JP4766004B2 - Method for manufacturing thermoelectric conversion element - Google Patents
Method for manufacturing thermoelectric conversion element Download PDFInfo
- Publication number
- JP4766004B2 JP4766004B2 JP2007150658A JP2007150658A JP4766004B2 JP 4766004 B2 JP4766004 B2 JP 4766004B2 JP 2007150658 A JP2007150658 A JP 2007150658A JP 2007150658 A JP2007150658 A JP 2007150658A JP 4766004 B2 JP4766004 B2 JP 4766004B2
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric conversion
- particles
- thermoelectric
- conversion element
- conversion material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000006243 chemical reaction Methods 0.000 title claims description 82
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 238000000034 method Methods 0.000 title claims description 9
- 239000002245 particle Substances 0.000 claims description 103
- 239000000463 material Substances 0.000 claims description 67
- 239000000919 ceramic Substances 0.000 claims description 35
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 32
- 239000006185 dispersion Substances 0.000 claims description 22
- 229910018989 CoSb Inorganic materials 0.000 claims description 11
- 238000005245 sintering Methods 0.000 claims description 6
- 230000004931 aggregating effect Effects 0.000 claims description 3
- 239000003002 pH adjusting agent Substances 0.000 claims description 3
- 238000001704 evaporation Methods 0.000 claims description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims 3
- 239000010419 fine particle Substances 0.000 description 20
- 229910004298 SiO 2 Inorganic materials 0.000 description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 238000003917 TEM image Methods 0.000 description 12
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 239000000377 silicon dioxide Substances 0.000 description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- 229910002665 PbTe Inorganic materials 0.000 description 2
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910019001 CoSi Inorganic materials 0.000 description 1
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 1
- 229910019021 Mg 2 Sn Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
本発明は、絶縁材料としてのセラミックスを含有する熱電変換素子の製造方法に関する。 The present invention relates to a method for manufacturing a thermoelectric conversion element containing ceramics as an insulating material.
熱電変換材料は、熱エネルギーと電気エネルギーを相互に変換することができる材料であり、熱電冷却素子や熱電発電素子として利用される熱電変換素子を構成する材料である。この熱電変換材料はゼーベック効果を利用して熱電変換を行うものであるが、その熱電変換性能は、性能指数ZTと呼ばれる下式(1)で表される。
ZT=α2σT/κ (1)
(上式中、αはゼーベック係数を、σは電気伝導率を、κは熱伝導率を、そしてTは測定温度を示す)
The thermoelectric conversion material is a material that can mutually convert heat energy and electric energy, and is a material that constitutes a thermoelectric conversion element used as a thermoelectric cooling element or a thermoelectric power generation element. This thermoelectric conversion material performs thermoelectric conversion using the Seebeck effect, and the thermoelectric conversion performance is represented by the following formula (1) called a figure of merit ZT.
ZT = α 2 σT / κ (1)
(Where α is the Seebeck coefficient, σ is the electrical conductivity, κ is the thermal conductivity, and T is the measured temperature)
上記式(1)から明らかなように、熱電変換材料の熱電変換性能を高めるためには、用いる材料のゼーベック係数α及び電気伝導率σを大きくし、熱伝導率κを小さくすればよいことがわかる。ここで材料の熱伝導率κを小さくするために、熱電変換材料の出発原料の粒子に熱電変換材料の母材と反応しない微粒子(不活性微粒子)を添加することがある。これにより、不活性微粒子が熱電変換材料における熱伝導の主要因であるフォノンを散乱させて、熱伝導率κを低減することができる。 As apparent from the above formula (1), in order to improve the thermoelectric conversion performance of the thermoelectric conversion material, it is necessary to increase the Seebeck coefficient α and the electric conductivity σ of the material to be used and to decrease the thermal conductivity κ. Recognize. Here, in order to reduce the thermal conductivity κ of the material, fine particles (inactive fine particles) that do not react with the base material of the thermoelectric conversion material may be added to the particles of the starting material of the thermoelectric conversion material. As a result, the inactive fine particles can scatter phonons, which are the main cause of heat conduction in the thermoelectric conversion material, thereby reducing the thermal conductivity κ.
しかしながら、従来の熱電変換材料では、不活性微粒子が偏在することによって、不活性微粒子によるフォノンの散乱効果よりも不活性微粒子の偏在による電気抵抗率等の他の物性値の悪化の影響が大きく、熱電変換材料の性能向上が妨げられている。この問題を解消するため、例えば、出発原料を微粒子とし、それに母材と反応しないセラミックス等の微粒子を均一に分散させて焼結してなる熱電変換材料が開示されている(例えば、特許文献1及び2参照)。 However, in the conventional thermoelectric conversion material, due to the uneven distribution of the inert fine particles, the influence of deterioration of other physical properties such as the electrical resistivity due to the uneven distribution of the inert fine particles is larger than the phonon scattering effect by the inert fine particles, Improvement of the performance of thermoelectric conversion materials is hindered. In order to solve this problem, for example, a thermoelectric conversion material is disclosed in which the starting material is fine particles, and fine particles such as ceramics that do not react with the base material are uniformly dispersed and sintered (for example, Patent Document 1). And 2).
