WO2008152017A1 - Verfahren zur herstellung einer wässrigen polymerisatdispersion - Google Patents

Verfahren zur herstellung einer wässrigen polymerisatdispersion Download PDF

Info

Publication number
WO2008152017A1
WO2008152017A1 PCT/EP2008/057161 EP2008057161W WO2008152017A1 WO 2008152017 A1 WO2008152017 A1 WO 2008152017A1 EP 2008057161 W EP2008057161 W EP 2008057161W WO 2008152017 A1 WO2008152017 A1 WO 2008152017A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomers
polymerization
aqueous
monomer
methacrylate
Prior art date
Application number
PCT/EP2008/057161
Other languages
English (en)
French (fr)
Inventor
Roelof Balk
Franca Tiarks
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to ES08760726T priority Critical patent/ES2392571T3/es
Priority to CN2008800195619A priority patent/CN101679536B/zh
Priority to EP08760726A priority patent/EP2158226B1/de
Priority to JP2010511607A priority patent/JP2010529272A/ja
Priority to AU2008263946A priority patent/AU2008263946B2/en
Priority to US12/663,713 priority patent/US8153721B2/en
Publication of WO2008152017A1 publication Critical patent/WO2008152017A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/10Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J151/00Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers
    • C09J151/003Adhesives based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Adhesives based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/02Organic macromolecular compounds, natural resins, waxes or and bituminous materials

