WO2008149865A1 - Rotary machine - Google Patents

Rotary machine Download PDF

Info

Publication number
WO2008149865A1
WO2008149865A1 PCT/JP2008/060235 JP2008060235W WO2008149865A1 WO 2008149865 A1 WO2008149865 A1 WO 2008149865A1 JP 2008060235 W JP2008060235 W JP 2008060235W WO 2008149865 A1 WO2008149865 A1 WO 2008149865A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
core
slot
distance
electrical machine
Prior art date
Application number
PCT/JP2008/060235
Other languages
French (fr)
Japanese (ja)
Inventor
Shinya Sano
Eiji Yamada
Kazutaka Tatematsu
Kenji Hiramoto
Kosuke Aiki
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Publication of WO2008149865A1 publication Critical patent/WO2008149865A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • H02K1/2766Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM] having a flux concentration effect

Definitions

  • the present invention relates to a rotating electrical machine in which a stator and a rotor are arranged opposite to each other in a radial direction perpendicular to the rotation axis direction of the rotor.
  • Japanese Patent Application Laid-Open No. 2 065 1 6 8 1 2 A related technology of this type of rotating electrical machine is disclosed in Japanese Patent Application Laid-Open No. 2 065 1 6 8 1 2 8.
  • a rotor rotor core
  • Permanent magnets are embedded in the outer periphery of each core member so as to face the stator.
  • an eddy current that flows in an in-plane direction is formed by configuring a rotor core with a plurality of core members divided in the circumferential direction. Since the cross-sectional area (area in the in-plane direction) of the part where the eddy current circulates is reduced by dividing the path, the eddy current in the in-plane direction can be reduced.
  • a rotor in which a magnet is disposed in a slot formed in the rotor core when the rotor core is divided into a plurality of core members, the stator and the rotor are secured in order to ensure the strength of the rotor.
  • the rotor core is constituted by a plurality of core members divided in the circumferential direction
  • eddy current is generated in-plane between the coupling surface where the core members adjacent in the circumferential direction are combined and the slot (magnet). Flow in the direction.
  • An object of the present invention is to provide a rotating electrical machine capable of efficiently reducing a loss that occurs when an eddy current flows in a rotor core in an in-plane direction perpendicular to the rotation axis direction.
  • an object of the present invention is to provide a rotating electrical machine that can efficiently increase the torque acting on the rotor while ensuring the strength of the rotor.
  • a rotating electrical machine is a rotating electrical machine in which a stator and a rotor are opposed to each other in a radial direction perpendicular to the rotating shaft direction of the rotor, and the rotor is divided into a plurality of circumferentially divided pieces.
  • Each of the core split pieces includes a slot, and a magnet is disposed in the slot.
  • the core split pieces include the rotor core formed by connecting the core split pieces to each other. The gist is that the distance between the slot and the connecting surface where the core split pieces adjacent in the direction are combined is shorter than the distance between the surface facing the stator and the slot.
  • a distance from a slot positioned forward in the rotor rotation direction from the coupling surface is shorter than a distance from a slot positioned rearward in the rotor rotation direction from the coupling surface. Is preferred.
  • the rotating electrical machine according to the present invention is a rotating electrical machine in which a stator and a rotor are opposed to each other in a radial direction perpendicular to the rotational axis direction of the rotor, and the rotor is divided in the circumferential direction.
  • Each of the core split pieces is provided with a slot, and a magnet is disposed in the slot, and the circumferential direction
  • the distance from the slot located forward of the rotor rotation direction from the joint surface is the same as the slot located behind the joint surface in the rotor rotational direction.
  • the gist is that it is shorter than the distance.
  • each iron core split piece is formed with a slot in a substantially V shape, and a magnet is disposed in a slot formed in a substantially V shape.
  • FIG. 1 is a diagram showing a schematic configuration of a rotating electrical machine according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a schematic configuration of the rotating electrical machine according to the embodiment of the present invention.
  • FIG. 3 is a diagram showing a schematic configuration of the rotating electrical machine according to the embodiment of the present invention.
  • FIG. 4 is a diagram for explaining eddy currents flowing in the rotor core in an in-plane direction perpendicular to the rotation axis direction of the rotor in a configuration in which the rotor core is not divided in the circumferential direction.
  • FIG. 5 is a diagram for explaining an eddy current flowing in the in-plane direction perpendicular to the rotation axis direction of the rotor in the rotor core in the rotating electrical machine according to the embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the magnetic flux that leaks through the magnetic bridge between the outer peripheral surface of the core split piece and the slot.
  • FIG. 7 is a diagram illustrating the flow of magnetic flux of the permanent magnet in the rotating electrical machine according to the embodiment of the present invention.
  • FIG. 8 is a diagram for explaining eddy currents flowing in the rotor core in an in-plane direction perpendicular to the rotation axis direction of the rotor in a configuration in which the rotor core is not divided in the circumferential direction.
  • FIG. 9 is a diagram showing another schematic configuration of the rotating electrical machine according to the embodiment of the present invention.
  • FIGS. 1 to 3 are diagrams showing a schematic configuration of a rotating electrical machine according to an embodiment of the present invention.
  • Fig. 1 shows the outline of the internal structure of the stator 1 2 and the rotor 14 viewed from the direction orthogonal to the axis 2 2
  • Fig. 2 shows the stator 1 2 viewed from the direction parallel to the axis 2 2
  • Inside of rotor 1 4 3 shows a part of the configuration
  • FIG. 3 shows a part of the internal configuration of the rotor 14 viewed from the direction parallel to the axis 2 2.
  • the configuration of the parts not shown in FIGS. 2 and 3 is the same as that shown.
  • the rotating electrical machine includes a stator 12 fixed to a casing (not shown), a rotor 14 disposed radially inside the stator 12 2 and rotatable relative to the stator 12; Is a radial type rotary electric machine.
  • Stator 12 includes a stator core 26 and a plurality of stator coils 28 disposed on stator core 26.
  • a plurality of teeth 30 projecting radially inward (rotor 14 side) are arranged at intervals along the circumferential direction of the stator 12.
  • the coil 28 is disposed on these teeth 30.
  • Rotor 14 includes a rotor core 16, and a plurality of permanent magnets 18 disposed on the outer periphery of rotor core 16.
  • the plurality of permanent magnets 18 are arranged at intervals along the circumferential direction (rotation direction) of the rotor 14.
  • the rotor 14 is provided with an axis 22 along the rotation center axis, and the axis 22 is rotatably supported by the casing.
  • the inner periphery of the stator core 26 (tooth tip 30 a) and the permanent magnet 18 (the outer periphery of the rotor core 16) are in the direction of the rotation axis of the rotor 14 (axis 2 2 in the radial direction perpendicular to the longitudinal direction (hereinafter simply referred to as the rotational axis direction).
  • the rotor core 16 is divided into a plurality of core split pieces 36 on the split surface 40.
  • the dividing surface 40 includes a plane that is substantially parallel to the radial direction of the rotor 14 and substantially orthogonal to the circumferential direction of the rotor 14, and the rotor core 1 6 force with respect to the circumferential direction of the rotor 14. It is composed of a plurality of divided iron core divided pieces 36.
  • Each core segment piece 36 can be formed by laminating, for example, thin silicon steel plates (electromagnetic steel plates) in the rotation axis direction.
  • the rotor core 1 6 is configured by arranging a plurality of core split pieces 3 6 in an annular shape and connecting them together. For example, as shown in FIGS. 2 and 3, as shown in FIGS. 2 and 3, the core split pieces 3 6 are connected to each other on the connecting surface where the core split pieces 3 6 are joined. 3 When joining 6 to 6, it can be fixed by applying pressure in the direction in which both swallow. However, other coupling methods such as screwing or gluing can be used. It should be noted that the joint surface where the core split pieces 36 are joined together when the plurality of core split pieces 36 are joined coincides with the aforementioned split face 40. Slots 42 are formed on the outer periphery of each core segment piece 36, and permanent magnets 18 are inserted into the slots 42.
  • the rotor core 16 is also arranged on the surface of the permanent magnet 18 (outside of the permanent magnet 18 in the radial direction of the rotor 14), and the permanent magnet 18 is attached to the rotor core 16. It is buried inside.
  • the coupling surface (divided surface 40) and the core segment segments 36 adjacent to each other in the circumferential direction of the rotor 14 are combined.
  • the distance b between the end of the slot 4 2 is set to be shorter than the distance a between the outer peripheral surface 3 6 a opposite to the stator 12 and the end of the slot 4 2 (b ⁇ a ).
  • slot 4 2 is formed in a substantially V shape in each of the iron core split pieces 3 6 and is disposed in the slot 4 2 of a substantially magnet-shaped 18 force.
  • magnets 18 are arranged in a substantially V shape for each pole.
  • the arrangement of the permanent magnets 18 is not limited to this example. It is also possible to form a plurality of magnetic poles on each core split piece 36.
  • stator 12 currents are sequentially passed through the stator coils 28, whereby the teeth 30 are sequentially magnetized to form a rotating magnetic field. Then, the magnetic field flux of the permanent magnet 18 of the rotor 14 interacts with this rotating magnetic field, and attraction and repulsion occurs, and the rotor 14 rotates to obtain magnet torque. Further, the rotor core 16 is disposed on the surface of the substantially V-shaped permanent magnet 18, and between the permanent magnets 18 adjacent in the circumferential direction (between the slots 4 2). The portion of the rotor core 16 functions as a salient pole and is attracted to the rotating magnetic field of the stator 12, so that reluctance torque can be obtained in addition to the magnet torque.
  • the rotor core 16 for example, magnetic steel sheets are laminated in the direction of the rotation axis, thereby increasing the magnetic resistance in the direction of the rotation axis and making it difficult for the magnetic flux to flow in the direction of the rotation axis.
  • the magnetic flux flowing through the rotor core 16 in the in-plane direction perpendicular to the rotation axis direction becomes saturated, the magnetic flux also flows out in the rotation axis direction.
  • the torque of the rotor 14 is large, the magnetic flux flowing in the rotor core 16 is likely to be saturated, and the magnetic flux easily flows in the direction of the rotation axis.
  • the in-plane direction vortex is low because the specific resistance (electrical resistance) in the in-plane direction perpendicular to the rotation axis direction is low.
  • Current 3 4 tends to increase.
  • the rotor core 16 is configured by connecting a plurality of core segment pieces 36 divided in the circumferential direction by the dividing surface 40 to each other.
  • the path of the eddy current 3 4 flowing in the in-plane direction through the rotor core 16 is divided by the dividing surface 40, and the cross-sectional area (area in the in-plane direction) of the portion where the eddy current 3 4 circulates is reduced. The Therefore, the eddy current 3 4 flowing in the in-plane direction through the rotor core 16 can be reduced, and the loss due to the in-plane eddy current 3 4 can be reduced.
  • the rotor core 16 is divided into a plurality of core split pieces 36.
  • the distance a between the outer peripheral surface 3 6 a and the slot 4 2 is increased, for example, as shown in FIG.
  • the distance b between the split surface 40 and the slot 42 is shorter than the distance a between the outer peripheral surface 36a and the slot 42.
  • the magnetic flux in the rotation axis direction is The distribution of the eddy current 3 4 in the in-plane direction perpendicular to the rotation axis direction with respect to the center 16a of the salient pole part is due to the fact that the distribution is biased forward in the rotor rotation direction with respect to the center 16a of the salient pole part. It is generated biased forward in the rotor rotation direction. Therefore, in this embodiment, for example, as shown in FIG.
  • each divided surface (coupling surface) 40 is shifted (offset) forward in the rotor rotation direction with respect to the center 16 a of the salient pole portion. It can also be formed. That is, in each divided surface 40, as shown in FIG. 9, the distance b 1 to the slot 4 2a (permanent magnet 18a) located in front of the rotor rotation direction from the divided surface 40 is divided. It can also be set shorter than the distance b 2 with the slot 4 2 b (permanent magnet 18 b) located behind the surface 40 in the rotor rotation direction (bl ⁇ b 2). In FIG. 9, one divided plane 40 is shown, but the other divided plane 40 has the same configuration.
  • the dividing surface 40 is made to be a salient pole so as to divide the center of the magnetic flux distribution in the rotation axis direction biased forward in the rotor rotation direction with respect to the center 16a of the salient pole portion.
  • the path of the eddy current 3 4 flowing in the in-plane direction between the slots 4 2 a and 4 2 b is efficiently divided by the dividing surface 40 by shifting it forward of the rotor rotation direction with respect to the center 16 a. can do. Therefore, the eddy current 34 flowing in the in-plane direction between the dividing surface 40 and the slots 4 2 a and 4 2 b can be efficiently reduced. As a result, the loss that occurs when eddy current 34 flows in the in-plane direction can be more efficiently reduced.
  • a compacted powder obtained by pressing and compacting a powder coated with a film that does not conduct electricity on the surface of a ferromagnetic fine particle such as iron. It can also be formed from a magnetic core material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

