JP2002012427A - Solid solution type electroconductive niobate containing transition metal and method of producing the same - Google Patents

Solid solution type electroconductive niobate containing transition metal and method of producing the same

Info

Publication number
JP2002012427A
JP2002012427A JP2000187012A JP2000187012A JP2002012427A JP 2002012427 A JP2002012427 A JP 2002012427A JP 2000187012 A JP2000187012 A JP 2000187012A JP 2000187012 A JP2000187012 A JP 2000187012A JP 2002012427 A JP2002012427 A JP 2002012427A
Authority
JP
Japan
Prior art keywords
transition metal
niobate
soluble
tetragonal
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000187012A
Other languages
Japanese (ja)
Other versions
JP3467542B2 (en
Inventor
Yoshinobu Fujishiro
芳伸 藤代
Masanobu Tanno
正信 淡野
Hiroyoshi Takagi
弘義 高木
Kunihiro Maeda
邦裕 前田
Motoyuki Miyata
素之 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fine Ceramics Research Association
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Fine Ceramics Research Association
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fine Ceramics Research Association, National Institute of Advanced Industrial Science and Technology AIST filed Critical Fine Ceramics Research Association
Priority to JP2000187012A priority Critical patent/JP3467542B2/en
Publication of JP2002012427A publication Critical patent/JP2002012427A/en
Application granted granted Critical
Publication of JP3467542B2 publication Critical patent/JP3467542B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solid solution type electroconductive niobate containing a transition metal, and to provide a method of producing the same. SOLUTION: This is a perovskite type tetragonal niobate material having electroconductivity of 0.01 to 10 Ωm and allowing the switching of electroconductive characteristic between n-type and p-type corresponding with metal species in a solid solution, which comprises a niobate, a transition metal (Mn, Fe, Cu, Ni, Co) and an alkaline earth metal (Ca, Sr, Ba), and if necessary, a rare earth metal (La, Ce, Eu or the like) and is expressed by a formula A0.8-αBαNbO3-δ (α is 0-0.2, A is an alkaline earth metal of Ca, Sr or Ba, or a rare earth metal, and B is a transition metal) or a formula (A, B)xNbO3 (x<=1). The method of producing the tetragonal niobate material in which a transition metal is uniformlydissolved to form a solid solution comprises the steps of mixing under agitation an aqueous alkylamines with a precursor solution in which niobium oxalate, a soluble transition metal and an alkaline earth metal salt, and if necessary, a soluble rare earth metal salt are uniformly solved in water, forming a precipitate, and calcining the obtained precipitate at 900 to 1100 deg.C in air.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、導電性を示す遷移
金属固溶型正方晶ニオブ酸塩材料のA0.8-αα NbO
3-δ(α=0〜0.2,A=Ca,Sr,Baのアルカ
リ土類金属又は希土類金属、B=Cu,Ni,Co,M
n,Feの遷移金属) もしくは(A,B)x NbO3
(X≦1)及びその新規な製造プロセスに関する。
[0001] The present invention relates to a transition showing conductivity.
A of metal solid solution type tetragonal niobate material0.8-αBα NbO
3-δ(Α = 0-0.2, A = Ca, Sr, Ba Alka
Rare earth metal or rare earth metal, B = Cu, Ni, Co, M
n, transition metal of Fe) or (A, B)x NbOThree 
(X ≦ 1) and its novel manufacturing process.

【0002】[0002]

【従来の技術】従来、導電性及び半導体特性をもつ金属
酸化物セラミックスは、光エネルギー反応触媒、高温燃
料電池電極、及び熱電変換材料等の電子材料としての利
用が注目されている。また、これらの材料として、高温
安定性、及び化学的安定性の高い材料の要求が高まって
いる。即ち、半導体及び導電性酸化物材料は、例えば、
電子部品、光触媒材料、次世代エネルギー開発に必要な
高温型燃料電池の電極材料、及び廃熱有効利用のための
熱電変換材料等の様々な分野で利用することが期待でき
るため、多くの材料が検討されている。それらの材料の
うち、正方晶ペロブスカイト型のアルカリ土類金属ニオ
ブ酸塩材料は、層状構造をもつ化合物であり、例えば、
希土類金属等の金属イオンを置換固溶し、ニオブを部分
還元することによる、半導体及び金属的な導電特性を示
す材料が報告されている。更に、アルカリ土類金属ニオ
ブ酸塩材料は、熱安定性や化学的な安定性にも優れるこ
とから、最近では、例えば、信号変換素子、誘電体、メ
モリ材料、分光フィルター、及び光エネルギー反応触媒
等としての利用が検討されている。
2. Description of the Related Art Metal oxide ceramics having conductivity and semiconductor properties have been attracting attention as electronic materials such as photoenergy reaction catalysts, high-temperature fuel cell electrodes, and thermoelectric conversion materials. Further, as these materials, demands for materials having high-temperature stability and high chemical stability are increasing. That is, semiconductor and conductive oxide materials, for example,
It can be expected to be used in various fields such as electronic components, photocatalyst materials, electrode materials for high-temperature fuel cells required for next-generation energy development, and thermoelectric conversion materials for effective use of waste heat. Are being considered. Among these materials, tetragonal perovskite-type alkaline earth metal niobate materials are compounds having a layered structure, for example,
Materials exhibiting semiconducting and metallic conductive properties by substituting and solid-dissolving metal ions such as rare earth metals and partially reducing niobium have been reported. Furthermore, since alkaline earth metal niobate materials are excellent in thermal stability and chemical stability, recently, for example, signal conversion elements, dielectrics, memory materials, spectral filters, and light energy reaction catalysts Use as such is being considered.

【0003】半導体及び導電性酸化物材料において、そ
の合成プロセスは、組成制御、粒子形態、及び最終生成
物の光電特性に大きく作用するので、合成プロセスの選
択は重要である。一般的に、アルカリ土類金属ニオブ酸
塩材料は、固相法により合成されている。しかし、固相
法による合成では、大量合成は可能であるが、生成物の
組成の均一化及びその制御はプロセス上限界がある。更
に、層状構造を有するアルカリ土類金属ニオブ酸塩は、
固相反応においては、粒子成長が制御しにくいため、固
相法により微細な原料を調製するのは難しく、更に、ち
密な多結晶体への常圧焼結も容易ではない。
[0003] In semiconductor and conductive oxide materials, the choice of the synthesis process is important because the synthesis process greatly affects composition control, particle morphology, and the photoelectric properties of the final product. Generally, alkaline earth metal niobate materials are synthesized by a solid phase method. However, in the synthesis by the solid-phase method, a large-scale synthesis is possible, but there is a limit in the process of homogenizing and controlling the composition of the product. Further, alkaline earth metal niobate having a layered structure,
In the solid phase reaction, it is difficult to control the growth of particles, so that it is difficult to prepare a fine raw material by the solid phase method, and it is not easy to sinter a dense polycrystal at normal pressure.

【0004】多くのアルカリ土類金属ニオブ酸塩材料
は、ニオブの還元に伴う酸素欠陥により生成する電子を
キャリアとするため、n型もしくは金属的な導電性を示
すものが報告されているが、p型の電気伝導特性を示す
アルカリ土類金属ニオブ酸材料は、ほとんど知られてい
ない。しかしながら、構造が同じニオブ酸塩をホスト材
料として用い、遷移金属等の固溶組成制御でのキャリア
タイプの制御により、電気伝導特性がn型、p型のいず
れにも任意に制御可能となれば、光触媒、及び熱電変換
素子等の電子材料として、利用分野、及び用途が広がる
ことになる。また、これまで、アルカリ土類金属ニオブ
酸塩材料での導電性の付加は、水素雰囲気や減圧雰囲気
でのアニーリング処理によるニオブの還元が必要とされ
ていた。しかしながら、それには高温及び長時間のアニ
ーリング処理が必要となるため、固溶組成の制御による
導電性の向上が求められている。更に、粉体材料として
利用する場合、材料の比表面積を大きくすることが必要
である。また、バルク材料として利用する場合でも、生
成物の焼結性を向上させるため、原料として結晶性のよ
い微細な粒子であることが望ましい。そのため、最終生
成物としてナノメーターサイズの単一相の結晶性微粒子
の合成が容易に行えることが必要である。
Many alkaline earth metal niobate materials have been reported to exhibit n-type or metallic conductivity because electrons generated by oxygen vacancies accompanying reduction of niobium are used as carriers. Alkaline earth metal niobate materials exhibiting p-type electric conduction characteristics are hardly known. However, if the niobate having the same structure is used as a host material, and the carrier type is controlled by controlling the solid solution composition of a transition metal or the like, the electric conduction characteristics can be arbitrarily controlled to either n-type or p-type. As electronic materials such as photocatalysts and thermoelectric conversion elements, application fields and applications will be expanded. Until now, the addition of conductivity with an alkaline earth metal niobate material required reduction of niobium by annealing treatment in a hydrogen atmosphere or a reduced pressure atmosphere. However, this requires an annealing treatment at a high temperature and for a long time, and therefore there is a demand for improvement in conductivity by controlling the solid solution composition. Furthermore, when used as a powder material, it is necessary to increase the specific surface area of the material. Even when used as a bulk material, it is desirable that the raw material be fine particles having good crystallinity in order to improve the sinterability of the product. Therefore, it is necessary to easily synthesize single-phase crystalline fine particles of nanometer size as a final product.