Definitions

  • the present invention is a process for the preparation of an aqueous polymer dispersion by free-radically initiated aqueous emulsion polymerization of ethylenically unsaturated monomers in the presence of at least one dispersant and at least one free-radical initiator, which is characterized in that for the emulsion
  • the present invention also provides the aqueous polymer dispersions having a narrow particle size distribution obtainable by the process according to the invention and the polymer powders obtainable from these aqueous polymer dispersions and the use of the aqueous polymer dispersions and the polymer powders, in particular as constituent in transparent formulations for wood coatings.
  • Aqueous polymer dispersions are well known. These are fluid systems which contain a disperse phase in aqueous dispersion medium consisting of a plurality of intertwined polymer chains, which are known as polymer pellets or polymer particles, in disperse distribution. The average diameter of the polymer particles is frequently in the range from 10 to 1000 nm, in particular in the range from 50 to 600 nm.
  • Aqueous polymerizate Dispersions are used in a variety of technical applications as a binder.
  • a so-called polymer seed is used which was either separately prepared previously with other monomers (polymer foreign seed) or which is prepared by partial polymerization of the monomers to be polymerized "in situ". were generated.
  • aqueous polymer dispersion using an in situ polymer seed is familiar to the person skilled in the art (see, for example, DE-A 196 09 509, EP-A 690,882, EP-A 710,680, EP-A 1 125 949, EP-A 1 294 816 EP-A 1 614 732, WO-A 03/29300) and generally takes place in such a way that a small portion of the monomer mixture used for the emulsion polymerization is initially introduced into the aqueous polymerization medium prior to the actual emulsion polymerization and is radically polymerized in the presence of a large amount of emulsifier ,
  • the object of the present invention was therefore to provide a process for preparing an aqueous polymer dispersion having a narrow particle size distribution by free-radically initiated aqueous emulsion polymerization using readily water-soluble ethylenically unsaturated monomers.
  • aqueous polymer dispersion For the preparation of the aqueous polymer dispersion, clear water, preferably drinking water and particularly preferably deionized water is used, the total amount of which is such that it contains 30 to 90% by weight and advantageously 40 to 60% by weight, based in each case on the aqueous polymer dispersion, is. It is essential that in polymerization stage 1 at least a partial amount, advantageously> 25 wt .-% and particularly advantageously> 35 wt .-% of the total amount of water as a component of the aqueous polymerization in the polymerization together with the monomers B is submitted. Any residual amount of water remaining may be fed to the polymerization medium batchwise in one or more portions or continuously with constant or varying flow rates, in particular as part of an aqueous monomer emulsion in polymerization stage 2.
  • monomers A all those ethylenically unsaturated monomers in loading tracht, at 20 0 C and 1 atm (absolute) has a solubility of> 200 g, preferably> 300 g, and most preferably> 500 g per 1000 g of deionized water having. Frequently, the monomers A have unlimited solubility with deionized water.
  • Suitable monomers A are, in particular, those ethylenically unsaturated monomers which have at least one acid group, in particular a carboxylic acid or sulfonic acid group, a hydroxyalkyl group, an amide group, an ethyleneurea group, an acetoacetoxy group.
  • the monomers A are selected from the group comprising acrylic acid, methacrylic acid, 2-acrylamido-2-methylpropanesulfonic acid (AMPS), vinylsulfonic acid, acrylamide, methacrylamide, N- (2-methacryloyloxyethyl) ethyleneurea (UMA), N- ( 2-acryloyloxyethyl) ethylene urea, 2-acetoacetoxyethyl acrylate, 2-
  • Acetoacetoxyethyl methacrylate (AAEM), diacetone acrylamide (DAAM), 2-hydroxyethyl acrylate, hydroxypropyl acrylate, 2-hydroxyethyl methacrylate and hydroxypropyl methacrylate.
  • Particularly preferred are acrylic acid, methacrylic acid, acrylamide and / or AMPS.
  • the monomers A also include the alkali metal or ammonium salts of the abovementioned monomers having an acid, in particular a carboxylic or sulfonic acid group.
  • monomers B all those ethylenically unsaturated monomers come into consideration that at 20 0 C and 1 atm (absolute) has a solubility of ⁇ 100 g, preferably ⁇ 60 g and especially preferably ⁇ 20 g per 1000 g of deionized water having.
  • Suitable monomers B are, in particular, free-radically copolymerizable ethylenically unsaturated compounds with the monomers A, for example olefins, such as ethylene or propylene, vinylaromatic monomers, such as styrene, .alpha.-methylstyrene, o-chlorostyrene or vinyltoluene, vinyl halides, such as vinyl chloride or Vinylidene chloride, esters of vinyl alcohol and monocarboxylic acids having 1 to 18 carbon atoms, such as vinyl acetate, vinyl propionate, vinyl n-butyrate, vinyl laurate and vinyl chloride.
  • olefins such as ethylene or propylene
  • vinylaromatic monomers such as styrene, .alpha.-methylstyrene, o-chlorostyrene or vinyltoluene
  • vinyl halides such as vinyl chloride or Vinylidene chloride
  • nylstearat esters of preferably 3 to 6 carbon atoms having ⁇ , ß- monoethylenically unsaturated mono- and dicarboxylic acids, in particular acrylic acid, methacrylic acid, maleic acid, fumaric acid and itaconic acid, with generally 1 to 12, preferably 1 to 8 and in particular 1 to 4 C-atoms alkanols, such as especially acrylic and methacrylic acid, methyl, ethyl, n-butyl, isobutyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl and 2-ethylhexyl esters, dimethyl fumarate and dimethyl maleate or di-n-butyl esters, nitriles of ⁇ , ⁇ -monoethylenically unsaturated carboxylic acids, such as acrylonitrile, methacrylonitrile, fumaronitrile, maleic dinitrile and C4
  • Total amount of monomers B a share of> _ 80 wt .-%, preferably> _ 90% by weight and particularly preferably> _ 95 wt .-% combine or even the total amount of the monomers B form.
  • Monomers B which usually increase the internal strength of the films of a polymer matrix, usually have at least one epoxy group or at least two non-conjugated ethylenically unsaturated double bonds.
  • examples include two vinyl radicals containing monomers, two vinylidene radicals having monomers and two alkenyl radicals having monomers.
  • Particularly advantageous are the diesters of dihydric alcohols with ⁇ , ⁇ -monoethylenically unsaturated monocarboxylic acids, among which acrylic and methacrylic acid are preferred.
  • alkylene glycol diacrylates and dimethacrylates such as ethylene glycol diacrylate, 1,2-propylene glycol diacrylate, 1,3-propylene glycol diacrylate, 1,3-butylene glycol diacrylate, 1,4-butylene glycol diacrylate and ethylene glycol dimethacrylate, 1, 2-propylene glycol dimethacrylate, 1,3-propylene glycol dimethacrylate, 1,3-butylene glycol dimethacrylate, 1,4-butylene glycol dimethacrylate and divinylbenzene, vinyl methacrylate, vinyl acrylate, allyl methacrylate, allyl acrylate, diallyl maleate, diallyl fumarate, cyclopentadienyl acrylate, triallyl cyanurate or triallyl isocyanurate.
  • alkylene glycol diacrylates and dimethacrylates such as ethylene glycol diacrylate, 1,2-propylene glycol diacrylate, 1,3-propy
  • the abovementioned crosslinking monomers B are used in amounts of ⁇ 10% by weight, but preferably in amounts of ⁇ 5% by weight, in each case based on the total amount of monomers B. Frequently, however, no such crosslinking monomers B are used.
  • the monomers B are selected from the group comprising methyl acrylate, ethyl acrylate, n-butyl acrylate, tert-butyl acrylate, 2-ethylhexyl acrylate, 2-propylheptyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, tert-butyl methacrylate, 2-ethylhexyl methacrylate, 2 Propylheptyl methacrylate, styrene, vinyltoluene, 2-methylstyrene, 4-methylstyrene, 2-n-butylstyrene, 4-n-butylstyrene, 4-n-decylstyrene, vinyl acetate, vinyl propionate, acrylonitrile and methacrylonitrile.
  • dispersants are also included in the present process which keep both the monomer droplets and the polymer particles formed dispersed in the aqueous medium and thus ensure the stability of the aqueous polymer dispersion produced.
  • Suitable dispersants are both the protective colloids commonly used for carrying out free-radical aqueous emulsion polymerizations and emulsifiers.
  • Suitable protective colloids are, for example, polyvinyl alcohols, polyalkylene glycols, alkali metal salts of polyacrylic acids and polymethacrylic acids, gelatin derivatives or acrylic acid, methacrylic acid, maleic anhydride, 2-acrylamido-2-methylpropanesulfonic acid and / or 4-styrenesulfonic acid-containing copolymers and their alkali metal salts but also N-vinylpyrrolidone, N-vinylcaprolactam, N- vinylcarbazole, 1-vinylimidazole, 2-vinylimidazole, 2-vinylpyridine, 4-vinylpyridine, acrylamide, methacrylamide, amines group-bearing acrylates, methacrylates, acrylamides and / or methacrylamides containing homo- and copolymers.
  • protective colloids can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular Materials, Georg Thieme Verlag, Stuttgart, 1961, pages 411-420.
  • mixtures of protective colloids and / or emulsifiers can be used.
  • dispersants used are exclusively emulsifiers whose relative molecular weights, in contrast to the protective colloids, are usually below 1000. They may be anionic, cationic or nonionic in nature.
  • the individual components must be compatible with each other, which can be checked in case of doubt by hand on fewer preliminary tests.
  • anionic emulsifiers are compatible with each other and with nonionic emulsifiers.
  • cationic emulsifiers while anionic and cationic emulsifiers are usually incompatible with each other.
  • An overview of suitable emulsifiers can be found in Houben-Weyl, Methods of Organic Chemistry, Volume XIV / 1, Macromolecular Materials, Georg-Thieme-Verlag, Stuttgart, 1961, pages 192 to 208.
  • emulsifiers are used in particular as dispersants.
  • Nonionic emulsifiers are, for example, ethoxylated mono-, di- and tri-alkylphenols (EO degree: 3 to 50, alkyl radical: C 4 to C 12) and also ethoxylated fatty alcohols (EO degree: 3 to 80, alkyl radical: C 8 to C 3 e).
  • Lutensol ® A grades C 2 Ci4-fatty alcohol ethoxylates, EO units: 3 to 8
  • Lutensol ® AO-marks C13C15- oxo alcohol ethoxylates, EO units: 3 to 30
  • Lutensol ® AT-marks Ci Ci 6 8 - fatty alcohol ethoxylates, EO units: 1 1 to 80
  • Lutensol ® ON brands C10 oxo alcohol ethoxylates, EO units: 3 to 11
  • Lutensol ® tO brands C13 oxo alcohol ethoxylates, EO : 3 to 20
  • Usual anionic emulsifiers are z.
  • B Alkali metal and ammonium salts of alkyl sulfates (alkyl radical: C 8 to C 12), of sulfuric monoesters of ethoxylated alkanols (EO degree: 4 to 30, alkyl: C12 to Ci 8 ) and ethoxylated alkylphenols (EO degree: 3 to 50 , alkyl radical: C4 to C12), (alkylsulfonic alkyl radical: C12 to C 8) and of Al kylarylsulfonklaren (alkyl radical: Cg to C 8).
  • R 1 and R 2 are H atoms or C 4 - to C 24 -alkyl and are not simultaneously H atoms, and M 1 and M 2 may be alkali metal ions and / or ammonium ions, has been found to be suitable.
  • R 1 and R 2 are preferably linear or branched alkyl radicals having 6 to 18 C atoms, in particular having 6, 12 and 16 C atoms or hydrogen, where R 1 and R 2 are not both simultaneously H and Atoms are.
  • M 1 and M 2 are preferably sodium, potassium or ammonium, with sodium being particularly preferred.
  • Particularly advantageous compounds (I) are those in which M 1 and M 2 are sodium, R 1 is a branched alkyl radical having 12 C atoms and R 2 is an H atom or R 1 .
  • technical mixtures are used which have a proportion of 50 to 90 wt .-% of the monoalkylated product, such as Dowfax ® 2A1 (trademark of the Dow Chemical Company).
  • the compounds (I) are well known, for. Example, from US-A 4269749, and commercially available.
  • Suitable cationic emulsifiers are generally a C 1 to C 8 alkyl, alkylaryl or heterocyclic radical-containing primary, secondary, tertiary or quaternary ammonium salts, alkanolammonium salts, pyridinium salts, imidazolinium salts, oxazolinium salts, morpholinium salts, thiazolinium salts and salts of amine. oxides, quinolinium salts, isoquinolinium salts, tropylium salts, sulfonium salts and phosphonium salts.
  • Examples include dodecylammonium acetate or the corresponding sulfate, the sulfates or acetates of the various 2- (N, N, N-trimethylammonium) ethylparaffinklaer, N-Cetylpyridiniumsulfat, N-Laurylpyridiniumsulfat and N-cetyl-N, N, N-trimethylammonium sulfate, N- Dodecyl-N, N, N-trimethylammonium sulfate, N-octyl-N, N, N-trimethylammonium sulfate, N, N-distearyl-N, N-dimethylammonium sulfate and the gemini surfactant N, N'- (lauryldimethyl) ethylenediamine disulfate, ethoxylated tallow fatty alkyl -N-methyl ammonium sulfate and ethoxylated o
  • BASF AG about 12 ethylene oxide.
  • Numerous other examples can be found in H. Stumblee, Tensid-Taschenbuch, Carl-Hanser-Verlag, Kunststoff, Vienna, 1981, and in McCutcheon's, Emulsifiers & Detergents, MC Publishing Company, Glen Rock, 1989.
  • anionic counterparts are as possible are low nucleophilic, such as perchlorate, sulfate, phosphate, nitrate and carboxylates such as acetate, trifluoroacetate, trichloroacetate, propionate, oxalate, citrate, benzoate, as well as conjugated anions of organosulfonic acids such as methylsulfonate, trifluoromethylsulfonate and para-toluenesulfonate , furthermore tetrafluoroborate, tetraphenylborate, tetrakis (pentafluorophenyl) borate, tetrakis [bis (3,5-trifluoromethyl) phenyl] borate, hexafluorophosphate, hexafluoroarsenate or hexafluoroantimonate.
  • organosulfonic acids such as methylsulfonate, trifluoromethylsulf
  • the emulsifiers preferably used as dispersants are advantageously in a total amount> 0.1 and ⁇ 10 wt .-%, preferably> 0.1 and ⁇ 5 wt .-%, in particular> 0.5 and ⁇ 4 wt .-% , in each case based on the total amount of monomers used.
  • the total amount of the protective colloids used as dispersants in addition to or instead of the emulsifiers is often> 0.1 and ⁇ 10% by weight and frequently> 0.2 and ⁇ 7% by weight, in each case based on the total monomer amount.
  • anionic and / or nonionic emulsifiers preference is given to using anionic and / or nonionic emulsifiers and particularly preferably anionic emulsifiers as dispersants.
  • the amount of dispersing agent, in particular of the emulsifiers is chosen so that it is> 2 mmol, preferably> 5 mmol and particularly preferably> 10 mmol per 10 g of monomer B.
  • free-radical polymerization initiator can be both peroxides and azo compounds.
  • redox initiator systems come into consideration.
  • peroxides may in principle inorganic peroxides, such as hydrogen peroxide or peroxodisulfates, such as the mono- or di-alkali metal or ammonium salts of peroxodisulfuric, such as their mono- and di-sodium, potassium or ammonium salts or organic peroxides, such as alkyl hydroperoxides, for example tert-butyl, p-menthyl or cumyl hydroperoxide, and also dialkyl or diaryl peroxides, such as di-tert-butyl or di-cumyl peroxide.
  • inorganic peroxides such as hydrogen peroxide or peroxodisulfates, such as the mono- or di-alkali metal or ammonium salts of peroxodisulfuric, such as their mono- and di-sodium, potassium or ammonium salts or organic peroxides, such as alkyl hydroperoxides, for example tert-butyl
  • Suitable oxidizing agents for redox initiator systems are essentially the abovementioned peroxides.
  • Suitable reducing agents may be sulfur compounds having a low oxidation state, such as alkali metal sulfites, for example potassium and / or sodium sulfite, alkali hydrogen sulfites, for example potassium and / or sodium hydrogen sulfite, alkali metal metabisulfites, for example potassium and / or sodium metabisulfite, formaldehyde sulfoxylates, for example potassium and / or sodium formaldehyde If oxylat, alkali metal salts, especially potassium and / or sodium salts aliphatic sulfonic acids and alkali metal hydrogen sulfides, such as potassium and / or sodium hydrogen sulf id, salts of polyvalent metals such as iron (II) sulfate, iron (II) - Ammonium sulfate, iron (II) phosphate, endiols, such as dihydroxymaleic acid, benzoin and / or ascorbic acid, and reducing
  • the amount of the radical initiator based on the total amount of monomers, 0.01 to 5 wt .-%, preferably 0.1 to 3 wt .-% and particularly preferably 0.2 to 1, 5 wt .-%.
  • the total amount of the radical initiator in the aqueous polymerization medium prior to initiation of the polymerization reaction in polymerization stage 1 can be submitted.
  • Initiation of the polymerization reaction is understood to mean the start of the polymerization reaction of the monomers present in the aqueous polymerization medium after radical formation of the free-radical initiator.