上記開示技術は、出発原料と不活性微粒子の両者を微粒子とすることで、不活性微粒子が熱電変換材料の母材全体に分散し易くなり出発原料の粒子間に存在する確率が高くなるので、母材の粒子同士の結晶化を防止することができるというものである。また粒径比がほぼ1の同等の大きさの粒子となるように出発原料と不活性微粒子とを調製するため、不活性微粒子は熱電変換材料中に偏在することなく均一に分布して存在でき、不活性微粒子の偏在による電気抵抗率等の他の物性値の悪化を抑えることができるとしている。 The above disclosed technique makes both the starting raw material and the inert fine particles fine particles, and the inert fine particles are easily dispersed throughout the base material of the thermoelectric conversion material, so that the probability of existing between the starting raw material particles increases. The crystallization of the base material particles can be prevented. In addition, since the starting material and the inert fine particles are prepared so that the particle size ratio is approximately equal to 1 in size, the inert fine particles can be uniformly distributed without being unevenly distributed in the thermoelectric conversion material. The deterioration of other physical properties such as electrical resistivity due to uneven distribution of inert fine particles can be suppressed.
しかしながら、粒径がナノオーダーである粒子は比表面積が大きいため、ファンデルワールス力等によって凝集しやすく、従って従来の方法のように熱電変換材料粒子と不活性微粒子を混合するのみでは、図1に示すように不活性微粒子2が凝集してミクロサイズになってしまい、熱電変換材料1中に不活性微粒子2をナノオーダーで分散させることができない。その結果、不活性材料同士の間隔がフォノンの平均自由行程より大きくなってしまい、熱伝導率を十分に低減することができない。 However, particles having a particle size in the nano order have a large specific surface area, so that they tend to aggregate due to van der Waals force or the like. Therefore, only by mixing thermoelectric conversion material particles and inert fine particles as in the conventional method, FIG. As shown in FIG. 2, the inert fine particles 2 are aggregated into a micro size, and the inert fine particles 2 cannot be dispersed in the nano-order in the thermoelectric conversion material 1. As a result, the interval between the inert materials becomes larger than the phonon mean free path, and the thermal conductivity cannot be sufficiently reduced.
また、上記従来技術では、不活性微粒子を均一に分散させて、電気抵抗率など上記式(1)に直接関係しない他の物性値の調整を行っているが、式(1)中、性能指数ZTに直接関係する電気伝導率σ及び熱伝導率κについての検討はなされていない。そのため、上記従来技術での不活性微粒子は、ミクロンスケールの粒径を有するものである。また、不活性微粒子の分散状態について、精密な検討はなされていない。 In the above prior art, the inert fine particles are uniformly dispersed to adjust other physical property values such as electrical resistivity that are not directly related to the above formula (1). The electrical conductivity σ and thermal conductivity κ directly related to ZT have not been studied. Therefore, the inert fine particles in the above prior art have a micron-scale particle size. Further, no precise examination has been made on the dispersion state of the inert fine particles.
なお、熱電変換材料中に含まれるキャリア(電子または正孔(ホール))は熱及び電気を共に伝えることができるため、電気伝導率σと熱伝導率κとは比例関係にある。さらに、電気伝導率σとゼーベック係数αとは反比例関係にあることが知られている。そのため、一般的に、電気伝導率σを向上させたとしても、それに伴い熱伝導率κの上昇及びゼーベック係数αの低下が起きてしまう。また、有効質量と移動度とは反比例関係にあるため、移動度を向上させようとすると有効質量が減少してしまう。 Since carriers (electrons or holes) contained in the thermoelectric conversion material can transmit both heat and electricity, the electrical conductivity σ and the thermal conductivity κ are in a proportional relationship. Furthermore, it is known that the electrical conductivity σ and the Seebeck coefficient α are in an inversely proportional relationship. Therefore, generally, even if the electrical conductivity σ is improved, the thermal conductivity κ increases and the Seebeck coefficient α decreases accordingly. In addition, since the effective mass and the mobility are in an inversely proportional relationship, the effective mass is reduced when the mobility is improved.
そこで本発明では、上記従来の問題を解決し、優れた性能指数を有する熱電変換素子の製造方法を提供することを目的とする。 Therefore, an object of the present invention is to solve the above conventional problems and provide a method for manufacturing a thermoelectric conversion element having an excellent figure of merit.
