 比, 获取所述第一光复用段上所有业务的波长的第一光信噪比的劣化 均衡值, 其中, 所述第一光复用段指所述第一业务的第一 ROADM站 点和所述第一业务的下一 ROADM站点之间的光复用段;
所述处理器,还用于根据所述获取的所述第一光复用段上所有业 务的波长的第一光信噪比的劣化均衡值, 分别获取所述所有业务的波 长在所述第一 ROADM站点的第一出站目标功率;
所述处理器, 还用于根据所述第一出站目标功率, 调节所述所有 业务的波长的单波衰减量。
10、 根据权利要求 9所述的第一 ROADM站点, 其特征在于, 所述接收器, 还用于接收第一指示消息, 并将所述第一指示消息 发送给所述处理器, 所述第一指示消息请求在所述第一 ROADM 站 点, 将第二光复用段上已有业务的波长的出站功率调节为所述已有业 务的波长在所述第一 ROADM站点的第二出站目标功率, 其中, 所述 第二光复用段指所述第一业务的第一 ROADM 站点和所述第一业务 的上一 ROADM站点之间的光复用段, 所述已有业务指经过所述第二 光复用段的除了第一业务之外的其它业务, 所述第二出站目标功率为 在所述上一 ROADM站点没有对所述第一业务的波长建立光交叉时, 所述已有业务的波长在所述第一 ROADM站点的出站功率;
所述处理器, 用于接收所述接收器发送的所述第一指示消息, 若 所述第二光复用段上存在已有业务的波长, 在所述第一 ROADM 站 点, 将所述已有业务的波长的出站功率调节为所述已有业务的波长在 所述第一 ROADM站点的第二出站目标功率。
11、 根据权利要求 9或 10所述的第一 ROADM站点, 其特征在 于,
所述处理器, 还用于在根据所述第一出站目标功率, 调节所述所 有业务的波长的单波衰减量后, 获取所述所有业务的波长在所述第一 ROADM站点的当前出站功率;
所述处理器,还用于判断所述所有业务的波长的所述当前出站功 率和所述第一出站目标功率的差值是否在预设的范围内;
所述处理器,还用于若所述所有业务的波长的所述当前出站功率 和所述第一出站目标功率的差值不在预设的范围内, 再次根据经过第 一光复用段的所有业务的波长当前在所述第一 ROADM 站点的光信 噪比和下一 ROADM站点的光信噪比, 获取所述第一光复用段上所有 业务的波长的第二光信噪比的劣化均衡值;
所述处理器,还用于根据所述获取的所述第一光复用段上所有业 务的波长的第二光信噪比的劣化均衡值, 分别获取所述所有业务的波 长在所述第一 ROADM站点的第三出站目标功率; 所述处理器, 还用于根据所述第三出站目标功率, 调节所述所有 业务的波长的单波衰减量。
12、 根据权利要求 9- 11任一项所述的第一 ROADM站点, 其特 征在于, 所述第一 ROADM站点还包括存储器;
所述存储器, 用于在对所述第一业务的波长建立光交叉前, 预留 对所述第一业务的波长建立光交叉的波长资源。
13、 一种第一动态光分插复用 ROADM站点, 其特征在于, 所述 第一 ROADM站点包括接收器、 处理器;
所述接收器,用于接收第一业务的下一 ROADM站点发送的第一 业务请求消息, 并将所述第一业务的请求消息发送给所述处理器, 所 述第一业务请求消息请求在所述第一 ROADM 站点删除对所述第一 业务的波长建立的光交叉;
所述处理器, 用于接收所述接收器发送的第一业务请求消息, 删 除对所述第一业务的波长建立的光交叉;
所述处理器,还用于判断第一光复用段上是否存在其它业务的波 长, 其中, 所述第一光复用段指所述第一业务的第一 ROADM站点和 所述第一业务的下一 ROADM站点之间的光复用段;
所述处理器, 还用于若所述第一光复用段上存在其它业务的波 长, 根据所述第一光复用段上的其它业务的波长当前在所述第一 ROADM站点的光信噪比和下一 ROADM站点的光信噪比, 获取所述 第一光复用段上的其它业务的波长的第三光信噪比的劣化均衡值; 所述处理器,还用于根据所述获取的所述第一光复用段上其它业 务的波长的第三光信噪比的劣化均衡值, 分别获取所述其它业务的波 长在所述第一 ROADM站点的第四出站目标功率;