  • the initiation of the polymerization reaction can be carried out by adding radical initiator to the aqueous polymerization medium in the polymerization vessel under polymerization conditions.
  • a partial or total amount of the free-radical initiator is added to the aqueous polymerization medium containing the monomers B in the polymerization vessel in polymerization stage 1 under conditions which are not suitable for triggering a polymerization reaction, for example at low temperature, and thereafter be set in the aqueous polymerization medium polymerization conditions.
  • Polymerization conditions are to be understood as meaning in general those temperatures and pressures under which the free-radically initiated aqueous emulsion polymerization proceeds at a sufficient rate of polymerization. They are dependent, in particular, on the radical initiator used.
  • the nature and amount of the free-radical initiator, the polymerization temperature and the polymerization pressure are selected such that always sufficient starting radicals are available to initiate or maintain the polymerization reaction.
  • the reaction temperature for the novel free-radical aqueous emulsion polymerization is the entire range from 0 to 170 ° C. In this case, temperatures of 50 to 120 0 C, often 60 to 1 10 0 C and often used 70 to 100 0 C in the rule.
  • the free-radical aqueous emulsion polymerization according to the invention can be carried out at a pressure of less than or equal to 1 atm (atmospheric pressure), such that the polymerization temperature can exceed 100 ° C. and can be up to 170 ° C.
  • volatile monomers such as ethylene, butadiene or vinyl chloride are polymerized under elevated pressure.
  • the pressure may be 1, 2, 1, 5, 2, 5, 10, 15 bar (absolute) or even higher values.
  • emulsion polymerizations are carried out under reduced pressure, pressures of 950 mbar, often 900 mbar and often 850 mbar (absolute) are set.
  • pressures of 950 mbar, often 900 mbar and often 850 mbar absolute are set.
  • the free-radical aqueous emulsion polymerization according to the invention is carried out at 1 atm with exclusion of oxygen, for example under an inert gas atmosphere, for example under nitrogen or argon.
  • the aqueous reaction medium may also comprise minor amounts ( ⁇ 5% by weight) of water-soluble organic solvents, such as, for example, methanol, ethanol, isopropanol, butanols, pentanols, but also acetone, etc.
  • water-soluble organic solvents such as, for example, methanol, ethanol, isopropanol, butanols, pentanols, but also acetone, etc.
  • the process according to the invention is preferably carried out in the absence of such solvents.
  • free radical-transferring compounds in the process according to the invention in order to reduce or control the molecular weight of the polymers obtainable by the polymerization.
  • free radical-transferring compounds such as, for example, n-butyl chloride, n-butyl bromide, n-butyl iodide, methylene chloride, ethylene dichloride, chloroform, bromoform, bromotrichloromethane, dibromodichloromethane, carbon tetrachloride, carbon tetrabromide, benzyl chloride, benzyl bromide , organic thio compounds, such as primary, secondary or tertiary aliphatic thiols, such as ethanethiol, n-propanethiol, 2-propanethiol, n-butanethiol, 2-butanethio
  • Pentanethiol 2-methyl-2-butanethiol, 3-methyl-2-butanethiol, n-hexanethiol, 2-hexanethiol, 3-hexanethiol, 2-methyl-2-pentanethiol, 3-methyl-2-pentanethiol, 4-methyl 2-pentanethiol, 2-methyl-3-pentanethiol, 3-methyl-3-pentanethiol, 2-ethylbutanethiol, 2-ethyl-2-butanethiol, n-heptanethiol and its isomeric compounds, n-octanethiol and its isomeric compounds, n-nonanethiol and its isomeric compounds, n-decanethiol and its isomeric compounds, n-undecanethiol and its isomeric compounds, n-dodecanethiol and its isomeric compounds, n-tridecanethi
  • the total amount of radical-chain-transferring compounds optionally used in the process according to the invention is generally ⁇ 5% by weight, often ⁇ 3% by weight and frequently ⁇ 1% by weight. Frequently, it is favorable if a partial or total amount of the radical chain transferring compound optionally used is fed to the aqueous polymerization medium prior to the initiation of the free radical emulsion polymerization in polymerization stage 1. However, it is particularly advantageous if a partial or total amount of the radical chain transferring compound optionally used is fed to the aqueous polymerization medium together with the monomers A and monomers B in the polymerization stage 2.
  • the metering of the total amount of the monomers A and the residual amount of the monomers B in polymerization stage 2 can be carried out batchwise in one or more portions or continuously with constant or changing flow rates.
  • the metering of the monomers A and B takes place continuously with constant flow rates.
  • the total amount of monomers A and the residual amount of monomers B can also be metered in separate individual streams or as a monomer mixture.
  • the metering of the total amount of the monomers A and the residual amount of the monomers B takes place as a monomer mixture, in particular advantageously in the form of an aqueous monomer emulsion.
  • the invention should also encompass process variants in which the compositions of the respective monomers A and / or monomers B change in polymerization stage 2, for example in a gradient or stage procedure familiar to the person skilled in the art.
  • the addition of the monomers A and / or of the monomers B in polymerization stage 2 is frequently carried out by the gradient or the stage procedure and in particular advantageously by the stepwise procedure.
  • the process according to the invention takes place such that the monomers B in polymerization stage 1 or the monomers A and B in polymerization stage 2 up to a conversion of> 95 wt .-%, preferably> 98 wt .-% and particularly advantageous > 99% by weight are reacted.
  • the aqueous polymer dispersion obtained after completion of the polymerization stage 2 is subjected to an aftertreatment to reduce the residual monomer content.
  • the aftertreatment is carried out either chemically, for example by completing the polymerization reaction by using a more effective radical initiator system (so-called postpolymerization) and / or physically, for example by stripping the aqueous polymer dispersion with steam or inert gas.
  • aqueous polymer dispersions whose polymers have a glass transition temperature or a melting point in the range from -60 to 270 ° C.
  • multiphase or multiphase polymers having a plurality of glass transition temperatures.
  • polymers are prepared which have at least one polymer phase whose glass transition temperature> -60 and ⁇ 10 0 C (adhesives),> 10 and ⁇ 100 0 C (binder for coating formulations) or> 80 0 C (hard Paint films).
  • the glass transition temperature T 9 is meant the limit of the glass transition temperature, which according to G. Kanig (Kolloid-Zeitschrift & Zeitschrift fur Polymere, Vol. 190, p. 1, Equation 1) tends to increase with increasing molecular weight.
  • the glass transition temperature or the melting point is determined by the DSC method (differential scanning calorimetry, 20 K / min, midpoint measurement, DIN 53765).
  • the aqueous polymer dispersions obtained according to the invention usually have polymer solids contents of> 10 and ⁇ 70% by weight, frequently> 20 and ⁇ 65% by weight and often> 40 and ⁇ 60% by weight, based in each case on the aqueous polymer composition.
  • the aqueous polymer dispersions obtainable by the process according to the invention have polymer particles which have a narrow particle size distribution and weight-average diameters D w in the range> 10 and ⁇ 500 nm, preferably> 20 and ⁇ 200 nm and more preferably> _ 30 nm to 5 100 nm ,
  • the determination of the weight-average particle diameter is known to the person skilled in the art and is carried out, for example, by the method of the analytical ultracentrifuge.
  • Weight-average particle diameter in this document is understood to mean the weight-average D W 5o value determined by the method of the analytical ultracentrifuge (see, in this regard, SE Harding et al., Analytical Ultracentrifugation in Biochemistry and Polymer Science, Royal Society of Chemistry, Cambridge, Great Britain 1992 , Chapter 10, Analysis of Polymer Dispersions with an Eight Cell AUC Multiplexer: High Resolution Particle Size Distribution and Density Gradient Techniques, W. Gurchtle, pages 147 to 175).
  • a narrow particle size distribution should be understood within the scope of this document if the ratio of the weight-average particle diameter D w determined by the method of the analytical ultracentrifuge and number-average particle diameter DN 50 [D W 5O / DN 50] ⁇ 2.0, preferably ⁇ 1.5 preferably ⁇ 1, 2 or ⁇ 1, 1 is.
  • aqueous polymer dispersions having narrow particle size distributions and weight-average particle diameters Dw ⁇ 100 nm obtainable by the process according to the invention have a surprisingly high transparency and are therefore particularly suitable as binders in transparent aqueous formulations for wood coatings. This often shows advantages such as lower need for thickeners for setting a certain viscosity and good and deep coloration when using color pigments, good penetration of the formulation into the wood surface or good "initiation" of the wood grain Filterability in comparison to corresponding, not according to the invention aqueous polymer dispersions.
  • the aqueous polymer dispersions of the invention obtainable by the process according to the invention can be used as a component in the preparation of adhesives, sealants, plastic plasters, paper coating slips, fiber webs, paints and coating compositions for organic substrates and for modifying mineral binders.
  • the corresponding polymer powders can be obtained in a simple manner from the novel aqueous polymer dispersions (for example freeze drying or spray drying).
  • These polymer powders obtainable in accordance with the invention can also be used as a component in the production of adhesives, sealants, plastic plasters, paper coating slips, fiber webs, paints and coating compositions for organic substrates and for the modification of mineral binders.
  • feed 1 was initially charged and heated to 87 0 C with stirring. Upon reaching this temperature, 25 g of methyl methacrylate was added and emulsified for half a minute. Subsequently, while maintaining the temperature 2.9 g of feed 3 was added and polymerized for 5 minutes. Thereafter, at the same time beginning feed 1 within 120 minutes and parallel to the remaining amount of feed 3 within 165 minutes with constant flow rates continuously added. After the end of feed 1, feed 2 was metered in continuously within 45 minutes at a constant flow rate.
  • Feed 1 (homogeneous mixture of):
  • Feed 3 (homogeneous solution off): 26.6 g of deionized water and 2.0 g of sodium peroxodisulfate
  • aqueous polymer dispersion was cooled to room temperature, neutralized with 8.4 g of a 25 wt .-% aqueous ammonia solution and filtered through a 125 micron filter.
  • the aqueous polymer dispersion obtained had a solids content of 42.2% by weight.
  • the weight-average particle diameter of the polymer particles was 44 nm; the polydispersity DWSO / DNSO was determined to be 1, 07.
  • the aqueous polymer dispersion diluted to a solids content of 40% by weight with deionized water had a light transmittance of 26%.
  • the solids content was generally determined by drying a defined amount of the aqueous polymer dispersion (about 1 g) in an aluminum crucible with an inner diameter of about 5 cm at 140 ° C. in a drying oven to constant weight. Two separate measurements were made. The values given in the examples represent the mean value of the respective two measurement results.
  • weight-average particle diameter and the polydispersity were generally carried out by the method of analytical ultracentrifuge (see, for this purpose, SE Harding et al., Analytical Ultracentrifugation in Biochemistry and Polymer Science, Royal Society of Chemistry, Cambridge, Great Britain 1992, Chapter 10, Analysis of Polymer Dispersions with Eight-Cell AUC Multiplexers: High Resolution Particle Size Distribution and Density Gradient Techniques, W. Gurchtle, pages 147-175).
  • the light transmission was generally determined by means of a sample of the aqueous polymer dispersion diluted to a polymer solids content of 40% by weight with deionized water using a spectrophotometer DR / 2010 from Hach, Germany.
  • the amount of water in the receiver was 287.0 g instead of 307.0 g
  • the amount of water in feed 1 was 599.4 g instead of 578.4 g
  • the amount of methyl methacrylate in feed 1 209.2 g instead of 184.2 g and 46 g of the thus obtained feed 1 instead of 25 g of pure methyl methacrylate were submitted.
  • the aqueous polymer dispersion obtained had a solids content of 42.3% by weight.
  • the weight-average particle diameter of the polymer particles was 42 nm; the polydispersity DWSO / DNSO was found to be 1, 1 1.
  • the aqueous polymer dispersion diluted with deionized water had a light transmittance of
  • Example 2 The preparation of Example 2 was carried out analogously to Example 1 with the difference that
  • Feed 1 (homogeneous mixture of): 736.3 g of deionized water 46.0 g of a 15% strength by weight aqueous solution of sodium lauryl sulfate
  • the aqueous polymer dispersion obtained had a solids content of 45.2% by weight.
  • the weight-average particle diameter of the polymer particles was 57 nm; the polydispersity DWSO / DNSO was determined to be 1, 09.
  • the aqueous polymer dispersion diluted with deionized water had a light transmittance of 12%.
  • Comparative Example 2 The preparation of Comparative Example 2 was carried out analogously to Example 2 with the difference that 42.5 g of feed 1 were charged instead of 25 g of methyl methacrylate and in feed 1 496.2 g of methyl methacrylate were used instead of 471, 2 g.
  • the aqueous polymer dispersion obtained had a solids content of 45.2% by weight.
  • the weight-average particle diameter of the polymer particles was 62 nm; the polydispersity DWSO / DNSO was found to be 1.20.
  • the aqueous polymer dispersion diluted with deionized water had a light transmittance of only 2%.
  • Feed 1 (homogeneous mixture of):
  • aqueous polymer dispersion was cooled to room temperature, neutralized with 9.5 g of a 25 wt .-% aqueous ammonia solution and filtered through a 125 micron filter.
  • the aqueous polymer dispersion obtained had a solids content of 43.1% by weight.
  • the weight-average particle diameter of the polymer particles was 44 nm; the polydispersity DWSO / DNSO was determined to be 1, 08.
  • the aqueous polymer dispersion diluted with deionized water had a light transmittance of 33%.
  • Comparative Example 3 The preparation of Comparative Example 3 was carried out analogously to the preparation of Example 3 with the difference that the amount of water in the original 570.6 g instead of 593.0 g, the amount of water in feed 1,646.2 g instead of 623th ,8th. g, the amount of n-butyl acrylate in feed 1 696.0 g instead of 661, 0 g and 57.5 g of the thus obtained feed 1 instead of 35 g of pure n-butyl acrylate were submitted.
  • the aqueous polymer dispersion obtained had a solids content of 42.6% by weight.
  • the weight-average particle diameter of the polymer particles was 45 nm; the polydispersity DWSO / DNSO was found to be 1, 12.
  • the aqueous polymer dispersion diluted with deionized water had a light transmittance of 15%.
  • aqueous polymer dispersions were diluted with deionized water to a solids content of 37.5 wt .-%. 163 g each of these dilute aqueous polymer dispersions were at room temperature as a binder to a Rohstreichlasurformultechnik consisting of
  • Luconyl ® Yellow liquid pigment from. BASF AG
  • Texanol ® solvent of the company. Eastman Germany
  • the resulting coating stains were uniformly uniformly applied to a surface of untreated 15 cm ⁇ 7 cm pinewood boards (thickness: 0.5 cm) at room temperature using a mounting device with a 300 ⁇ m gap width, which had previously been ground.
  • the glazed boards thus obtained were then dried in a climate chamber at 23 0 C and 50% relative humidity for 24 hours.
  • the coating stains applied to the wooden surfaces were assessed visually for color depth and color brilliance in the wet and dried state. The evaluation was based on the school grading system, where 1 is very good, 2 is good, 3 is satisfactory, 4 is sufficient and 5 is insufficient.
  • the results obtained in the individual assessments are listed in the following table:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polymerisation Methods In General (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Verfahren zur Herstellung feinteiliger wässriger Polymerisatdispersionen mit enger Teilchengrößenverteilung.