上記問題点を解決するために本発明によれば、平均粒子径が1〜100nmであるセラミックス粒子及び熱電変換材料粒子とpH調整材とをアルコール中で混合してセラミックス粒子及び熱電変換材料粒子のアルコール分散液を調製した後、このセラミックス粒子及び熱電材料粒子を凝集させ、次いで焼結する工程を含む、熱電変換熱電素子の製造方法が提供される。 In order to solve the above problems, according to the present invention, ceramic particles and thermoelectric conversion material particles having an average particle diameter of 1 to 100 nm and a pH adjuster are mixed in alcohol to obtain ceramic particles and thermoelectric conversion material particles. A method for producing a thermoelectric conversion thermoelectric element is provided, which includes the steps of aggregating the ceramic particles and thermoelectric material particles and then sintering after preparing the alcohol dispersion.
本発明によれば、平均粒子径が1〜100nmであるセラミックス粒子及び熱電変換材料粒子の分散液中でセラミックス粒子及び熱電変換材料粒子を凝集させることにより、セラミックス同士の距離がフォノンの平均自由行程以下になり、セラミックスとの界面においてフォノン散乱が活発になるため、格子熱伝導率が大幅に低減し、熱電変換素子の性能が向上する。 According to the present invention, by aggregating ceramic particles and thermoelectric conversion material particles in a dispersion of ceramic particles and thermoelectric conversion material particles having an average particle diameter of 1 to 100 nm, the distance between the ceramics is an average free path of phonons. Since phonon scattering becomes active at the interface with the ceramic, the lattice thermal conductivity is greatly reduced, and the performance of the thermoelectric conversion element is improved.
まず、性能指数ZTと熱電変換素子の組織構成との関係について、図2を参照しながら詳細に説明する。図2に示すように、熱電変換素子の組織寸法が、フォノンの平均自由行程の長さを起点にこれよりも小さくなるにつれて、熱電変換素子の熱伝導率κは徐々に減少する。したがって、組織寸法がフォノンの平均自由行程よりも小さくなるように設計すると、性能指数ZTが向上する。 First, the relationship between the figure of merit ZT and the structure of the thermoelectric conversion element will be described in detail with reference to FIG. As shown in FIG. 2, the thermal conductivity κ of the thermoelectric conversion element gradually decreases as the structure size of the thermoelectric conversion element becomes smaller than the length of the mean free path of phonons. Therefore, the figure of merit ZT is improved when the structure size is designed to be smaller than the mean free path of phonons.
一方、熱電変換素子の組織寸法がフォノンの平均自由行程を起点にこれより小さくなっても、熱電変換素子の電気伝導率σは減少せず、概ねキャリアの平均自由行程以下の粒径となった場合に減少する。このように、熱伝導率κが減少し始める熱電変換素子の組織寸法と、電気伝導率σが減少し始める熱電変換素子の組織寸法とが異なることを利用し、電気伝導性の減少率よりも熱伝導率κの減少率が大きい熱電変換素子の組織寸法となるように、熱電変換素子の組織寸法をキャリアの平均自由行程以上フォノンの平均自由行程以下とすることで、上記式(1)で表される性能指数ZTをよりいっそう高めることができる。 On the other hand, even if the structure size of the thermoelectric conversion element is smaller than the phonon mean free path, the electric conductivity σ of the thermoelectric conversion element does not decrease, and the particle size is generally less than the mean free path of the carrier. Decrease in case. Thus, using the fact that the structural dimension of the thermoelectric conversion element where the thermal conductivity κ begins to decrease and the structural dimension of the thermoelectric conversion element where the electrical conductivity σ begins to decrease are different from each other, By making the structure dimension of the thermoelectric conversion element not less than the average free path of carriers and not more than the average free path of phonons so that the structure dimension of the thermoelectric conversion element has a large reduction rate of the thermal conductivity κ, The expressed figure of merit ZT can be further increased.
ここで、熱電変換素子の組織寸法を規定するのは、熱電変換素子中に分散される絶縁材料であるセラミックス粒子の粒径、又はセラミックス同士の分散間隔である。そこで、本発明では、セラミックス同士の分散間隔を、上記効果が得られるように制御する。 Here, the structure dimension of the thermoelectric conversion element is defined by the particle diameter of ceramic particles, which is an insulating material dispersed in the thermoelectric conversion element, or the dispersion interval between the ceramics. Therefore, in the present invention, the dispersion interval between the ceramics is controlled so as to obtain the above effect.
すなわち、本発明において、まず平均粒子径が1〜100nmであるセラミックス粒子及び熱電変換材料粒子とpH調整材とをアルコール中で混合してセラミックス粒子及び熱電変換材料粒子のアルコール分散液を調製する。 That is, in the present invention, first, ceramic particles and thermoelectric conversion material particles having an average particle diameter of 1 to 100 nm and a pH adjuster are mixed in alcohol to prepare an alcohol dispersion of ceramic particles and thermoelectric conversion material particles.
