WO2008149910A1 - Method for production of thermoelectric conversion element - Google Patents

Method for production of thermoelectric conversion element Download PDF

Info

Publication number
WO2008149910A1
WO2008149910A1 PCT/JP2008/060320 JP2008060320W WO2008149910A1 WO 2008149910 A1 WO2008149910 A1 WO 2008149910A1 JP 2008060320 W JP2008060320 W JP 2008060320W WO 2008149910 A1 WO2008149910 A1 WO 2008149910A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion material
thermal conductivity
thermoelectric
particles
Prior art date
Application number
PCT/JP2008/060320
Other languages
French (fr)
Japanese (ja)
Inventor
Junya Murai
Takuji Kita
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2008149910A1 publication Critical patent/WO2008149910A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C11/00Alloys based on lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C12/00Alloys based on antimony or bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/852Thermoelectric active materials comprising inorganic compositions comprising tellurium, selenium or sulfur

Definitions

  • the present invention relates to a method for manufacturing a thermoelectric conversion element that converts heat into electricity or electricity into heat.
  • thermoelectric conversion material is a material that can mutually convert heat energy and electric energy, and is a material constituting a thermoelectric conversion element used as a thermoelectric cooling element or a thermoelectric power generation element.
  • This thermoelectric conversion material uses the Zeebeck effect to perform thermoelectric conversion, and its thermoelectric conversion performance is expressed by the following equation (1) called the figure of merit Z T.
  • thermoelectric conversion material in order to improve the thermoelectric conversion performance of the thermoelectric conversion material, it is necessary to increase the Seebeck coefficient ⁇ and the electric conductivity ⁇ of the material to be used, and to decrease the thermal conductivity ⁇ . Recognize.
  • Journal of Applied Physics, 97, 044317 (2005) proposes miniaturizing the thermoelectric conversion material. That is, by miniaturizing the thermoelectric conversion material particles, the phonon, which is the main factor of heat conduction in the thermoelectric conversion material, is scattered at the interface of the fine particles, and the thermal conductivity / can be reduced.
  • the oxide of the metal constituting the thermoelectric conversion material is 2 5 Since heat treatment was performed at 0 to 3500 and further alloyed at 3500 to 4500, the grain size of the crystal grains in the final thermoelectric conversion element was coarsened to 1 ⁇ 0 to 2500 nm. If the particle size is so coarse, phonon scattering at the grain boundary is insufficient, the effect of reducing thermal conductivity is considered insufficient, and the performance improvement is also insufficient. Accordingly, an object of the present invention is to solve the above-mentioned conventional problems and provide a method for manufacturing a thermoelectric conversion element having an excellent figure of merit. Disclosure of the invention
  • thermoelectric conversion thermoelectric element After preparing a solution containing a salt of an element constituting a thermoelectric conversion material, the solution is dropped into a solution containing a reducing agent to obtain raw material particles of the thermoelectric conversion material.
  • a method for producing a thermoelectric conversion thermoelectric element is provided, which includes the steps of precipitation, heat treatment, and sintering.
  • thermoelectric conversion material by adding a solution containing a salt of an element constituting the thermoelectric conversion material to a solution containing a reducing agent, the raw material particles of the thermoelectric conversion material having an average particle size of 10 to 100 nm
  • the raw material particles are heat-treated and sintered to obtain a thermoelectric conversion element composed of crystal particles of a thermoelectric conversion material having an average particle diameter of 10 to 100 nm. It shows phonon scattering at the grain boundaries, reduces thermal conductivity reduction, and improves the figure of merit ZT.
  • Fig. 1 is a graph showing the relationship between the structural dimensions of the thermoelectric conversion material, the Seebeck coefficient, the electrical conductivity ⁇ , or the thermal conductivity /.
  • FIG. 2 is an image of the thermoelectric conversion element of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the thermal conductivity ⁇ of the thermoelectric conversion material gradually decreases as the microstructure size of the thermoelectric conversion material becomes smaller starting from the length of the mean free path of phonon. Therefore, the figure of merit Z T is improved by designing the structure size to be smaller than the phonon mean free path.
  • thermoelectric conversion material even if the microstructure size of the thermoelectric conversion material becomes smaller than the mean free path of phonon, the electrical conductivity of the thermoelectric conversion material does not decrease, and the particle size is generally less than the mean free path of the carrier. When it becomes, it decreases. In this way, by utilizing the fact that the structural dimension of the thermoelectric conversion material where the thermal conductivity K begins to decrease and the structural dimension of the thermoelectric conversion material where the electrical conductivity ⁇ begins to decrease, the rate of decrease in electrical conductivity is determined.
  • thermoelectric conversion material At least some of the microstructure dimensions of the thermoelectric conversion material should be greater than the mean free path of the carrier and less than the mean free path of the phonon so that the structure size of the thermoelectric conversion material has a larger reduction rate of the thermal conductivity ⁇ than
  • the figure of merit ⁇ ⁇ represented by the above formula (1) can be further increased.
  • the particle size of the particles constituting the thermoelectric conversion material that defines the tissue size of the thermoelectric conversion material. Therefore, according to the method of the present invention, the particle size of at least a part of the particles constituting the thermoelectric conversion material is made equal to or less than the mean free path of the phonon of the thermoelectric conversion material.
  • the mean free path (M F P) is calculated using the following formula.