Description

Verfahren zur Herstellung einer wässrigen Polymerisatdispersion
Beschreibung
Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung einer wässrigen Polymerisatdispersion durch radikalisch initiierte wässrige Emulsionspolymerisation von ethylenisch ungesättigten Monomeren in Anwesenheit wenigstens eines Dispergiermittels und wenigstens eines Radikalinitiators, welches dadurch gekennzeichnet ist, dass zur Emulsionspolymerisation
0,1 bis 10 Gew.-% wenigstens eines ethylenisch ungesättigten Monomeren mit einer Löslichkeit >_ 200 g pro 1000 g entionisiertem Wasser bei 20 0C und 1 atm (absolut) [Monomer A], und
90 bis 99,9 Gew.-% wenigstens eines ethylenisch ungesättigten Monomeren mit einer Löslichkeit <_ 100 g pro 1000 g entionisiertem Wasser bei
20 0C und 1 atm (absolut) [Monomer B]
eingesetzt werden und sich die Monomeren A und B zu 100 Gew.-% (Gesamtmonome- renmenge) addieren, wobei in einem wässrigen Polymerisationsmedium zuerst ledig- lieh
0,1 bis 10 Gew.-% der Gesamtmenge des wenigstens einen Monomeren B vorgelegt und polymerisiert werden (Polymerisationsstufe 1 )
und daran anschließend die Gesamtmenge des wenigstens einen Monomeren A sowie die Restmenge des wenigstens einen Monomeren B dem wässrigen Polymerisationsmedium unter Polymerisationsbedingungen zugegeben und polymerisiert werden (Polymerisationsstufe 2).
Gegenstand der vorliegenden Erfindung sind ebenfalls die nach dem erfindungsgemäßen Verfahren zugänglichen wässrigen Polymerisatdispersionen mit enger Teilchengrößenverteilung und die aus diesen wässrigen Polymerisatdispersionen zugänglichen Polymerisatpulvern sowie die Verwendung der wässrigen Polymerisatdispersionen und der Polymerisatpulvern, insbesondere als Bestandteil in transparenten Formulierungen für Holzbeschichtungen.
Wässrige Polymerisatdispersionen sind allgemein bekannt. Es handelt sich dabei um fluide Systeme, die als disperse Phase in wässrigem Dispergiermedium aus mehreren ineinander verschlungenen Polymerisatketten bestehenden Polymerisatknäuel, die sogenannte Polymermatrix oder Polymerisatpartikel, in disperser Verteilung befindlich enthalten. Der mittlere Durchmesser der Polymerisatpartikel liegt häufig im Bereich von 10 bis 1000 nm, insbesondere im Bereich von 50 bis 600 nm. Wässrige Polymerisat- dispersionen werden in einer Vielzahl von technischen Anwendungen als Bindemittel eingesetzt.
Die Durchführung von radikalisch initiierten Emulsionspolymerisationen von ethylenisch ungesättigten Monomeren in einem wässrigen Medium ist vielfach vorbeschrieben und dem Fachmann daher hinreichend bekannt [vgl. hierzu Emulsionspolymerisation in Encyclopedia of Polymer Science and Engineering, Vol. 8, Seiten 659 ff. (1987); D. C. Blackley, in High Polymer Latices, Vol. 1 , Seiten 35 ff. (1966); H. Warson, The Applications of Synthetic Resin Emulsions, Kapitel 5, Seiten 246 ff. (1972); D. Diederich, Chemie in unserer Zeit 24, Seiten 135 bis 142 (1990); Emulsion Polymerisation, Inters- cience Publishers, New York (1965); DE-A 40 03 422 und Dispersionen synthetischer Hochpolymerer, F. Hölscher, Springer-Verlag, Berlin (1969)]. Die radikalisch initiierten wässrigen Emulsionspolymerisationsreaktionen erfolgen üblicherweise dergestalt, dass man die ethylenisch ungesättigten Monomere unter Mitverwendung von Dispergiermit- teln, im wässrigen Medium in Form von Monomerentröpfchen dispers verteilt und mittels eines radikalischen Polymerisationsinitiators polymerisiert.
Soll die Teilchengröße der mittels der radikalisch initiierten wässrigen Emulsionspolymerisation herzustellenden Polymerisatteilchen gezielt eingestellt werden, so wird in der Regel eine sogenannte Polymersaat eingesetzt, welche entweder vorher mit anderen Monomeren separat hergestellt wurde (Polymerfremdsaat) oder welche durch Teilpolymerisation der zu polymerisierenden Monomere „in situ" erzeugt wurden.
Die Herstellung einer wässrigen Polymerisatdispersion unter Verwendung einer in situ- Polymersaat ist dem Fachmann geläufig (siehe beispielsweise DE-A 196 09 509, EP-A 690882, EP-A 710 680, EP-A 1 125 949, EP-A 1 294 816, EP-A 1 614 732, WO-A 03/29300) und erfolgt in der Regel dergestalt, dass vorab der eigentlichen E- mulsionspolymerisation eine kleine Teilmenge des zur Emulsionspolymerisation eingesetzten Monomerengemisches im wässrigen Polymerisationsmedium vorgelegt und in Anwesenheit einer großen Emulgatormenge radikalisch polymerisiert wird.
Die Verwendung einer in situ-Polymersat erweist sich jedoch immer dann hinsichtlich einer engen Teilchengrößenverteilung als nachteilig, wenn das zur Emulsionspolymerisation eingesetzte Monomerengemisch auch gut wasserlösliche Monomere enthält.
Aufgabe der vorliegenden Erfindung war es daher, ein Verfahren zur Herstellung einer wässrigen Polymerisatdispersion mit enger Teilchengrößenverteilung durch radikalisch initiierte wässrige Emulsionspolymerisation unter Verwendung gut wasserlöslicher e- thylenisch ungesättigter Monomerer zur Verfügung zu stellen.
Überraschender Weise wurde die Aufgabe durch das eingangs definierte Verfahren gelöst. Zur Herstellung der wässrigen Polymerisatdispersion wird klares Wasser, bevorzugt Trinkwasser und insbesondere bevorzugt entionisiertes Wasser verwendet, dessen Gesamtmenge so bemessen wird, dass sie 30 bis 90 Gew.-% und vorteilhaft 40 bis 60 Gew.-%, jeweils bezogen auf die wässrige Polymerisatdispersion, beträgt. Wesentlich ist, dass in Polymerisationsstufe 1 wenigstens eine Teilmenge, vorteilhaft > 25 Gew.-% und insbesondere vorteilhaft > 35 Gew.-% der Gesamtmenge an Wasser als Bestandteil des wässrigen Polymerisationsmediums im Polymerisationsgefäß gemeinsam mit den Monomeren B vorgelegt wird. Die gegebenenfalls verbliebene Restmenge an Wasser kann dem Polymerisationsmedium diskontinuierlich in einer oder mehreren Portionen oder kontinuierlich mit gleichbleibenden oder sich ändernden Mengenströmen, insbesondere als Bestandteil einer wässrigen Monomerenemulsion in Polymerisationsstufe 2 zugeführt werden.
Als Monomere A kommen alle diejenigen ethylenisch ungesättigten Monomere in Be- tracht, die bei 20 0C und 1 atm (absolut) eine Löslichkeit > 200 g, bevorzugt > 300 g und insbesondere bevorzugt > 500 g pro 1000 g entionisiertem Wasser aufweisen. Häufig weisen die Monomeren A eine unbegrenzte Löslichkeit mit entionisiertem Wasser auf. Als Monomere A kommen insbesondere solche ethylenisch ungesättigten Monomere in Betracht, welche wenigstens eine Säuregruppe, insbesondere eine Carbon- säure- oder Sulfonsäuregruppe, eine Hydroxyalkylgruppe, eine Amidgruppe, eine Ethy- lenharnstoffgruppe, eine Acetoacetoxygruppe aufweisen. Mit besonderem Vorteil sind die Monomeren A ausgewählt aus der Gruppe umfassend Acrylsäure, Methacrylsäure, 2-Acrylamido-2-methylpropansulfonsäure (AMPS), Vinylsulfonsäure, Acrylamid, Me- thacrylamid, N-(2-Methacryloyloxyethyl)ethylenharnstoff (UMA), N-(2- Acryloyloxyethyl)ethylenharnstoff, 2-Acetoacetoxyethylacrylat, 2-
Acetoacetoxyethylmethacrylat (AAEM), Diacetonacrylamid (DAAM), 2- Hydroxyethylacrylat, Hydroxypropylacrylat, 2-Hydroxyethylmethacrylat und Hydro- xypropylmethacrylat. Insbesondere bevorzugt sind Acrylsäure, Methacrylsäure, Acrylamid und/oder AMPS. Selbstverständlich umfassen die Monomeren A auch die Alka- limetal- oder Ammoniumsalze der vorgenannten Monomeren mit einer Säure-, insbesondere einer Carbon- oder Sulfonsäuregruppe.
Als Monomere B kommen alle diejenigen ethylenisch ungesättigten Monomere in Betracht, die bei 20 0C und 1 atm (absolut) eine Löslichkeit < 100 g, bevorzugt < 60 g und insbesondere bevorzugt < 20 g pro 1000 g entionisiertem Wasser aufweisen.
Als Monomere B kommen insbesondere in einfacher Weise mit den Monomeren A radikalisch copolymerisierbare ethylenisch ungesättigte Verbindungen in Betracht, wie beispielsweise Olefine, wie Ethylen oder Propylen, vinylaromatische Monomere, wie Styrol, α-Methylstyrol, o-Chlorstyrol oder Vinyltoluol, Vinylhalogenide, wie Vinylchlorid oder Vinylidenchlorid, Ester aus Vinylalkohol und 1 bis 18 C-Atome aufweisenden Mo- nocarbonsäuren, wie Vinylacetat, Vinylpropionat, Vinyl-n-butyrat, Vinyllaurat und Vi- nylstearat, Ester aus vorzugsweise 3 bis 6 C-Atome aufweisenden α,ß- monoethylenisch ungesättigten Mono- und Dicarbonsäuren, wie insbesondere Acryl- säure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure, mit im allgemeinen 1 bis 12, vorzugsweise 1 bis 8 und insbesondere 1 bis 4 C-Atome aufweisenden Alka- nolen, wie besonders Acrylsäure- und Methacrylsäuremethyl-, -ethyl-, -n-butyl-, -iso- butyl-, pentyl-, -hexyl-, -heptyl-, -octyl-, -nonyl-, -decyl- und -2-ethylhexylester, Fumar- und Maleinsäuredimethylester oder -di-n-butylester, Nitrile α,ß-monoethylenisch ungesättigter Carbonsäuren, wie Acrylnitril, Methacrylnitril, Fumarsäuredinitril, Maleinsäure- dinitril sowie C4-8-konjugierte Diene, wie 1 ,3-Butadien (Butadien) und Isopren. Die ge- nannten Monomere bilden in der Regel die Hauptmonomeren, die, bezogen auf die
Gesamtmenge an Monomeren B, einen Anteil von >_ 80 Gew.-%, bevorzugt >_ 90 Gew.- % und insbesondere bevorzugt >_ 95 Gew.-% auf sich vereinen oder sogar die Gesamtmenge der Monomeren B bilden.
Monomere B, die üblicherweise die innere Festigkeit der Verfilmungen einer Polymermatrix erhöhen, weisen normalerweise wenigstens eine Epoxygruppe oder wenigstens zwei nicht konjugierte ethylenisch ungesättigte Doppelbindungen auf. Beispiele hierfür sind zwei Vinylreste aufweisende Monomere, zwei Vinylidenreste aufweisende Monomere sowie zwei Alkenylreste aufweisende Monomere. Besonders vorteilhaft sind da- bei die Di-Ester zweiwertiger Alkohole mit α,ß-monoethylenisch ungesättigten Mono- carbonsäuren unter denen die Acryl- und Methacrylsäure bevorzugt sind. Beispiele für derartige zwei nicht konjugierte ethylenisch ungesättigte Doppelbindungen aufweisende Monomere sind Alkylenglykoldiacrylate und -dimethacrylate, wie Ethylenglykoldiac- rylat, 1 ,2-Propylenglykoldiacrylat, 1 ,3-Propylenglykoldiacrylat, 1 ,3- Butylenglykoldiacrylat, 1 ,4-Butylenglykoldiacrylate und Ethylenglykoldimethacrylat, 1 ,2- Propylenglykoldimethacrylat, 1 ,3-Propylenglykoldimethacrylat, 1 ,3- Butylenglykoldimethacrylat, 1 ,4-Butylenglykoldimethacrylat sowie Divinylbenzol, Vinyl- methacrylat, Vinylacrylat, Allylmethacrylat, Allylacrylat, Diallylmaleat, Diallylfumarat, Cyclopentadienylacrylat, Triallylcyanurat oder Triallylisocyanurat. Häufig werden die vorgenannten vernetzenden Monomeren B in Mengen von < 10 zu Gew.-%, bevorzugt jedoch in Mengen von <_ 5 Gew.-%, jeweils bezogen auf die Gesamtmenge an Monomeren B, eingesetzt. Häufig werden jedoch keinerlei derartige vernetzende Monomeren B eingesetzt.
Vorteilhaft werden im erfindungsgemäßen Verfahren als Monomere B solche Monome- renmischungen eingesetzt, welche zu
50 bis 100 Gew.-% Ester der Acryl- und/oder Methacrylsäure mit 1 bis 12 C-Atome aufweisenden Alkanolen und/oder Styrol, oder 50 bis 100 Gew.-% Styrol und Butadien, oder
50 bis 100 Gew.-% Vinylchlorid und/oder Vinylidenchlorid, oder
40 bis 100 Gew.-% Vinylacetat, Vinylpropionat und/oder
Ethylen
enthalten.
Mit besonderem Vorteil sind die Monomeren B ausgewählt aus der Gruppe umfassend Methylacrylat, Ethylacrylat, n-Butylacrylat, tert.-Butylacrylat, 2-Ethylhexylacrylat, 2- Propylheptylacrylat, Methylmethacrylat, Ethylmethacrylat, n-Butylmethacrylat, tert- Butylmethacrylat, 2-Ethylhexylmethacrylat, 2-Propylheptylmethacrylat, Styrol, Vinylto- luol, 2-Methylstyrol, 4-Methylstyrol, 2-n-Butylstyrol, 4-n-Butylstyrol, 4-n-Decylstyrol, Vinylacetat, Vinylpropionat, Acrylnitril und Methacrylnitril.
Im erfindungsgemäßen Verfahren werden 0,1 bis 10 Gew.-%, vorteilhaft 1 bis 8 Gew.- % und insbesondere vorteilhaft 2 bis 6 Gew.-% wenigstens eines Monomeren A und dementsprechend 90 bis 99,9 Gew.-%, vorteilhaft 92 bis 99 Gew.-% und insbesondere vorteilhaft 94 bis 98 Gew.-% wenigstens eines Monomeren B eingesetzt.
Erfindungsgemäß werden im Rahmen des vorliegenden Verfahrens Dispergiermittel mitverwendet, die sowohl die Monomerentröpfchen, wie auch die gebildeten Polymeri- satteilchen im wässrigen Medium dispers verteilt halten und so die Stabilität der erzeugten wässrigen Polymerisatdispersion gewährleisten. Als Dispergiermittel kommen sowohl die zur Durchführung von radikalischen wässrigen Emulsionspolymerisationen üblicherweise eingesetzten Schutzkolloide als auch Emulgatoren in Betracht.
Geeignete Schutzkolloide sind beispielsweise Polyvinylalkohole, Polyalkylenglykole, Alkalimetallsalze von Polyacrylsäuren und Polymethacrylsäuren, Gelatinederivate oder Acrylsäure, Methacrylsäure, Maleinsäureanhydrid, 2-Acrylamido-2- methylpropansulfonsäure und/oder 4-Styrolsulfonsäure enthaltende Copolymerisate und deren Alkalimetallsalze aber auch N-Vinylpyrrolidon, N-Vinylcaprolactam, N- Vinylcarbazol, 1-Vinylimidazol, 2-Vinylimidazol, 2-Vinylpyridin, 4-Vinylpyridin, Acryla- mid, Methacrylamid, amingruppentragende Acrylate, Methacrylate, Acrylamide und/oder Methacrylamide enthaltende Homo- und Copolymerisate. Eine ausführliche Beschreibung weiterer geeigneter Schutzkolloide findet sich in Houben-Weyl, Methoden der organischen Chemie, Band XIV/1 , Makromolekulare Stoffe, Georg-Thieme- Verlag, Stuttgart, 1961 , Seiten 411 bis 420. Selbstverständlich können auch Gemische aus Schutzkolloiden und/oder Emulgatoren eingesetzt werden. Häufig werden als Dispergiermittel ausschließlich Emulgatoren eingesetzt, deren relative Molekulargewichte im Unterschied zu den Schutzkolloiden üblicherweise unter 1000 liegen. Sie können sowohl anionischer, kationischer oder nicht- ionischer Natur sein. Selbstverständlich müssen im Falle der Verwendung von Gemischen grenzflächenaktiver Substanzen die Einzelkomponenten miteinander verträglich sein, was im Zweifelsfall an Hand weniger Vorversuche überprüft werden kann. Im allgemeinen sind anionische Emulgatoren untereinander und mit nichtionischen Emulgatoren verträglich. Desgleichen gilt auch für kationische Emulgatoren, während anioni- sehe und kationische Emulgatoren meistens nicht miteinander verträglich sind. Eine Übersicht geeigneter Emulgatoren findet sich in Houben-Weyl, Methoden der organischen Chemie, Band XIV/1 , Makromolekulare Stoffe, Georg-Thieme-Verlag, Stuttgart, 1961 , Seiten 192 bis 208.
Erfindungsgemäß werden als Dispergiermittel jedoch insbesondere Emulgatoren eingesetzt.
Gebräuchliche nichtionische Emulgatoren sind z.B. ethoxylierte Mono-, Di- und Tri- Alkylphenole (EO-Grad: 3 bis 50, Alkylrest: C4 bis C12) sowie ethoxylierte Fettalkohole (EO-Grad: 3 bis 80; Alkylrest: C8 bis C3e). Beispiele hierfür sind die Lutensol® A-Marken (Ci2Ci4-Fettalkoholethoxylate, EO-Grad: 3 bis 8), Lutensol® AO-Marken (C13C15- Oxoalkoholethoxylate, EO-Grad: 3 bis 30), Lutensol® AT-Marken (Ci6Ci8- Fettalkoholethoxylate, EO-Grad: 1 1 bis 80), Lutensol® ON-Marken (C10- Oxoalkoholethoxylate, EO-Grad: 3 bis 11 ) und die Lutensol® TO-Marken (C13- Oxoalkoholethoxylate, EO-Grad: 3 bis 20) der Fa. BASF AG.
Übliche anionische Emulgatoren sind z. B. Alkalimetall- und Ammoniumsalze von Al- kylsulfaten (Alkylrest: C8 bis C12), von Schwefelsäurehalbestern ethoxylierter Alkanole (EO-Grad: 4 bis 30, Alkylrest: C12 bis Ci8) und ethoxylierter Alkylphenole (EO-Grad: 3 bis 50, Alkylrest: C4 bis C12), von Alkylsulfonsäuren (Alkylrest: C12 bis Ci8) und von Al- kylarylsulfonsäuren (Alkylrest: Cg bis Ci8).
Als weitere anionische Emulgatoren haben sich ferner Verbindungen der allgemeinen Formel (I)
Figure imgf000007_0001
worin R1 und R2 H-Atome oder C4- bis C24-Alkyl bedeuten und nicht gleichzeitig H- Atome sind, und M1 und M2 Alkalimetallionen und/oder Ammoniumionen sein können, als geeignet erwiesen. In der allgemeinen Formel (I) bedeuten R1 und R2 bevorzugt lineare oder verzweigte Alkylreste mit 6 bis 18 C-Atomen, insbesondere mit 6, 12 und 16 C-Atomen oder Wasserstoff, wobei R1 und R2 nicht beide gleichzeitig H-Atome sind. M1 und M2 sind bevorzugt Natrium, Kalium oder Ammonium, wobei Natrium besonders bevorzugt ist. Besonders vorteilhaft sind Verbindungen (I), in denen M1 und M2 Natrium, R1 ein verzweigter Alkylrest mit 12 C-Atomen und R2 ein H-Atom oder R1 ist. Häufig werden technische Gemische verwendet, die einen Anteil von 50 bis 90 Gew.-% des monoalkylierten Produktes aufweisen, wie beispielsweise Dowfax® 2A1 (Marke der Dow Chemical Company). Die Verbindungen (I) sind allgemein bekannt, z. B. aus US-A 4269749, und im Handel erhältlich.