A rotor of a rotary machine includes a rotor core formed by connecting a plurality of iron core-divided pieces divided in the circumferential direction. The rotor core is arranged to oppose to a stator in the radial direction orthogonally intersecting the rotation axis direction. Each of the iron core-divided pieces has a slot in which a magnet is arranged. In each of the iron core-divided pieces, the distance between the slot and the connection plane where the iron core-divided pieces adjacent in the circumferential direction are connected is shorter than the distance between the slot and the opposing surface of the stator.

Description

明 細 書 回転電機  Memorandum book
「技術分野」 "Technical field"
本発明は、 固定子と回転子とが回転子の回転軸方向と直交する径方向に対向配 置ざれた回転電機に関する。  The present invention relates to a rotating electrical machine in which a stator and a rotor are arranged opposite to each other in a radial direction perpendicular to the rotation axis direction of the rotor.
「背景技術」 "Background Technology"
この種の回転電機の関連技術が特開 2 0 0 5— 1 6 8 1 2 8号公報に開示され ている。 特開 2 0 0 5— 1 6 8 1 2 8号公報においては、 回転子 (回転子鉄心) を、 その周方向に分割された複数のコア部材を互いに結合することで構成してお り、 各コア部材の外周部には、 永久磁石が固定子と対向して埋設されている。 回転子鉄心内を回転子の回転軸方向と垂直な面内方向に流れる磁束が飽和して くると、 磁束が回転軸方向にも流れ出すようになる。 そして、 回転軸方向に流れ る磁束が変動すると、 回転軸方向と垂直な面内方向に渦電流が流れることで、 こ の渦電流による損失 (鉄損) が発生する。 特に、 回転子鉄心における磁石付近で は、 磁束が回転軸方向に流れやすく、 面内方向の渦電流による損失も発生しやす い。  A related technology of this type of rotating electrical machine is disclosed in Japanese Patent Application Laid-Open No. 2 065 1 6 8 1 2 8. In Japanese Patent Application Laid-Open No. 2 0 0 5-1 6 8 1 2 8, a rotor (rotor core) is constituted by connecting a plurality of core members divided in the circumferential direction to each other, Permanent magnets are embedded in the outer periphery of each core member so as to face the stator. When the magnetic flux flowing in the rotor core in the in-plane direction perpendicular to the rotor rotation axis direction is saturated, the magnetic flux also flows out in the rotation axis direction. When the magnetic flux flowing in the direction of the rotation axis fluctuates, an eddy current flows in the in-plane direction perpendicular to the direction of the rotation axis, causing loss (iron loss) due to this eddy current. In particular, near the magnet in the rotor core, the magnetic flux tends to flow in the direction of the axis of rotation, and loss due to eddy current in the in-plane direction is likely to occur.
例えば特開 2 0 0 5— 1 6 8 1 2 8号公報のように、 回転子鉄心を、 その周方 向に分割された複数のコア部材により構成することで、 面内方向に流れる渦電流 の経路が分断されて渦電流が循環する部分の断面積 (面内方向の面積) が減少す るため、 面内方向の渦電流を低減することが可能となる。 しかし、 回転子鉄心に 形成したスロット内に磁石が配設された回転子においては、 回転子鉄心を複数の コア部材に分割して構成すると、 回転子の強度を確保するために、 固定子と対向 する外周面とスロットとの距離を増大させる必要がある。 しかし、 外周面とスロ ッ卜との距離を増大させると、 外周面とスロッ卜との間に形成される磁気的な橋 絡部分も増大するため、 磁石の磁束がこの橋絡部分を通過することによる漏れ磁 束が増大する。 この漏れ磁束分、 回転子のトルクへの有効磁束が減少し、 回転子 に作用するトルクが低下する。 For example, as disclosed in Japanese Laid-Open Patent Publication No. 2 0 0 5-1 6 8 1 2 8, an eddy current that flows in an in-plane direction is formed by configuring a rotor core with a plurality of core members divided in the circumferential direction. Since the cross-sectional area (area in the in-plane direction) of the part where the eddy current circulates is reduced by dividing the path, the eddy current in the in-plane direction can be reduced. However, in a rotor in which a magnet is disposed in a slot formed in the rotor core, when the rotor core is divided into a plurality of core members, the stator and the rotor are secured in order to ensure the strength of the rotor. It is necessary to increase the distance between the opposing outer peripheral surface and the slot. However, if the distance between the outer peripheral surface and the slot is increased, the magnetic bridge formed between the outer peripheral surface and the slot also increases, so the magnetic flux of the magnet passes through this bridge. This increases the leakage flux. This leakage magnetic flux reduces the effective magnetic flux to the rotor torque, and the rotor The torque acting on is reduced.
また、 回転子鉄心を、 その周方向に分割された複数のコア部材により構成した 場合でも、 周方向に隣接するコア部材が合わされた結合面とスロット (磁石) と の間で渦電流が面内方向に流れる。 面内方向の渦電流による損失の低減効果を向 上させるためには、 この結合面とスロッ卜との間に発生する面内方向の渦電流を 低減することが望ましい。  Further, even when the rotor core is constituted by a plurality of core members divided in the circumferential direction, eddy current is generated in-plane between the coupling surface where the core members adjacent in the circumferential direction are combined and the slot (magnet). Flow in the direction. In order to improve the effect of reducing the loss due to the in-plane eddy current, it is desirable to reduce the in-plane eddy current generated between the coupling surface and the slot.
「発明の開示」 "Disclosure of invention"
本発明は、 回転子鉄心内を回転軸方向と垂直な面内方向に渦電流が流れる場合 に生じる損失を効率よく低減することができる回転電機を提供することを目的の An object of the present invention is to provide a rotating electrical machine capable of efficiently reducing a loss that occurs when an eddy current flows in a rotor core in an in-plane direction perpendicular to the rotation axis direction.
1つとする。 さらに、 本発明は、 回転子の強度を確保しながら回転子に作用する トルクを効率よく増大させることができる回転電機を提供することを目的の 1つ とする。 One. Furthermore, an object of the present invention is to provide a rotating electrical machine that can efficiently increase the torque acting on the rotor while ensuring the strength of the rotor.