  • the carrier MFP and phonon MFP are determined by the material and temperature.
  • the thermoelectric conversion element obtained by the present invention at least a part of the structure size is the power factor of the thermoelectric conversion material.
  • thermoelectric conversion element In order to manufacture such a thermoelectric conversion element, in the present invention, first, a solution containing a salt of an element constituting the thermoelectric conversion material is prepared.
  • thermoelectric conversion material to be formed may be saddle type or saddle type.
  • ⁇ type thermoelectric conversion material for example, ⁇ i 2 T e 3 based, P b T e system, Z n 4 S b 3 system, C o S b 3 system, Hafuho Chrysler system, full-Heusler System, SiGe system, etc. can be used.
  • known materials can be applied without any particular limitation.
  • the thermoelectric conversion material formed in the present invention preferably has an output factor larger than 1 mWZK 2, more preferably 2 mWZK 2 or more, and further preferably 3 mWZK 2 or more. If the output factor is 1 mWZK 2 or less, a significant performance improvement cannot be expected.
  • the thermal conductivity K of the thermoelectric conversion material is preferably larger than 5 WZmK, more preferably 7 W / mK or more, and further preferably 10 W mK or more. When the thermal conductivity ⁇ is larger than 5 WZ m K, the effect of the present invention is particularly remarkable.
  • the effect of controlling the microstructure dimensions of the thermoelectric conversion material with the nano-order specified in the present invention is that the lower the thermal conductivity ⁇ , the more the thermoelectric conversion material with higher thermal conductivity c is used.
  • the effect of reducing the thermal conductivity ⁇ is significant.
  • thermoelectric conversion material when the thermoelectric conversion material is Co S b 3 , the salt of the element constituting such a thermoelectric conversion material is cobalt chloride hydrate and antimony chloride, and in the case of Co ⁇ N ix S bs Means cobalt hydrate, nickel chloride and antimony chloride. Then, considering the composition of the thermoelectric conversion material to be formed, the salt of the element constituting the thermoelectric conversion material to be used and the amount thereof are selected.
  • Water or alcohol can be used as the solvent of the salt solution of the elements constituting the thermoelectric conversion material, and ethanol is preferred.
  • this dispersion liquid is dripped at the solution containing a reducing agent.
  • a reducing agent Any element that can reduce the ions of the elements constituting the thermoelectric conversion material, such as Na BH hydrazine, can be used.
  • thermoelectric conversion material In the dispersion containing the salt of the element constituting the thermoelectric conversion material, raw material ions of the thermoelectric conversion material, such as Co ions and Sb ions, are present. Therefore, when mixed with a solution containing a reducing agent, these ions are reduced, and raw material particles of the thermoelectric conversion material, such as Co particles and Sb particles, are precipitated. In this reduction, in addition to the C o particles and S b particles, by-product thereof, for example N a C 1 and N a BO 3 generates. In order to remove this by-product, it is preferable to perform filtration. Furthermore, after filtration, it is preferable to add alcohol to the water to wash away by-products.
  • thermoelectric conversion material particles are synthesized from the raw material particles of the thermoelectric conversion material, washed and dried as necessary, and then subjected to a general sintering method.
  • the thermoelectric conversion element of the present invention can be obtained by performing SPS sintering at 580.
  • the method for producing a thermoelectric conversion material of the present invention makes it possible to control the structure size (particle diameter of thermoelectric conversion material particles) in the nano-order. That is, by reducing the salt of the element constituting the thermoelectric conversion material, raw material particles of the thermoelectric conversion material having a particle size of 10 to 100 nm are formed, and the thermoelectric conversion material particles are formed therefrom.
  • thermoelectric conversion element particle diameter of thermoelectric conversion material particles
  • the dimension of the thermoelectric conversion element (particle diameter of thermoelectric conversion material particles) force is less than the mean free path of the phonon, preferably more than the mean free path of the carrier and less than the mean free path of the phonon, Scattering of phonons in the thermoelectric conversion element occurs sufficiently, and the thermal conductivity / c can be reduced.
  • a thermoelectric conversion element having a large figure of merit ZT represented by the equation (1) is obtained.
  • an excellent thermoelectric conversion element exhibiting a high figure of merit ZT, and the figure of merit ZT, which has been difficult to manufacture in the past exceeds 2.
  • a thermoelectric conversion element can also be obtained.
  • Cobalt chloride (1.0 g) and antimony chloride (3.06 g) were added to ethanol (10 O mL) and dissolved, and then nickel chloride (0.064 g) was added to the solution and mixed uniformly.
  • This solution was added dropwise to a reducing agent solution prepared by dissolving 2.0 g of sodium borohydride in 10 mL of ethanol.
  • hydrothermal synthesis was performed at 20 00 for 48 hours, and the thermoelectric conversion material Co e . 94 Ni Q. Q 6 S b 3 compounds formed.
  • thermoelectric conversion element of the present invention was obtained by the thermoelectric conversion element of the present invention.
  • a T EM image of this device is shown in FIG. 2.
  • the crystal grain size was 10 to 100 nm.
  • the thermal conductivity of this thermoelectric conversion element was measured by the flash method. It was 1.
  • SWZmZK which was the conventional product (crystal grain size: 1550 to 2500 nm, thermal conductivity: 3.5 W / m / K) was reduced by 60%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

Disclosed is a method for producing a thermoelectric conversion element, which comprises the steps of: preparing a solution containing a salt of an element constituting a thermoelectric conversion material; adding the solution drop-wise to a solution containing a reducing agent to cause the precipitation of a raw material particle for the thermoelectric conversion material; heating the solution; and firing the resulting product.