【0005】固相法では、材料中の組成の均一化及びそ
の制御が難しいことが知られる。一方、共沈などの液相
合成法では、混合溶液の組成制御により生成物の組成制
御が容易であり、更に、生成物の粒子形態が制御できる
ことから無機材料の合成法として利用されている。しか
しながら、アルカリ土類金属ニオブ酸塩材料の液相合成
は、前駆体となる均一混合溶液の調製と沈澱の制御が難
しく、液相合成法での合成はあまり試みられていない。
アルカリ土類金属ニオブ酸塩以外のニオブ酸材料では、
金属アルコキシド錯体を用い微細な粒子が合成されてい
る。しかしながら、出発物質の金属アルコキシド錯体が
高価であり、取り扱いが難しい。更に、低濃度での反応
において制御可能なため、薄膜等の合成用途には有用で
あるが、セラミックス原料粉体の合成へ用いるのは、コ
ストパフォーマンスが低い。また、五塩化ニオブ等の強
酸可溶性の試薬を用い、ニオブ過酸化物錯体やキレート
錯体として均一溶液を調製する方法が利用されている
が、それらは吸水性の高い試薬であるため、溶液調製段
階での取扱が難しい。そのため、液相反応プロセスを利
用するアルカリ土類金属ニオブ酸系材料の合成方法とし
て、取り扱いが容易な試薬を用い、安定なニオブ酸均一
混合溶液を調製し、それを利用する簡単なプロセスが必
要とされている。
[0005] It is known that the solid-phase method makes it difficult to equalize and control the composition of the material. On the other hand, in a liquid phase synthesis method such as coprecipitation, the composition of a product is easily controlled by controlling the composition of a mixed solution, and furthermore, the particle morphology of the product can be controlled, so that it is used as a method for synthesizing inorganic materials. However, in the liquid phase synthesis of an alkaline earth metal niobate material, it is difficult to prepare a homogeneous mixed solution serving as a precursor and control the precipitation, and synthesis by a liquid phase synthesis method has not been attempted much.
For niobate materials other than alkaline earth metal niobates,
Fine particles have been synthesized using metal alkoxide complexes. However, the starting metal alkoxide complex is expensive and difficult to handle. Furthermore, since it can be controlled in a reaction at a low concentration, it is useful for synthesizing thin films and the like, but is low in cost performance when used for synthesizing ceramic raw material powders. In addition, a method of preparing a homogeneous solution as a niobium peroxide complex or a chelate complex using a strong acid-soluble reagent such as niobium pentachloride has been used.However, since these are highly water-absorbing reagents, a solution preparation step is performed. Is difficult to handle. Therefore, as a method for synthesizing an alkaline earth metal niobate-based material using a liquid phase reaction process, a simple process that uses a reagent that is easy to handle, prepares a stable mixed solution of niobate, and uses it is necessary. It has been.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記課題を
解決するためになされたものであって、導電性を示す遷
移金属固溶型正方晶ニオブ酸塩材料のA0.8-ααNb
3-δ(α=0〜0.2,A=Ca,Sr,Ba、又は
希土類金属、B=遷移金属)もしくは(A,B)x Nb
3 (X≦1、A=アルカリ土類金属、又は希土類金
属、B=遷移金属)及びその製造方法を提供することを
目的とする。
DISCLOSURE OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to provide a transition metal solid solution type tetragonal niobate material having electrical conductivity of A 0.8-α B α Nb.
O 3-δ (α = 0 to 0.2, A = Ca, Sr, Ba or rare earth metal, B = transition metal) or (A, B) x Nb
An object is to provide O 3 (X ≦ 1, A = alkaline earth metal or rare earth metal, B = transition metal) and a method for producing the same.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の本発明は、以下の技術的手段から構成される。 (1)ニオブ酸塩、遷移金属(Mn,Fe,Cu,N
i,Co)、及びアルカリ土類金属(Ca,Sr,B
a) 、必要により希土類金属(La,Ce,Eu等)を
含む、0.01〜10Ohm,mの導電性を有し、固溶
金属金属種によりn型、p型の電気伝導特性が制御可能
な、A0.8-ααNbO3-δ(α=0〜0.2,A=C
a,Sr,Baのアルカリ土類金属又は希土類金属、B
=遷移金属)もしくは(A,B)x NbO3 (X≦1)
で表されるペロブスカイト型正方晶ニオブ酸塩材料であ
って、シュウ酸ニオブ、可溶性の遷移金属、及びアルカ
リ土類金属塩、必要により可溶性の希土類金属塩を水に
溶解した均一混合水溶液の前駆体溶液と、水溶性のアル
キルアミン類を攪拌下混合し、沈澱を生成させ、得られ
た沈澱を空気中900〜1100℃で仮焼して得られ
る、遷移金属が均一に固溶した正方晶ニオブ酸塩材料。 (2)前記(1)に記載の遷移金属が均一に固溶した正
方晶ニオブ酸塩材料を製造する方法であって、出発原料
として、シュウ酸ニオブ、可溶性の遷移金属、及びアル
カリ土類金属塩、必要により可溶性の希土類金属塩を用
い、それらを溶解し、混合した均一混合溶液として前駆
体溶液を調製し、それらに、沈澱剤として、水溶性の強
アルキル性アルキルアミン類を加えて、可溶性遷移金属
錯体形成による遷移金属イオンの溶解を抑制しながら効
率よく水酸化物ならびに酸化物沈澱を生成させ、得られ
た沈澱を空気中900〜1100℃で仮焼することによ
り、遷移金属が均一に固溶した正方晶ニオブ酸塩の単一
相からなる、ナノ粒子サイズ(10〜100nm)の低
凝集性の微細粒子を得ることを特徴とする遷移金属固溶
型導電性ニオブ酸塩材料の製造方法。
The present invention for solving the above-mentioned problems comprises the following technical means. (1) Niobate, transition metal (Mn, Fe, Cu, N
i, Co) and alkaline earth metals (Ca, Sr, B)
a) having a conductivity of 0.01 to 10 Ohm, m, containing a rare earth metal (La, Ce, Eu, etc.) as required, and n-type and p-type electric conduction characteristics can be controlled by the solid solution metal species A 0.8-α B α NbO 3-δ (α = 0-0.2, A = C
a, Sr, Ba alkaline earth metal or rare earth metal, B
= Transition metal) or (A, B) x NbO 3 (X ≦ 1)
A perovskite-type tetragonal niobate material represented by the formula: a precursor of a homogeneous mixed aqueous solution in which niobium oxalate, a soluble transition metal, and an alkaline earth metal salt, and if necessary, a soluble rare earth metal salt are dissolved in water A solution and a water-soluble alkylamine are mixed with stirring to form a precipitate, and the obtained precipitate is calcined at 900 to 1100 ° C in the air to obtain a tetragonal niobium in which transition metals are uniformly dissolved. Acid salt material. (2) A method for producing a tetragonal niobate material in which the transition metal according to (1) is uniformly dissolved, wherein niobium oxalate, a soluble transition metal, and an alkaline earth metal are used as starting materials. Using a salt and, if necessary, a soluble rare earth metal salt, dissolving them, preparing a precursor solution as a mixed homogeneous solution, adding a water-soluble strong alkylamine as a precipitant thereto, A hydroxide and an oxide precipitate are efficiently formed while suppressing the dissolution of transition metal ions due to the formation of a soluble transition metal complex, and the resulting precipitate is calcined at 900 to 1100 ° C. in air, so that the transition metal is homogeneous. Transition metal solid solution type niobate characterized by obtaining low-aggregation fine particles of nanoparticle size (10 to 100 nm) consisting of a single phase of tetragonal niobate solid-dissolved in water Method of manufacturing the material.