本発明に係る回転電機は、 固定子と回転子とが回転子の回転軸方向と直交する 径方向に対向配置された回転電機であって、 回転子は、 その周方向に分割された 複数の鉄心分割片を互いに結合してなる回転子鉄心を含み、 各鉄心分割片にはス ロットが形成され、 当該スロット内に磁石が配設されており、 各鉄心分割片にお いては、 前記周方向に隣接する鉄心分割片が合わされた結合面とスロッ卜との距 離が、 固定子との対向面とスロッ卜との距離より短いことを要旨とする。  A rotating electrical machine according to the present invention is a rotating electrical machine in which a stator and a rotor are opposed to each other in a radial direction perpendicular to the rotating shaft direction of the rotor, and the rotor is divided into a plurality of circumferentially divided pieces. Each of the core split pieces includes a slot, and a magnet is disposed in the slot. The core split pieces include the rotor core formed by connecting the core split pieces to each other. The gist is that the distance between the slot and the connecting surface where the core split pieces adjacent in the direction are combined is shorter than the distance between the surface facing the stator and the slot.
本発明によれば、 回転子鉄心内を回転軸方向と垂直な面内方向に渦電流が流れ る場合に生じる損失を効率よく低減することができる。 さらに、 回転子の強度を 確保しながら回転子に作用するトルクを効率よく増大させることができる。 本発明の一態様では、 前記結合面においては、 当該結合面より回転子回転方向 前方に位置するスロットとの距離が、 当該結合面より回転子回転方向後方に位置 するスロッ卜との距離より短いことが好適である。  According to the present invention, it is possible to efficiently reduce a loss that occurs when an eddy current flows in a rotor core in an in-plane direction perpendicular to the rotation axis direction. Furthermore, the torque acting on the rotor can be efficiently increased while ensuring the strength of the rotor. In one aspect of the present invention, in the coupling surface, a distance from a slot positioned forward in the rotor rotation direction from the coupling surface is shorter than a distance from a slot positioned rearward in the rotor rotation direction from the coupling surface. Is preferred.
また、 本発明に係る回転電機は、 固定子と回転子とが回転子の回転軸方向と直 交する径方向に対向配置された回転電機であって、 回転子は、 その周方向に分割 された複数の鉄心分割片を互いに結合してなる回転子鉄心を含み、 各鉄心分割片 にはスロットが形成され、 当該スロット内に磁石が配設されており、 前記周方向 に隣接する鉄心分割片が合わされた結合面においては、 当該結合面より回転子回 転方向前方に位置するスロッ卜との距離が、 当該結合面より回転子回転方向後方 に位置するスロッ卜との距離より短いことを要旨とする。 Further, the rotating electrical machine according to the present invention is a rotating electrical machine in which a stator and a rotor are opposed to each other in a radial direction perpendicular to the rotational axis direction of the rotor, and the rotor is divided in the circumferential direction. Each of the core split pieces is provided with a slot, and a magnet is disposed in the slot, and the circumferential direction In the joint surface where the core split pieces adjacent to each other are combined, the distance from the slot located forward of the rotor rotation direction from the joint surface is the same as the slot located behind the joint surface in the rotor rotational direction. The gist is that it is shorter than the distance.
本発明によれば、 回転子鉄心内を回転軸方向と垂直な面内方向に渦電流が流れ る場合に生じる損失を効率よく低減することができる。  According to the present invention, it is possible to efficiently reduce a loss that occurs when an eddy current flows in a rotor core in an in-plane direction perpendicular to the rotation axis direction.
本発明の一態様では、 各鉄心分割片にはスロッ卜が略 V字状に形成され、 略 V 字状に形成されたスロット内に磁石が配設されていることが好適である。 「図面の簡単な説明」  In one aspect of the present invention, it is preferable that each iron core split piece is formed with a slot in a substantially V shape, and a magnet is disposed in a slot formed in a substantially V shape. "Brief description of drawings"
図 1は、 本発明の実施形態に係る回転電機の概略構成を示す図である。  FIG. 1 is a diagram showing a schematic configuration of a rotating electrical machine according to an embodiment of the present invention.
図 2は、 本発明の実施形態に係る回転電機の概略構成を示す図である。  FIG. 2 is a diagram showing a schematic configuration of the rotating electrical machine according to the embodiment of the present invention.
図 3は、 本発明の実施形態に係る回転電機の概略構成を示す図である。  FIG. 3 is a diagram showing a schematic configuration of the rotating electrical machine according to the embodiment of the present invention.
図 4は、 回転子鉄心を周方向に分割しない構成において、 回転子鉄心内を回転 子の回転軸方向と垂直な面内方向に流れる渦電流を説明する図である。  FIG. 4 is a diagram for explaining eddy currents flowing in the rotor core in an in-plane direction perpendicular to the rotation axis direction of the rotor in a configuration in which the rotor core is not divided in the circumferential direction.
図 5は、 本発明の実施形態に係る回転電機において、 回転子鉄心内を回転子の 回転軸方向と垂直な面内方向に流れる渦電流を説明する図である。  FIG. 5 is a diagram for explaining an eddy current flowing in the in-plane direction perpendicular to the rotation axis direction of the rotor in the rotor core in the rotating electrical machine according to the embodiment of the present invention.
図 6は、 鉄心分割片の外周面とスロッ卜との間の磁気的な橋絡部分を通過して 漏れる,磁束を説明する図である。  FIG. 6 is a diagram for explaining the magnetic flux that leaks through the magnetic bridge between the outer peripheral surface of the core split piece and the slot.
図 7は、 本発明の実施形態に係る回転電機において、 永久磁石の磁束の流れを 説明する図である。  FIG. 7 is a diagram illustrating the flow of magnetic flux of the permanent magnet in the rotating electrical machine according to the embodiment of the present invention.
図 8は、 回転子鉄心を周方向に分割しない構成において、 回転子鉄心内を回転 子の回転軸方向と垂直な面内方向に流れる渦電流を説明する図である。  FIG. 8 is a diagram for explaining eddy currents flowing in the rotor core in an in-plane direction perpendicular to the rotation axis direction of the rotor in a configuration in which the rotor core is not divided in the circumferential direction.
図 9は、 本発明の実施形態に係る回転電機の他の概略構成を示す図である。  FIG. 9 is a diagram showing another schematic configuration of the rotating electrical machine according to the embodiment of the present invention.
「発明を実施するための最良の形態」 “Best Mode for Carrying Out the Invention”
以下、 本発明の好適な実施形態を図面に従って説明する。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