Description

明 細 書 熱電変換素子の製造方法 技術分野  Technical data Manufacturing method of thermoelectric conversion elements Technical field
本発明は、 熱を電気に又は電気を熱に変換する熱電変換素子の製 造方法に関する。 背景技術  The present invention relates to a method for manufacturing a thermoelectric conversion element that converts heat into electricity or electricity into heat. Background art
熱電変換材料は、 熱エネルギーと電気エネルギーを相互に変換す ることができる材料であり、 熱電冷却素子ゃ熱電発電素子として利 用される熱電変換素子を構成する材料である。 この熱電変換材料は ゼ一ベック効果を利用して熱電変換を行う ものであるが、 その熱電 変換性能は、 性能指数 Z Tと呼ばれる下式 ( 1 ) で表される。  The thermoelectric conversion material is a material that can mutually convert heat energy and electric energy, and is a material constituting a thermoelectric conversion element used as a thermoelectric cooling element or a thermoelectric power generation element. This thermoelectric conversion material uses the Zeebeck effect to perform thermoelectric conversion, and its thermoelectric conversion performance is expressed by the following equation (1) called the figure of merit Z T.
Ζ Τ = α2 σ Τ八 ( 1 ) Ζ Τ = α 2 σ Τ eight (1)
(上式中、 αはゼーベック係数を、 σは電気伝導率を、 κは熱伝導 率を、 そして Τは測定温度を示す)  (Where α is the Seebeck coefficient, σ is the electrical conductivity, κ is the thermal conductivity, and Τ is the measured temperature)
上記式 ( 1 ) から明らかなように、 熱電変換材料の熱電変換性能 を高めるためには、 用いる材料のゼーベック係数 α及び電気伝導率 σを大きく し、 熱伝導率 κを小さくすればよいことがわかる。 ここ で材料の熱伝導率 κを小さ くするために、 Journal of Applied Phy sics, 97, 044317 (2005)には、 熱電変換材料を微細化することが 提案されている。 すなわち、 熱電変換材料粒子を微細化することに より、 この微細な粒子の界面において熱電変換材料における熱伝導 の主要因であるフオノ ンを散乱させて、 熱伝導率 / を低減すること ができる。  As is clear from the above equation (1), in order to improve the thermoelectric conversion performance of the thermoelectric conversion material, it is necessary to increase the Seebeck coefficient α and the electric conductivity σ of the material to be used, and to decrease the thermal conductivity κ. Recognize. Here, in order to reduce the thermal conductivity κ of the material, Journal of Applied Physics, 97, 044317 (2005) proposes miniaturizing the thermoelectric conversion material. That is, by miniaturizing the thermoelectric conversion material particles, the phonon, which is the main factor of heat conduction in the thermoelectric conversion material, is scattered at the interface of the fine particles, and the thermal conductivity / can be reduced.
上記開示技術では、 熱電変換材料を構成する金属の酸化物を 2 5 0 〜 3 5 0でにおいて熱処理し、 さらに 3 5 0 〜 4 5 0 において 合金化しているため、 最終熱電変換素子における結晶粒の粒径は 1 δ 0 〜 2 5 0 n mと粗大化している。 粒子の粒径がこのように粗大 化していると、 粒界におけるフオノン散乱は不十分であり、 熱伝導 率低減効果は不十分であると考えられ、 性能向上も不十分である。 そこで本発明では、 上記従来の問題を解決し、 優れた性能指数を 有する熱電変換素子の製造方法を提供することを目的とする。 発明の開示 In the disclosed technique, the oxide of the metal constituting the thermoelectric conversion material is 2 5 Since heat treatment was performed at 0 to 3500 and further alloyed at 3500 to 4500, the grain size of the crystal grains in the final thermoelectric conversion element was coarsened to 1 δ0 to 2500 nm. If the particle size is so coarse, phonon scattering at the grain boundary is insufficient, the effect of reducing thermal conductivity is considered insufficient, and the performance improvement is also insufficient. Accordingly, an object of the present invention is to solve the above-mentioned conventional problems and provide a method for manufacturing a thermoelectric conversion element having an excellent figure of merit. Disclosure of the invention
上記課題を解決するために本発明によれば、 熱電変換材料を構成 する元素の塩を含む溶液を調製した後、 この溶液を、 還元剤を含む 溶液に滴下して熱電変換材料の原料粒子を析出させ、 加熱処理し、 次いで焼結する工程を含む、 熱電変換熱電素子の製造方法が提供さ れる。  In order to solve the above problems, according to the present invention, after preparing a solution containing a salt of an element constituting a thermoelectric conversion material, the solution is dropped into a solution containing a reducing agent to obtain raw material particles of the thermoelectric conversion material. A method for producing a thermoelectric conversion thermoelectric element is provided, which includes the steps of precipitation, heat treatment, and sintering.
本発明によれば、 熱電変換材料を構成する元素の塩を含む溶液を 、 還元剤を含む溶液に滴下することにより、 平均粒径が 1 0 〜 1 0 0 n mである熱電変換材料の原料粒子を析出させ、 この原料粒子を 加熱処理し、 焼結することにより、 平均粒径が 1 0 〜 1 0 0 n mで ある熱電変換材料の結晶粒子からなる熱電変換素子を得ることがで き、 十分な粒界におけるフオノ ン散乱を示し、 熱伝導率低減を低減 させ、 性能指数 Z Tを向上させることができる。 図面の簡単な説明  According to the present invention, by adding a solution containing a salt of an element constituting the thermoelectric conversion material to a solution containing a reducing agent, the raw material particles of the thermoelectric conversion material having an average particle size of 10 to 100 nm The raw material particles are heat-treated and sintered to obtain a thermoelectric conversion element composed of crystal particles of a thermoelectric conversion material having an average particle diameter of 10 to 100 nm. It shows phonon scattering at the grain boundaries, reduces thermal conductivity reduction, and improves the figure of merit ZT. Brief Description of Drawings