セラミックスとしては、アルミナ、ジルコニア、チタニア、マグネシア、シリカ、セリア等の一般に用いられている材料を用いることができる。これらの中でも、熱伝導率の低さの観点から、シリカ、ジルコニア、チタニアであることが好ましい。また、用いるセラミックス粒子の種類は単一種であっても、二種以上を併用してもよい。セラミックスの比抵抗は1000μΩmよりも大きいことが好ましく、106μΩm以上であることがより好ましく、1010μΩm以上であることが更に好ましい。比抵抗が1000μΩm以下の場合には、熱伝導が高いためZT向上の妨げとなる場合がある。 As the ceramic, generally used materials such as alumina, zirconia, titania, magnesia, silica, and ceria can be used. Among these, silica, zirconia, and titania are preferable from the viewpoint of low thermal conductivity. Moreover, the kind of ceramic particle to be used may be a single kind or a combination of two or more kinds. The specific resistance of the ceramic is preferably larger than 1000 μΩm, more preferably 10 6 μΩm or more, and still more preferably 10 10 μΩm or more. When the specific resistance is 1000 μΩm or less, the heat conduction is high, which may hinder the improvement of ZT.
熱電変換材料はP型であってもN型であってもよい。P型熱電変換材料の材質としては特に制限なく、例えば、Bi2Te3系、PbTe系、Zn4Sb3系、CoSb3系、ハーフホイスラー系、フルホイスラー系、SiGe系などを用いることができる。N型熱電変換材料の材質としても特に制限なく公知の材料を適用することができ、例えば、Bi2Te3系、PbTe系、Zn4Sb3系、CoSb3系、ハーフホイスラー系、フルホイスラー系、SiGe系、Mg2Si系、Mg2Sn系、CoSi系などを用いることができる。 The thermoelectric conversion material may be P-type or N-type. The material of the P-type thermoelectric conversion material is not particularly limited, and for example, Bi 2 Te 3 system, PbTe system, Zn 4 Sb 3 system, CoSb 3 system, half-Heusler system, full Heusler system, SiGe system, etc. can be used. . As the material of the N-type thermoelectric conversion material, a known material can be applied without particular limitation. For example, Bi 2 Te 3 system, PbTe system, Zn 4 Sb 3 system, CoSb 3 system, half-Heusler system, full Heusler system SiGe, Mg 2 Si, Mg 2 Sn, CoSi, or the like can be used.
本発明において用いる熱電変換材料は、出力因子が1mW/K2よりも大きいことが好ましく、2mW/K2以上であることがより好ましく、3mW/K2以上であることが更に好ましい。出力因子が1mW/K2以下の場合には、あまり大きな性能向上が期待できない。また、熱電変換材料の熱伝導率κは、3W/mKよりも大きいことが好ましく、5W/mK以上であることがより好ましく、10W/mK以上であることが更に好ましい。熱伝導率κが3W/mKよりも大きい場合に、特に本発明の効果が著しく呈される。つまり、熱電変換素子の組織寸法について本発明に規定するナノオーダーで制御を行った場合の効果は、熱伝導率κが大きい熱電変換材料を用いるほど熱伝導率κの低下が著しくなる傾向にあり、特に熱伝導率κが3W/mKよりも大きい熱電変換材料を用いた場合に、熱伝導率κの減少効果が大きく現れる。 Thermoelectric conversion material used in the present invention, it is preferable power factor is greater than 1 mW / K 2, more preferably 2 mW / K 2 or more, more preferably 3 mW / K 2 or more. When the output factor is 1 mW / K 2 or less, a great performance improvement cannot be expected. Further, the thermal conductivity κ of the thermoelectric conversion material is preferably larger than 3 W / mK, more preferably 5 W / mK or more, and further preferably 10 W / mK or more. When the thermal conductivity κ is larger than 3 W / mK, the effect of the present invention is particularly remarkable. In other words, the effect of controlling the microstructure dimensions of the thermoelectric conversion element in the nano-order specified in the present invention tends to decrease the thermal conductivity κ as the thermoelectric conversion material having a larger thermal conductivity κ is used. In particular, when a thermoelectric conversion material having a thermal conductivity κ larger than 3 W / mK is used, the effect of reducing the thermal conductivity κ appears greatly.