図 1〜3は、 本発明の実施形態に係る回転電機の概略構成を示す図である。 図 1は軸心 2 2と直交する方向から見た固定子 1 2及び回転子 1 4の内部構成の概 略を示し、 図 2は軸心 2 2と平行方向から見た固定子 1 2及び回転子 1 4の内部 構成の一部を示し、 図 3は軸心 2 2と平行方向から見た回転子 1 4の内部構成の 一部を示す。 ただし、 図 2, 3において図示を省略している部分の構成は、 図示 している部分と同様の構成である。 本実施形態に係る回転電機は、 図示しないケ 一シングに固定された固定子 1 2と、 固定子 1 2の径方向内側に配置され固定子 1 2に対し回転可能な回転子 1 4と、 を備えるラジアル型の回転電機である。 固定子 1 2は、 固定子鉄心 2 6と、 固定子鉄心 2 6に配設された複数の固定子 コイル 2 8と、 を含む。 固定子鉄心 2 6には、 径方向内側 (回転子 1 4側) へ突 出した複数のティース 3 0が固定子 1 2の周方向に沿って間隔をおいて配列され ており、 各固定子コイル 2 8は、 これらのティース 3 0に配設されている。 1 to 3 are diagrams showing a schematic configuration of a rotating electrical machine according to an embodiment of the present invention. Fig. 1 shows the outline of the internal structure of the stator 1 2 and the rotor 14 viewed from the direction orthogonal to the axis 2 2, and Fig. 2 shows the stator 1 2 viewed from the direction parallel to the axis 2 2 and Inside of rotor 1 4 3 shows a part of the configuration, and FIG. 3 shows a part of the internal configuration of the rotor 14 viewed from the direction parallel to the axis 2 2. However, the configuration of the parts not shown in FIGS. 2 and 3 is the same as that shown. The rotating electrical machine according to the present embodiment includes a stator 12 fixed to a casing (not shown), a rotor 14 disposed radially inside the stator 12 2 and rotatable relative to the stator 12; Is a radial type rotary electric machine. Stator 12 includes a stator core 26 and a plurality of stator coils 28 disposed on stator core 26. In the stator core 26, a plurality of teeth 30 projecting radially inward (rotor 14 side) are arranged at intervals along the circumferential direction of the stator 12. The coil 28 is disposed on these teeth 30.
回転子 1 4は、 回転子鉄心 1 6と、 回転子鉄心 1 6の外周部に配設された複数 の永久磁石 1 8と、 を含む。 複数の永久磁石 1 8は、 回転子 1 4の周方向 (回転 方向) に沿って間隔をおいて配列されている。 回転子 1 4には、 その回転中心軸 に沿って軸心 2 2が配設されており、 軸心 2 2はケーシングに回動可能に支持さ れている。 そして、 固定子鉄心 2 6の内周部 (ティース先端部 3 0 a ) と永久磁 石 1 8 (回転子鉄心 1 6の外周部) とは、 回転子 1 4の回転軸方向 (軸心 2 2の 長手方向、 以下単に回転軸方向とする) と直交する径方向に対向配置されている。 本実施形態では、 回転子鉄心 1 6は、 分割面 4 0で複数の鉄心分割片 3 6に分 割されて構成されている。 ここでの分割面 4 0は、 回転子 1 4の径方向に略平行 で且つ回転子 1 4の周方向に略直交する平面を含み、 回転子鉄心 1 6力 回転子 1 4の周方向に関して分割された複数の鉄心分割片 3 6により構成されている。 各鉄心分割片 3 6については、 例えば薄い珪素鋼板 (電磁鋼板) を回転軸方向に 積層して形成することができる。  Rotor 14 includes a rotor core 16, and a plurality of permanent magnets 18 disposed on the outer periphery of rotor core 16. The plurality of permanent magnets 18 are arranged at intervals along the circumferential direction (rotation direction) of the rotor 14. The rotor 14 is provided with an axis 22 along the rotation center axis, and the axis 22 is rotatably supported by the casing. The inner periphery of the stator core 26 (tooth tip 30 a) and the permanent magnet 18 (the outer periphery of the rotor core 16) are in the direction of the rotation axis of the rotor 14 (axis 2 2 in the radial direction perpendicular to the longitudinal direction (hereinafter simply referred to as the rotational axis direction). In the present embodiment, the rotor core 16 is divided into a plurality of core split pieces 36 on the split surface 40. Here, the dividing surface 40 includes a plane that is substantially parallel to the radial direction of the rotor 14 and substantially orthogonal to the circumferential direction of the rotor 14, and the rotor core 1 6 force with respect to the circumferential direction of the rotor 14. It is composed of a plurality of divided iron core divided pieces 36. Each core segment piece 36 can be formed by laminating, for example, thin silicon steel plates (electromagnetic steel plates) in the rotation axis direction.
複数の鉄心分割片 3 6を円環状に並べて互いに結合することで回転子鉄心 1 6 が構成される。 ここでの鉄心分割片 3 6同士の結合方法については、 例えば、 図 2, 3に示すように、 鉄心分割片 3 6同士が合わされる結合面に互いに嚙み合う 凹凸部を設け、 鉄心分割片 3 6同士を結合する際に両者が嚙み込む方向に圧力を 加えて固定することができる。 ただし、 例えばねじ留めや接着等の他の結合方法 を用いることも可能である。 なお、 複数の鉄心分割片 3 6の結合の際に鉄心分割 片 3 6同士が合わされる結合面は、 前述の分割面 4 0に一致する。 各鉄心分割片 3 6内における外周部にはスロッ卜 4 2が形成されており、 永久 磁石 1 8は、 このスロット 4 2内に挿入されている。 そのため、 回転子鉄心 1 6 が永久磁石 1 8の表面上 (永久磁石 1 8よりも回転子 1 4の径方向外側) にも配 設されており、 永久磁石 1 8が回転子鉄心 1 6の内部に埋設されている。 そして、 本実施形態では、 各鉄心分割片 3 6においては、 図 3に示すように、 回転子 1 4 の周方向に隣接する鉄心分割片 3 6が合わされる結合面 (分割面 4 0 ) とスロッ ト 4 2の端部との距離 bが、 固定子 1 2との対向面である外周面 3 6 aとスロッ ト 4 2の端部との距離 aより短く設定されている (b < a )。 なお、 図 2, 3では、 各鉄心分割片 3 6においてスロット 4 2が略 V字状に形成され、 永久磁石 1 8力 略 V字状のスロット 4 2内に配設された例、 つまり永久磁石 1 8が各極毎に略 V 字状に配置された例を示している。 ただし、 永久磁石 1 8の配置はこの例に限定 されるものではない。 また、 各鉄心分割片 3 6に、 磁極を複数形成することもで さる。 The rotor core 1 6 is configured by arranging a plurality of core split pieces 3 6 in an annular shape and connecting them together. For example, as shown in FIGS. 2 and 3, as shown in FIGS. 2 and 3, the core split pieces 3 6 are connected to each other on the connecting surface where the core split pieces 3 6 are joined. 3 When joining 6 to 6, it can be fixed by applying pressure in the direction in which both swallow. However, other coupling methods such as screwing or gluing can be used. It should be noted that the joint surface where the core split pieces 36 are joined together when the plurality of core split pieces 36 are joined coincides with the aforementioned split face 40. Slots 42 are formed on the outer periphery of each core segment piece 36, and permanent magnets 18 are inserted into the slots 42. For this reason, the rotor core 16 is also arranged on the surface of the permanent magnet 18 (outside of the permanent magnet 18 in the radial direction of the rotor 14), and the permanent magnet 18 is attached to the rotor core 16. It is buried inside. In the present embodiment, in each core segment piece 36, as shown in FIG. 3, the coupling surface (divided surface 40) and the core segment segments 36 adjacent to each other in the circumferential direction of the rotor 14 are combined. The distance b between the end of the slot 4 2 is set to be shorter than the distance a between the outer peripheral surface 3 6 a opposite to the stator 12 and the end of the slot 4 2 (b <a ). In FIGS. 2 and 3, an example in which the slot 4 2 is formed in a substantially V shape in each of the iron core split pieces 3 6 and is disposed in the slot 4 2 of a substantially magnet-shaped 18 force. An example is shown in which magnets 18 are arranged in a substantially V shape for each pole. However, the arrangement of the permanent magnets 18 is not limited to this example. It is also possible to form a plurality of magnetic poles on each core split piece 36.