図 1 は、 熱電変換材料の組織寸法と、 ゼーベック係数ひ、 電気伝 導率 σ又は熱伝導率 / との関係を示すグラフである。  Fig. 1 is a graph showing the relationship between the structural dimensions of the thermoelectric conversion material, the Seebeck coefficient, the electrical conductivity σ, or the thermal conductivity /.
図 2 は、 本発明の熱電変換素子の Τ Ε Μ像である。 発明を実施するための最良の形態 FIG. 2 is an image of the thermoelectric conversion element of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
まず、 性能指数 Z Tと熱電変換材料の組織構成との関係について 、 図 1 を参照しながら詳細に説明する。 図 1 に示すように、 熱電変 換材料の組織寸法が、 フオノ ンの平均自由行程の長さを起点にこれ より も小さくなるにつれて、 熱電変換材料の熱伝導率 κは徐々に減 少する。 したがって、 組織寸法がフオノ ンの平均自由行程より も小 さ くなるように設計すると、 性能指数 Z Tが向上する。  First, the relationship between the figure of merit ZT and the structure of the thermoelectric material will be described in detail with reference to FIG. As shown in Fig. 1, the thermal conductivity κ of the thermoelectric conversion material gradually decreases as the microstructure size of the thermoelectric conversion material becomes smaller starting from the length of the mean free path of phonon. Therefore, the figure of merit Z T is improved by designing the structure size to be smaller than the phonon mean free path.
一方、 熱電変換材料の組織寸法がフオノ ンの平均自由行程を起点 にこれより小さくなつても、 熱電変換材料の電気伝導率ひ は減少せ ず、 概ねキヤ リァの平均自由行程以下の粒径となった場合に減少す る。 このように、 熱伝導率 Kが減少し始める熱電変換材料の組織寸 法と、 電気伝導率 σが減少し始める熱電変換材料の組織寸法とが異 なることを利用し、 電気伝導性の減少率より も熱伝導率 κの減少率 が大きい熱電変換材料の組織寸法となるように、 熱電変換材料の少 なく とも一部の組織寸法をキャ リアの平均自由行程以上フォノンの 平均自由行程以下とすることで、 上記式 ( 1 ) で表される性能指数 Ζ Τをよりいっそう高めることができる。  On the other hand, even if the microstructure size of the thermoelectric conversion material becomes smaller than the mean free path of phonon, the electrical conductivity of the thermoelectric conversion material does not decrease, and the particle size is generally less than the mean free path of the carrier. When it becomes, it decreases. In this way, by utilizing the fact that the structural dimension of the thermoelectric conversion material where the thermal conductivity K begins to decrease and the structural dimension of the thermoelectric conversion material where the electrical conductivity σ begins to decrease, the rate of decrease in electrical conductivity is determined. At least some of the microstructure dimensions of the thermoelectric conversion material should be greater than the mean free path of the carrier and less than the mean free path of the phonon so that the structure size of the thermoelectric conversion material has a larger reduction rate of the thermal conductivity κ than Thus, the figure of merit Ζ Τ represented by the above formula (1) can be further increased.
ここで、 熱電変換材料の組織寸法を規定するのは、 熱電変換材料 を構成する粒子の粒径である。 そこで、 本発明の方法によれば、 熱 電変換材料を構成する粒子の少なく とも一部の粒径を熱電変換材料 のフオノ ンの平均自由行程以下としている。 熱電変換材料を構成す る粒子の粒径を熱電変換材料のフオノ ンの平均自由行程以下とする ことで、 粒界におけるフオノ ン散乱を示し、 熱伝導率低減を低減さ せ、 性能指数 Ζ Τを向上させることができる。  Here, it is the particle size of the particles constituting the thermoelectric conversion material that defines the tissue size of the thermoelectric conversion material. Therefore, according to the method of the present invention, the particle size of at least a part of the particles constituting the thermoelectric conversion material is made equal to or less than the mean free path of the phonon of the thermoelectric conversion material. By making the particle size of the thermoelectric conversion material less than the mean free path of the phonon of the thermoelectric conversion material, phonon scattering at the grain boundary is shown, and the reduction in thermal conductivity is reduced, and the figure of merit Ζ Τ Can be improved.
平均自由行程 (M F P ) は、 以下の式を用いて計算される。  The mean free path (M F P) is calculated using the following formula.
キャ リア M F P = (移動度 X有効質量 Xキャ リ ア速度) Z電荷 素量 フオノ ン M F P = 3 X格子熱伝導率 Z比熱 Z音速 上式において、 各々の値は文献値と温度特性の近似式から換算し 、 比熱のみ実測値を用いる。 Carrier MFP = (Mobility X Effective mass X Carrier speed) Z charge Elementary quantity Phonon MFP = 3 X lattice thermal conductivity Z specific heat Z sonic speed In the above equation, each value is converted from the literature value and approximate equation of temperature characteristics, and only the specific heat is measured.
ここで、 C o。 94 N i 。. Q 6 S b 3及び C o S b 3について計算した キャ リ ア M F P とフオノ ン M F Pの結果を以下に示す。 Where Co. 94 N i. . Shows Q 6 S b 3 and C o S b 3 a calibration Li A MFP and results Fuono emissions MFP calculated for below.
表 1  table 1
キャ リ ア MFPとフオノ ン MFP ( 由行 ) の計算結果  Calculation results for carrier MFP and phonon MFP (Yuyuki)
Figure imgf000006_0001
このように、 キャ リア M F P及びフオノ ン M F Pは材料及び温度 によってきまる。 本発明によって得られる熱電変換素子においては 、 少なく とも一部の組織寸法が、 熱電変換材料のパワーファクター
Figure imgf000006_0001
Thus, the carrier MFP and phonon MFP are determined by the material and temperature. In the thermoelectric conversion element obtained by the present invention, at least a part of the structure size is the power factor of the thermoelectric conversion material.