Geeignete kationenaktive Emulgatoren sind in der Regel einen Ce- bis Cis-Alkyl-, - Alkylaryl- oder heterocyclischen Rest aufweisende primäre, sekundäre, tertiäre oder quartäre Ammoniumsalze, Alkanolammoniumsalze, Pyridiniumsalze, Imidazoliniumsal- ze, Oxazoliniumsalze, Morpholiniumsalze, Thiazoliniumsalze sowie Salze von Amin- oxiden, Chinoliniumsalze, Isochinoliniumsalze, Tropyliumsalze, Sulfoniumsalze und Phosphoniumsalze. Beispielhaft genannt seien Dodecylammoniumacetat oder das entsprechende Sulfat, die Sulfate oder Acetate der verschiedenen 2-(N, N, N- Trimethylammonium)ethylparaffinsäureester, N-Cetylpyridiniumsulfat, N- Laurylpyridiniumsulfat sowie N-Cetyl-N,N,N-trimethylammoniumsulfat, N-Dodecyl- N,N,N-trimethylammoniumsulfat, N-Octyl-N,N,N-trimethlyammoniumsulfat, N, N- Distearyl-N,N-dimethylammoniumsulfat sowie das Gemini-Tensid N, N'- (Lauryldimethyl)ethylendiamindisulfat, ethoxyliertes Talgfettalkyl-N- methylammoniumsulfat und ethoxyliertes Oleylamin (beispielsweise Uniperol® AC der Fa. BASF AG, ca. 12 Ethylenoxideinheiten). Zahlreiche weitere Beispiele finden sich in H. Stäche, Tensid-Taschenbuch, Carl-Hanser-Verlag, München, Wien, 1981 und in McCutcheon's, Emulsifiers & Detergents, MC Publishing Company, Glen Rock, 1989. Günstig ist, wenn die anionischen Gegengruppen möglichst gering nucleophil sind, wie beispielsweise Perchlorat, Sulfat, Phosphat, Nitrat und Carboxylate, wie beispielsweise Acetat, Trifluoracetat, Trichloracetat, Propionat, Oxalat, Citrat, Benzoat, sowie konjugierte Anionen von Organosulfonsäuren, wie zum Beispiel Methylsulfonat, Trifluor- methylsulfonat und para-Toluolsulfonat, weiterhin Tetrafluoroborat, Tetraphenylborat, Tetrakis(pentafluorophenyl)borat, Tetrakis[bis(3,5-trifluormethyl)phenyl]borat, Hexafluo- rophosphat, Hexafluoroarsenat oder Hexafluoroantimonat.
Die als Dispergiermittel bevorzugt eingesetzten Emulgatoren werden vorteilhaft in einer Gesamtmenge > 0,1 und < 10 Gew.-%, vorzugsweise > 0,1 und < 5 Gew.-%, insbe- sondere > 0,5 und < 4 Gew.-%, jeweils bezogen auf die Gesamtmonomerenmenge, eingesetzt. Die Gesamtmenge der als Dispergiermittel zusätzlich oder statt der Emulgatoren eingesetzten Schutzkolloide beträgt oft > 0,1 und < 10 Gew.-% und häufig > 0,2 und < 7 Gew.-%, jeweils bezogen auf die Gesamtmonomerenmenge.
Bevorzugt werden jedoch anionische und/oder nichtionische Emulgatoren und insbesondere bevorzugt anionische Emulgatoren als Dispergiermittel eingesetzt.
Erfindungsgemäß wird wenigstens eine Teilmenge der Dispergiermittel im wässrigen Polymerisationsmedium gemeinsam mit der Teilmenge der Monomeren B in Polymeri- sationsstufe 1 vorgelegt und die gegebenenfalls verbliebene Restmenge dem wässrigen Polymerisationsmedium in Polymerisationsstufe 2 diskontinuierlich in einer oder mehreren Portionen oder kontinuierlich mit gleichbleibenden oder sich ändernden Mengenströmen, insbesondere als Bestandteil einer wässrigen Monomerenemulsion, enthaltend die Gesamtmenge der Monomeren A und die Restmengen der Monomeren B, zudosiert. Dabei wird in Polymerisationsstufe 1 die Menge an Dispergiermittel, insbesondere der Emulgatoren so gewählt, dass sie > 2 mmol, bevorzugt > 5 mmol und insbesondere bevorzugt > 10 mmol pro 10 g Monomere B beträgt.
Die Auslösung der radikalisch initiierten wässrigen Emulsionspolymerisation erfolgt mittels eines radikalischen Polymerisationsinitiators (Radikalinitiator). Es kann sich dabei prinzipiell sowohl um Peroxide als auch um Azoverbindungen handeln. Selbstverständlich kommen auch Redoxinitiatorsysteme in Betracht. Als Peroxide können prinzipiell anorganische Peroxide, wie Wasserstoffperoxid oder Peroxodisulfate, wie die Mono- oder Di-Alkalimetall- oder Ammoniumsalze der Peroxodischwefelsäure, wie beispielsweise deren Mono- und Di-Natrium-, -Kalium- oder Ammoniumsalze oder organische Peroxide, wie Alkylhydroperoxide, beispielsweise tert.-Butyl-, p-Mentyl- oder Cumylhydroperoxid, sowie Dialkyl- oder Diarylperoxide, wie Di-tert.-Butyl- oder Di- Cumylperoxid eingesetzt werden. Als Azoverbindung finden im wesentlichen 2,2 - Azobis(isobutyronitril), 2,2'-Azobis(2,4-dimethylvaleronitril) und 2,2 - Azobis(amidinopropyl)dihydrochlorid (AIBA, entspricht V-50 von Wako Chemicals) Verwendung. Als Oxidationsmittel für Redoxinitiatorsysteme kommen im wesentlichen die oben genannten Peroxide in Betracht. Als entsprechende Reduktionsmittel können Schwefelverbindungen mit niedriger Oxidationsstufe, wie Alkalisulfite, beispielsweise Kalium- und/oder Natriumsulfit, Alkalihydrogensulfite, beispielsweise Kalium- und/oder Natriumhydrogensulfit, Alkalimetabisulfite, beispielsweise Kalium- und/oder Natriummetabisulfit, Formaldehydsulfoxylate, beispielsweise Kalium- und/oder Natriumformaldehyd su If oxylat, Alkalisalze, speziell Kalium- und/oder Natriumsalze aliphatische SuI- finsäuren und Alkalimetallhydrogensulfide, wie beispielsweise Kalium- und/oder Natrium hyd rogensulf id , Salze mehrwertiger Metalle, wie Eisen-(ll)-sulfat, Eisen-(ll)- Ammoniumsulfat, Eisen-(ll)-phosphat, Endiole, wie Dihydroxymaleinsäure, Benzoin und/oder Ascorbinsäure sowie reduzierende Saccharide, wie Sorbose, Glucose, Fruc- tose und/oder Dihydroxyaceton eingesetzt werden. In der Regel beträgt die Menge des eingesetzten Radikalinitiators, bezogen auf die Gesamtmonomerenmenge, 0,01 bis 5 Gew.-%, bevorzugt 0,1 bis 3 Gew.-% und insbesondere bevorzugt 0,2 bis 1 ,5 Gew.-%. Erfindungsgemäß kann die Gesamtmenge des Radikalinitiators im wässrigen Polymerisationsmedium vor Initiierung der Polymerisationsreaktion in Polymerisationsstufe 1 vorgelegt werden. Es ist aber auch möglich, gegebenenfalls lediglich eine Teilmenge des Radikalinitiators im wässrigen Polymerisationsmedium vor Initiierung der Polymerisationsreaktion in Polymerisationsstufe 1 vorzulegen und dann unter Polymerisationsbedingungen während der erfindungsgemäßen radikalischen Emulsionspolymerisation in Polymerisationsstufe 1 und Polymerisationsstufe 2 die Gesamtmenge bzw. die ge- gebenenfalls verbliebene Restmenge nach Maßgabe des Verbrauchs diskontinuierlich in einer oder mehreren Portionen oder kontinuierlich mit gleichbleibenden oder sich ändernden Mengenströmen zuzugeben.
Unter Initiierung der Polymerisationsreaktion wird der Start der Polymerisationsreaktion der im wässrigen Polymerisationsmedium vorliegenden Monomeren nach Radikalbildung des Radikalinitiators verstanden. Dabei kann die Initiierung der Polymerisationsreaktion durch Zugabe von Radikalinitiator zum wässrigen Polymerisationsmedium im Polymerisationsgefäß unter Polymerisationsbedingungen erfolgen. Es ist aber auch möglich, dass eine Teil- oder die Gesamtmenge des Radikalinitiators dem die vorge- legten Monomeren B enthaltenden wässrigen Polymerisationsmedium im Polymerisationsgefäß in Polymerisationsstufe 1 unter Bedingungen, welche nicht geeignet sind eine Polymerisationsreaktion auszulösen, beispielsweise bei tiefer Temperatur, zugegeben werden und danach im wässrigen Polymerisationsmedium Polymerisationsbedingungen eingestellt werden. Unter Polymerisationsbedingungen sind dabei generell diejenigen Temperaturen und Drücke zu verstehen, unter denen die radikalisch initiierte wässrige Emulsionspolymerisation mit ausreichender Polymerisationsgeschwindigkeit verläuft. Sie sind insbesondere abhängig vom verwendeten Radikalinitiator. Vorteilhaft werden Art und Menge des Radikalinitiators, Polymerisationstemperatur und Polymerisationsdruck so ausgewählt, dass immer genügend Startradikale zur Verfü- gung stehen, um die Polymerisationsreaktion zu initiieren bzw. aufrechtzuerhalten.
Als Reaktionstemperatur für die erfindungsgemäße radikalische wässrige Emulsionspolymerisation kommt der gesamte Bereich von 0 bis 170 0C in Betracht. Dabei werden in der Regel Temperaturen von 50 bis 120 0C, häufig 60 bis 1 10 0C und oft 70 bis 100 0C angewendet. Die erfindungsgemäße radikalische wässrige Emulsionspolymerisation kann bei einem Druck kleiner, gleich oder größer 1 atm (Atmosphärendruck) durchgeführt werden, so dass die Polymerisationstemperatur 100 0C übersteigen und bis zu 170 0C betragen kann. Vorzugsweise werden leichtflüchtige Monomere, wie beispielsweise Ethylen, Butadien oder Vinylchlorid unter erhöhtem Druck polymerisiert. Dabei kann der Druck 1 ,2, 1 ,5, 2, 5, 10, 15 bar (absolut) oder noch höhere Werte einnehmen. Werden Emulsionspolymerisationen im Unterdruck durchgeführt, werden Drücke von 950 mbar, häufig von 900 mbar und oft 850 mbar (absolut) eingestellt. Vorteilhaft wird die erfindungsgemäße radikalische wässrige Emuslionspolymerisation bei 1 atm unter Sauerstoffausschluß, beispielsweise unter Inertgasatmosphäre, wie beispielsweise unter Stickstoff oder Argon durchgeführt.
Das wässrige Reaktionsmedium kann prinzipiell auch in untergeordneten Mengen (< 5 Gew.-%) wasserlösliche organische Lösungsmittel, wie beispielsweise Methanol, Etha- nol, Isopropanol, Butanole, Pentanole, aber auch Aceton etc. umfassen. Bevorzugt wird das erfindungsgemäße Verfahren jedoch in Abwesenheit solcher Lösungsmittel durchgeführt.
Neben den vorgenannten Komponenten können im erfindungsgemäßen Verfahren optional auch radikalkettenübertragende Verbindungen eingesetzt werden, um das Molekulargewicht der durch die Polymerisation zugänglichen Polymerisate zu reduzieren bzw. zu kontrollieren. Dabei kommen im wesentlichen aliphatische und/oder ara- liphatische Halogenverbindungen, wie beispielsweise n-Butylchlorid, n-Butylbromid, n- Butyljodid, Methylenchlorid, Ethylendichlorid, Chloroform, Bromoform, Bromtrichlor- methan, Dibromdichlormethan, Tetrachlorkohlenstoff, Tetrabromkohlenstoff, Benzylch- lorid, Benzylbromid, organische Thioverbindungen, wie primäre, sekundäre oder tertiäre aliphatische Thiole, wie beispielsweise Ethanthiol, n-Propanthiol, 2-Propanthiol, n- Butanthiol, 2-Butanthiol, 2-Methyl-2-propanthiol, n-Pentanthiol, 2-Pentanthiol, 3-
Pentanthiol, 2-Methyl-2-butanthiol, 3-Methyl-2-butanthiol, n-Hexanthiol, 2-Hexanthiol, 3-Hexanthiol, 2-Methyl-2-pentanthiol, 3-Methyl-2-pentanthiol, 4-Methyl-2-pentanthiol, 2- Methyl-3-pentanthiol, 3-Methyl-3-pentanthiol, 2-Ethylbutanthiol, 2-Ethyl-2-butanthiol, n- Heptanthiol und seine isomeren Verbindungen, n-Octanthiol und seine isomeren Ver- bindungen, n-Nonanthiol und seine isomeren Verbindungen, n-Decanthiol und seine isomeren Verbindungen, n-Undecanthiol und seine isomeren Verbindungen, n- Dodecanthiol und seine isomeren Verbindungen, n-Tridecanthiol und seine isomeren Verbindungen, substituierte Thiole, wie beispielsweise 2-Hydroxyethanthiol, aromatische Thiole, wie Benzolthiol, ortho-, meta-, oder para-Methylbenzolthiol, sowie alle weiteren im Polymerhandbook 3rd edtition, 1989, J. Brandrup und E.H. Immergut, John Wiley & Sons, Abschnitt II, Seiten 133 bis 141 , beschriebenen Schwefelverbindungen, aber auch aliphatische und/oder aromatische Aldehyde, wie Acetaldeyhd, Propional- dehyd und/oder Benzaldehyd, ungesättigte Fettsäuren, wie Ölsäure, Diene mit nicht konjugierten Doppelbindungen, wie Divinylmethan oder Vinylcyclohexan oder Kohlen- Wasserstoffe mit leicht abstrahierbaren Wasserstoffatomen, wie beispielsweise Toluol, zum Einsatz. Es ist aber auch möglich, Gemische sich nicht störender vorgenannter radikalkettenübertragender Verbindungen einzusetzen.
Die im erfindungsgemäßen Verfahren optional eingesetzte Gesamtmenge der radikal- kettenübertragenden Verbindungen, bezogen auf die Gesamtmonomerenmenge, ist in der Regel < 5 Gew.-%, oft < 3 Gew.-% und häufig < 1 Gew.-%. Häufig ist es günstig, wenn eine Teil- oder die Gesamtmenge der optional eingesetzten radikalkettenübertragenden Verbindung dem wässrigen Polymerisationsmedium vor der Initiierung der radikalischen Emulsionspolymerisation in Polymerisationsstufe 1 zugeführt wird. Insbesondere günstig ist es jedoch, wenn eine Teil- oder die Gesamt- menge der optional eingesetzten radikalkettenübertragenden Verbindung dem wässrigen Polymerisationsmedium gemeinsam mit den Monomeren A und Monomeren B in der Polymerisationsstufe 2 zugeführt wird.
Erfindungswesentlich ist, dass im wässrigen Polymerisationsmedium in Polymerisati- onsstufe 1 zuerst lediglich 0,1 bis 10 Gew.-%, vorteilhaft > 1 und < 8 Gew.-% und insbesondere vorteilhaft > 2 und < 6 Gew.-% der Gesamtmenge des wenigstens einen Monomeren B vorgelegt und polymerisiert werden und daran anschließend in Polymerisationsstufe 2 die Gesamtmenge des wenigstens einen Monomeren A sowie die Restmenge des wenigstens einen Monomeren B dem wässrigen Polymerisationsmedi- um unter Polymerisationsbedingungen zugegeben und polymerisiert werden.
Dabei kann die Dosierung der Gesamtmenge der Monomeren A und der Restmenge der Monomeren B in Polymerisationsstufe 2 diskontinuierlich in einer oder mehreren Portionen oder kontinuierlich mit gleichbleibenden oder sich ändernden Mengenströ- men erfolgen. Bevorzugt erfolgt die Dosierung der Monomeren A und B kontinuierlich mit gleichbleibenden Mengenströmen. Auch kann die Gesamtmenge der Monomeren A und die Restmenge der Monomeren B in separaten Einzelströmen oder als Monome- rengemisch dosiert werden. Bevorzugt erfolgt die Dosierung der Gesamtmenge der Monomeren A und der Restmenge der Monomeren B als Monomerengemisch, insbe- sondere vorteilhaft in Form einer wässrigen Monomerenemulsion. Wesentlich ist, dass erfindungsgemäß auch Verfahrensvarianten umfasst sein sollen, bei denen sich in Polymerisationsstufe 2 die Zusammensetzungen der jeweiligen Monomeren A und/oder Monomeren B ändern, beispielsweise in einer dem Fachmann geläufigen Gradientenoder Stufenfahrweise. Mit Vorteil erfolgt die Zugabe der Monomeren A und/oder der Monomeren B in Polymerisationsstufe 2 häufig nach der Gradienten- oder der Stufenfahrweise und insbesondere vorteilhaft nach der Stufenfahrweise.
Mit besonderem Vorteil erfolgt das erfindungsgemäße Verfahren dergestalt, dass die Monomeren B in Polymerisationsstufe 1 bzw. die Monomeren A und B in Polymerisati- onsstufe 2 bis zu einem Umsatz von > 95 Gew.-%, vorteilhaft > 98 Gew.-% und insbesondere vorteilhaft > 99 Gew.-% umgesetzt werden. Häufig ist es vorteilhaft, wenn die nach Abschluss der Polymerisationsstufe 2 erhaltene wässrige Polymerisatdispersion einer Nachbehandlung zur Reduzierung des Restmonomerengehalts unterzogen wird. Dabei erfolgt die Nachbehandlung entweder chemisch, beispielsweise durch Vervoll- ständigung der Polymerisationsreaktion durch Einsatz eines effektiveren Radikalinitiatorensystems (sogenannte Nachpolymerisation) und/oder physikalisch, beispielsweise durch Strippung der wässrigen Polymerisatdispersion mit Wasserdampf oder Inertgas. Entsprechende chemische und/oder physikalische Methoden sind dem Fachmann geläufig [siehe beispielsweise EP-A 771 328, DE-A 196 24 299, DE-A 196 21 027, DE-A 197 41 184, DE-A 197 41 187, DE-A 198 05 122, DE-A 198 28 183, DE-A 198 39 199, DE-A 198 40 586 und 198 47 1 15]. Dabei bietet die Kombination aus chemischer und physikalischer Nachbehandlung den Vorteil, dass neben den nicht umgesetzten ethylenisch ungesättigten Monomeren, auch noch andere störende leichtflüchtige organischen Bestandteile (die sogenannten VOCs [volatile organic Compounds]) aus der wässrigen Polymerisatdispersion entfernt werden.
Durch gezielte Variation von Art und Menge der Monomeren A und B ist es dem
Fachmann erfindungsgemäß möglich, wässrige Polymerisatdispersionen herzustellen, deren Polymerisate eine Glasübergangstemperatur bzw. einen Schmelzpunkt im Bereich von -60 bis 270 0C aufweisen. Selbstverständlich können auch Stufen- oder Mehrphasenpolymerisate mit mehreren Glasübergangstemperaturen hergestellt wer- den. Abhängig vom geplanten Einsatzzweck der wässrigen Polymerisatdispersionen werden Polymerisate hergestellt, welche wenigstens eine Polymerphase aufweisen, deren Glasübergangstemperatur > -60 und < 10 0C (Klebstoffe), > 10 und < 100 0C (Bindemittel für Beschichtungsformulierungen) oder > 80 0C (harte Lackfilme) beträgt.