固定子 1 2においては、 各固定子コイル 2 8に順次電流を流すことにより各テ ィース 3 0が順次磁化され、 回転磁界が形成される。 そして、 回転子 1 4の永久 磁石 1 8の界磁束がこの回転磁界と相互作用して、 吸引及び反発作用が生じ回転 子 1 4が回転し、 磁石トルクを得ることができる。 さらに、 略 V字状の永久磁石 1 8の表面上に配設された回転子鉄心 1 6の部分、 及び周方向に隣接する永久磁 石 1 8間 (スロット 4 2間) に配設された回転子鉄心 1 6の部分が突極として機 能して、 固定子 1 2の回転磁界に吸引されることで、 リラクタンストルクも磁石 トルクに加えて得ることができる。  In the stator 12, currents are sequentially passed through the stator coils 28, whereby the teeth 30 are sequentially magnetized to form a rotating magnetic field. Then, the magnetic field flux of the permanent magnet 18 of the rotor 14 interacts with this rotating magnetic field, and attraction and repulsion occurs, and the rotor 14 rotates to obtain magnet torque. Further, the rotor core 16 is disposed on the surface of the substantially V-shaped permanent magnet 18, and between the permanent magnets 18 adjacent in the circumferential direction (between the slots 4 2). The portion of the rotor core 16 functions as a salient pole and is attracted to the rotating magnetic field of the stator 12, so that reluctance torque can be obtained in addition to the magnet torque.
前述したように、 回転子鉄心 1 6については、 例えば電磁鋼板を回転軸方向に 積層することで、 回転軸方向の磁気抵抗を増大させて、 磁束を回転軸方向に流れ にくくしている。 しかし、 回転子鉄心 1 6内を回転軸方向と垂直な平面の面内方 向に流れる磁束が飽和してくると、 磁束が回転軸方向にも流れ出すようになる。 特に、 回転子 1 4のトルクが大きい場合には、 回転子鉄心 1 6内を流れる磁束が 飽和しやすくなり、 磁束が回転軸方向に流れやすくなる。 回転子鉄心 1 6を周方 向に分割しない構成では、 回転子鉄心 1 6内を回転軸方向に流れる磁束が変動す ると、 例えば図 4に示すように、 回転軸方向と垂直な面内方向に渦電流 3 4が流 れることで、 この渦電流 3 4による損失 (鉄損) が発生する。 特に、 回転子鉄心 1 6における永久磁石 1 8の近接部にて回転軸方向に流れる磁束が多く発生し、 面内方向の渦電流 3 4による損失が発生しやすい。 また、 電磁鋼板を回転軸方向 に積層して回転子鉄心 1 6を構成している場合は、 回転軸方向と垂直な面内方向 の比抵抗 (電気抵抗) が低いため、 面内方向の渦電流 3 4が増大しやすい。 As described above, with respect to the rotor core 16, for example, magnetic steel sheets are laminated in the direction of the rotation axis, thereby increasing the magnetic resistance in the direction of the rotation axis and making it difficult for the magnetic flux to flow in the direction of the rotation axis. However, when the magnetic flux flowing through the rotor core 16 in the in-plane direction perpendicular to the rotation axis direction becomes saturated, the magnetic flux also flows out in the rotation axis direction. In particular, when the torque of the rotor 14 is large, the magnetic flux flowing in the rotor core 16 is likely to be saturated, and the magnetic flux easily flows in the direction of the rotation axis. In the configuration in which the rotor core 16 is not divided in the circumferential direction, if the magnetic flux flowing in the rotor core 16 varies in the direction of the rotation axis, for example, as shown in FIG. Eddy current 3 4 flows in the direction As a result, a loss (iron loss) due to this eddy current 34 occurs. In particular, a large amount of magnetic flux flowing in the direction of the rotation axis is generated in the vicinity of the permanent magnet 18 in the rotor core 16, and loss due to the eddy current 34 in the in-plane direction is likely to occur. In addition, when the rotor core 16 is configured by laminating magnetic steel sheets in the direction of the rotation axis, the in-plane direction vortex is low because the specific resistance (electrical resistance) in the in-plane direction perpendicular to the rotation axis direction is low. Current 3 4 tends to increase.
これに対して本実施形態では、 回転子鉄心 1 6を、 分割面 4 0で周方向に分割 された複数の鉄心分割片 3 6を互いに結合して構成しているため、 図 5に示すよ うに、 分割面 4 0によって回転子鉄心 1 6内を面内方向に流れる渦電流 3 4の経 路が分断され、 渦電流 3 4が循環する部分の断面積 (面内方向の面積) が減少す る。 そのため、 回転子鉄心 1 6内を面内方向に流れる渦電流 3 4を低減すること ができ、 面内方向の渦電流 3 4による損失を低減することができる。  On the other hand, in the present embodiment, the rotor core 16 is configured by connecting a plurality of core segment pieces 36 divided in the circumferential direction by the dividing surface 40 to each other. In other words, the path of the eddy current 3 4 flowing in the in-plane direction through the rotor core 16 is divided by the dividing surface 40, and the cross-sectional area (area in the in-plane direction) of the portion where the eddy current 3 4 circulates is reduced. The Therefore, the eddy current 3 4 flowing in the in-plane direction through the rotor core 16 can be reduced, and the loss due to the in-plane eddy current 3 4 can be reduced.
ただし、 回転子鉄心 1 6に形成したスロッ卜 4 2内に永久磁石 1 8が配設され た回転子 1 4においては、 回転子鉄心 1 6を複数の鉄心分割片 3 6に分割して構 成すると、 回転子 1 4の強度を確保するために、 固定子 1 2と対向する面である 外周面 3 6 aとスロット 4 2との距離 aを増大させる必要がある。 しかし、 外周 面 3 6 aとスロット 4 2との距離 aを増大させると、 例えば図 6に示すように、 外周面 3 6 aとスロット 4 2との間に形成される磁気的な橋絡部分 4 3も増大す るため、 永久磁石 1 8の磁束がこの橋絡部分 4 3を通過することによる漏れ磁束 4 4が増大しやすくなる。 この漏れ磁束 4 4は回転子 1 4のトルクにほとんど寄 与しない磁束であるため、 橋絡部分 4 3を通過して漏れ出した磁束分、 回転子 1 4に作用するトルクが低下する。  However, in the rotor 14 in which the permanent magnets 18 are disposed in the slots 4 2 formed in the rotor core 16, the rotor core 16 is divided into a plurality of core split pieces 36. In this case, in order to secure the strength of the rotor 14, it is necessary to increase the distance a between the outer peripheral surface 3 6 a that is the surface facing the stator 1 2 and the slot 4 2. However, if the distance a between the outer peripheral surface 3 6 a and the slot 4 2 is increased, for example, as shown in FIG. 6, the magnetic bridging portion formed between the outer peripheral surface 3 6 a and the slot 4 2 Since 4 3 also increases, the magnetic flux leakage of the permanent magnet 18 due to the passage of the magnetic flux of the permanent magnet 18 through this bridging portion 4 3 tends to increase. Since this leakage magnetic flux 44 is a magnetic flux that hardly contributes to the torque of the rotor 14, the torque acting on the rotor 14 is reduced by the amount of the magnetic flux leaking through the bridge portion 43.