( 2 σ ) が最高出力時のフオノ ンの平均自由行程以下であればよ い。 C o S b 3系は 4 0 0 においてパワーファクター ( α 2 ひ) が 最高出力を示すので、 4 0 0で時のフォノ ンの平均自由行程以下で あればよい。 (2 σ) is not good equal to or less than the mean free path of Fuono down at the maximum output. Since the C o S b 3 system 4 0 0 Power factor (alpha 2 flight) is the highest output, but not more than the mean free path of the phono down when at 4 0 0.
このような熱電変換素子を製造するため、 本発明においては、 ま ず熱電変換材料を構成する元素の塩を含む溶液を調製する。  In order to manufacture such a thermoelectric conversion element, in the present invention, first, a solution containing a salt of an element constituting the thermoelectric conversion material is prepared.
形成しょう とする熱電変換材料は Ρ型であっても Ν型であっても よい。 Ρ型熱電変換材料の材質としては特に制限なく、 例えば、 Β i 2 T e 3系、 P b T e系、 Z n 4 S b 3系、 C o S b 3系、 ハーフホ イスラー系、 フルホイスラー系、 S i G e 系などを用いることがで きる。 N型熱電変換材料の材質と しても特に制限なく公知の材料を 適用することができ、 例えば、 B i 2 T e 3系、 P b T e系、 Z n 4 S b3系、 C o S b 3系、 ハーフホイスラー系、 フルホイスラー系、 S i G e系、 M g2 S i 系、 M g2 S n系、 C o S i 系などを用いる ことができる。 The thermoelectric conversion material to be formed may be saddle type or saddle type. There is not any specific restriction on the material of Ρ type thermoelectric conversion material, for example, Β i 2 T e 3 based, P b T e system, Z n 4 S b 3 system, C o S b 3 system, Hafuho Chrysler system, full-Heusler System, SiGe system, etc. can be used. As the material of the N-type thermoelectric conversion material, known materials can be applied without any particular limitation. For example, B i 2 Te 3 system, P b Te system, Z n 4 S b 3 system, Co S b 3 system, half-Heusler system, full-Heusler system, S i G e system, Mg 2 S i system, Mg 2 Sn system, Co S i system, etc. it can.
本発明において形成する熱電変換材料は、 出力因子が 1 mWZK 2より も大きいことが好ましく、 2 mWZK2以上であることがより 好ましく、 3 mWZK2以上であることが更に好ましい。 出力因子 が 1 mWZK2以下の場合には、 あまり大きな性能向上が期待でき ない。 また、 熱電変換材料の熱伝導率 Kは、 5 WZmKより も大き いことが好ましく、 7 W/mK以上であることがより好ましく、 1 0 W m K以上であることが更に好ましい。 熱伝導率 κが 5 W Z m Kより も大きい場合に、 特に本発明の効果が著しく呈される。 つま り、 熱電変換材料の組織寸法について本発明に規定するナノオーダ 一で制御を行った場合の効果は、 熱伝導率 cが大きい熱電変換材料 を用いるほど熱伝導率 κの低下が著しくなる傾向にあり、 特に熱伝 導率 / cが 5 WZmKより も大きい熱電変換材料を用いた場合に、 熱 伝導率 κの減少効果が大きく現れる。 The thermoelectric conversion material formed in the present invention preferably has an output factor larger than 1 mWZK 2, more preferably 2 mWZK 2 or more, and further preferably 3 mWZK 2 or more. If the output factor is 1 mWZK 2 or less, a significant performance improvement cannot be expected. In addition, the thermal conductivity K of the thermoelectric conversion material is preferably larger than 5 WZmK, more preferably 7 W / mK or more, and further preferably 10 W mK or more. When the thermal conductivity κ is larger than 5 WZ m K, the effect of the present invention is particularly remarkable. In other words, the effect of controlling the microstructure dimensions of the thermoelectric conversion material with the nano-order specified in the present invention is that the lower the thermal conductivity κ, the more the thermoelectric conversion material with higher thermal conductivity c is used. In particular, when a thermoelectric conversion material with a thermal conductivity / c greater than 5 WZmK is used, the effect of reducing the thermal conductivity κ is significant.
このような熱電変換材料を構成する元素の塩は例えば、 熱電変換 材料が C o S b 3の場合には、 塩化コバルトの水和物及び塩化アン チモンを、 C o ^ N i x S bsの場合には、 塩化コバルトの水和物 、 塩化ニッケル及び塩化アンチモンを意味する。 そして形成しょう とする熱電変換材料の組成を考慮して、 用いる熱電変換材料を構成 する元素の塩およびその量を選択する。 For example, when the thermoelectric conversion material is Co S b 3 , the salt of the element constituting such a thermoelectric conversion material is cobalt chloride hydrate and antimony chloride, and in the case of Co ^ N ix S bs Means cobalt hydrate, nickel chloride and antimony chloride. Then, considering the composition of the thermoelectric conversion material to be formed, the salt of the element constituting the thermoelectric conversion material to be used and the amount thereof are selected.
上記熱電変換材料を構成する元素の塩の溶液の溶媒としては水又 はアルコールを用いることができ、 エタノールを用いることが好適 である。  Water or alcohol can be used as the solvent of the salt solution of the elements constituting the thermoelectric conversion material, and ethanol is preferred.
こう して上記熱電変換材料を構成する元素の塩の溶液を調製した 後、 還元剤を含む溶液にこの分散液を滴下する。 還元剤としては、 熱電変換材料を構成する元素のイオンを還元できるものであればよ く、 例えば N a B H ヒ ドラジン等を用いることができる。 Thus, after preparing the solution of the salt of the element which comprises the said thermoelectric conversion material, this dispersion liquid is dripped at the solution containing a reducing agent. As a reducing agent, Any element that can reduce the ions of the elements constituting the thermoelectric conversion material, such as Na BH hydrazine, can be used.