【0008】[0008]

【発明の実施の形態】次に、本発明について更に詳細に
説明する。アルカリ土類金属ニオブ酸塩材料に低温及び
短時間で雰囲気制御を必要とせずに導電性を付加するた
めに、遷移金属を含むアルカリ土類金属ニオブ酸塩前駆
体を液相からの共沈で合成し、その仮焼反応での遷移金
属固溶により正方晶アルカリ土類金属ニオブ酸材料の導
電性制御を行った。本発明においては、出発材料とし
て、必須の材料のシュウ酸ニオブ、可溶性の遷移金属
(Mn,Fe,Cu,Ni,Co)、及びアルカリ土類
金属(Ca,Sr,Ba) 塩(硝酸塩、塩化物、酢酸塩
又は金属酸化物を硝酸、塩酸等の強酸に溶解した溶液)
を用い、必要により任意の材料の可溶性の希土類金属塩
(硝酸塩、塩化物、酢酸塩又は金属酸化物を硝酸、塩酸
等の強酸に溶解した溶液)を用い、合成プロセスとし
て、それらを水に溶解し混合した均一混合水溶液として
前駆体溶液を調製し、それらに、沈澱剤として、水溶性
の強アルキル性アルキルアミン類を攪拌下混合して沈澱
を生成させ、それらを、図1のプロセスにより、ろ別、
水洗後、非還元雰囲気中(即ち、空気中)900〜11
00℃で仮焼する工程を採る。得られた仮焼粉体を粉砕
後、適宜の手段で、成形し、例えば、1200〜135
0℃で焼結することにより、導電性焼結体材料が製造さ
れる。従来、セラミックス材料原料の組成制御や合成粒
子の反応性向上のために、微細粒子を容易に合成可能な
均一金属混合溶液からの共沈による原料合成は多く行わ
れている。しかしながら、ニオブ酸は、加水分解速度が
早く、高濃度の均一溶液を合成するのは容易ではない。
そのため、溶液法による沈澱過程での粒子形態の制御も
難しい。そのため、調製及び組成制御が容易であり、か
つ沈澱反応の制御による粒子形態の制御が可能な合成プ
ロセスを検討することが重要である。本発明では、上記
の課題を解決するために、以下の技術的手段が採用され
る。
Next, the present invention will be described in more detail. In order to add conductivity to the alkaline earth metal niobate material at low temperature and in a short time without requiring atmosphere control, an alkaline earth metal niobate precursor containing a transition metal is coprecipitated from a liquid phase. The conductivity of the tetragonal alkaline earth metal niobate material was controlled by the transition metal solid solution in the calcination reaction. In the present invention, niobium oxalate as an essential material, soluble transition metals (Mn, Fe, Cu, Ni, Co), and alkaline earth metal (Ca, Sr, Ba) salts (nitrate, chloride) are used as starting materials. Solution of a substance, acetate or metal oxide in a strong acid such as nitric acid or hydrochloric acid)
If necessary, use a soluble rare earth metal salt of any material (a solution of nitrate, chloride, acetate or metal oxide in a strong acid such as nitric acid, hydrochloric acid, etc.), and dissolve them in water as a synthesis process Then, a precursor solution is prepared as a homogeneously mixed aqueous solution, and a water-soluble strong alkylamine as a precipitant is mixed with the resulting mixture under stirring to form a precipitate. Filtering,
After washing with water, in a non-reducing atmosphere (that is, in air) 900 to 11
A step of calcining at 00 ° C is employed. After the obtained calcined powder is pulverized, it is molded by an appropriate means.
By sintering at 0 ° C., a conductive sintered body material is manufactured. 2. Description of the Related Art Conventionally, in order to control the composition of a ceramic material raw material and improve the reactivity of synthetic particles, raw material synthesis by coprecipitation from a homogeneous metal mixed solution capable of easily synthesizing fine particles has been frequently performed. However, niobic acid has a high hydrolysis rate, and it is not easy to synthesize a highly concentrated homogeneous solution.
Therefore, it is difficult to control the particle morphology during the precipitation process by the solution method. Therefore, it is important to consider a synthesis process in which preparation and composition control are easy and particle morphology can be controlled by controlling precipitation reaction. In the present invention, the following technical means are employed to solve the above-mentioned problems.

【0009】(1)遷移金属及び希土類金属混合シュウ
酸ニオブ酸均一前駆体溶液の利用。 金属の定量分析において、ニオブ酸塩やチタン酸塩は、
強酸性条件下で過酸化水素と混合することにより溶解性
の過酸化ニオブ酸錯体を作ることが知られている。酸性
溶液にニオブ酸塩を溶解する際、金属アルコキシド錯体
や五塩化ニオブ等が利用できる。しかしながら、それら
の試薬は、空気中の水分と反応しやすいため、取扱いが
難しい。そのため、より操作しやすい前駆体溶液の調製
法が必要とされる。シュウ酸ニオブ(Nb(HC2
45 )は、硝酸溶液に徐々に溶け、更に、過酸化水素
を混合することにより過酸化水素錯体を形成し、pH<
2の酸性溶液に安定に溶解する。それらは、試薬として
金属アルコキシドや塩化ニオブと比べても空気中で安定
であり、溶解後、数日間室温で放置しても沈澱が生成せ
ず、安定なニオブ酸均一溶液が調製できる。また、沈澱
時には遊離したシュウ酸がpH緩衝剤として作用する。
そのため、中和沈澱での沈澱反応の制御に寄与し、粒子
形態の制御において粒子成長速度の制御への効果が期待
できる。コスト的にもアルコキシド化合物に比べ安価で
ある。更に、酸に溶解したシュウ酸ニオブ酸溶液に他の
遷移金属や希土類金属塩を同時に溶解することが可能で
あり、共沈や均一沈澱での混合金属塩均一溶液として利
用することが可能である。
(1) Use of a homogeneous precursor solution of niobate oxalate mixed with a transition metal and a rare earth metal. In the quantitative analysis of metals, niobate and titanate are
It is known to produce soluble niobate peroxide complexes by mixing with hydrogen peroxide under strongly acidic conditions. When dissolving the niobate in the acidic solution, a metal alkoxide complex, niobium pentachloride or the like can be used. However, these reagents are difficult to handle because they easily react with moisture in the air. Therefore, a method of preparing a precursor solution that is easier to operate is needed. Niobium oxalate (Nb (HC 2 O
4 ) 5 ) is gradually dissolved in a nitric acid solution, and further mixed with hydrogen peroxide to form a hydrogen peroxide complex, and pH <
Dissolves stably in acidic solution of 2. They are stable in the air as compared with metal alkoxides and niobium chloride as reagents, and do not precipitate even after several days of standing at room temperature after dissolution, so that a stable solution of niobate can be prepared. In addition, oxalic acid released during precipitation acts as a pH buffer.
Therefore, it contributes to the control of the precipitation reaction in the neutralization precipitation, and can be expected to have an effect on the control of the particle growth rate in the control of the particle morphology. The cost is lower than that of the alkoxide compound. Furthermore, it is possible to simultaneously dissolve other transition metals and rare earth metal salts in a solution of niobium oxalate dissolved in an acid, and it can be used as a mixed metal salt uniform solution in coprecipitation or uniform precipitation. .