これに対して本実施形態では、 各鉄心分割片 3 6において、 分割面 4 0とスロ ット 4 2との距離 bを、 外周面 3 6 aとスロット 4 2との距離 aより短くしてい る。 これによつて、 回転子鉄心 1 6を複数の鉄心分割片 3 6に分割して構成して も、 外周面 3 6 aとスロット 4 2との距離 aを増大させて、 回転子 1 4の強度を 十分に確保することができる。 さらに、 分割面 4 0とスロット 4 2との距離 bを 減少させることで、 外周面 3 6 aとスロット 4 2との距離 aが増大しても、 図 7 に示すように、 永久磁石 1 8の磁束が橋絡部分 4 3を通過することによる漏れ磁 束 4 4を抑えることができ、 回転子 1 4のトルクへの有効磁束を増大させること ができる。 したがって、 回転子 1 4に作用するトルクを効率よく増大させること ができる。 On the other hand, in this embodiment, in each core split piece 36, the distance b between the split surface 40 and the slot 42 is shorter than the distance a between the outer peripheral surface 36a and the slot 42. The Thus, even if the rotor core 16 is divided into a plurality of core split pieces 3 6, the distance a between the outer peripheral surface 3 6 a and the slot 4 2 is increased, and the rotor 14 Sufficient strength can be secured. Further, even if the distance a between the outer peripheral surface 3 6 a and the slot 4 2 is increased by reducing the distance b between the dividing surface 40 and the slot 4 2, as shown in FIG. Leakage flux due to the magnetic flux passing through the bridge part 4 3 can be suppressed, and the effective magnetic flux to the torque of the rotor 1 4 can be increased. Can do. Therefore, the torque acting on the rotor 14 can be increased efficiently.
以上説明したように、 本実施形態によれば、 回転子鉄心 1 6内を回転軸方向と 垂直な面内方向に渦電流が流れる場合に生じる損失を効率よく低減することがで きるとともに、 回転子 1 4の強度を確保しながら回転子 1 4に作用するトルクを 効率よく増大させることができる。 その結果、 回転電機の高効率化を実現するこ とができる。  As described above, according to this embodiment, it is possible to efficiently reduce the loss that occurs when eddy current flows in the rotor core 16 in the in-plane direction perpendicular to the rotation axis direction, and The torque acting on the rotor 14 can be efficiently increased while ensuring the strength of the rotor 14. As a result, high efficiency of the rotating electrical machine can be realized.
また、 図 8に示すように、 周方向に隣接する永久磁石 1 8間 (スロット 4 2 間) に配置された回転子鉄心 1 6の部分 (突極部分) においては、 回転軸方向の 磁束が突極部分の中心 1 6 aに対じて回転子回転方向前方に偏って分布すること で、 回転軸方向と垂直な面内方向の渦電流 3 4が突極部分の中心 1 6 aに対して 回転子回転方向前方に偏って発生する。 そこで、 本実施形態では、 例えば図 9に 示すように、 各分割面 (結合面) 4 0を、 突極部分の中心 1 6 aに対して回転子 回転方向前方へずらして (オフセットさせて) 形成することもできる。 つまり、 各分割面 4 0においては、 図 9に示すように、 分割面 4 0より回転子回転方向前 方に位置するスロット 4 2 a (永久磁石 1 8 a ) との距離 b 1を、 分割面 4 0よ り回転子回転方向後方に位置するスロット 4 2 b (永久磁石 1 8 b ) との距離 b 2より短く設定することもできる (b l < b 2 )。 図 9では、 1つの分割面 4 0に ついて図示しているが、 他の分割面 4 0についても同様の構成である。  In addition, as shown in FIG. 8, in the portion of the rotor core 16 (saliency pole portion) disposed between the permanent magnets 18 adjacent to each other in the circumferential direction (between the slots 4 2), the magnetic flux in the rotation axis direction is The distribution of the eddy current 3 4 in the in-plane direction perpendicular to the rotation axis direction with respect to the center 16a of the salient pole part is due to the fact that the distribution is biased forward in the rotor rotation direction with respect to the center 16a of the salient pole part. It is generated biased forward in the rotor rotation direction. Therefore, in this embodiment, for example, as shown in FIG. 9, each divided surface (coupling surface) 40 is shifted (offset) forward in the rotor rotation direction with respect to the center 16 a of the salient pole portion. It can also be formed. That is, in each divided surface 40, as shown in FIG. 9, the distance b 1 to the slot 4 2a (permanent magnet 18a) located in front of the rotor rotation direction from the divided surface 40 is divided. It can also be set shorter than the distance b 2 with the slot 4 2 b (permanent magnet 18 b) located behind the surface 40 in the rotor rotation direction (bl <b 2). In FIG. 9, one divided plane 40 is shown, but the other divided plane 40 has the same configuration.
図 9に示す構成によれば、 突極部分の中心 1 6 aに対して回転子回転方向前方 に偏った回転軸方向の磁束分布のほぼ中心を分断するように、 分割面 4 0を突極 部分の中心 1 6 aに対して回転子回転方向前方にずらすことで、 スロット 4 2 a , 4 2 b間を面内方向に流れる渦電流 3 4の経路を分割面 4 0によって効率よく分 断することができる。 そのため、 分割面 4 0とスロット 4 2 a , 4 2 bとの間を 面内方向に流れる渦電流 3 4を効率よく低減することができる。 その結果、 面内 方向に渦電流 3 4が流れる場合に生じる損失をさらに効率よく低減することがで きる。  According to the configuration shown in FIG. 9, the dividing surface 40 is made to be a salient pole so as to divide the center of the magnetic flux distribution in the rotation axis direction biased forward in the rotor rotation direction with respect to the center 16a of the salient pole portion. The path of the eddy current 3 4 flowing in the in-plane direction between the slots 4 2 a and 4 2 b is efficiently divided by the dividing surface 40 by shifting it forward of the rotor rotation direction with respect to the center 16 a. can do. Therefore, the eddy current 34 flowing in the in-plane direction between the dividing surface 40 and the slots 4 2 a and 4 2 b can be efficiently reduced. As a result, the loss that occurs when eddy current 34 flows in the in-plane direction can be more efficiently reduced.
なお、 本実施形態において、 各鉄心分割片 3 6については、 鉄等の強磁性体の 微小粒の表面に電気を通さない膜のコーティングを施した粉体を押し固めた圧粉 磁心材料により成形することもできる。 In this embodiment, for each core split piece 36, a compacted powder obtained by pressing and compacting a powder coated with a film that does not conduct electricity on the surface of a ferromagnetic fine particle such as iron. It can also be formed from a magnetic core material.
以上、 本発明を実施するための形態について説明したが、 本発明はこうした実 施形態に何等限定されるものではなく、 本発明の要旨を逸脱しない範囲内におい て、 種々なる形態で実施し得ることは勿論である。  As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and can be implemented with a various form within the range which does not deviate from the summary of this invention. Of course.