熱電変換材料を構成する元素の塩を含む分散液中には熱電変換材 料の原料イオン、 例えば C oイオンや S bイオンが存在する。 従つ て、 還元剤を含む溶液と混合されると、 これらのイオンは還元され 、 熱電変換材料の原料粒子、 例えば C o粒子や S b粒子が析出する ことになる。 この還元において、 C o粒子や S b粒子の他に、 副生 物、 例えば N a C 1 と N a B O 3が生成する。 この副生物を除去す るために、 濾過を行う ことが好ましい。 さ らに、 濾過後、 アルコー ルゃ水を加えて、 副生物を洗い流すことが好適である。 In the dispersion containing the salt of the element constituting the thermoelectric conversion material, raw material ions of the thermoelectric conversion material, such as Co ions and Sb ions, are present. Therefore, when mixed with a solution containing a reducing agent, these ions are reduced, and raw material particles of the thermoelectric conversion material, such as Co particles and Sb particles, are precipitated. In this reduction, in addition to the C o particles and S b particles, by-product thereof, for example N a C 1 and N a BO 3 generates. In order to remove this by-product, it is preferable to perform filtration. Furthermore, after filtration, it is preferable to add alcohol to the water to wash away by-products.
次いでこの分散液を加熱処理し、 好ましく は水熱処理し、 熱電変 換材料の原料粒子から熱電変換材料粒子を合成し、 必要に応じて洗 浄 · 乾燥した後、 一般的な焼結法により、 例えば 5 8 0でにおいて S P S焼結することにより、 本発明の熱電変換素子が得られる。 本発明の熱電変換材料の製造方法は、 ナノオーダーでの組織寸法 (熱電変換材料粒子の粒径) の制御を可能とするものである。 すな わち、 熱電変換材料を構成する元素の塩を還元することにより、 粒 径が 1 0〜 1 0 0 n mである熱電変換材料の原料粒子を形成し、 こ れから熱電変換材料粒子を調製することにより、 熱電変換素子の組 織寸法 (熱電変換材料粒子の粒径) 力 フオノ ンの平均自由行程以 下、 好ましく はキャ リアの平均自由行程以上フォノ ンの平均自由行 程以下となり、 熱電変換素子中のフォノ ンの散乱が充分に起こ り、 熱伝導率 / c を減少させることができる。 この結果、 式 ( 1 ) で表さ れる性能指数 Z Tが大きい熱電変換素子となる。 このように、 本発 明の熱電変換素子の製造方法によれば、 高い性能指数 Z Tを示す優 れた熱電変換素子であって、 従来では作製困難であった性能指数 Z Tが 2 を上回るような熱電変換素子を得ることもできる。 実施例 The dispersion is then heat-treated, preferably hydrothermally treated, and thermoelectric conversion material particles are synthesized from the raw material particles of the thermoelectric conversion material, washed and dried as necessary, and then subjected to a general sintering method. For example, the thermoelectric conversion element of the present invention can be obtained by performing SPS sintering at 580. The method for producing a thermoelectric conversion material of the present invention makes it possible to control the structure size (particle diameter of thermoelectric conversion material particles) in the nano-order. That is, by reducing the salt of the element constituting the thermoelectric conversion material, raw material particles of the thermoelectric conversion material having a particle size of 10 to 100 nm are formed, and the thermoelectric conversion material particles are formed therefrom. By preparing, the dimension of the thermoelectric conversion element (particle diameter of thermoelectric conversion material particles) force is less than the mean free path of the phonon, preferably more than the mean free path of the carrier and less than the mean free path of the phonon, Scattering of phonons in the thermoelectric conversion element occurs sufficiently, and the thermal conductivity / c can be reduced. As a result, a thermoelectric conversion element having a large figure of merit ZT represented by the equation (1) is obtained. Thus, according to the method of manufacturing a thermoelectric conversion element of the present invention, an excellent thermoelectric conversion element exhibiting a high figure of merit ZT, and the figure of merit ZT, which has been difficult to manufacture in the past, exceeds 2. A thermoelectric conversion element can also be obtained. Example
塩化コバルト 1. 0 g及び塩化アンチモン 3. 0 6 gをエタノー ル 1 0 O mLに加え、 溶解させた後、 この溶液に塩化ニッケル 0. 0 6 4 gを加え、 均一に混合した。 この溶液を、 水素化ホウ素ナ 卜 リ ウム 2. 0 gをエタノール 1 0 O mLに溶解させて調製した還元 剤溶液に滴下した。 次いで、 エタノールと水の混合溶液で洗浄する ことによって不純物を除去した後、 2 0 0 にて 4 8時間水熱合成 を行い、 熱電変換材料である C oe.94 N i Q. Q 6 S b3化合物を形成 した。 Cobalt chloride (1.0 g) and antimony chloride (3.06 g) were added to ethanol (10 O mL) and dissolved, and then nickel chloride (0.064 g) was added to the solution and mixed uniformly. This solution was added dropwise to a reducing agent solution prepared by dissolving 2.0 g of sodium borohydride in 10 mL of ethanol. Next, after removing impurities by washing with a mixed solution of ethanol and water, hydrothermal synthesis was performed at 20 00 for 48 hours, and the thermoelectric conversion material Co e . 94 Ni Q. Q 6 S b 3 compounds formed.
その後、 不活性ガス雰囲気中でエタノールを蒸発させ、 乾燥し、 得られた粒子.を充填し、 6 0 0 で 3 0分 S P S焼結を行い、 本発 明の熱電変換素子を得た。 この素子の T E M像を図 2に示すが、 結 晶粒サイズは 1 0〜 1 0 0 n mであった。 この熱電変換素子の熱伝 導率をフラッシュ法により測定したところ、 1. S WZmZKであ り、 従来品 (結晶粒サイズ : 1 5 0〜 2 5 0 n m、 熱伝導率 : 3. 5 W/m/K) より 6 0 %低減していた。  Thereafter, ethanol was evaporated in an inert gas atmosphere, dried, and the obtained particles were filled, and SPS sintering was performed at 60 ° C. for 30 minutes to obtain the thermoelectric conversion element of the present invention. A T EM image of this device is shown in FIG. 2. The crystal grain size was 10 to 100 nm. The thermal conductivity of this thermoelectric conversion element was measured by the flash method. It was 1. SWZmZK, which was the conventional product (crystal grain size: 1550 to 2500 nm, thermal conductivity: 3.5 W / m / K) was reduced by 60%.