【0010】(2)水溶性アルキルアミン類の沈澱剤と
しての利用。 次に、それらの混合金属塩溶液を用い、遷移金属や希土
類を固溶させるニオブ酸塩前駆体を中和共沈させる場
合、通常使用される強アルカリ沈澱剤として、焼成後不
純物として残らないため、アンモニア等が使用される
が、遷移金属等との共沈では、アンモニアとの可溶性錯
体を形成するため、溶液中へ金属イオンが残留し、使用
することができない。そのため、加水分解により水酸化
物もしくは酸化物として沈澱が生成する強アルカリ条件
に制御でき、かつ遷移金属との錯体形成能が低く、最終
生成物にアルカリ金属のような不純物が残らない沈澱剤
が必要とされる。アルキルアミン類は、水溶性であり水
に混合することにより溶液を強アルカリ性に調整でき
る。また、結合するアルキル基の数により錯体形成速度
が異なるため、その長さにより金属錯体の形成能を制御
できる可能性がある。それにより、アンモニア等では沈
澱しにくいニッケルやコバルト等の遷移金属イオンをニ
オブ酸と共沈させることができる。また、アルキルアミ
ン類は、イオン交換性の層状粘土化合物の層間に吸着・
イオン交換し整列させることにより、層間の構造を制御
するのに利用されており、同様に、沈澱過程で沈澱物へ
吸着により取込まれ、テンプレートとして働くことによ
り、前駆体中の微細構造を制御することも期待できる。
これらのプロセスで使用するシュウ酸及びアルキルアミ
ン類は、600〜900℃で焼成、分解するため、試料
より除去することは容易である。
(2) Use of water-soluble alkylamines as a precipitant. Next, when the mixed metal salt solution is used to neutralize and co-precipitate a niobate precursor for forming a solid solution of a transition metal or a rare earth, as a generally used strong alkali precipitant, it does not remain as an impurity after firing. However, co-precipitation with a transition metal or the like forms a soluble complex with ammonia, so that metal ions remain in the solution and cannot be used. Therefore, a precipitant which can be controlled to a strong alkali condition in which a precipitate is formed as a hydroxide or an oxide by hydrolysis, has a low ability to form a complex with a transition metal, and does not leave impurities such as alkali metals in the final product. Needed. Alkylamines are water-soluble and can be adjusted to a strongly alkaline solution by mixing with water. In addition, since the rate of complex formation varies depending on the number of alkyl groups bonded, the ability to form a metal complex may be controlled by the length. This makes it possible to coprecipitate transition metal ions, such as nickel and cobalt, which hardly precipitate with ammonia or the like, with niobate. In addition, alkylamines are adsorbed between layers of ion-exchangeable layered clay compounds.
It is used to control the structure between layers by ion exchange and alignment.Similarly, it is incorporated into the precipitate by adsorption during precipitation and acts as a template to control the microstructure in the precursor. We can expect to do it.
Oxalic acid and alkylamines used in these processes are calcined and decomposed at 600 to 900 ° C., so that they can be easily removed from the sample.

【0011】(3)上記(1)〜(2)で調製した前駆
体を利用する遷移金属固溶型正方晶ニオブ酸塩導電性材
料の低温合成。 遷移金属固溶型正方晶ニオブ酸塩材料は、組成制御によ
り結晶中の電気伝導構造が変化し、更に、固溶させる金
属種及び濃度制御による電子伝導性の制御が可能なた
め、高温型燃料電池の電極材料や熱電変換材料として注
目されている。しかしながら、その合成温度は1200
℃以上と高く、更に、固相法による組成制御ならびに組
成の均一化、更には、粒子形態の制御による特性制御に
は限界がある。そこで、種々検討したところ、上記
(1)及び(2)の方法を利用することにより、目的の
遷移金属固溶型正方晶ニオブ酸塩導電性材料を低温合成
することが可能であり、固溶遷移金属種による材料の電
気伝導特性(n型/p型)の制御もできることが分かっ
た。
(3) Low-temperature synthesis of a transition metal solid solution type tetragonal niobate conductive material using the precursor prepared in the above (1) and (2). The transition metal solid solution type tetragonal niobate material changes the electric conduction structure in the crystal by controlling the composition, and furthermore, the electron conductivity can be controlled by controlling the metal species to be dissolved and the concentration, so that the high temperature fuel It is attracting attention as an electrode material for batteries and a thermoelectric conversion material. However, its synthesis temperature is 1200
° C or higher, and furthermore, there is a limit to the composition control and uniformity of the composition by the solid phase method, and further to the characteristic control by the control of the particle morphology. Therefore, after various investigations, it was possible to synthesize the desired transition metal solid solution type tetragonal niobate conductive material at low temperature by using the above methods (1) and (2). It has been found that the electrical conduction characteristics (n-type / p-type) of the material can also be controlled by the transition metal species.

【0012】本発明は、導電性のある酸化物セラミック
ス材料として、各種光電子材料に利用が期待される微細
粒子径を持ち、固溶金属種による電気伝導特性が制御さ
れた遷移金属固溶型正方晶ニオブ酸塩導電性材料を、よ
り扱いやすい試薬と簡単なプロセスを利用し、低温合成
するプロセスを提供することを可能とする。合成プロセ
スでは、水溶性のシュウ酸ニオブ、可溶性の遷移金属
(Mn,Fe,Cu,Ni,Co)、及びアルカリ土類
金属(Ca,Sr,Ba)、必要により可溶性の希土類
金属(La,Ce,Eu等)の水溶性塩(硝酸塩、塩化
物、酢酸塩もしくは酸化物を硝酸等の強酸に溶解したも
の)を溶解、混合し、均一混合溶液として前駆体溶液を
調製し、それらを強アルカリ性のアルキルアミン溶液
(メチルアミン、エチルアミン、テトラメチルアミン、
プロピルアミン、ブチルアミン等)にて、安定な可溶錯
体形成による遷移金属の溶解を防ぎ、効率よく水酸化物
ならびに酸化物沈澱を生成させる。それらを空気中90
0〜1100℃で仮焼することにより、遷移金属が均一
に固溶した正方晶ニオブ酸塩材料が単一相として低温で
合成できる。更に、この合成プロセスで合成される材料
は、固相反応及び粉砕により合成される粉体に比べて微
細で、多結晶焼結体を合成する原料粉体としても、相対
密度95%以上のち密な材料が合成できる。また、固溶
する遷移金属種を変えることにより、電気伝導特性をp
型及びn型に制御できる。
According to the present invention, there is provided a transition metal solid solution type square having a fine particle diameter which is expected to be used for various optoelectronic materials as an electrically conductive oxide ceramic material and having a controlled electric conduction property by a solid solution metal species. It is possible to provide a process for synthesizing a crystalline niobate conductive material at a low temperature by using a reagent which is easier to handle and a simple process. In the synthesis process, water-soluble niobium oxalate, soluble transition metals (Mn, Fe, Cu, Ni, Co) and alkaline earth metals (Ca, Sr, Ba) and, if necessary, soluble rare earth metals (La, Ce) , Eu etc.) are dissolved and mixed with a water-soluble salt (nitrate, chloride, acetate or oxide dissolved in a strong acid such as nitric acid) to prepare a precursor solution as a homogeneous mixed solution. Alkylamine solution (methylamine, ethylamine, tetramethylamine,
Propylamine, butylamine, etc.) to prevent the transition metal from dissolving due to the formation of a stable soluble complex, and to efficiently form hydroxides and oxide precipitates. 90 in the air
By calcining at 0 to 1100 ° C., a tetragonal niobate material in which the transition metal is uniformly dissolved can be synthesized as a single phase at a low temperature. Furthermore, the material synthesized in this synthesis process is finer than the powder synthesized by solid-phase reaction and pulverization, and has a relative density of 95% or more as a raw material powder for synthesizing a polycrystalline sintered body. Material can be synthesized. Further, by changing the transition metal species to be dissolved, the electric conduction characteristics can be improved by p.
Type and n-type.