Claims

請 求 の 範 囲 The scope of the claims
1 . 固定子と回転子とが回転子の回転軸方向と直交する径方向に対向配置された 回転電機であって、 1. A rotating electrical machine in which a stator and a rotor are opposed to each other in a radial direction perpendicular to the rotational axis direction of the rotor,
回転子は、 その周方向に分割された複数の鉄心分割片を互いに結合してなる回 転子鉄心を含み、  The rotor includes a rotor core formed by connecting a plurality of core split pieces divided in the circumferential direction to each other,
各鉄心分割片にはスロッ卜が形成され、 当該スロット内に磁石が配設されてお り、  Slots are formed in each iron core split piece, and magnets are arranged in the slots.
各鉄心分割片においては、 前記周方向に隣接する鉄心分割片が合わされた結合 面とスロットとの距離が、 固定子との対向面とスロットとの距離より短い、 回転 電機。  In each core split piece, the distance between the coupling surface where the circumferentially adjacent core split pieces are combined and the slot is shorter than the distance between the face facing the stator and the slot.
2 . 請求の範囲 1に記載の回転電機であって、 2. The rotating electrical machine according to claim 1,
前記結合面においては、 当該結合面より回転子回転方向前方に位置するスロッ 卜との距離が、 当該結合面より回転子回転方向後方に位置するスロッ卜との距離 より短い、 回転電機。  The rotating electrical machine in which the distance between the coupling surface and the slot located forward of the rotor rotation direction from the coupling surface is shorter than the distance between the slot located behind the coupling surface in the rotor rotation direction.
3 . 固定子と回転子とが回転子の回転軸方向と直交する径方向に対向配置された 回転電機であって、 3. A rotating electrical machine in which a stator and a rotor are opposed to each other in a radial direction perpendicular to the rotational axis direction of the rotor,
回転子は、 その周方向に分割された複数の鉄心分割片を互いに結合してなる回 転子鉄心を含み、  The rotor includes a rotor core formed by connecting a plurality of core split pieces divided in the circumferential direction to each other,
各鉄心分割片にはスロッ卜が形成され、 当該スロット内に磁石が配設されてお り、  Slots are formed in each iron core split piece, and magnets are arranged in the slots.
前記周方向に隣接する鉄心分割片が合わされた結合面においては、 当該結合面 より回転子回転方向前方に位置するスロッ卜との距離が、 当該結合面より回転子 回転方向後方に位置するスロッ卜との距離より短い、 回転電機。 In the coupling surface where the core split pieces adjacent to each other in the circumferential direction are combined, the distance between the coupling surface and the slot located in front of the rotor rotation direction from the coupling surface is the slot located behind the coupling surface in the rotor rotation direction. Shorter than the distance between the rotating electrical machine.
4 . 請求の範囲 1〜 3のいずれか 1に記載の回転電機であって、 4. The rotating electrical machine according to any one of claims 1 to 3,
各鉄心分割片にはスロッ卜が略 V字状に形成され、 略 V字状に形成されたスロ ット内に磁石が配設されている、 回転電機。  A rotating electrical machine in which a slot is formed in a substantially V shape in each core segment, and a magnet is disposed in a slot formed in a substantially V shape.
PCT/JP2008/060235 2007-05-31 2008-05-28 Rotary machine WO2008149865A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007144452A JP4719183B2 (en) 2007-05-31 2007-05-31 Rotating electric machine
JP2007-144452 2007-05-31