Claims

請 求 の 範 囲 The scope of the claims
1 . 熱電変換材料を構成する元素の塩を含む溶液を調製した後、 この溶液を、 還元剤を含む溶液に滴下して熱電変換材料の原料粒子 を析出させ、 加熱処理し、 次いで焼結する工程を含む、 熱電変換熱 電素子の製造方法。 1. After preparing the solution containing the salt of the element constituting the thermoelectric conversion material, this solution is dropped into the solution containing the reducing agent to precipitate the raw material particles of the thermoelectric conversion material, heat treatment, and then sintering. The manufacturing method of the thermoelectric conversion thermoelectric element including a process.
2 . 前記熱電変換材料を構成する元素の塩が塩化コバルト、 塩化 アンチモン、 塩化ビスマス、 及び塩化テルルより選ばれる、 請求項 1 記載の熱電変換素子の製造方法。  2. The method for producing a thermoelectric conversion element according to claim 1, wherein the salt of the element constituting the thermoelectric conversion material is selected from cobalt chloride, antimony chloride, bismuth chloride, and tellurium chloride.
3 . 前記還元剤が水素化ホウ素ナ ト リ ウムである、 請求項 1記載 の熱電変換素子の製造方法。  3. The method for producing a thermoelectric conversion element according to claim 1, wherein the reducing agent is sodium borohydride.
PCT/JP2008/060320 2007-06-06 2008-05-29 Method for production of thermoelectric conversion element WO2008149910A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007-150696 2007-06-06
JP2007150696A JP2008305918A (en) 2007-06-06 2007-06-06 Thermoelectric conversion element and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2008149910A1 true WO2008149910A1 (en) 2008-12-11