【0013】[0013]

【実施例】以下、実施例により本発明を具体的に説明す
るが、本発明はこれらの実施例によってなんら限定され
るものではない。 実施例1 図1に、シュウ酸錯体前駆体溶液とアミン系沈澱剤を利
用する本発明の遷移金属固溶型正方晶ニオブ酸塩導電性
酸化物材料の合成法のフローチャートを示す。図1に示
すように、市販のシュウ酸ニオブNb(HC245
(添川化学(株))を過酸化水素水を含む硝酸溶液に溶
解し、その後、同様に遷移金属硝酸塩のFe(NO3
2 ,Ni(NO32 又はCo(NO32 と硝酸スト
ロンチウム溶液(Sr(NO32 )を所定比、例え
ば、モル比をニオブ:遷移金属:ストロンチウム=1
0:20:60、で混合し、黄色〜緑色の透明の均一混
合溶液を調製した。必要により希土類の硝酸塩溶液を所
定量混合した。それに沈澱剤として10倍モル量の50
%アンモニア水溶液、又は50%ブチルアミン水溶液を
攪拌下、所定量加え、pH11〜12にし、室温で4時
間撹拌し、沈澱を得た。得られた沈澱を1000rp
m、5分間、遠心分離機で分離するとともに、3倍容量
の蒸留水で3回洗浄した。沈澱は90℃で一昼夜乾燥
し、900〜1100℃で10時間仮焼した。得られた
沈殿物及び生成物の熱重量分析、粉末X線解析及び走査
型電子顕微鏡観察等を行った。また、電気特性ならびに
熱伝導特性について、仮焼粉体を粉砕後、200MPa
でCIP成形し、1200〜1350℃で6時間焼結し
た成形体を用いて調べた。
EXAMPLES The present invention will now be described specifically with reference to examples, but the present invention is not limited to these examples. Example 1 FIG. 1 shows a flow chart of a method for synthesizing a transition metal solid solution type tetragonal niobate conductive oxide material of the present invention using an oxalic acid complex precursor solution and an amine-based precipitant. As shown in FIG. 1, commercially available niobium oxalate Nb (HC 2 O 4 ) 5
(Soekawa Chemical Co., Ltd.) was dissolved in a nitric acid solution containing aqueous hydrogen peroxide, and then the transition metal nitrate Fe (NO 3 )
2 , Ni (NO 3 ) 2 or Co (NO 3 ) 2 and a strontium nitrate solution (Sr (NO 3 ) 2 ) at a predetermined ratio, for example, a molar ratio of niobium: transition metal: strontium = 1
0:20:60 to prepare a yellow-green clear homogeneous mixed solution. If necessary, a predetermined amount of a rare earth nitrate solution was mixed. In addition, a 10-fold molar amount of 50
A predetermined amount of a 50% aqueous solution of ammonia or a 50% aqueous solution of butylamine was added with stirring to adjust the pH to 11 to 12, and the mixture was stirred at room temperature for 4 hours to obtain a precipitate. The obtained precipitate is subjected to 1000 rpm
m, separated by a centrifuge for 5 minutes, and washed three times with three times the volume of distilled water. The precipitate was dried at 90 ° C. overnight and calcined at 900 to 1100 ° C. for 10 hours. The obtained precipitates and products were subjected to thermogravimetric analysis, powder X-ray analysis, scanning electron microscope observation, and the like. Also, regarding the electrical characteristics and the heat conduction characteristics, after the calcined powder was pulverized, 200 MPa
, And examined using a molded body sintered at 1200 to 1350 ° C. for 6 hours.

【0014】実施例2 実施例1において、アンモニア、及びブチルアミンを沈
澱剤として用い調製したニオブーニッケルーストロンチ
ウム混合沈澱物の熱重量分析の結果を図2、及び図3に
示す。アンモニア混合により生成した混合沈澱物は〜2
00℃までに沈澱に含まれる水分の脱離による吸熱ピー
ク、450℃付近に共沈したシュウ酸の分解脱離による
発熱ピークが見られた。また、ブチルアミンを用いて沈
澱した前駆体では350℃付近に沈殿物に取込まれたブ
チルアミンの分解脱離による発熱ピークがみられ、沈殿
物中にブチルアミンが取込まれている。更に、混合沈殿
物を加熱すると900℃以上で重量変化が見られなくな
り、900℃以上で焼成することにより錯体や沈澱剤が
完全に脱離することが分かった。実施例1において、ア
ンモニア、及びブチルアミンを沈澱剤として用い調製し
たニオブーニッケルーストロンチウム混合沈澱物、及び
1100℃10時間焼成した生成物の粉末X線回折パタ
ーンを図4に示す。また、それらの電子顕微鏡写真を図
5に示す。
Example 2 The results of thermogravimetric analysis of the niobium-nickel strontium mixed precipitate prepared in Example 1 using ammonia and butylamine as the precipitating agent are shown in FIGS. 2 and 3. The mixed precipitate formed by mixing ammonia is about 2
An endothermic peak due to the elimination of water contained in the precipitate by 00 ° C. and an exothermic peak due to the decomposition and elimination of oxalic acid coprecipitated around 450 ° C. were observed. Further, in the case of the precursor precipitated using butylamine, an exothermic peak due to the decomposition and desorption of butylamine incorporated in the precipitate is observed at around 350 ° C., and butylamine is incorporated in the precipitate. Further, it was found that when the mixed precipitate was heated, no change in weight was observed at 900 ° C. or higher, and the complex and the precipitant were completely eliminated by firing at 900 ° C. or higher. FIG. 4 shows the powder X-ray diffraction patterns of the niobium-nickel strontium mixed precipitate prepared in Example 1 using ammonia and butylamine as the precipitant, and the product calcined at 1100 ° C. for 10 hours. In addition, FIG. 5 shows electron micrographs thereof.

【0015】アンモニアを沈澱剤として用い調製したニ
オブーニッケルーストロンチウム混合沈澱物は、主に水
酸化ストロンチウムと酸化ニオブ水和物の混合物であ
り、ブチルアミンを混合した場合では、粉末X線回折の
低角にピークが見られ、沈澱過程でのブチルアミンの取
込みにより層状構造をもつニオブ酸塩が部分的に混入し
ていることが熱分析の結果と合わせて分かった。それら
の混合沈殿物を1100℃で焼成すると水酸化物及び層
状化合物に起因する粉末X線回折ピークは消失し、正方
晶SrX NbO3 構造(X=0.5〜1.0)のピーク
が見られた。アンモニアにより合成した沈澱を焼成した
ものでは格子定数がa=4.1256Å,の正方晶Sr
X NbO3 構造(X=1.0)のX線回折ピークが主生
成物として生成したが、副生成物としてパイロクロア相
のX線回折ピークも確認できた。一方、ブチルアミンに
より共沈させた混合沈殿物を焼成した場合、格子定数が
a=4.1256Å,とa=3.955Åの正方晶(N
i,Sr)X NbO3 構造(x=1.0及び0.7)の
X線回折ピークのみ確認でき、正方晶単一相の生成物が
得られた。これにより、従来の正方晶SrX NbO3
造(X=0.5〜1.0)の固相合成に比べて、低温及
び短時間で目的の生成物が合成できた。
The niobium-nickel strontium mixed precipitate prepared using ammonia as a precipitant is mainly a mixture of strontium hydroxide and niobium oxide hydrate. When butylamine is mixed, the powder X-ray diffraction is low. Peaks were observed at the corners, indicating that niobate having a layered structure was partially contaminated by the incorporation of butylamine during the precipitation process, together with the results of thermal analysis. When those mixed precipitates are calcined at 1100 ° C., the powder X-ray diffraction peak caused by the hydroxide and the layered compound disappears, and the peak of the tetragonal Sr X NbO 3 structure (X = 0.5 to 1.0) disappears. Was seen. When the precipitate synthesized with ammonia is calcined, tetragonal Sr having a lattice constant of a = 4.1256 °
An X-ray diffraction peak of the X NbO 3 structure (X = 1.0) was generated as a main product, but an X-ray diffraction peak of a pyrochlore phase was also confirmed as a by-product. On the other hand, when the mixed precipitate co-precipitated with butylamine is calcined, a tetragonal crystal having a lattice constant of a = 4.1256 ° and a = 3.955 ° (N
Only the X-ray diffraction peak of the (i, Sr) X NbO 3 structure (x = 1.0 and 0.7) was confirmed, and a tetragonal single phase product was obtained. As a result, the desired product could be synthesized at a lower temperature and in a shorter time than the conventional solid phase synthesis of the tetragonal Sr X NbO 3 structure (X = 0.5 to 1.0).