上記熱電変換材料粒子及びセラミックス粒子の平均粒子径は、フォノンの平均自由行程以下であり、具体的には1〜100nm、好ましくは1〜20nmである。このような粒径を有する粒子を用いると、形成される熱電変換素子中に分散されるセラミックス同士の間隔が、熱電変換材料のフォノンの平均自由行程以下となり、熱電変換素子中でフォノンの散乱が充分に起こるため、熱電変換素子の熱伝導率κが減少し、性能指数ZTが向上する。 The average particle diameter of the thermoelectric conversion material particles and ceramic particles is not more than the average free path of phonons, specifically 1 to 100 nm, preferably 1 to 20 nm. When particles having such a particle size are used, the distance between the ceramics dispersed in the formed thermoelectric conversion element is less than the mean free path of phonons of the thermoelectric conversion material, and phonon scattering occurs in the thermoelectric conversion element. Since it occurs sufficiently, the thermal conductivity κ of the thermoelectric conversion element is reduced, and the figure of merit ZT is improved.
ここで、平均自由行程(MFP)は、以下の式を用いて計算される。
キャリアMFP=(移動度×有効質量×キャリア速度)/電荷素量
フォノンMFP=3×格子熱伝導率/比熱/音速
上式において、各々の値は文献値と温度特性の近似式から換算し、比熱のみ実測値を用いる。
Here, the mean free path (MFP) is calculated using the following equation.
Carrier MFP = (mobility × effective mass × carrier velocity) / elementary charge phonon MFP = 3 × lattice thermal conductivity / specific heat / sound velocity In the above equation, each value is converted from the literature value and the approximate equation of the temperature characteristic, Only measured values are used for specific heat.
ここで、Co0.94Ni0.06Sb3及びCoSb3について計算したキャリアMFPとフォノンMFPの結果を以下に示す。 Here, the results of the carrier MFP and the phonon MFP calculated for Co 0.94 Ni 0.06 Sb 3 and CoSb 3 are shown below.
このように、キャリアMFP及びフォノンMFPは材料及び温度によってきまる。本発明により得られる熱電変換素子は、少なくとも一部のセラミック粒子の分散間隔が、その熱電変換材料のパワーファクター(α2σ)が最高出力時のフォノンの平均自由行程以下であればよい。CoSb3系材料は400℃においてパワーファクター(α2σ)が最高出力を示すので、400℃時のフォノンの平均自由行程以下であればよい。 Thus, the carrier MFP and the phonon MFP are determined by the material and the temperature. In the thermoelectric conversion element obtained by the present invention, it is sufficient that the dispersion interval of at least some ceramic particles is equal to or less than the mean free path of phonons when the power factor (α 2 σ) of the thermoelectric conversion material is the maximum output. Since the power factor (α 2 σ) shows the maximum output at 400 ° C. for the CoSb 3 -based material, it may be less than the mean free path of phonons at 400 ° C.
上記熱電変換材料粒子に対するセラミックス粒子の混合比は5〜40vol%とすることが好ましい。 The mixing ratio of the ceramic particles to the thermoelectric conversion material particles is preferably 5 to 40 vol%.
pH調整材は、スラリー中でナノ粒子等が凝集するのを抑制するために用いられ、公知のものを適宜適用することができ、例えば、硝酸、アンモニア水、水素化ホウ素ナトリウム(NaBH4)などを用いることができる。 The pH adjusting material is used to suppress aggregation of nanoparticles and the like in the slurry, and a known material can be appropriately applied. For example, nitric acid, aqueous ammonia, sodium borohydride (NaBH 4 ), etc. Can be used.
アルコールは、上記熱電変換材料粒子及びセラミックス粒子を分散できるものであれば特に制限されないが、エタノールを用いることが好適である。 Although alcohol will not be restrict | limited especially if the said thermoelectric conversion material particle | grains and ceramic particle | grains can be disperse | distributed, It is suitable to use ethanol.
この分散液のpHとしては、3〜6又は8〜11に調製することが好ましく、4〜6又は8〜10であることがより好ましい。 As pH of this dispersion liquid, it is preferable to adjust to 3-6 or 8-11, and it is more preferable that it is 4-6 or 8-10.
こうしてセラミックス粒子及び熱電変換材料粒子のアルコール分散液を調製した後、このセラミックス粒子及び熱電変換材料粒子を凝集させる。この凝集は、例えばアルコール分散液のpHを変化させ、セラミックス粒子及び熱電変換材料粒子が凝集するpHとすることによって行う。具体的には、セラミックス粒子としてシリカ又はアルミナを用い、熱電変換材料粒子としてスクッテルダイト(CoSb3)を用いた場合、シリカの等電点はpH3であり、アルミナの等電点はpH6〜8であり、CoSb3の等電点はpH4〜7と考えられる。従ってCoSb3/アルミナ又はCoSb3/シリカの分散液はpH10としておくことにより分散状態を維持し、この分散液にHClを加えてpHを5〜7付近とすることによりCoSb3とアルミナ又はCoSb3とシリカを均一に凝集させることができる。 After preparing an alcohol dispersion of ceramic particles and thermoelectric conversion material particles in this manner, the ceramic particles and thermoelectric conversion material particles are aggregated. This aggregation is performed, for example, by changing the pH of the alcohol dispersion so that the ceramic particles and the thermoelectric conversion material particles are aggregated. Specifically, when silica or alumina is used as ceramic particles and skutterudite (CoSb 3 ) is used as thermoelectric conversion material particles, the isoelectric point of silica is pH 3, and the isoelectric point of alumina is pH 6-8. And the isoelectric point of CoSb 3 is considered to be pH 4-7. Accordingly, the dispersion of CoSb 3 / alumina or CoSb 3 / silica is maintained in a dispersed state by keeping the pH at 10, and HCl is added to this dispersion to bring the pH to around 5 to 7 to make CoSb 3 and alumina or CoSb 3. And silica can be uniformly agglomerated.