Family

ID=40093722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/060320 WO2008149910A1 (en) 2007-06-06 2008-05-29 Method for production of thermoelectric conversion element

Country Status (2)

Country Link
JP (1) JP2008305918A (en)
WO (1) WO2008149910A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014578A (en) * 2015-07-01 2017-01-19 トヨタ自動車株式会社 METHOD FOR PRODUCING ALLOY PARTICLES INCLUDING Bi AND Te

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129832A (en) * 2009-12-21 2011-06-30 Denso Corp Thermoelectric conversion element and method of manufacturing the same
EP2959989B1 (en) * 2014-06-23 2017-08-02 Belenos Clean Power Holding AG Sb nanocrystals or Sb-alloy nanocrystals for fast charge/discharge Li- and Na-ion battery anodes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012427A (en) * 2000-06-21 2002-01-15 National Institute Of Advanced Industrial & Technology Solid solution type electroconductive niobate containing transition metal and method of producing the same
JP2005343782A (en) * 2004-05-06 2005-12-15 Tokyo Univ Of Science Method for producing bismuth telluride nanoparticle and method for producing tellurium nanoparticle
WO2007066820A1 (en) * 2005-12-07 2007-06-14 Toyota Jidosha Kabushiki Kaisha Thermoelectric conversion material and process for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002012427A (en) * 2000-06-21 2002-01-15 National Institute Of Advanced Industrial & Technology Solid solution type electroconductive niobate containing transition metal and method of producing the same
JP2005343782A (en) * 2004-05-06 2005-12-15 Tokyo Univ Of Science Method for producing bismuth telluride nanoparticle and method for producing tellurium nanoparticle
WO2007066820A1 (en) * 2005-12-07 2007-06-14 Toyota Jidosha Kabushiki Kaisha Thermoelectric conversion material and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014578A (en) * 2015-07-01 2017-01-19 トヨタ自動車株式会社 METHOD FOR PRODUCING ALLOY PARTICLES INCLUDING Bi AND Te

Also Published As

Publication number Publication date
JP2008305918A (en) 2008-12-18

Similar Documents

Publication Publication Date Title
CA2738771C (en) Nanocomposite thermoelectric conversion material, thermoelectric conversion element including the same, and method of producing nanocomposite thermoelectric conversion material
JP4900061B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP4900480B2 (en) Thermoelectric conversion element and manufacturing method thereof
US8845918B2 (en) Thermoelectric material and composites made from thermoelectric material and a method for fabricating thereof
WO2008149911A1 (en) Method for manufacturing thermoelectric converter
JP5534069B2 (en) Method for manufacturing thermoelectric conversion element
JP2012104560A (en) Nano-composite thermoelectric conversion material, method for manufacturing the same, and thermoelectric conversion element
JP5181707B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP5088116B2 (en) Method for manufacturing thermoelectric conversion element
KR100663975B1 (en) High efficiency fe doped skutterudite thermoelectric material and method for producing the same
JP2009147145A (en) Thermoelectric transducer
WO2008149910A1 (en) Method for production of thermoelectric conversion element
JP5098608B2 (en) Method for manufacturing thermoelectric conversion element
JP2017076775A (en) Nano-composite type thermoelectric element and method of manufacturing the same
US8865501B2 (en) Method of fabricating thermoelectric material and thermoelectric material fabricated thereby
JP5853483B2 (en) Nanocomposite thermoelectric conversion material
CN104953020A (en) Phonon scattering material, nanocomposite thermoelectric material, and method of producing the same
JP4766004B2 (en) Method for manufacturing thermoelectric conversion element
JP6588194B2 (en) Thermoelectric materials and thermoelectric modules
JP6475153B2 (en) Manufacturing method of N-type thermoelectric conversion material
JP2016127258A (en) Thermoelectric conversion material, production method therefor and thermoelectric conversion element using the same
JP6333209B2 (en) Nanocomposite thermoelectric conversion material and method for producing the same
Liu et al. Effects of SnSe addition on the thermoelectric properties of Bi0. 85Sb0. 15Se
Yang et al. Realizing High Thermoelectric Performance in Earth-abundant Bi2S3 Compounds by Br Segregation and Dislocation Engineering
JP2016178251A (en) Thermoelectric conversion material, method for manufacturing the same, and thermoelectric conversion element arranged by use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08765133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08765133

Country of ref document: EP

Kind code of ref document: A1