Mit der Glasübergangstemperatur T9, ist der Grenzwert der Glasübergangstemperatur gemeint, dem diese gemäß G. Kanig (Kolloid-Zeitschrift & Zeitschrift für Polymere, Bd. 190, S. 1 , Gleichung 1 ) mit zunehmendem Molekulargewicht zustrebt. Die Glasübergangstemperatur bzw. der Schmelzpunkt wird nach dem DSC-Verfahren ermittelt (Differential Scanning Calorimetry, 20 K/min, midpoint-Messung, DIN 53765).
Nach Fox (T.G. Fox, Bull. Am. Phys. Soc. 1956 [Ser. II] 1 , Seite 123 und gemäß LJII- mann's Encyclopädie der technischen Chemie, Bd. 19, Seite 18, 4. Auflage, Verlag Chemie, Weinheim, 1980) gilt für die Glasübergangstemperatur von höchstens schwach vernetzten Mischpolymerisaten in guter Näherung:
1 /Tg = XVTg1 + X2/Tg2 + .... X"/V,
wobei x1, x2, .... xn die Massenbrüche der Monomeren 1 , 2, .... n und T9 1, T9 2, .... T9" die Glasübergangstemperaturen der jeweils nur aus einem der Monomeren 1 , 2, .... n auf- gebauten Polymerisaten in Grad Kelvin bedeuten. Die T9-Werte für die Homopolymeri- sate der meisten Monomeren sind bekannt und z.B. in Ullmann's Ecyclopedia of Indus- trial Chemistry, Bd. 5, Vol. A21 , Seite 169, VCH Weinheim, 1992, aufgeführt; weitere Quellen für Glasübergangstemperaturen von Homopolymerisaten bilden z.B. J. Brandrup, E.H. Immergut, Polymer Handbook, 1st Ed., J. Wiley, New York 1966, 2nd Ed. J.Wiley, New York 1975, und 3rd Ed. J. Wiley, New York 1989). Die erfindungsgemäß erhaltenen wässrigen Polymerisatdispersionen weisen üblicherweise Polymerfeststoffgehalte von > 10 und < 70 Gew.-%, häufig > 20 und < 65 Gew.- % und oft > 40 und < 60 Gew.-%, jeweils bezogen auf die wässrige Polymerzusammensetzung, auf.
Die nach dem erfindungsgemäßen Verfahren zugänglichen wässrigen Polymerisatdispersionen weisen Polymerisatteilchen auf, die eine enge Teilchengrößenverteilung und gewichtsmittlere Durchmesser Dw im Bereich > 10 und < 500 nm, bevorzugt > 20 und <_ 200 nm und insbesondere bevorzugt >_ 30 nm bis 5 100 nm aufweisen. Die Be- Stimmung der gewichtsmittleren Teilchendurchmesser ist dem Fachmann bekannt und erfolgt beispielsweise über die Methode der Analytischen Ultrazentrifuge. Unter gewichtsmittlerem Teilchendurchmesser wird in dieser Schrift der nach der Methode der Analytischen Ultrazentrifuge ermittelte gewichtsmittlere DW5o-Wert verstanden (vgl. hierzu S.E. Harding et al., Analytical Ultracentrifugation in Biochemistry and Polymer Science, Royal Society of Chemistry, Cambridge, Great Britain 1992, Chapter 10, Ana- lysis of Polymer Dispersions with an Eight-Cell-AUC-Multiplexer: High Resolution Par- ticle Size Distribution and Density Gradient Techniques, W. Mächtle, Seiten 147 bis 175).
Unter enger Teilchengrößenverteilung soll im Rahmen dieser Schrift verstanden werden, wenn das Verhältnis der nach der Methode der Analytischen Ultrazentrifuge ermittelten gewichtsmittleren Teilchendurchmesser Dwso und zahlenmittleren Teilchendurchmesser DN5O [DW5O/DN5O] < 2,0, bevorzugt < 1 ,5 und insbesondere bevorzugt < 1 ,2 oder < 1 ,1 ist.
Die nach dem erfindungsgemäßen Verfahren zugänglichen wässrigen Polymerisatdispersionen mit enger Teilchengrößenverteilungen und gewichtsmittleren Teilchendurchmessern Dw £ 100 nm weisen eine überraschend hohe Transparenz auf und eignen sich daher insbesondere als Bindemittel in transparenten wässrigen Formulierun- gen für Holzbeschichtungen. Hierbei zeigen sich häufig Vorteile wie geringerer Bedarf an Verdickern zur Einstellung einer bestimmten Viskosität sowie gute und tiefe Einfär- bung bei Verwendung von Farbpigmenten, gutes Eindringvermögen der Formulierung in die Holzoberfläche oder gute „Anfeuerung" der Holzmaserung. Außerdem weisen die erfindungsgemäßen wässrigen Polymerisatdispersionen eine verbesserte Filtrierbarkeit im Vergleich zu entsprechenden, nicht erfindungsgemäßen wässrigen Polymerisatdispersionen auf.
Selbstverständlich können die nach dem erfindungsgemäßen Verfahren zugänglichen erfindungsgemäßen wässrigen Polymerisatdispersionen als Komponente bei der Her- Stellung von Klebstoffen, Dichtmassen, Kunststoffputzen, Papierstreichmassen, Faservliesen, Anstrichmitteln und Beschichtungsmitteln für organische Substrate sowie zur Modifizierung von mineralischen Bindemitteln eingesetzt werden. Ferner sind aus den erfindungsgemäßen wässrigen Polymerisatdispersionen in einfacher Weise (beispielsweise Gefrier- oder Sprühtrocknung) die entsprechenden Polymerisatpulver zugänglich. Diese erfindungsgemäß zugänglichen Polymerisatpulver lassen sich ebenfalls als Komponente bei der Herstellung von Klebstoffen, Dichtmas- sen, Kunststoffputzen, Papierstreichmassen, Faservliesen, Anstrichmitteln und Be- schichtungsmitteln für organische Substrate sowie zur Modifizierung von mineralischen Bindemitteln einsetzen.
Die Erfindung soll anhand nachfolgender nicht einschränkender Beispiele erläutert werden.
Beispiele
a) Herstellung wässriger Polymerisatdispersionen
Beispiel 1 (B1 )
In einem mit Dosiereinrichtungen und Temperaturregelung ausgerüstetem Polymerisationsgefäß wurden bei 20 bis 25 0C (Raumtemperatur) unter Stickstoffatmosphäre
307,0 g entionisiertes Wasser und
168,0 g einer 15 gew.-%igen wässrigen Lösung von Natriumlaurylsulfat
vorgelegt und unter Rühren auf 87 0C aufgeheizt. Bei Erreichung dieser Temperatur wurde 25 g Methylmethacrylat zugegeben und während einer halben Minute emulgiert. Anschließend wurde unter Aufrechterhaltung der Temperatur 2,9 g von Zulauf 3 zugegeben und 5 Minuten polymerisiert. Danach wurden zeitgleich beginnend Zulauf 1 innerhalb von 120 Minuten und parallel dazu die Restmenge von Zulauf 3 innerhalb von 165 Minuten mit gleichbleibenden Mengenströmen kontinuierlich zudosiert. Nach dem Ende von Zulauf 1 wurde Zulauf 2 innerhalb von 45 Minuten mit gleichbleibendem Mengenstrom kontinuierlich zudosiert.
Zulauf 1 (homogene Mischung aus):
578,4 g entionisiertes Wasser 34,0 g einer 15 gew.-%igen wässrigen Lösung von Natriumlaurylsulfat
492,0 g n-Butylacrylat
184,2 g Methylmethacrylat
8.4 g einer 50 gew.-%igen wässrigen Lösung von Acrylamid
7.5 g Methacrylsäure und 47,1 g einer 25 gew.-%igen Lösung von Ureidomethacrylat in Methylmethacrylata) Zulauf 2 (homogene Mischung aus): 1 18,3 g entionisiertes Wasser
12,0 g einer 15 gew.-%igen wässrigen Lösung von Natriumlaurylsulfat 6,8 g Methacrylsäure 30,1 g einer 25 gew.-%igen Lösung von Ureidomethacrylat in
Methylmethacrylat3) und 203,1 g Methylmethacrylat
Zulauf 3 (homogene Lösung aus): 26,6 g entionisiertem Wasser und 2,0 g Natriumperoxodisulfat
a> Plex® 6844-0 der Fa. Röhm GmbH
Nach Beendigung der Zuläufe 2 und 3 ließ man das Polymerisationsgemisch noch 30 Minuten bei 87 0C nachreagieren. Daran anschließend wurden dem Polymerisationsgemisch zeitgleich beginnend über separate Zulaufleitungen 16 g einer 5 gew.-%igen wässrigen Wasserstoffperoxid-Lösung und eine Lösung aus 1 ,4 g Ascorbinsäure und 67 g entionisiertem Wasser innerhalb von 60 Minuten mit gleichbleibenden Mengen- strömen kontinuierlich zudosiert.
Anschließend wurde die erhaltene wässrige Polymerisatdispersion auf Raumtemperatur abgekühlt, mit 8,4 g einer 25 gew.-%igen wässrigen Ammoniaklösung neutralisiert und über ein 125 μm Filter filtriert.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 42,2 Gew.-% auf. Der gewichtsmittlere Teilchendurchmesser der Polymerisatpartikel betrug 44 nm; die Polydispersität DWSO/DNSO wurde zu 1 ,07 ermittelt. Die mit entionisiertem Wasser auf einen Feststoffgehalt von 40 Gew.-% verdünnte wässrige Polymerisat- dispersion wies eine Lichtdurchlässigkeit von 26 % auf.
Der Feststoffgehalt wurde generell bestimmt, indem eine definierte Menge der wässrigen Polymerisatdispersion (ca. 1 g) in einem Aluminiumtiegel mit einem Innendurchmesser von ca. 5 cm bei 140 0C in einem Trockenschrank bis zur Gewichtskonstanz getrocknet wurde. Es wurden zwei separate Messungen durchgeführt. Die in den Beispielen angegebenen Werte stellen den Mittelwert der jeweiligen beiden Messergebnisse dar.
Die Bestimmung der gewichtsmittleren Teilchendurchmesser sowie der Polydispersität erfolgten generell nach der Methode der Analytischen Ultrazentrifuge(vgl. hierzu S.E. Harding et al., Analytical Ultracentrifugation in Biochemistry and Polymer Science, Royal Society of Chemistry, Cambridge, Great Britain 1992, Chapter 10, Analysis of Polymer Dispersions with an Eight-Cell-AUC-Multiplexer: High Resolution Particle Size Distribution and Density Gradient Techniques, W. Mächtle, Seiten 147 bis 175).
Die Lichtdurchlässigkeit wurde generell mittels einer mit entionisiertem Wasser auf einen Polymerisatfeststoffgehalt von 40 Gew.-% verdünnten Probe der wässrigen Polymerisatdispersion mittels eines Spektrophotometers DR/2010 der Fa. Hach, Deutschland bestimmt.
Vergleichsbeispiel 1 (V1 )
Die Herstellung des Vergleichsbeispiels 1 erfolgte analog der Herstellung von Beispiel
I mit dem Unterschied, dass die Menge an Wasser in der Vorlage 287,0 g anstelle von 307,0 g betrug, die Menge an Wasser in Zulauf 1 599,4 g anstelle von 578,4 g betrug, die Menge an Methylmethacrylat in Zulauf 1 209,2 g anstelle von 184,2 g betrug und 46 g von dem so erhaltenen Zulauf 1 anstelle von 25 g reinem Methylmethacrylat vorgelegt wurden.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 42,3 Gew.-% auf. Der gewichtsmittlere Teilchendurchmesser der Polymerisatpartikel betrug 42 nm; die Polydispersität DWSO/DNSO wurde zu 1 ,1 1 ermittelt. Die mit entionisiertem Wasser verdünnte wässrige Polymerisatdispersion wies eine Lichtdurchlässigkeit von
I 1 % auf.
Beispiel 2 (B2)
Die Herstellung von Beispiel 2 erfolgte analog dem Beispiel 1 mit dem Unterschied, dass
304,7 g entionisiertes Wasser und 50,0 g einer 15 gew.-%igen wässrigen Lösung von Natriumlaurylsulfat
vorgelegt und unter Rühren auf 87 0C aufgeheizt wurden und bei Erreichung dieser Temperatur 25 g Methylmethacrylat zugegeben und während einer halben Minute e- mulgiert wurden und als
Zulauf 1 (homogene Mischung aus): 736,3 g entionisiertes Wasser 46,0 g einer 15 gew.-%igen wässrigen Lösung von Natriumlaurylsulfat
8,2 g einer 50 gew.-%igen wässrigen Lösung von Acrylamid 14,6 g Acrylsäure
77,2 g einer 25 gew.-%igen Lösung von Ureidomethacrylat in Methylmethacrylat 471 ,2 g Methylmethacrylat und 407,9 g 2-Ethylhexylacrylat
innerhalb von 165 Minuten mit gleichbleibenden Mengenstrom kontinuierlich zudosiert wurden.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 45,2 Gew.-% auf. Der gewichtsmittlere Teilchendurchmesser der Polymerisatpartikel betrug 57 nm; die Polydispersität DWSO/DNSO wurde zu 1 ,09 ermittelt. Die mit entionisiertem Wasser verdünnte wässrige Polymerisatdispersion wies eine Lichtdurchlässigkeit von 12 % auf.
Vergleichsbeispiel 2 (V2)
Die Herstellung von Vergleichsbeispiel 2 erfolgte analog Beispiel 2 mit dem Unterschied, dass 42,5 g des Zulaufs 1 anstelle von 25 g Methylmethacrylat vorgelegt wurden und in Zulauf 1 496,2 g Methylmethacrylat eingesetzt wurden anstelle von 471 ,2 g.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 45,2 Gew.-% auf. Der gewichtsmittlere Teilchendurchmesser der Polymerisatpartikel betrug 62 nm; die Polydispersität DWSO/DNSO wurde zu 1 ,20 ermittelt. Die mit entionisiertem Wasser verdünnte wässrige Polymerisatdispersion wies eine Lichtdurchlässigkeit von lediglich 2 % auf.
Beispiel 3 (B3)
In einem mit Dosiereinrichtungen und Temperaturregelung ausgerüstetem Polymerisationsgefäß wurden bei Raumtemperatur und unter Stickstoffatmosphäre
593,0 g entionisiertes Wasser und
1 17,0 g einer 15 gew.-%igen wässrigen Lösung von Natriumlaurylsulfat
vorgelegt und unter Rühren auf 82 0C aufgeheizt. Bei Erreichung dieser Temperatur wurde 35 g n-Butylacrylat zugegeben und während einer halben Minute emulgiert. An- schließend wurde unter Aufrechterhaltung der Temperatur 40 g einer 7 gew.-%igen wässrigen Lösung von Natriumpersulfat zugegeben und 5 Minuten polymerisiert. Daran anschließend wurde Zulauf 1 innerhalb von 120 Minuten gleichbleibendem Mengenstrom kontinuierlich zudosiert. Nach dem Ende von Zulauf 1 wurde Zulauf 2 innerhalb von 45 Minuten mit gleichbleibendem Mengenstrom kontinuierlich zudosiert. Zulauf 1 (homogene Mischung aus):
623.8 g entionisiertes Wasser
23,3 g einer 15 gew.-%igen wässrigen Lösung von Natriumlaurylsulfat
10,9 g einer 50 gew.-%igen wässrigen Lösung von Acrylamid 9,8 g Methacrylsäure
339,0 g Methylmethacrylat und
661 ,0 g n-Butylacrylat
und als
Zulauf 2 (homogene Mischung aus):
152.9 g entionisiertes Wasser
8,4 g einer 15 gew.-%igen wässrigen Lösung von Natriumlaurylsulfat
99,3 g einer 50 gew.-%igen wässrigen Lösung von Acrylamid 14,0 g Methacrylsäure und
332,0 g Methylmethacrylat
Nach Beendigung von Zulauf ließ man das Polymerisationsgemisch noch 30 Minuten bei 82 0C nachreagieren. Daran anschließend wurden dem Polymerisationsgemisch zeitgleich beginnend über separate Zulaufleitungen 22,4 g einer 5 gew.-%igen wässrigen Wasserstoffperoxid-Lösung und eine Lösung aus 2,0 g Ascorbinsäure und 93,8 g entionisiertem Wasser innerhalb von 60 Minuten mit gleichbleibenden Mengenströmen kontinuierlich zudosiert.
Anschließend wurde die erhaltene wässrige Polymerisatdispersion auf Raumtemperatur abgekühlt, mit 9,5 g einer 25 gew.-%igen wässrigen Ammoniaklösung neutralisiert und über ein 125 μm Filter filtriert.
Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 43,1 Gew.-% auf. Der gewichtsmittlere Teilchendurchmesser der Polymerisatpartikel betrug 44 nm; die Polydispersität DWSO/DNSO wurde zu 1 ,08 ermittelt. Die mit entionisiertem Wasser verdünnte wässrige Polymerisatdispersion wies eine Lichtdurchlässigkeit von 33 % auf.
Vergleichsbeispiel 3 (V3)
Die Herstellung des Vergleichsbeispiels 3 erfolgte analog der Herstellung von Beispiel 3 mit dem Unterschied, dass die Menge an Wasser in der Vorlage 570,6 g anstelle von 593,0 g betrug, die Menge an Wasser in Zulauf 1 646,2 g anstelle von 623,8. g betrug, die Menge an n-Butylacrylat in Zulauf 1 696,0 g anstelle von 661 ,0 g betrug und 57,5 g von dem so erhaltenen Zulauf 1 anstelle von 35 g reinem n-Butylacrylat vorgelegt wurden. Die erhaltene wässrige Polymerisatdispersion wies einen Feststoffgehalt von 42,6 Gew.-% auf. Der gewichtsmittlere Teilchendurchmesser der Polymerisatpartikel betrug 45 nm; die Polydispersität DWSO/DNSO wurde zu 1 ,12 ermittelt. Die mit entionisiertem Wasser verdünnte wässrige Polymerisatdispersion wies eine Lichtdurchlässigkeit von 15 % auf.
b) Anwendungstechnische Untersuchungen
Die wässrigen Polymerisatdispersionen wurden mit entionisiertem Wasser auf einen Feststoffgehalt von 37,5 Gew.-% verdünnt. Je 163 g dieser verdünnten wässrigen Polymerisatdispersionen wurden bei Raumtemperatur als Bindemittel zu einer Rohstreichlasurformulierung, bestehend aus
22,4 g entionisiertem Wasser 2,0 g Mergal® S 96 (Fungizid der Fa. Troy Chemie GmbH)
0,2 g AMP® 90 (Neutralisationsmittel der Fa. Angus Chemical Company) 0,2 g Silikontensid® Byk 346 (Netzmittel der Fa. Byk-Chemie GmbH) 0,4 g Tego Foamex® 810 (Entschäumer der Fa. Tego Chemie Service
GmbH) 1 ,0 g Coatex® BR 100 P (Verdicker der Fa. Cognis Deutschland GmbH & Co
KG)
6,0 g Luconyl® Gelb flüssig (Pigment der Fa. BASF AG) 5,0 g Texanol® (Lösemittel der Fa. Eastman Deutschland)
zugegeben und homogen gemischt.
Die erhaltenen Streichlasuren wurden bei Raumtemperatur mit einem Aufziehgerät mit 300 μm Spaltbreite homogen gleichmäßig auf eine Oberfläche unbehandelter 15 cm x 7 cm Kieferholzbrettchen (Dicke: 0,5 cm) aufgebracht, welche vorher geschliffen wur- den. Die so erhaltenen lasierten Bretter wurden anschließend in einem Klimaraum bei 23 0C und 50 % relativer Luftfeuchtigkeit für 24 Stunden getrocknet. Die auf die Holzoberflächen aufgebrachten Streichlasuren wurden im feuchten und im getrockneten Zustand visuell hinsichtlich Farbtiefe und Farbbrillanz beurteilt. Dabei erfolgte die Beurteilung nach dem Schulnotensystem, wobei 1 für sehr gut, 2 für gut, 3 für befriedigend, 4 für ausreichend und 5 für ungenügend steht. Die bei den einzelnen Beurteilungen erhaltenen Ergebnisse sind in nachfolgender Tabelle aufgelistet:
Figure imgf000021_0001
Aus den Ergebnissen wird klar ersichtlich, dass die Farbtiefe und die Farbbrillanz der Farblasuren, welche unter Verwendung der erfindungsgemäßen wässrigen Polymeri- satdispersionen hergestellt wurden, insbesondere im feuchten Zustand deutlich besser beurteilt wurden.