また、アルコール分散液の分散媒としてのアルコールは揮発性であり、従ってアルコール分散液からアルコールを蒸発させることによってセラミックス粒子及び熱電変換材料粒子を凝集させてもよい。 Moreover, the alcohol as a dispersion medium of the alcohol dispersion is volatile, and therefore the ceramic particles and the thermoelectric conversion material particles may be aggregated by evaporating the alcohol from the alcohol dispersion.
こうして得られたセラミックス粒子及び熱電変換材料粒子の凝集体を、必要に応じて洗浄・乾燥した後、一般的な焼結法により、例えば580℃においてSPS焼結することにより、熱電変換素子が得られる。 The thus obtained aggregate of ceramic particles and thermoelectric conversion material particles is washed and dried as necessary, and then subjected to SPS sintering at, for example, 580 ° C. by a general sintering method, thereby obtaining a thermoelectric conversion element. It is done.
本発明の熱電変換素子の製造方法は、ナノオーダーでの組織寸法(絶縁材料の粒径や絶縁材料同士の分散間隔)の制御を可能とするものである。すなわち、平均粒子径が1〜100nmであるセラミックス粒子と熱電変換材料粒子の均一に分布した凝集体を調製することにより、熱電変換素子の組織寸法(セラミックス同士の分散間隔)が、フォノンの平均自由行程以下、好ましくはキャリアの平均自由行程以上フォノンの平均自由行程以下となり、熱電変換素子中のフォノンの散乱が充分に起こり、熱伝導率κを減少させることができる。この結果、式(1)で表される性能指数ZTが大きい熱電変換素子となる。このように、本発明の熱電変換素子の製造方法によれば、高い性能指数ZTを示す優れた熱電変換素子であって、従来では作製困難であった性能指数ZTが2を上回るような熱電変換素子を得ることもできる。 The manufacturing method of the thermoelectric conversion element of the present invention enables control of the structure dimension (particle size of insulating material and dispersion interval between insulating materials) in nano order. That is, by preparing a uniformly distributed aggregate of ceramic particles and thermoelectric conversion material particles having an average particle diameter of 1 to 100 nm, the structure size of the thermoelectric conversion element (dispersion interval between ceramics) is an average free of phonons. Less than the stroke, preferably more than the mean free path of carriers and less than the mean free path of phonons, phonon scattering sufficiently occurs in the thermoelectric conversion element, and the thermal conductivity κ can be reduced. As a result, a thermoelectric conversion element having a large figure of merit ZT represented by the formula (1) is obtained. Thus, according to the method for manufacturing a thermoelectric conversion element of the present invention, an excellent thermoelectric conversion element exhibiting a high figure of merit ZT, which has a figure of merit ZT exceeding 2 that has been difficult to produce in the past. An element can also be obtained.
例1
平均粒径5〜20nmのCo0.94Ni0.06Sb3粒子1.7g及び平均粒径5〜10nmのSiO2粒子0.26gをエタノール100mLに加え、混合し、アンモニアによりpHを10に調整した。こうして得られたエタノール分散液にHClを加え、pHを7に調整した。すると、Co0.94Ni0.06Sb3粒子とSiO2粒子が凝集した。ここでCo0.94Ni0.06Sb3粒子とSiO2粒子の体積分率はCo0.94Ni0.06Sb3:SiO2=7:3であった。この凝集体のHAADF像とEDX測定結果を図3及び図4に示す。次いで、この凝集体を水+エタノール溶液300mLで洗浄し、乾燥させ、粉末を回収した。その後、500℃〜600℃においてSPS焼結することにより、φ10×1〜2mm程度のバルク焼結体が得られた。この焼結体のTEM像を図5に示す。
Example 1
1.7 g of Co 0.94 Ni 0.06 Sb 3 particles having an average particle diameter of 5 to 20 nm and 0.26 g of SiO 2 particles having an average particle diameter of 5 to 10 nm were added to 100 mL of ethanol, mixed, and the pH was adjusted to 10 with ammonia. HCl was added to the ethanol dispersion thus obtained to adjust the pH to 7. Then, Co 0.94 Ni 0.06 Sb 3 particles and SiO 2 particles aggregated. Here, the volume fraction of Co 0.94 Ni 0.06 Sb 3 particles and SiO 2 particles was Co 0.94 Ni 0.06 Sb 3 : SiO 2 = 7: 3. The HAADF image and EDX measurement result of this aggregate are shown in FIG. 3 and FIG. The aggregate was then washed with 300 mL of water + ethanol solution and dried to recover the powder. Thereafter, SPS sintering was performed at 500 ° C. to 600 ° C. to obtain a bulk sintered body of about φ10 × 1 to 2 mm. A TEM image of this sintered body is shown in FIG.