所述处理器, 还用于根据所述第四出站目标功率, 调节所述其它 业务的波长的单波衰减量。
14、 根据权利要求 13所述的第一 ROADM站点, 其特征在于, 所述第一 ROADM站点还包括发送器;
所述发送器, 用于在根据所述第四出站目标功率, 调节所述其它 业务的波长的单波衰减量后, 发送操作请求消息给所述第一业务的下 一 ROADM站点, 所述操作请求消息请求在所述下一 ROADM站点, 将所述其它业务的波长的出站功率调节为所述其它业务的波长在所 述下一 ROADM站点的第五出站目标功率, 其中, 所述第五出站目标 功率为在所述第一 ROADM 站点没有删除对所述第一业务的波长建 立的光交叉时, 所述其它业务的波长在所述下一 ROADM站点的出站 功率。
15、 根据权利要求 13或 14所述的第一 ROADM站点, 其特征在 于, 所述第一业务请求消息还请求在所述第一业务的第一 ROADM站 点将所述第一业务的波长从所述第一光复用段切换至第三光复用段, 其中, 所述第三光复用段指所述第一业务的第一 ROADM站点和切换 后所述第一业务的第一下一 ROADM站点之间的光复用段;
所述处理器,还用于获取所述第一业务在所述第一 ROADM站点 的波长资源;
所述处理器, 还用于根据所述波长资源, 建立所述第一业务的波 长在所述第三光复用段的光交叉;
所述处理器,还用于根据经过第三光复用段的所有业务的波长当 前在所述第一 ROADM站点和下一 ROADM站点的光信噪比,获取所 述第三光复用段上所有业务的波长的第四光信噪比的劣化均衡值; 所述处理器,还用于根据所述获取的所述第三光复用段上所有业 务的波长的第四光信噪比的劣化均衡值, 分别获取所述第三光复用段 上所有业务的波长在所述第一 ROADM站点的第六出站目标功率; 所述处理器, 还用于根据所述第六出站目标功率, 调节所述所有 业务的波长的单波衰减量。
16、 根据权利要求 15所述的第一 ROADM站点, 其特征在于, 所述处理器获取所述第一业务在所述第一 ROADM 站点的波长资源 具体包括:
在所述删除对所述第一业务的波长建立的光交叉后,获取所述第 一业务在所述第一 ROADM站点的波长资源; 或
根据预留的波长资源,获取所述第一业务在所述第一 R0ADM站 点的波长资源。
PCT/CN2012/086207 2012-12-07 2012-12-07 自动功率调测方法和第一roadm站点 WO2014086044A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2012/086207 WO2014086044A1 (zh) 2012-12-07 2012-12-07 自动功率调测方法和第一roadm站点
BR112015013162A BR112015013162A2 (pt) 2012-12-07 2012-12-07 método de ajuste e teste de potência automático e primeiro sítio roadm
CN201280002235.3A CN103222215B (zh) 2012-12-07 2012-12-07 自动功率调测方法和第一roadm站点
EP12889429.2A EP2924891A4 (en) 2012-12-07 2012-12-07 AUTOMATIC CURRENT TEST METHOD AND FIRST ROADM STATION THEREFOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/086207 WO2014086044A1 (zh) 2012-12-07 2012-12-07 自动功率调测方法和第一roadm站点