Claims

Patentansprüche
1. Verfahren zur Herstellung einer wässrigen Polymerisatdispersion durch radikalisch initiierte wässrige Emulsionspolymerisation von ethylenisch ungesättigten Monomeren in Anwesenheit wenigstens eines Dispergiermittels und wenigstens eines Radikalinitiators, dadurch gekennzeichnet, dass zur Emulsionspolymerisation
0,1 bis 10 Gew.-% wenigstens eines ethylenisch ungesättigten Monomeren mit einer Löslichkeit >_ 200 g pro 1000 g entionisiertem
Wasser bei 20 0C und 1 atm (absolut) [Monomer A], und 90 bis 99,9 Gew.-% wenigstens eines ethylenisch ungesättigten Monomeren mit einer Löslichkeit <_ 100 g pro 1000 g entionisiertem Wasser bei 20 0C und 1 atm (absolut) [Monomer B]
eingesetzt werden und sich die Monomeren A und B zu 100 Gew.-% addieren, wobei in einem wässrigen Polymerisationsmedium zuerst lediglich
0,1 bis 10 Gew.-% der Gesamtmenge des wenigstens einen Monomeren B vorgelegt und polymerisiert werden (Polymerisationsstufe
1 )
und daran anschließend die Gesamtmenge des wenigstens einen Monomeren A sowie die Restmenge des wenigstens einen Monomeren B dem wässrigen Po- lymerisationsmedium unter Polymerisationsbedingungen zugegeben und polymerisiert werden (Polymerisationsstufe 2).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Monomeren A und B in Polymerisationsstufe 2 kontinuierlich zudosiert werden.
3. Verfahren nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass die Monomeren A und B in Polymerisationsstufe 2 als Monomerengemisch zudosiert werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in Polymerisationsstufe 1 > 1 und < 8 Gew.-% der Gesamtmenge des wenigstens einen Monomeren B vorgelegt und polymerisiert werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in Polymerisationsstufe 1 die Dispergiermittelmenge ^ 2 mmol pro 10 g Monomere
B beträgt.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Monomeren A ausgewählt sind aus der Gruppe umfassend Acrylsäure, Methac- rylsäure, 2-Acrylamido-2-methylpropansulfonsäure, Vinylsulfonsäure, Acrylamid, Methacrylamid, N-(2-Methacryloyloxyethyl)ethylenharnstoff, N-(2- Acryloyloxyethyl)ethylenharnstoff, 2-Acetoacetoxyethylacrylat, 2-
Acetoacetoxyethylmethacrylat, Diacetonacrylamid, 2-Hydroxyethylacrylat, Hydro- xypropylacrylat, 2-Hydroxyethylmethacrylat und Hydroxypropylmethacrylat.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Monomeren B ausgewählt sind aus der Gruppe umfassend Methylacrylat, Ethy- lacrylat, n-Butylacrylat, tert.-Butylacrylat, 2-Ethylhexylacrylat, 2- Propylheptylacrylat, Methylmethacrylat, Ethylmethacrylat, n-Butylmethacrylat, tert.-Butylmethacrylat, 2-Ethylhexylmethacrylat, 2-Propylheptylmethacrylat, Sty- rol, Vinyltoluol, 2-Methylstyrol, 4-Methylstyrol, 2-n-Butylstyrol, 4-n-Butylstyrol, 4-n- Decylstyrol, Vinylacetat, Vinylpropionat, Acrylnitril und Methacrylnitril.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass als Dispergiermittel Emulgatoren eingesetzt werden.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass als Dispergiermittel nichtionische und/oder anionische Emulgatoren eingesetzt werden.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Zugabe der Monomeren A und/oder der Monomeren B in Polymerisationsstufe 2 nach der Gradienten- oder der Stufenfahrweise erfolgt.
1 1. Wässrige Polymerisatdispersion erhältlich nach einem Verfahren gemäß einem der Ansprüche 1 bis 10.
12. Polymerisatpulver erhältlich durch Trockung einer wässrigen Polymerisatdispersion gemäß Anspruch 11.
13. Verwendung einer wässrigen Polymerisatdispersion gemäß Anspruch 1 1 oder eines Polymerisatpulvers gemäß Anspruch 12 zur Herstellung von Klebstoffen,
Dichtmassen, Kunststoffputzen, Papierstreichmassen, Faservliesen, Anstrichmitteln und Beschichtungsmitteln für organische Substrate sowie zur Modifizierung von mineralischen Bindemitteln.
PCT/EP2008/057161 2007-06-11 2008-06-09 Verfahren zur herstellung einer wässrigen polymerisatdispersion WO2008152017A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES08760726T ES2392571T3 (es) 2007-06-11 2008-06-09 Utilización de dispersiones acuosas de polímeros
CN2008800195619A CN101679536B (zh) 2007-06-11 2008-06-09 制备水性聚合物分散体的方法
EP08760726A EP2158226B1 (de) 2007-06-11 2008-06-09 Verwendung wässriger polymerisatdispersionen
JP2010511607A JP2010529272A (ja) 2007-06-11 2008-06-09 水性ポリマー分散液の製造方法
AU2008263946A AU2008263946B2 (en) 2007-06-11 2008-06-09 Method for producing an aqueous polymerisate dispersion
US12/663,713 US8153721B2 (en) 2007-06-11 2008-06-09 Process for the preparation of an aqueous polymer dispersion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07109999 2007-06-11
EP07109999.8 2007-06-11

Publications (1)