【0016】また、アンモニアにより共沈させた試料
は、焼成後も白色の粉体であったが、ブチルアミンで共
沈させた試料を1100℃、10時間焼成すると、生成
粉体の色が白色から黒色に変化した。このことより、ブ
チルアミンにて共沈させた試料ではNiが固溶したと考
えられる。また、アンモニアを用いて共沈させた場合、
溶液の色がニッケルーアンモニウム錯体の生成による青
みがかったままであり、混合沈澱物へのニッケルの共沈
がほとんど起らなかったと考えられる。そのため、ニッ
ケル固溶にともなう格子定数の変化や試料色の変化はま
ったく見られなかった。ブチルアミンを沈澱剤として用
い調製した混合沈澱物、ならびにそれを焼成した試料
は、1μm以下の微粒子で、凝集性も低かった。また、
固相法(1350℃、36時間)、アンモニア、及びブ
チルアミンを沈澱剤として用い調製した混合沈澱物を焼
成した試料の粒子径分布を図6に示す。固相法ならびに
アンモニアを用いて共沈させ、焼成した粉体は、3μm
の大きな粒子を含んでいるが、ブチルアミンにより調製
した混合沈澱物を焼成したものは、0.8μmのラジア
ン径を持つナノサイズオーダーの超微粒子であった。
The sample coprecipitated with ammonia was a white powder even after firing, but when the sample coprecipitated with butylamine was fired at 1100 ° C. for 10 hours, the color of the resulting powder changed from white to white. It turned black. From this, it is considered that Ni was dissolved in the sample coprecipitated with butylamine. Also, when co-precipitated with ammonia,
It is considered that the color of the solution remained bluish due to the formation of the nickel-ammonium complex, and almost no co-precipitation of nickel into the mixed precipitate occurred. Therefore, no change in the lattice constant and no change in the sample color due to the solid solution of nickel was observed. The mixed precipitate prepared by using butylamine as a precipitant, and a sample obtained by calcining the mixed precipitate were fine particles of 1 μm or less and had low cohesion. Also,
FIG. 6 shows the particle size distribution of a sample obtained by calcining the mixed precipitate prepared by using the solid phase method (1350 ° C., 36 hours), ammonia and butylamine as the precipitant. Powder co-precipitated using solid phase method and ammonia and calcined is 3 μm
When the mixed precipitate prepared with butylamine was calcined, ultra-fine particles of the order of nanometers having a radian diameter of 0.8 μm were obtained.

【0017】実施例3 実施例2において、ブチルアミンを沈澱剤として用い調
製した正方晶 (Ni,Sr)X NbO3 (x=0.7)
焼成粉体を粉砕後、3×3×20mmに一軸加圧成形及
び200MPaでCIP成形した成形体を1200℃で
6時間焼結した。(Sr3/4 Ni1/4X NbO3 (x
=0.7)として計算した焼結体の相対密度は約95%
と、固相法(1350℃、36時間)で調製した粉体を
同様に成形・焼結したもの(相対密度83%)に比べ
て、ち密であった。焼結体試料表面を1500番のSi
C研摩紙で鏡面に磨き、直流4端子法による電気抵抗値
及び所定温度差での熱起電力(ゼーベック係数)を測定
した。合成した正方晶(Ni,Sr)x NbO3 焼結体
の電気抵抗値及び所定温度差での熱起電力(ゼーベック
係数)の温度依存性、また、実施例1、2と同様な方法
で合成した正方晶(Sr,Fe)X NbO3 の電気抵抗
率ならびに熱起電力を図7に示す。
Example 3 Tetragonal (Ni, Sr) X NbO 3 (x = 0.7) prepared in Example 2 using butylamine as a precipitant.
After pulverizing the calcined powder, a compact formed by uniaxial pressure molding to 3 × 3 × 20 mm and CIP molding at 200 MPa was sintered at 1200 ° C. for 6 hours. (Sr 3/4 Ni 1/4 ) X NbO 3 (x
= 0.7) and the relative density of the sintered body calculated as about 95%
And a powder obtained by the solid-phase method (1350 ° C., 36 hours) was similarly compacted and sintered (relative density: 83%), and was denser. The surface of the sintered body sample was
The mirror surface was polished with C polishing paper, and the electric resistance value and the thermoelectromotive force (Seebeck coefficient) at a predetermined temperature difference were measured by a DC four-terminal method. Temperature dependence of the electric resistance value of the synthesized tetragonal (Ni, Sr) x NbO 3 sintered body and the thermoelectromotive force (Seebeck coefficient) at a predetermined temperature difference, and synthesized in the same manner as in Examples 1 and 2. FIG. 7 shows the electrical resistivity and the thermoelectromotive force of the obtained tetragonal (Sr, Fe) x NbO 3 .

【0018】調製した正方晶(Ni,Sr)X NbO3
焼結体は室温で約10 Ohm,mの抵抗値を示し、温
度が高くなるとともにその抵抗値は1.5×10-1から
4.0×10-2 Ohm,m(450〜750℃)と減
少した。また、450〜750℃での熱起電力は0.1
〜1.0mV/Kと温度差に対し正の起電力を示し、更
に、温度が高くなるとともにその値は増加した。これら
のことにより、調製した正方晶(Ni,Sr)X NbO
3 はp型の導電性酸化物材料であることが確認できた。
一方、同様な方法で合成した正方晶(Sr,Fe)X
bO3 は、正方晶(Ni,Sr)X NbO3 に比べて一
桁低くかったが、同様に導電性が確認できた、しかしな
がら、正方晶(Sr,Fe)X NbO3 では450〜7
50℃で−0.43〜−0.47mV/Kと負の熱起電
力を示し、n型の導電性酸化物材料であった。このこと
より、固溶させる遷移金属により正方晶SrX NbO3
型材料の電気伝導特性(n型/p型)を制御することが
できた。
The prepared tetragonal (Ni, Sr) x NbO 3
The sintered body exhibits a resistance value of about 10 Ohm, m at room temperature, and its resistance value increases from 1.5 × 10 -1 to 4.0 × 10 -2 Ohm, m (450 to 750 ° C.) as the temperature increases. And decreased. The thermoelectromotive force at 450 to 750 ° C. is 0.1
It showed a positive electromotive force with respect to the temperature difference of about 1.0 mV / K, and its value increased as the temperature increased. Thus, the prepared tetragonal (Ni, Sr) x NbO
3 was confirmed to be a p-type conductive oxide material.
On the other hand, tetragonal (Sr, Fe) x N synthesized by the same method
Although bO 3 was one order of magnitude lower than tetragonal (Ni, Sr) x NbO 3 , conductivity was also confirmed. However, tetragonal (Sr, Fe) x NbO 3 was 450 to 7
It exhibited a negative thermoelectromotive force of -0.43 to -0.47 mV / K at 50 ° C, and was an n-type conductive oxide material. From this, tetragonal Sr x NbO 3 is formed by the transition metal to be dissolved.
It was possible to control the electric conduction characteristics (n-type / p-type) of the mold material.

【0019】一般的に、ニッケル酸化物は、酸化による
ホール形成とそのホッピング伝導によりp型の伝導特性
を示すことが知られる。よって、SrX NbO3 ホスト
に固溶したNi2+がNb5+をNb4+還元しNi3+が生成
することによりホールによる電子伝導キャリアが生成し
導電性が見られると思われる。更に、高温ほどキャリア
生成とその移動速度が早くなるため、高温ほど抵抗値が
低下し熱起電力が高くなると考えられる。更に、正方晶
SrX NbO3 型材料への固溶させる遷移金属による電
気伝導特性(n型/p型)制御は、熱電変換材料や整流
でバイス等のp−n接合が必要な電子デバイス材料へ利
用する場合、容易に電気伝導特性を制御できるため重要
であり、また、ホスト材料が同じなため、接合時におけ
る熱膨張率の違いによる高温歪での亀裂破壊等の問題を
防ぐことが期待できる。
In general, it is known that nickel oxide exhibits p-type conduction characteristics due to hole formation due to oxidation and hopping conduction. Therefore, it is considered that Ni 2+ dissolved in the Sr x NbO 3 host reduces Nb 5+ to Nb 4+ to generate Ni 3+ , whereby electron conduction carriers are generated by holes, and conductivity is observed. Further, it is considered that the higher the temperature, the faster the carrier generation and its movement speed, and thus the higher the temperature, the lower the resistance value and the higher the thermoelectromotive force. Further, the control of the electric conduction characteristics (n-type / p-type) by the transition metal dissolved in the tetragonal Sr x NbO 3 type material is carried out by using a thermoelectric conversion material or an electronic device material requiring a pn junction such as a vise for rectification. It is important to use this material for easy control of electrical conduction characteristics, and it is expected to prevent problems such as crack destruction due to high temperature strain due to differences in the coefficient of thermal expansion at the time of joining because the same host material is used. it can.