Publications (1)

Publication Number Publication Date
WO2014086044A1 true WO2014086044A1 (zh) 2014-06-12

Family

ID=48818198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086207 WO2014086044A1 (zh) 2012-12-07 2012-12-07 自动功率调测方法和第一roadm站点

Country Status (4)

Country Link
EP (1) EP2924891A4 (zh)
CN (1) CN103222215B (zh)
BR (1) BR112015013162A2 (zh)
WO (1) WO2014086044A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015135173A1 (zh) * 2014-03-13 2015-09-17 华为技术有限公司 一种检测光信噪比的方法及装置
JP2017098686A (ja) * 2015-11-20 2017-06-01 富士通株式会社 伝送装置、ネットワーク制御装置、伝送システム
CN108418649B (zh) * 2018-02-13 2019-10-11 中国联合网络通信集团有限公司 一种计算业务时延的方法和装置
CN112787747B (zh) * 2019-11-08 2022-07-29 华为技术有限公司 一种控制功率调节的方法及装置
CN112019262B (zh) * 2020-08-13 2022-04-05 武汉光迅科技股份有限公司 通信站点、光通信系统、数据传输方法及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040209577A1 (en) * 2003-04-15 2004-10-21 Samsung Electronics Co., Ltd. Portable wireless terminal including a moveable camera lens unit
CN1809979A (zh) * 2003-06-25 2006-07-26 西门子公司 在具有插分模块的传输系统中预加重光信号的方法
CN102142903A (zh) * 2011-03-29 2011-08-03 华为技术有限公司 一种光功率调测方法、装置及系统
CN102281110A (zh) * 2011-07-29 2011-12-14 华为技术有限公司 光功率调节方法和装置
CN102598707A (zh) * 2011-12-28 2012-07-18 华为技术有限公司 一种均衡链路性能的方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3720112B2 (ja) * 1996-03-18 2005-11-24 富士通株式会社 波長分割多重が適用されるシステム及び光パワー制御装置
JP3039428B2 (ja) * 1997-03-04 2000-05-08 日本電気株式会社 波長多重伝送装置
US20030016410A1 (en) * 2001-07-18 2003-01-23 Innovance Networks Method for engineering connections in a dynamically reconfigurable photonic switched network
JP5564692B2 (ja) * 2011-02-25 2014-07-30 株式会社日立製作所 光伝送システム、及び、光ノード
CN102201863A (zh) * 2011-06-09 2011-09-28 华为技术有限公司 一种光功率调测方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040209577A1 (en) * 2003-04-15 2004-10-21 Samsung Electronics Co., Ltd. Portable wireless terminal including a moveable camera lens unit
CN1809979A (zh) * 2003-06-25 2006-07-26 西门子公司 在具有插分模块的传输系统中预加重光信号的方法
CN102142903A (zh) * 2011-03-29 2011-08-03 华为技术有限公司 一种光功率调测方法、装置及系统
CN102281110A (zh) * 2011-07-29 2011-12-14 华为技术有限公司 光功率调节方法和装置
CN102598707A (zh) * 2011-12-28 2012-07-18 华为技术有限公司 一种均衡链路性能的方法和装置

Also Published As

Publication number Publication date
CN103222215B (zh) 2016-05-25
EP2924891A1 (en) 2015-09-30
EP2924891A4 (en) 2015-11-11
CN103222215A (zh) 2013-07-24
BR112015013162A2 (pt) 2017-07-11

Similar Documents

Publication Publication Date Title
US9363585B2 (en) Operations administration and management service for an optical layer of a communication network
US8964581B2 (en) Bandwidth variable communication method, bandwidth variable communication apparatus, transmission bandwidth determination apparatus, transmission bandwidth determination method, node apparatus, communication path setting system, communication path setting
US7609964B2 (en) Power level management in optical networks
JP5497242B2 (ja) ロスレス帯域幅調整のための方法、デバイス、およびシステム
US7466917B2 (en) Method and system for establishing transmission priority for optical light-trails
WO2014086044A1 (zh) 自动功率调测方法和第一roadm站点
US20040208513A1 (en) Management of optical links using power level information
CN114614886A (zh) 用于在光转发器处使用预前向纠错误比特率来检测信号退化的方法和装置
RU2509447C2 (ru) Способ уведомления информации пропускной способности, способ обработки услуги, сетевой узел и система связи
US9768904B2 (en) Method and apparatus for allocating slots for transmission of data
WO2019134687A1 (en) Adaptive signal processing in optical communications
WO2012130001A1 (zh) 一种光功率调测方法、装置及系统
Meng et al. Field trial of a novel SDN enabled network restoration utilizing in-depth optical performance monitoring assisted network re-planning
JP4410410B2 (ja) 光スイッチングノード及びその作動方法
US20150055947A1 (en) Method for quick automatic remote wavelength discovery and configuration
Ferrari et al. A two-layer network solution for reliable and efficient host-to-host transfer of big data
US11632176B2 (en) Automatic negotiation of optical transceiver configuration parameters
US20230155676A1 (en) Optical module and parameter transmission method, detection method, control method thereof, and fronthaul system
US7209655B2 (en) Sharing of power level information to support optical communications
Liu et al. Demonstration of a dynamic transparent WSON employing flexible transmitter/receiver controlled by an OpenFlow/stateless PCE integrated control plane
CN114556810B (zh) 控制光传输网络中色度色散的补偿
Borkowski et al. Advanced modulation formats in cognitive optical networks: EU project CHRON demonstration
Subramaniam et al. Cross-Layer Design
WO2009152753A1 (zh) 端口属性参数协商方法、网络节点及网络系统
TWI527389B (zh) 射頻上載光纖系統及局端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015013162

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2012889429

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112015013162

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150605