例2
SiO2粒子に代えて、平均粒径20〜30nmのAl2O3粒子を0.58g用い、エタノール分散液にHClを加えてpHを3に調整することを除き、例1と同様にしてφ10×1〜2mm程度のバルク焼結体が得られた。なお、凝集体におけるCoSB3粒子とAl2O3粒子の体積分率はCo0.94Ni0.06Sb3:Al2O3=6:4であった。凝集体のTEM像を図6に、焼結体のTEM像を図7に示す。
Example 2
Instead of SiO 2 particles, 0.58 g of Al 2 O 3 particles having an average particle size of 20 to 30 nm were used, and φ10 was applied in the same manner as in Example 1 except that HCl was added to the ethanol dispersion to adjust the pH to 3. A bulk sintered body of about 1 to 2 mm was obtained. The volume fraction of CoSB 3 particles and Al 2 O 3 particles in the aggregate was Co 0.94 Ni 0.06 Sb 3 : Al 2 O 3 = 6: 4. A TEM image of the aggregate is shown in FIG. 6, and a TEM image of the sintered body is shown in FIG.
例3
平均粒径5〜20nmのCo0.94Ni0.06Sb3粒子1.7g及び平均粒径5〜10nmのSiO2粒子0.26gをエタノール100mLに加え、混合し、アンモニアによりpHを10に調整した。こうして得られたエタノール分散液に超音波振動を加えながらN2不活性ガスフロー中にて2〜3時間常温乾燥させた。この際、溶媒の液面が低下していくにつれてCo0.94Ni0.06Sb3粒子とSiO2粒子が凝集し、エタノールを完全に蒸発させることにより、Co0.94Ni0.06Sb3粒子とSiO2粒子の凝集体を得た。ここでCo0.94Ni0.06Sb3粒子とSiO2粒子の体積分率はCo0.94Ni0.06Sb3:SiO2=7:3であった。この凝集体のHAADF像とEDX測定結果を図8及び図9に示す。次いで、この凝集体を500℃〜600℃においてSPS焼結することにより、φ10×1〜2mm程度のバルク焼結体が得られた。この焼結体のTEM像を図10に示す。
Example 3
1.7 g of Co 0.94 Ni 0.06 Sb 3 particles having an average particle diameter of 5 to 20 nm and 0.26 g of SiO 2 particles having an average particle diameter of 5 to 10 nm were added to 100 mL of ethanol, mixed, and the pH was adjusted to 10 with ammonia. The ethanol dispersion thus obtained was dried at room temperature in an N 2 inert gas flow for 2 to 3 hours while applying ultrasonic vibration. At this time, Co 0.94 Ni 0.06 Sb 3 particles and SiO 2 particles are aggregated as the liquid level of the solvent is lowered, and ethanol is completely evaporated to coagulate Co 0.94 Ni 0.06 Sb 3 particles and SiO 2 particles. A collection was obtained. Here, the volume fraction of Co 0.94 Ni 0.06 Sb 3 particles and SiO 2 particles was Co 0.94 Ni 0.06 Sb 3 : SiO 2 = 7: 3. The HAADF image and EDX measurement result of this aggregate are shown in FIGS. Subsequently, this aggregate was subjected to SPS sintering at 500 ° C. to 600 ° C., thereby obtaining a bulk sintered body having a diameter of about 10 × 1 to 2 mm. A TEM image of this sintered body is shown in FIG.
例4
SiO2粒子に代えて、平均粒径20〜30nmのAl2O3粒子を0.58g用いることを除き、例1と同様にしてφ10×1〜2mm程度のバルク焼結体が得られた。なお、凝集体におけるCo0.94Ni0.06Sb3粒子とAl2O3粒子の体積分率はCo0.94Ni0.06Sb3:Al2O3=6:4であった。凝集体のTEM像を図11に、焼結体のTEM像を図12に示す。
Example 4
A bulk sintered body having a diameter of about 10 × 1 to 2 mm was obtained in the same manner as in Example 1 except that 0.58 g of Al 2 O 3 particles having an average particle size of 20 to 30 nm were used in place of the SiO 2 particles. The volume fraction of Co 0.94 Ni 0.06 Sb 3 particles and Al 2 O 3 particles in the aggregate was Co 0.94 Ni 0.06 Sb 3 : Al 2 O 3 = 6: 4. A TEM image of the aggregate is shown in FIG. 11, and a TEM image of the sintered body is shown in FIG.