【0020】次に、レーザーフラッシュ法で測定した正
方晶(Sr,Ni)X NbO3 焼結体の熱伝導度の温度
変化を図8に示す。合成した正方晶(Sr,Ni)X
bO3 の室温(23℃)での熱容量は0.4922J/
gK、熱拡散率は0.004cm2 /s及び熱伝導率は
0.906W/mKと他の導電性酸化物材料と比べて熱
伝導率が低いことが分かった。また、温度の増加ととも
に熱伝導度は増加し、450〜750℃では1.35〜
1.45W/mKの値であった。高温での導電率の増加
は温度の増加とともにキャリア濃度が増加するためと思
われる。一般的に、ニオブのような重い元素で構成され
るため、熱による格子の振動が少なく熱伝導率が低いと
考えられる。
Next, FIG. 8 shows the temperature change of the thermal conductivity of the tetragonal (Sr, Ni) x NbO 3 sintered body measured by the laser flash method. Synthesized tetragonal (Sr, Ni) X N
The heat capacity of bO 3 at room temperature (23 ° C.) is 0.4922 J /
gK, the thermal diffusivity was 0.004 cm 2 / s, and the thermal conductivity was 0.906 W / mK, which was lower than the other conductive oxide materials. In addition, the thermal conductivity increases with an increase in temperature.
The value was 1.45 W / mK. The increase in conductivity at high temperatures is presumably due to the increase in carrier concentration with increasing temperature. In general, it is considered that since the lattice is composed of a heavy element such as niobium, the lattice vibration due to heat is small and the thermal conductivity is low.

【0021】以上の実施例により、調製の容易なシュウ
酸ニオブ試薬を利用する混合金属均一溶液前駆体とブチ
ルアミン等のアルカリ性アミンを沈澱剤を用いた共沈と
その焼成により、低温・短時間で導電性のある遷移金属
固溶型正方晶SrX NbO3 の微粒子が容易に調製でき
ることが分かった。また、固溶遷移金属組成の制御によ
り、その電気伝導特性の制御ができることも分かった。
According to the above examples, the easily prepared sho
Mixed metal homogeneous solution precursor and butyrate using niobium acid reagent
Coprecipitation of alkaline amines such as
The transition metal that is conductive at low temperature and short time
Solid solution type tetragonal SrX NbOThree Particles can be easily prepared
I found out. In addition, control of the solid solution transition metal composition
It was also found that the electric conduction characteristics could be controlled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】シュウ酸錯体前駆体溶液とアミン系沈澱剤を利
用する遷移金属固溶型正方晶ニオブ酸塩導電性酸化物材
料の合成法のフローチャートを示す。
FIG. 1 shows a flow chart of a method for synthesizing a transition metal solid solution type tetragonal niobate conductive oxide material using an oxalic acid complex precursor solution and an amine-based precipitant.

【図2】アンモニアを沈澱剤として用いて調製したニオ
ブーニッケルーストロンチウム混合沈澱物の熱重量分析
の結果を示す。
FIG. 2 shows the results of thermogravimetric analysis of a niobium-nickel strontium mixed precipitate prepared using ammonia as a precipitant.

【図3】ブチルアミンを沈澱剤として用いて調製したニ
オブーニッケルーストロンチウム混合沈澱物の熱重量分
析の結果を示す。
FIG. 3 shows the results of thermogravimetric analysis of a niobium-nickel strontium mixed precipitate prepared using butylamine as a precipitant.

【図4】アンモニア及びブチルアミンを沈澱剤として用
いて調製したニオブーニッケルーストロンチウム混合沈
澱物、及び1100℃、10時間焼成した生成物の粉末
X 線回折パターンを示す。
FIG. 4. Niobium-nickel strontium mixed precipitate prepared using ammonia and butylamine as precipitants, and powder of product fired at 1100 ° C. for 10 hours
3 shows an X-ray diffraction pattern.

【図5】アンモニア及びブチルアミンを沈澱剤として用
いて調製したニオブーニッケルーストロンチウム混合沈
澱物、及び1100℃、10時間焼成した生成物の電子
顕微鏡写真を示す。
FIG. 5 shows electron micrographs of a niobium-nickel strontium mixed precipitate prepared using ammonia and butylamine as precipitants, and a product calcined at 1100 ° C. for 10 hours.

【図6】固相法(1350℃、36時間)、アンモニア
及びブチルアミンを沈澱剤として用いて調製した混合沈
澱物を焼成した試料の粒子径分布を示す。
FIG. 6 shows a particle size distribution of a sample obtained by calcining a mixed precipitate prepared by a solid phase method (1350 ° C., 36 hours) using ammonia and butylamine as a precipitant.

【図7】合成した正方晶(Ni,Sr)X NbO3 及び
正方晶(Sr,Fe)X NbO3 焼結体の電気抵抗値、
及び所定温度差での熱起電力(ゼーベック係数)の温度
依存性を示す。
FIG. 7 shows the electric resistance values of the synthesized tetragonal (Ni, Sr) x NbO 3 and tetragonal (Sr, Fe) x NbO 3 sintered bodies,
And the temperature dependence of the thermoelectromotive force (Seebeck coefficient) at a predetermined temperature difference.

【図8】レーザーフラッシュ法で測定した正方晶(S
r,Ni)X NbO3 焼結体の熱伝導度の温度変化を示
す。
FIG. 8 shows a tetragonal crystal (S) measured by a laser flash method.
The temperature change of the thermal conductivity of the (r, Ni) x NbO 3 sintered body is shown.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 淡野 正信 愛知県名古屋市名東区平和が丘1丁目70番 地 猪子石住宅9棟306号 (72)発明者 高木 弘義 愛知県春日井市上条町1−5−2、藤和シ ティーコープ春日井駅前 (72)発明者 前田 邦裕 茨城県日立市台原町2−14−16 (72)発明者 宮田 素之 愛知県名古屋市北区東大杉町3−26 Fターム(参考) 4G048 AA05 AB02 AB05 AB08 AC04 AD04 AD06 AD08 AE05 AE08 5G301 CA02 CA18 CD04 CE02 5H018 AA01 AS01 BB01 BB12 BB16 EE12 HH08  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Masanobu Aano 1-70 Heiwagaoka, Meito-ku, Nagoya-shi, Aichi Prefecture Inogishi House 9 Building 306 (72) Inventor Hiroyoshi Takagi 1 Kamijo-cho, Kasugai-shi, Aichi Prefecture −5-2, Towa City Corp. Kasugai Station (72) Inventor Kunihiro Maeda 2-14-16, Taiharacho, Hitachi City, Ibaraki Prefecture (72) Inventor Motoyuki Miyata 3-26 Higashi-Osugicho Kita-ku, Nagoya City, Aichi Prefecture F-term (Reference) 4G048 AA05 AB02 AB05 AB08 AC04 AD04 AD06 AD08 AE05 AE08 5G301 CA02 CA18 CD04 CE02 5H018 AA01 AS01 BB01 BB12 BB16 EE12 HH08

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ニオブ酸塩、遷移金属(Mn,Fe,C
u,Ni,Co)、及びアルカリ土類金属(Ca,S
r,Ba) 、必要により希土類金属(La,Ce,Eu
等)を含む、0.01〜10Ohm,mの導電性を有
し、固溶金属金属種によりn型、p型の電気伝導特性が
制御可能な、A0.8-ααNbO3-δ(α=0〜0.
2,A=Ca,Sr,Baのアルカリ土類金属又は希土
類金属、B=遷移金属)もしくは(A,B)x NbO3
(X≦1)で表されるペロブスカイト型正方晶ニオブ酸
塩材料であって、シュウ酸ニオブ、可溶性の遷移金属、
及びアルカリ土類金属塩、必要により可溶性の希土類金
属塩を水に溶解した均一混合水溶液の前駆体溶液と、水
溶性のアルキルアミン類を攪拌下混合し、沈澱を生成さ
せ、得られた沈澱を空気中900〜1100℃で仮焼し
て得られる、遷移金属が均一に固溶した正方晶ニオブ酸
塩材料。
1. Niobate, transition metal (Mn, Fe, C)
u, Ni, Co) and alkaline earth metals (Ca, S)
r, Ba) and, if necessary, rare earth metals (La, Ce, Eu)
Including equal), 0.01~10Ohm, has conductivity of m, n-type through solution metallic metal species, p-type electric conduction characteristic is controllable, A 0.8-α B α NbO 3-δ ( α = 0 to 0.
2, A = alkaline earth metal or rare earth metal of Ca, Sr, Ba, B = transition metal) or (A, B) x NbO 3
A perovskite-type tetragonal niobate material represented by (X ≦ 1), wherein niobium oxalate, a soluble transition metal,
And a precursor solution of a homogeneously mixed aqueous solution in which an alkaline earth metal salt and, if necessary, a soluble rare earth metal salt are dissolved in water, and a water-soluble alkylamine are mixed with stirring to form a precipitate. A tetragonal niobate material in which transition metals are uniformly dissolved, obtained by calcining at 900 to 1100 ° C in air.
【請求項2】 請求項1に記載の遷移金属が均一に固溶
した正方晶ニオブ酸塩材料を製造する方法であって、出
発原料として、シュウ酸ニオブ、可溶性の遷移金属、及
びアルカリ土類金属塩、必要により可溶性の希土類金属
塩を用い、それらを溶解し、混合した均一混合溶液とし
て前駆体溶液を調製し、それらに、沈澱剤として、水溶
性の強アルキル性アルキルアミン類を加えて、可溶性遷
移金属錯体形成による遷移金属イオンの溶解を抑制しな
がら効率よく水酸化物ならびに酸化物沈澱を生成させ、
得られた沈澱を空気中900〜1100℃で仮焼するこ
とにより、遷移金属が均一に固溶した正方晶ニオブ酸塩
の単一相からなる、ナノ粒子サイズ(10〜100n
m)の低凝集性の微細粒子を得ることを特徴とする遷移
金属固溶型導電性ニオブ酸塩材料の製造方法。
2. A method for producing a tetragonal niobate material in which a transition metal is uniformly dissolved as claimed in claim 1, wherein niobium oxalate, a soluble transition metal, and an alkaline earth are used as starting materials. Using a metal salt and, if necessary, a soluble rare earth metal salt, dissolving them, preparing a precursor solution as a homogeneous mixed solution, and adding a water-soluble strong alkylamine as a precipitant thereto; , Forming hydroxide and oxide precipitates efficiently while suppressing the dissolution of transition metal ions due to the formation of soluble transition metal complexes,
The obtained precipitate is calcined at 900 to 1100 ° C. in the air to obtain a nanoparticle size (10 to 100 n) consisting of a single phase of tetragonal niobate in which a transition metal is uniformly dissolved.
m) A method for producing a transition metal solid solution type conductive niobate material, wherein fine particles having low cohesion are obtained.
JP2000187012A 2000-06-21 2000-06-21 Transition metal solid solution type conductive niobate and its production method Expired - Lifetime JP3467542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000187012A JP3467542B2 (en) 2000-06-21 2000-06-21 Transition metal solid solution type conductive niobate and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000187012A JP3467542B2 (en) 2000-06-21 2000-06-21 Transition metal solid solution type conductive niobate and its production method

Publications (2)

Publication Number Publication Date
JP2002012427A true JP2002012427A (en) 2002-01-15
JP3467542B2 JP3467542B2 (en) 2003-11-17

Family

ID=18687074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000187012A Expired - Lifetime JP3467542B2 (en) 2000-06-21 2000-06-21 Transition metal solid solution type conductive niobate and its production method

Country Status (1)

Country Link
JP (1) JP3467542B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259642A (en) * 2003-02-27 2004-09-16 Nippon Telegr & Teleph Corp <Ntt> Fuel electrode for solid oxide fuel cell, and its manufacturing method
CN100358626C (en) * 2004-08-30 2008-01-02 南京大学 Preparation method of high specific surface tantalate and niobate photo catalyst
WO2008149911A1 (en) * 2007-06-06 2008-12-11 Toyota Jidosha Kabushiki Kaisha Method for manufacturing thermoelectric converter
WO2008149910A1 (en) * 2007-06-06 2008-12-11 Toyota Jidosha Kabushiki Kaisha Method for production of thermoelectric conversion element
JP2008305913A (en) * 2007-06-06 2008-12-18 Toyota Motor Corp Manufacturing method of thermoelectric conversion element
US20140302420A1 (en) * 2013-03-13 2014-10-09 University Of Maryland, College Park Ceramic Anode Materials for Solid Oxide Fuel Cells
CN114751453A (en) * 2022-04-01 2022-07-15 福州大学 Selective ion exchange material with bionic performance and preparation method thereof
CN115400794A (en) * 2022-05-05 2022-11-29 河南大学 Preparation method and application of cobaltosic oxide/niobate composite material with p-n junction

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103657731A (en) * 2013-09-12 2014-03-26 江苏科技大学 Preparation method of photocatalytic composite nano-particles and application of photocatalytic composite nano-particles in acid orange dye wastewater treatment

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004259642A (en) * 2003-02-27 2004-09-16 Nippon Telegr & Teleph Corp <Ntt> Fuel electrode for solid oxide fuel cell, and its manufacturing method
CN100358626C (en) * 2004-08-30 2008-01-02 南京大学 Preparation method of high specific surface tantalate and niobate photo catalyst
WO2008149911A1 (en) * 2007-06-06 2008-12-11 Toyota Jidosha Kabushiki Kaisha Method for manufacturing thermoelectric converter
WO2008149910A1 (en) * 2007-06-06 2008-12-11 Toyota Jidosha Kabushiki Kaisha Method for production of thermoelectric conversion element
JP2008305913A (en) * 2007-06-06 2008-12-18 Toyota Motor Corp Manufacturing method of thermoelectric conversion element
US20140302420A1 (en) * 2013-03-13 2014-10-09 University Of Maryland, College Park Ceramic Anode Materials for Solid Oxide Fuel Cells
US9525179B2 (en) * 2013-03-13 2016-12-20 University Of Maryland, College Park Ceramic anode materials for solid oxide fuel cells
CN114751453A (en) * 2022-04-01 2022-07-15 福州大学 Selective ion exchange material with bionic performance and preparation method thereof
CN115400794A (en) * 2022-05-05 2022-11-29 河南大学 Preparation method and application of cobaltosic oxide/niobate composite material with p-n junction
CN115400794B (en) * 2022-05-05 2023-09-15 河南大学 Preparation method and application of cobaltosic oxide/niobate composite material with p-n junction

Also Published As

Publication number Publication date
JP3467542B2 (en) 2003-11-17

Similar Documents

Publication Publication Date Title
Xue et al. Nanosized barium titanate powder by mechanical activation
Stanulis et al. Sol–gel (combustion) synthesis and characterization of different alkaline earth metal (Ca, Sr, Ba) stannates
Xu et al. Synthesis and piezoelectric and ferroelectric properties of (Na0. 5Bi0. 5) 1− xBaxTiO3 ceramics
JP3467542B2 (en) Transition metal solid solution type conductive niobate and its production method
US8431109B2 (en) Process for production of composition
JP2007137759A (en) Barium titanate particulate powder and dispersion
Geetha et al. Synthesis and characterization of LaMn1-xFexO3 (x= 0, 0.1, 0.2) by coprecipitation route
WO2012115931A1 (en) Synthesis of metal oxide-based thermoelectric materials for high temperature applications
JP3314944B2 (en) Sinterable barium titanate fine particle powder and method for producing the same
Torii et al. Chemical processing and characterization of spinel-type thermistor powder in the Mn-Ni-Fe oxide system
JP2000211971A (en) Thermoelement material and its production
Mao et al. Coprecipitation-based micro-reactor process to synthesize soft-agglomerated ultrafine BiPbSrCaCuO powder with low carbon content
TWI262172B (en) Method for producing nano-scale theta-phase alumina microparticles
Thomas et al. Structure and properties of nanocrystalline BaHfO3 synthesized by an auto-igniting single step combustion technique
JP2782579B2 (en) Method for producing oxide-based semiconductor fine powder
Xue et al. Inducing crystallization in an amorphous lead zirconate titanate precursor by mechanical activation
JP2010030855A (en) Crystal-oriented structure and method for manufacturing the same
JP5147573B2 (en) Method for producing perovskite complex oxide
KR100504937B1 (en) A process for producing ceo2 nano particles having a controlled particle size
US20120115731A1 (en) Method for preparing yttrium barium copper oxide (ybco) superconducting nanoparticles
Das et al. In situ synthesis of nanosized PZT powders in the precursor material and the influence of particle size on the dielectric property
JPWO2009041207A1 (en) Method for producing metal composite oxide powder
JP3245905B2 (en) Conductive crystal oriented zinc oxide powder and method for producing the same
Skaudzius et al. Sol-gel synthesis of nanocrystalline LaAlO3-M2O3 (M= La, Al) and Nd: LaAlO3-M2O3 composite materials via „phase metathesis “route
JP4952880B2 (en) Proton-conducting perovskite fine particle production method and particle powder

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3467542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term