Publication Number Publication Date
WO2008152017A1 true WO2008152017A1 (de) 2008-12-18

Family

ID=39712031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/057161 WO2008152017A1 (de) 2007-06-11 2008-06-09 Verfahren zur herstellung einer wässrigen polymerisatdispersion

Country Status (8)

Country Link
US (1) US8153721B2 (de)
EP (1) EP2158226B1 (de)
JP (1) JP2010529272A (de)
CN (1) CN101679536B (de)
AU (1) AU2008263946B2 (de)
ES (1) ES2392571T3 (de)
PT (1) PT2158226E (de)
WO (1) WO2008152017A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009080614A1 (de) * 2007-12-21 2009-07-02 Basf Se Wässrige polymerisatdispersionen, verfahren zu deren herstellung und deren verwendung
WO2011009838A3 (de) * 2009-07-22 2011-05-26 Basf Se Wässrige polymerisatdispersion und deren verwendung als bindemittel für die beschichtung von untergründen
EP3018148A1 (de) 2014-11-04 2016-05-11 Basf Se Verfahren zur Herstellung einer wässrigen Polymerdispersion
US9598658B2 (en) 2011-03-25 2017-03-21 Basf Se Lubricant composition having improved non-Newtonian viscometrics
US10597477B2 (en) 2014-09-19 2020-03-24 Basf Se Finely divided aqueous emulsion polymers and use thereof for hydrophobic coatings

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524920A (ja) * 2008-06-03 2011-09-08 ビーエーエスエフ ソシエタス・ヨーロピア 二酸化チタンナノ粒子を含む二酸化チタン組成物およびその製造と使用
WO2014111292A1 (en) 2013-01-18 2014-07-24 Basf Se Acrylic dispersion-based coating compositions
WO2014139074A1 (en) * 2013-03-11 2014-09-18 Dow Global Technologies Llc Binder composition and its application in anti-dewing coating composition
CN103525235B (zh) * 2013-09-24 2015-09-23 淮南师范学院 水性除锈防锈纳米涂料及其制备方法
CN109071733B (zh) * 2016-03-18 2022-03-29 巴斯夫欧洲公司 细分散的水性多阶段聚合物分散体、其制备方法及其作为粘合剂的用途
CN107936167A (zh) * 2017-12-21 2018-04-20 苏州希尔盖森新材料有限公司 一种具有亲水性的聚苯乙烯微球
WO2020025383A1 (en) * 2018-08-02 2020-02-06 Basf Se Process for producing an aqueous polymer dispersion
WO2021168062A1 (en) 2020-02-21 2021-08-26 Swimc Llc Stain-blocking polymers, primers, kits, and methods
CN113136009B (zh) * 2021-04-20 2022-01-18 中山大学 一种含磷酸基水性分散剂及其制备方法与应用
CN113201096B (zh) * 2021-04-30 2022-07-22 中国石油大学(华东) 一种温增黏型活性聚合物降黏剂及其制备方法与应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4003422A1 (de) 1990-02-06 1991-08-08 Basf Ag Waessrige polyurethanzubereitungen
US5468799A (en) * 1992-04-29 1995-11-21 Basf Aktiengesellschaft Aqueous polymer dispersion having a broad particle size distribution
EP0690882A1 (de) 1993-03-24 1996-01-10 Cray Valley Sa Latex für lacke ohne lösungsmittel mit verbesserter auswaschbarkeit
EP0710680A2 (de) 1994-11-04 1996-05-08 Basf Aktiengesellschaft Wässrige Polymerisatdispersion
DE19609509A1 (de) 1996-03-11 1997-09-18 Hoechst Ag Wäßrige Polymerdispersion als Bindemittel für elastische block- und kratzfeste Beschichtungen
EP1125949A1 (de) 2000-02-16 2001-08-22 Akzo Nobel N.V. Wässrige Dispersionen von Polymerpartikeln mit Glasübergangstemperaturgradient
EP1294816A1 (de) 2000-06-13 2003-03-26 Akzo Nobel N.V. Wässrige bindemittelzusammensetzung
WO2003029300A1 (en) 2001-10-02 2003-04-10 Avecia Bv Polymer composition comprising a polymer having a gradient polymeric morphology
DE10335958A1 (de) * 2003-08-04 2005-02-24 Basf Ag Verfahren zur Herstellung wässriger Polymerisatdispersionen
EP1614732A2 (de) 2002-11-22 2006-01-11 Rohm and Haas Company Wässrige Beschichtungszusammensetzung auf Basis von Emulsionsacrylpolymeren
DE102005023806A1 (de) * 2005-05-19 2006-11-23 Basf Ag Farbiges Polymersystem mit verbesserter Farbbrillianz

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4269749A (en) 1979-04-30 1981-05-26 The Dow Chemical Company Method of imparting salt and/or mechanical stability to aqueous polymer microsuspensions
CN1120180C (zh) 1994-06-03 2003-09-03 巴斯福股份公司 聚合物水分散液的制备
DE19624299A1 (de) 1995-06-30 1997-01-02 Basf Ag Verfahren zur Entfernung organischer Verbindungen aus Dispersionen und Vorrichtung zu dessen Durchführung
DE19621027A1 (de) 1996-05-24 1997-11-27 Basf Ag Verfahren zur Abtrennung flüchtiger organischer Komponenten aus Suspensionen oder Dispersionen
DE19741187A1 (de) 1997-09-18 1999-03-25 Basf Ag Verfahren zur Verminderung des Restmonomerengehalts in wässrigen Polymerdispersionen
DE19741184A1 (de) 1997-09-18 1999-03-25 Basf Ag Verfahren zur Verminderung von Restmonomeren in Flüssigsystemen unter Zugabe eines Redoxinitiatorsystems
DE19805122A1 (de) 1998-02-09 1999-04-22 Basf Ag Verfahren zur Herstellung wässriger Polymerisatdispersionen mit geringem Restmonomerengehalt
DE19828183A1 (de) 1998-06-24 1999-12-30 Basf Ag Verfahren zur Entfernung von restflüchtigen Komponenten aus Polymerdispersionen
DE19839199A1 (de) 1998-08-28 2000-03-02 Basf Ag Verfahren zur Verminderung der Restmonomerenmenge in wässrigen Polymerdispersionen
DE19840586A1 (de) 1998-09-05 2000-03-09 Basf Ag Verfahren zur Verminderung der Restmonomerenmenge in wässrigen Polymerdispersionen
DE19847115C1 (de) 1998-10-13 2000-05-04 Basf Ag Gegenstrom-Stripprohr
DE10237601A1 (de) * 2002-08-16 2004-02-26 Bayer Ag Verfahren zur Herstellung von monodispersen gelförmigen Ionenaustauschern
DE102005049402A1 (de) 2005-10-13 2007-04-19 Basf Ag Wässrige Bindemittelzusammensetzung

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4003422A1 (de) 1990-02-06 1991-08-08 Basf Ag Waessrige polyurethanzubereitungen
US5468799A (en) * 1992-04-29 1995-11-21 Basf Aktiengesellschaft Aqueous polymer dispersion having a broad particle size distribution
EP0690882A1 (de) 1993-03-24 1996-01-10 Cray Valley Sa Latex für lacke ohne lösungsmittel mit verbesserter auswaschbarkeit
EP0710680A2 (de) 1994-11-04 1996-05-08 Basf Aktiengesellschaft Wässrige Polymerisatdispersion
DE19609509A1 (de) 1996-03-11 1997-09-18 Hoechst Ag Wäßrige Polymerdispersion als Bindemittel für elastische block- und kratzfeste Beschichtungen
EP1125949A1 (de) 2000-02-16 2001-08-22 Akzo Nobel N.V. Wässrige Dispersionen von Polymerpartikeln mit Glasübergangstemperaturgradient
EP1294816A1 (de) 2000-06-13 2003-03-26 Akzo Nobel N.V. Wässrige bindemittelzusammensetzung
WO2003029300A1 (en) 2001-10-02 2003-04-10 Avecia Bv Polymer composition comprising a polymer having a gradient polymeric morphology
EP1614732A2 (de) 2002-11-22 2006-01-11 Rohm and Haas Company Wässrige Beschichtungszusammensetzung auf Basis von Emulsionsacrylpolymeren
DE10335958A1 (de) * 2003-08-04 2005-02-24 Basf Ag Verfahren zur Herstellung wässriger Polymerisatdispersionen
DE102005023806A1 (de) * 2005-05-19 2006-11-23 Basf Ag Farbiges Polymersystem mit verbesserter Farbbrillianz

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Analysis of Polymer Dispersions with an Eight-Cell-AUC-Multiplexer: High Resolution Particle Size Distribution and Density Gradient Techniques", pages: 147 - 175
"Emulsion Polymerisation", 1965, INTERSCIENCE PUBLISHERS
"Encyclopedia of Polymer Science and Engineering", vol. 8, 1987, pages: 659
D. DIEDERICH, CHEMIE IN UNSERER ZEIT, vol. 24, 1990, pages 135 - 142
D.C. BLACKLEY, HIGH POLYMER LATICES, vol. 1, 1966, pages 35
F. HÖLSCHER: "Dispersionen synthetischer Hochpolymerer", 1969, SPRINGER-VERLAG
H. WARSON: "The Applications of Synthetic Resin Emulsions", 1972, pages: 246
HOUBEN-WEYL: "Makromolekulare Stoffe", vol. XIV-1, 1961, GEORG-THIEME-VERLAG, article "Methoden der organischen Chemie", pages: 192 - 208
HOUBEN-WEYL: "Makromolekulare Stoffe", vol. XIV-1, 1961, GEORG-THIEME-VERLAG, article "Methoden der organischen Chemie", pages: 411 - 420
J. BRANDRUP; E.H. IMMERGUT: "Polymerhandbook", vol. 11, 1989, JOHN WILEY & SONS, pages: 133 - 141
S.E. HARDING ET AL.: "Analytical Ultracentrifugation in Biochemistry and Polymer Science", 1992, ROYAL SOCIETY OF CHEMISTRY

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008340157B2 (en) * 2007-12-21 2013-10-24 Basf Se Aqueous polymer dispersions, method for the production and use thereof
US8552126B2 (en) 2007-12-21 2013-10-08 Basf Se Aqueous polymer dispersions, processes for preparing them, and their use
WO2009080614A1 (de) * 2007-12-21 2009-07-02 Basf Se Wässrige polymerisatdispersionen, verfahren zu deren herstellung und deren verwendung
US8334350B2 (en) 2007-12-21 2012-12-18 Basf Se Aqueous polymer dispersions, processes for preparing them, and their use
US8530574B2 (en) 2009-07-22 2013-09-10 Basf Se Aqueous polymer dispersion and use thereof as binder for coating substrates
AU2010275313B2 (en) * 2009-07-22 2015-02-05 Basf Se Aqueous polymer dispersion and use thereof as binder for coating substrates
WO2011009838A3 (de) * 2009-07-22 2011-05-26 Basf Se Wässrige polymerisatdispersion und deren verwendung als bindemittel für die beschichtung von untergründen
CN102471421A (zh) * 2009-07-22 2012-05-23 巴斯夫欧洲公司 水性聚合物分散体及其作为粘合剂用于涂布基材的用途
KR101733823B1 (ko) 2009-07-22 2017-05-08 바스프 에스이 수성 중합체 분산액 및 기재 코팅용 결합제로서의 그의 용도
US9598658B2 (en) 2011-03-25 2017-03-21 Basf Se Lubricant composition having improved non-Newtonian viscometrics
US10597477B2 (en) 2014-09-19 2020-03-24 Basf Se Finely divided aqueous emulsion polymers and use thereof for hydrophobic coatings
WO2016071326A1 (de) * 2014-11-04 2016-05-12 Basf Se Verfahren zur herstellung einer wässrigen polymerdispersion
EP3018148A1 (de) 2014-11-04 2016-05-11 Basf Se Verfahren zur Herstellung einer wässrigen Polymerdispersion
US10196463B2 (en) 2014-11-04 2019-02-05 Basf Se Method for producing an aqueous polymer dispersion

Also Published As

Publication number Publication date
PT2158226E (pt) 2012-12-27
EP2158226A1 (de) 2010-03-03
JP2010529272A (ja) 2010-08-26
AU2008263946A1 (en) 2008-12-18
ES2392571T3 (es) 2012-12-11
US8153721B2 (en) 2012-04-10
AU2008263946B2 (en) 2013-05-02
CN101679536A (zh) 2010-03-24
EP2158226B1 (de) 2012-09-12
CN101679536B (zh) 2012-06-20
US20100204394A1 (en) 2010-08-12

Similar Documents

Publication Publication Date Title
EP2158226B1 (de) Verwendung wässriger polymerisatdispersionen
EP2004701B1 (de) Verfahren zur herstellung einer wässrigen polymerisatdispersion
EP2456797B1 (de) Wässrige polymerisatdispersion und deren verwendung als bindemittel für die beschichtung von untergründen
EP2291413B1 (de) Verfahren zur herstellung einer wässrigen polymerisatdispersion
EP2760898B1 (de) Verfahren zur herstellung einer wässrigen polymerisatdispersion
EP2814885B1 (de) Wässrige bindemittelzusammensetzung
EP1910423B1 (de) Verfahren zur herstellung einer wässrigen polymerisatdispersion
EP2475692B1 (de) Verfahren zur herstellung einer wässrigen bindemitteldispersion
EP1979387B1 (de) Polymerisatpulver mit hohem kautschukanteil und deren herstellung
WO2009135812A1 (de) Verfahren zur herstellung einer wässrigen polymerisatdispersion
WO2007125027A1 (de) Verfahren zur herstellung einer wässrigen copolymerisatdispersion
EP1448692B1 (de) Wässrige kunstharzzubereitung
DE10223615A1 (de) Verfahren zur Herstellung einer wässrigen Polymerisatdispersion
WO2007057365A2 (de) Verfahren zur herstellung einer wässrigen polymerisatdispersion
DE102011005638A1 (de) Verfahren zur Herstellung eines Formkörpers aus körnigen und/oder faserförmigen Substraten
DE102004028391A1 (de) Verfahren zur Herstellung wässriger Polymerisatdispersionen
WO2011069891A1 (de) Verfahren zur herstellung von ladungsstrukturierten beschichtungen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880019561.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08760726

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008760726

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12663713

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010511607

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008263946

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2008263946

Country of ref document: AU

Date of ref document: 20080609

Kind code of ref document: A