Publications (1)

Publication Number Publication Date
WO2008149865A1 true WO2008149865A1 (en) 2008-12-11

Family

ID=40093681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/060235 WO2008149865A1 (en) 2007-05-31 2008-05-28 Rotary machine

Country Status (2)

Country Link
JP (1) JP4719183B2 (en)
WO (1) WO2008149865A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018099541A1 (en) * 2016-11-29 2018-06-07 L-3 Communications Magnet-Motor Gmbh Rotor for an electric machine excited by a permanent magnet

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5493710B2 (en) * 2009-10-29 2014-05-14 トヨタ紡織株式会社 Laminated iron core, injection molding method and injection molding apparatus
JP5609844B2 (en) * 2011-05-11 2014-10-22 株式会社デンソー Electric motor
EP2940841B1 (en) 2012-12-28 2018-04-11 IHI Corporation Double stator switched reluctance rotating machine
JP5867628B2 (en) 2013-01-10 2016-02-24 株式会社Ihi Double stator type switched reluctance rotating machine
JP2017034774A (en) * 2015-07-29 2017-02-09 日産自動車株式会社 Manufacturing method of rotor
CN106169823B (en) * 2016-07-08 2018-10-30 宁波欣达电梯配件厂 A kind of rotor sheet of permanent magnet motor assembled rigid unit and assembled rotor
CN109378914B (en) * 2018-10-23 2021-11-05 奇瑞新能源汽车股份有限公司 Manufacturing method of driving motor rotor core for electric automobile
US20230378829A1 (en) * 2020-11-19 2023-11-23 Mitsubishi Electric Corporation Rotor, motor, blower, air conditioner, and manufacturing method of rotor
DE102021210756A1 (en) 2021-09-27 2023-03-30 Siemens Energy Global GmbH & Co. KG Rotor for electric rotating machine, electric rotating machine, nacelle propulsion and watercraft

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992007409A1 (en) * 1990-10-19 1992-04-30 Seiko Epson Corporation Rotor of brushless motor and its manufacturing method
JPH08336246A (en) * 1995-06-07 1996-12-17 Matsushita Electric Ind Co Ltd Rotor with permanent magnet
JPH11275783A (en) * 1998-03-20 1999-10-08 Matsushita Electric Ind Co Ltd Permanent magnet embedded rotor
JP2004129448A (en) * 2002-10-07 2004-04-22 Hitachi Ltd Permanent-magnet rotary electric machine
JP2004320952A (en) * 2003-04-18 2004-11-11 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type rotary electric machine
JP2005168128A (en) * 2003-12-01 2005-06-23 Honda Motor Co Ltd Rotor for rotary electric machine
JP2005312153A (en) * 2004-04-20 2005-11-04 Honda Motor Co Ltd Permanent magnet type rotor and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002101586A (en) * 2000-09-25 2002-04-05 Toshiba Kyaria Kk Rotor of electric motor
JP4680442B2 (en) * 2001-08-10 2011-05-11 ヤマハ発動機株式会社 Motor rotor
JP2005210828A (en) * 2004-01-22 2005-08-04 Toyota Motor Corp Rotating electric machine and rotor therefor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992007409A1 (en) * 1990-10-19 1992-04-30 Seiko Epson Corporation Rotor of brushless motor and its manufacturing method
JPH08336246A (en) * 1995-06-07 1996-12-17 Matsushita Electric Ind Co Ltd Rotor with permanent magnet
JPH11275783A (en) * 1998-03-20 1999-10-08 Matsushita Electric Ind Co Ltd Permanent magnet embedded rotor
JP2004129448A (en) * 2002-10-07 2004-04-22 Hitachi Ltd Permanent-magnet rotary electric machine
JP2004320952A (en) * 2003-04-18 2004-11-11 Hitachi Industrial Equipment Systems Co Ltd Permanent magnet type rotary electric machine
JP2005168128A (en) * 2003-12-01 2005-06-23 Honda Motor Co Ltd Rotor for rotary electric machine
JP2005312153A (en) * 2004-04-20 2005-11-04 Honda Motor Co Ltd Permanent magnet type rotor and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018099541A1 (en) * 2016-11-29 2018-06-07 L-3 Communications Magnet-Motor Gmbh Rotor for an electric machine excited by a permanent magnet

Also Published As

Publication number Publication date
JP2008301610A (en) 2008-12-11
JP4719183B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4719183B2 (en) Rotating electric machine
JP5347587B2 (en) Claw pole type motor
JP5643127B2 (en) Rotating machine rotor
JP6601510B2 (en) Magnetization method and apparatus
US9692265B2 (en) Variable magnetic flux-type rotary electric machine
JP5774081B2 (en) Rotating electric machine
JP2005094955A (en) Axial permanent magnet motor
WO2008007501A1 (en) Field element
JPWO2012105656A1 (en) Permanent magnet embedded rotary electric machine for vehicles
JP2008167520A (en) Rotary electric machine
JP5096756B2 (en) Rotating electric machine
JP2009136046A (en) Toroidally-wound dynamo-electric machine
JP5741410B2 (en) Rotor for rotating electrical machines
JP4580683B2 (en) Permanent magnet type reluctance type rotating electrical machine
JP4640373B2 (en) Rotating electric machine
JP6408766B2 (en) Axial three-dimensional gap type rotating electric machine
CN103532328A (en) Rotating electrical machine
JP2010200480A (en) Embedded magnetic motor
WO2018008502A1 (en) Rotor for rotary electric machine
JP7193422B2 (en) Rotating electric machine and manufacturing method of rotating electric machine
JP2007116850A (en) Permanent-magnet rotating electric machine and cylindrical linear motor
JP2012213269A (en) Rotary electric machine
JP5750995B2 (en) Synchronous motor
JP5299797B2 (en) Permanent magnet type rotating electric machine for high speed rotation
TWI385899B (en) Rotor structure for permanent-magnet machines and manufacture method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08765048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08765048

Country of ref document: EP

Kind code of ref document: A1