得られた焼結体である熱電変換素子の性能を測定し、以下の表に結果を示す。 The performance of the thermoelectric conversion element which is the obtained sintered body was measured, and the results are shown in the following table.
上記の結果から明らかなように、Co0.94Ni0.06Sb3粒子のみから製造した比較材よりも、本発明の方法により得られた素子においては性能指数ZTが向上している。 As is clear from the above results, the figure of merit ZT is improved in the device obtained by the method of the present invention as compared with the comparative material produced only from Co 0.94 Ni 0.06 Sb 3 particles.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007150658A JP4766004B2 (en) | 2007-06-06 | 2007-06-06 | Method for manufacturing thermoelectric conversion element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007150658A JP4766004B2 (en) | 2007-06-06 | 2007-06-06 | Method for manufacturing thermoelectric conversion element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008305913A JP2008305913A (en) | 2008-12-18 |
JP4766004B2 true JP4766004B2 (en) | 2011-09-07 |
Family
ID=40234378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007150658A Expired - Fee Related JP4766004B2 (en) | 2007-06-06 | 2007-06-06 | Method for manufacturing thermoelectric conversion element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4766004B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100996675B1 (en) * | 2009-01-14 | 2010-11-25 | 연세대학교 산학협력단 | Thermoelectric nanowire and its manufacturing method |
TWI477615B (en) * | 2009-06-05 | 2015-03-21 | Sumitomo Chemical Co | Production method of Inorganic particle composite |
KR101869427B1 (en) * | 2011-07-05 | 2018-06-20 | 엘지이노텍 주식회사 | Nano-thermoelectric powder and thermoelectric device using the same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3504121B2 (en) * | 1997-09-16 | 2004-03-08 | 株式会社東芝 | Thermoelectric generation system |
JP2958451B1 (en) * | 1998-03-05 | 1999-10-06 | 工業技術院長 | Thermoelectric conversion material and method for producing the same |
JP2000261047A (en) * | 1999-03-05 | 2000-09-22 | Ngk Insulators Ltd | Semiconductor material for thermoelectric conversion and manufacture of the same |
JP3467542B2 (en) * | 2000-06-21 | 2003-11-17 | 独立行政法人産業技術総合研究所 | Transition metal solid solution type conductive niobate and its production method |
JP2005294478A (en) * | 2004-03-31 | 2005-10-20 | Dainippon Printing Co Ltd | Thermoelectric transduction element |
JP4865210B2 (en) * | 2004-05-06 | 2012-02-01 | 学校法人東京理科大学 | Method for producing tellurium nanoparticles and method for producing bismuth telluride nanoparticles |
JP4830383B2 (en) * | 2005-07-19 | 2011-12-07 | 大日本印刷株式会社 | Core-shell type nanoparticles and thermoelectric conversion materials |
-
2007
- 2007-06-06 JP JP2007150658A patent/JP4766004B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008305913A (en) | 2008-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5173433B2 (en) | Thermoelectric conversion material and manufacturing method thereof | |
JP4900480B2 (en) | Thermoelectric conversion element and manufacturing method thereof | |
JP4900061B2 (en) | Thermoelectric conversion element and manufacturing method thereof | |
JP2008305907A (en) | Manufacturing method of thermoelectric conversion element | |
JP5534069B2 (en) | Method for manufacturing thermoelectric conversion element | |
US8765003B2 (en) | Nanocomposite thermoelectric conversion material and process for producing same | |
KR20070108853A (en) | Nanocomposites with high thermoelectric figures of merit | |
JP5088116B2 (en) | Method for manufacturing thermoelectric conversion element | |
JP5181707B2 (en) | Thermoelectric conversion element and manufacturing method thereof | |
JP5038984B2 (en) | Method for producing bismuth telluride thermoelectric conversion element | |
JP5098608B2 (en) | Method for manufacturing thermoelectric conversion element | |
JP2009147145A (en) | Thermoelectric transducer | |
JP4766004B2 (en) | Method for manufacturing thermoelectric conversion element | |
JP6727033B2 (en) | Nanocomposite type thermoelectric material and method for producing the same | |
JP5853483B2 (en) | Nanocomposite thermoelectric conversion material | |
JP5011949B2 (en) | Thermoelectric conversion element and manufacturing method thereof | |
JP2008305918A (en) | Thermoelectric conversion element and manufacturing method therefor | |
TWI589039B (en) | N-type bismuth telluride based thermoelectric composite and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110517 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110530 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4766004 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140624 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |