JP2004129448A - Permanent-magnet rotary electric machine - Google Patents

Permanent-magnet rotary electric machine Download PDF

Info

Publication number
JP2004129448A
JP2004129448A JP2002293154A JP2002293154A JP2004129448A JP 2004129448 A JP2004129448 A JP 2004129448A JP 2002293154 A JP2002293154 A JP 2002293154A JP 2002293154 A JP2002293154 A JP 2002293154A JP 2004129448 A JP2004129448 A JP 2004129448A
Authority
JP
Japan
Prior art keywords
rotor core
permanent magnet
axis
rotor
electric machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002293154A
Other languages
Japanese (ja)
Inventor
Ryoichi Takahata
高畑 良一
Haruo Oharagi
小原木 春雄
Satoshi Kikuchi
菊地  聡
Miyoshi Takahashi
高橋 身佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002293154A priority Critical patent/JP2004129448A/en
Publication of JP2004129448A publication Critical patent/JP2004129448A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a powerful permanent-magnet rotary electric machine by suppressing an increase in iron loss due to armature-reaction magnetic flux and making effective use of reluctance torque. <P>SOLUTION: The permanent-magnet rotary electric machine comprises a stator wherein armature windings are installed in a plurality of slots formed in a stator core; and a rotor wherein permanent magnets 5 are housed in a plurality of permanent magnet insertion holes formed in a rotor core. A rotor core 2 is provided with recessed portions 7 which are formed between magnetic poles (between magnets) in proximity to the circumferential surface of the rotor core with the permanent magnets 5 housed therein; and air gaps 20 which are formed in the rotor core between magnetic poles (between magnets) and suppresses the flow of armature-reaction magnetic flux produced by the armature winding. The rotor core 2 is combined with a rotor core 3 provided only with a reluctance magnetic circuit, and a magnetic path for armature-reaction magnetic flux is thereby defined. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、例えば空気調和機等に利用される電動機等の回転電機及びそれを用いた圧縮機,空気調和機に係るものである。
【0002】
【従来の技術】
従来、この種の永久磁石式回転電機においては、様々な形状の永久磁石が採用されている。例えば、特開平6−339241号公報に記載の永久磁石式回転電機においては、固定子鉄心に形成された複数のティースを取り囲むように集中巻の電機子巻線が施された固定子と、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子とを有し、リラクタンストルクを利用して回転電機の出力を向上させようとしている。
【0003】
【特許文献1】
特開平6−339241号公報
【0004】
【発明が解決しようとする課題】
上記従来技術の回転電機では、リラクタンストルクを利用するために電機子巻線が作る電機子反作用磁束を発生させる必要があり、従来例の構造ではリラクタンストルクが発生しても電機子反作用磁束による鉄損が増加して回転電機の出力を向上させることができない。
【0005】
本発明の目的は、電機子反作用磁束による鉄損の増加を抑え、リラクタンストルクを有効利用できる永久磁石式回転電機を提供することである。
【0006】
【課題を解決するための手段】
本発明は、上記目的を達成するために、固定子鉄心に形成された複数のスロット内に電機子巻線が施された固定子と、回転子鉄心に形成された複数の永久磁石挿入孔中に永久磁石が納められた回転子とを有する永久磁石式回転電機において、永久磁石を納めた回転子鉄心の外周表面近傍の磁極間(磁石間)に凹部を設けると共に磁極間(磁石間)の回転子鉄心内部に電機子巻線が作る電機子反作用磁束の流れを抑制する空隙部を設けた回転子鉄心と、リラクタンス磁気回路のみを有する回転子鉄心とを組み合せた永久磁石式回転電機を提案する。
【0007】
すなわち、本発明の永久磁石を埋め込んだ回転子鉄心には鉄心内部の磁極間
(磁石間)に電機子巻線が作る電機子反作用磁束の流れを抑制する空隙部を設けている為、電機子反作用磁束を通り難くし、リラクタンス磁気回路のみを有する回転子鉄心は、電機子反作用磁束を通り易くしている。したがって、回転子には電機子反作用磁束の影響を受け難く、磁石トルクを有効に発生出来ると共に、回転子鉄心では少しの電機子電流によっても大きな電機子反作用磁束が発生し、かつ電機子反作用磁束による鉄損の発生も小さくなるので、リラクタンストルクの有効利用により、出力を向上できる永久磁石式回転電機を提供できる。
【0008】
【発明の実施の形態】
次に、図1〜図17を参照して本発明による永久磁石式回転電機の実施形態を説明する。
【0009】
・実施形態1
図1は、本発明による永久磁石式回転電機の実施形態1の回転子形状を示し、図2は図1の回転子鉄心形状を示す断面図である。固定子鉄心は図示していないが、固定子鉄心には複数のスロットが形成され、スロット内に電機子巻線が施されている。図1において、回転子1は回転子鉄心2の軸方向の片端部に回転子鉄心3を配置しているとともに、回転子鉄心2の軸方向長L2を回転子鉄心3の軸方向長L3よりも長くなるように構成している。回転子鉄心2は、回転子1の軸に対して凸のV字の永久磁石挿入孔4中に配置された永久磁石5(ここでは4極で示した)とシャフト(図示せず)に嵌合するための回転子軸孔8,回転子鉄心2を固定するためのリベット孔9からなる。回転子鉄心3は、フラックスバリア10と鋼板リブ11とで構成されるリラクタンス磁気回路とシャフト(図示せず)に嵌合するための回転子軸孔8,回転子鉄心3を固定するためのリベット孔9からなる。回転子鉄心2の永久磁石挿入孔4中にV字形状の永久磁石5が挿入され、V字の中心方向をd軸と称し、磁束軸となる。それと電気角で90度異なる磁束軸をq軸と称し、このq軸が電機子反作用軸となる。回転子鉄心2は電機子反作用磁束を通りにくくするため、q軸側の回転子表面近傍の極間鉄心6をV字にカットしたq軸凹部7を設けると共に鉄心内部の磁極間(磁石間)に電機子巻線が作る電機子反作用磁束の流れを抑制する空隙部20を形成している。回転子鉄心3にはフラックスバリア10と鋼板リブ11とd軸側の回転子表面近傍の鉄心をV字にカットしたd軸凹部30が設けられており、フラックスバリア10は回転子鉄心3の表面近傍かつq軸近傍で略半径方向に向けられている。上記の回転子1,2の構造によりd軸磁束を通り難く、q軸磁束を通り易くなる。この結果、電機子反作用磁束は鋼板リブ11を通過する。
【0010】
図3は本発明による永久磁石式回転電機における永久磁石磁気回路部の径方向断面形状を示す断面図であり、回転子には回転子鉄心2を設けている。図4は本発明による永久磁石式回転電機内リラクタンス磁気回路部の径方向断面形状を示す断面図であり、回転子には回転子鉄心3を設けている。図中における回転子で、図2で示した同一物には同一符号を付したので説明を省略する。
【0011】
図3において、固定子12は固定子鉄心13中に複数のティース14,スロット15が設けられ、スロット15中にはティース14を囲むように集中巻の電機子巻線16(U相巻線16A,V相巻線16B,W相巻線16Cの集中巻からなる)を巻装している。図3の構成ではq軸側の回転子鉄心2には電機子巻線が作る電機子反作用磁束の流れを抑制する空隙部20が存在するため電機子反作用磁束が通り難い。
【0012】
これに対し、図4の構成ではq軸側の磁束が通り易いようにフラックスバリア10および鋼板リブ11を形成しているので、電機子反作用磁束Φ1,Φ2が通り易くなる。
【0013】
ここで、図3の構成でq軸側の回転子鉄心2にはq軸凹部7および空隙部20があり、さらに永久磁石5によって極間鉄心6が磁気飽和領域にあるため電機子反作用磁束が通り難く、リラクタンストルクを発生せず、鉄損の発生も少ない。そして、図4の構成に示すように、d軸凹部30を設け、フラックスバリア10と鋼板リブ11を有する回転子鉄心3が電機子反作用磁束Φ1,Φ2を通り易くしているので、小さな電機子電流で大きな電機子反作用磁束が発生し、リラクタンストルクを有効に利用して出力の大きな永久磁石式回転電機が得られる。すなわち、図3の回転子鉄心2では鉄損,銅損を押さえ永久磁石によるトルクを有効に発生し、図4の回転子鉄心3ではリラクタンストルクを有効に発生するので出力が大きくて効率の良い永久磁石式回転電機を提供できる。
【0014】
・実施形態2
図5は、本発明による永久磁石式回転電機の実施形態2の回転子形状を示し、図6は図5の回転子鉄心形状を示す断面図である。図中における回転子で、図2で示した同一物には同一符号を付したので説明を省略する。図5において、回転子1は回転子鉄心2の軸方向の片端部に回転子鉄心3を配置しているとともに、回転子鉄心2の軸方向長L2を回転子鉄心3の軸方向長L3よりも長く構成している。また、図2と異なるのは、回転子鉄心3をq軸側に突極部17,d軸側にd軸凹部33を有するスイッチトリラクタンス構造としたことにある。
【0015】
この構成ではq軸側の磁束が通り易いように突極部17を形成しているので、電機子反作用磁束が通り易くなる。したがって、このように構成した場合でも、基本的性能は実施形態1と同様の効果が得られる。
【0016】
・実施形態3
図7は、本発明による永久磁石式回転電機の実施形態3の回転子鉄心形状を示す断面図である。図中における回転子で、図2で示した同一物には同一符号を付したので説明を省略する。図2と異なるのは、回転子鉄心2中に電機子反作用磁束を通りにくくするため、q軸側の回転子鉄心内部の磁極間(磁石間)に電機子巻線が作る電機子反作用磁束の流れを抑制する空隙部21を少なくとも2つ以上に構成したことである。
【0017】
この構成により電機子反作用磁束をより通り難くするため、実施形態1よりもさらに永久磁石によるトルクを有効に利用することができる。
【0018】
・実施形態4
図8は、本発明による永久磁石式回転電機の実施形態4の回転子鉄心形状を示す断面図である。図中における回転子で、図2で示した同一物には同一符号を付したので説明を省略する。図8において、図7と異なるのは、回転子鉄心3をq軸側に突極部17,d軸側にd軸凹部33を有するスイッチトリラクタンス構造としたことにある。これによっても、基本的性能は実施形態1と同様の効果が得られる。
【0019】
・実施形態5
図9は、本発明による永久磁石式回転電機の実施形態5の回転子鉄心形状を示す断面図である。図中における回転子で、図2で示した同一物には同一符号を付したので説明を省略する。図9において、図2と異なるのは、回転子鉄心2中の永久磁石挿入孔31に平板永久磁石32を挿入し、空隙部22を設けたものである。これによっても、基本的性能は実施形態1と同様の効果が得られる。
【0020】
・実施形態6
図10は、本発明による永久磁石式回転電機の実施形態6の回転子鉄心形状を示す断面図である。図中における回転子で、図2で示した同一物には同一符号を付したので説明を省略する。図10において、図9と異なるのは、回転子鉄心3をq軸側に突極部17,d軸側にd軸凹部33を有するスイッチトリラクタンス構造としたことにある。これによっても、基本的性能は実施形態1と同様の効果が得られる。
【0021】
・実施形態7
図11は、本発明による永久磁石式回転電機の実施形態7の回転子鉄心形状を示す断面図である。図中における回転子で、図2で示した同一物には同一符号を付したので説明を省略する。図11において、図2と異なるのは、回転子鉄心2中の永久磁石挿入孔34にU字永久磁石35を挿入し、空隙部36を設けたものである。これによっても、基本的性能は実施形態1と同様の効果が得られる。
【0022】
・実施形態8
図12は、本発明による永久磁石式回転電機の実施形態8の回転子鉄心形状を示す断面図である。図中における回転子で、図2で示した同一物には同一符号を付したので説明を省略する。図12において、図11と異なるのは、回転子鉄心3をq軸側に突極部17,d軸側にd軸凹部33を有するスイッチトリラクタンス構造としたことにある。これによっても、基本的性能は実施形態1と同様の効果が得られる。
【0023】
・実施形態9
図13に、本発明による永久磁石式回転電機の実施形態9の回転子形状を示す。図中における回転子で、図1で示した同一物には同一符号を付したので説明を省略する。図13において、図1と異なるのは、回転子1が、回転子鉄心2の軸方向両端に回転子鉄心3を配置して構成されているところにある。ここで、回転子鉄心2の軸方向長L2は、回転子鉄心3の軸方向長の合成長さ(L31+L32)よりも長く構成している。これによっても、基本的性能は実施形態1と同様の効果が得られる。
【0024】
・実施形態10
図14に、本発明による永久磁石式回転電機の実施形態10の回転子形状を示す。図中における回転子で、図5で示した同一物には同一符号を付したので説明を省略する。図14において、図5と異なるのは、回転子1が、回転子鉄心2の軸方向両端に回転子鉄心3を配置して構成されているところにある。ここで、回転子鉄心2の軸方向長L2は、回転子鉄心3の軸方向長の合成長さ(L31+
L32)よりも長く構成している。これによっても、基本的性能は実施形態1と同様の効果が得られる。
【0025】
・実施形態11
図15に、本発明による永久磁石式回転電機の実施形態11の回転子形状を示す。図中における回転子で、図1で示した同一物には同一符号を付したので説明を省略する。図15において、図1と異なるのは、回転子1が、回転子鉄心3の軸方向両端に回転子鉄心2を配置して構成されているところにある。ここで、回転子鉄心2の軸方向長の合成長さ(L21+L22)は、回転子鉄心3の軸方向長L3よりも長く構成している。
【0026】
また、図中、永久磁石5は一重のV字形状で記載しているが、一重または二重(図示せず)の一文字、U字もしくはV字形状でも構成が可能である。これによっても、基本的性能は実施形態1と同様の効果が得られる。
【0027】
・実施形態12
図16に、本発明による永久磁石式回転電機の実施形態12の回転子形状を示す。図中における回転子で、図5で示した同一物には同一符号を付したので説明を省略する。図16において、図5と異なるのは、回転子1が、回転子鉄心3の軸方向両端に回転子鉄心21,22を配置して構成されているところにある。ここで、回転子鉄心2の軸方向長の合成長さ(L21+L22)は、回転子鉄心3の軸方向長L3よりも長く構成している。
【0028】
また、図中、永久磁石5は一重のV字形状で記載しているが、一重または二重(図示せず)の一文字、U字もしくはV字形状でも構成が可能である。これによっても、基本的性能は実施形態1と同様の効果が得られる。
【0029】
・実施形態13
図17は、本発明に係わる空気調和機の冷凍サイクルを示す図である。図において、37は室外機、38は室内機、39は圧縮機であり、圧縮機39内には永久磁石式回転電機40と圧縮部41が封入されている。42は凝縮器、43は膨張弁、44は蒸発器である。冷凍サイクルは冷媒を矢印の方向に循環させ、圧縮機39は冷媒を圧縮して凝縮器42,膨張弁43からなる室外機37と、蒸発器44からなる室内機38間で熱交換を行って冷房機能を発揮する。
【0030】
本発明で示した永久磁石式回転電機40を使用すると、永久磁石式回転電機
40の出力向上により入力を低減できることから、地球温暖化につながるCO の排出を削減できる効果がある。
【0031】
また、オゾン層破壊の観点からHFC類冷媒を使用する場合、本発明で示した永久磁石式回転電機40を使用すると、永久磁石式回転電機40の冷凍サイクル全体の設計変更が少なくて済む。
【0032】
【発明の効果】
本発明によれば、永久磁石を納めた回転子鉄心2の外周表面近傍の磁極間(磁石間)に凹部を設けると共に磁極間(磁石間)の回転子鉄心内部に電機子巻線が作る電機子反作用磁束の流れを抑制する空隙部を設けることで電機子反作用磁束を通りづらくし、リラクタンス磁気回路のみを有する回転子鉄心3では電機子反作用磁束を通り易くしているので、回転子鉄心2では鉄損,銅損を押さえて永久磁石によるトルクを有効に発生し、回転子鉄心3は小さな電機子電流で大きな電機子反作用磁束が得られるのでリラクタンストルクを有効に発生し、出力が大きくて効率の良い永久磁石式回転電機が得られる。
【図面の簡単な説明】
【図1】本発明による永久磁石式回転電機の実施形態1の回転子形状を示す図である。
【図2】本発明による永久磁石式回転電機の実施形態1の回転子鉄心形状を示す断面図である。
【図3】本発明による永久磁石式回転電機の径方向断面形状を示す断面図である。
【図4】本発明による永久磁石式回転電機の径方向断面形状を示す断面図である。
【図5】本発明による永久磁石式回転電機の実施形態2の回転子形状を示す図である。
【図6】本発明による永久磁石式回転電機の実施形態2の回転子鉄心形状を示す断面図である。
【図7】本発明による永久磁石式回転電機の実施形態3の回転子鉄心形状を示す断面図である。
【図8】本発明による永久磁石式回転電機の実施形態4の回転子鉄心形状を示す断面図である。
【図9】本発明による永久磁石式回転電機の実施形態5の回転子鉄心形状を示す断面図である。
【図10】本発明による永久磁石式回転電機の実施形態6の回転子鉄心形状を示す断面図である。
【図11】本発明による永久磁石式回転電機の実施形態7の回転子鉄心形状を示す断面図である。
【図12】本発明による永久磁石式回転電機の実施形態8の回転子鉄心形状を示す断面図である。
【図13】本発明による永久磁石式回転電機の実施形態9の回転子形状を示す図である。
【図14】本発明による永久磁石式回転電機の実施形態10の回転子形状を示す図である。
【図15】本発明による永久磁石式回転電機の実施形態11の回転子形状を示す図である。
【図16】本発明による永久磁石式回転電機の実施形態12の回転子形状を示す図である。
【図17】本発明に係わる空気調和機の冷凍サイクルを示す図である。
【符号の説明】
1…回転子、2,3…回転子鉄心、4…永久磁石挿入孔、5…永久磁石、6…極間鉄心、7…q軸凹部、8…回転子軸孔、9…リベット孔、10…フラックスバリア、11…鋼板リブ、12…固定子、13…固定子鉄心、14…ティース、15…スロット、16…電機子巻線、17…突極部、20,21,22,36…空隙部、30,33…d軸凹部、31…平板永久磁石挿入孔、32…平板永久磁石、34…U字永久磁石挿入孔、35…U字永久磁石、37…室外機、38…室内機、39…圧縮機、40…永久磁石式回転電機、41…圧縮部,42…凝縮器、43…膨張弁、44…蒸発器。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotating electric machine such as a motor used for an air conditioner and the like, and a compressor and an air conditioner using the same.
[0002]
[Prior art]
Conventionally, permanent magnets of various shapes have been employed in this type of permanent magnet type rotating electric machine. For example, in a permanent magnet type rotating electric machine described in JP-A-6-339241, a stator provided with concentrated winding armature winding so as to surround a plurality of teeth formed on a stator core, and A rotor in which permanent magnets are accommodated in a plurality of permanent magnet insertion holes formed in a child core is used to improve the output of the rotating electric machine using reluctance torque.
[0003]
[Patent Document 1]
JP-A-6-339241
[Problems to be solved by the invention]
In the above-described conventional rotating electric machine, it is necessary to generate an armature reaction magnetic flux generated by the armature winding in order to utilize the reluctance torque. The loss increases and the output of the rotating electric machine cannot be improved.
[0005]
An object of the present invention is to provide a permanent magnet type rotating electric machine that can suppress an increase in iron loss due to armature reaction magnetic flux and can effectively use reluctance torque.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a stator in which an armature winding is provided in a plurality of slots formed in a stator core, and a plurality of permanent magnet insertion holes formed in a rotor core. And a rotor having a permanent magnet housed therein, a concave portion is provided between magnetic poles (between magnets) near an outer peripheral surface of a rotor iron core having permanent magnets, and a recess is provided between magnetic poles (between magnets). Proposal of a permanent magnet type rotating electric machine combining a rotor core with an air gap that suppresses the flow of armature reaction magnetic flux created by an armature winding inside a rotor core and a rotor core with only a reluctance magnetic circuit I do.
[0007]
That is, the rotor core in which the permanent magnet of the present invention is embedded is provided with a gap between the magnetic poles (between magnets) inside the core to suppress the flow of the armature reaction magnetic flux generated by the armature winding. The rotor core, which makes it difficult to pass the reaction magnetic flux and has only the reluctance magnetic circuit, easily passes the armature reaction magnetic flux. Therefore, the rotor is hardly affected by the armature reaction magnetic flux, the magnet torque can be effectively generated, and a large armature reaction magnetic flux is generated by a small armature current in the rotor core, and the armature reaction magnetic flux is generated. As a result, a permanent magnet type rotating electric machine capable of improving the output by effectively utilizing the reluctance torque can be provided.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of a permanent magnet type rotating electric machine according to the present invention will be described with reference to FIGS.
[0009]
-Embodiment 1
FIG. 1 shows a rotor shape of a permanent magnet type rotating electric machine according to a first embodiment of the present invention, and FIG. 2 is a cross-sectional view showing a rotor core shape of FIG. Although the stator core is not shown, a plurality of slots are formed in the stator core, and armature windings are provided in the slots. In FIG. 1, a rotor 1 has a rotor core 3 disposed at one axial end of a rotor core 2, and an axial length L 2 of the rotor core 2 is determined by an axial length L 3 of the rotor core 3. Are also configured to be longer. The rotor core 2 is fitted to a permanent magnet 5 (shown here with four poles) and a shaft (not shown) arranged in a V-shaped permanent magnet insertion hole 4 that is convex with respect to the axis of the rotor 1. A rotor shaft hole 8 for fitting and a rivet hole 9 for fixing the rotor core 2. The rotor core 3 includes a reluctance magnetic circuit including a flux barrier 10 and a steel plate rib 11, a rotor shaft hole 8 for fitting to a shaft (not shown), and rivets for fixing the rotor core 3. It consists of a hole 9. A V-shaped permanent magnet 5 is inserted into the permanent magnet insertion hole 4 of the rotor core 2, and the center direction of the V-shape is referred to as a d-axis and serves as a magnetic flux axis. A magnetic flux axis having an electrical angle different from that by 90 degrees is referred to as a q-axis, and the q-axis is an armature reaction axis. In order to make it difficult for the rotor core 2 to pass through the armature reaction magnetic flux, a q-axis recess 7 is formed by cutting the pole core 6 near the rotor surface on the q-axis side into a V-shape, and the magnetic poles (between magnets) inside the core are provided. The air gap 20 is formed to suppress the flow of the armature reaction magnetic flux generated by the armature winding. The rotor core 3 is provided with a flux barrier 10, a steel plate rib 11, and a d-axis recess 30 formed by cutting the V-shaped core near the rotor surface on the d-axis side, and the flux barrier 10 is provided on the surface of the rotor core 3. In the vicinity and in the vicinity of the q-axis, it is directed substantially in the radial direction. The structure of the rotors 1 and 2 makes it difficult to pass the d-axis magnetic flux and easily passes the q-axis magnetic flux. As a result, the armature reaction magnetic flux passes through the steel plate rib 11.
[0010]
FIG. 3 is a cross-sectional view showing a radial cross-sectional shape of a permanent magnet magnetic circuit portion in the permanent magnet type rotating electric machine according to the present invention. The rotor is provided with a rotor core 2. FIG. 4 is a cross-sectional view showing a radial cross-sectional shape of a reluctance magnetic circuit section in a permanent magnet type rotating electric machine according to the present invention, and a rotor is provided with a rotor core 3. In the figure, the same components as those shown in FIG. 2 are denoted by the same reference numerals and will not be described.
[0011]
In FIG. 3, a stator 12 has a plurality of teeth 14 and slots 15 provided in a stator core 13, and a concentrated winding armature winding 16 (U-phase winding 16 </ b> A) surrounds the teeth 14 in the slots 15. , V-phase winding 16B and concentrated winding of W-phase winding 16C). In the configuration of FIG. 3, the armature reaction magnetic flux does not easily pass through the rotor core 2 on the q-axis side because there is a gap portion 20 that suppresses the flow of the armature reaction magnetic flux generated by the armature winding.
[0012]
On the other hand, in the configuration of FIG. 4, the flux barrier 10 and the steel plate rib 11 are formed so that the magnetic flux on the q-axis side can easily pass, so that the armature reaction magnetic fluxes Φ1 and Φ2 can pass easily.
[0013]
Here, in the configuration of FIG. 3, the q-axis side rotor core 2 has a q-axis concave portion 7 and a gap portion 20, and further, since the inter-pole core 6 is in the magnetic saturation region by the permanent magnet 5, the armature reaction magnetic flux is reduced. It is difficult to pass, does not generate reluctance torque, and generates little iron loss. Then, as shown in the configuration of FIG. 4, the d-axis concave portion 30 is provided, and the rotor core 3 having the flux barrier 10 and the steel plate rib 11 facilitates passage of the armature reaction magnetic fluxes Φ1 and Φ2. A large armature reaction magnetic flux is generated by the current, and a permanent magnet type rotating electric machine having a large output can be obtained by effectively utilizing the reluctance torque. That is, the rotor core 2 shown in FIG. 3 effectively suppresses iron loss and copper loss and effectively generates torque by the permanent magnet, and the rotor core 3 shown in FIG. 4 effectively generates reluctance torque. A permanent magnet type rotating electric machine can be provided.
[0014]
-Embodiment 2
FIG. 5 shows a rotor shape of a permanent magnet type rotating electric machine according to a second embodiment of the present invention, and FIG. 6 is a cross-sectional view showing the rotor core shape of FIG. In the figure, the same components as those shown in FIG. 2 are denoted by the same reference numerals and will not be described. In FIG. 5, the rotor 1 has a rotor core 3 disposed at one end in the axial direction of the rotor core 2, and the axial length L 2 of the rotor core 2 is calculated from the axial length L 3 of the rotor core 3. Is also long. 2 in that the rotor core 3 has a switch reluctance structure having a salient pole portion 17 on the q-axis side and a d-axis concave portion 33 on the d-axis side.
[0015]
In this configuration, since the salient pole portion 17 is formed so that the magnetic flux on the q-axis side can easily pass, the armature reaction magnetic flux can easily pass. Therefore, even in the case of such a configuration, the same effect as in the first embodiment can be obtained in the basic performance.
[0016]
-Embodiment 3
FIG. 7 is a sectional view showing a rotor core shape of a permanent magnet type rotating electric machine according to Embodiment 3 of the present invention. In the figure, the same components as those shown in FIG. 2 are denoted by the same reference numerals and will not be described. The difference from FIG. 2 is that the armature reaction magnetic flux generated by the armature winding between the magnetic poles (between the magnets) inside the rotor core on the q-axis side in order to make it difficult for the armature reaction magnetic flux to pass through the rotor core 2. That is, at least two or more void portions 21 for suppressing the flow are provided.
[0017]
This configuration makes it more difficult for the armature reaction magnetic flux to pass, so that the torque by the permanent magnet can be used more effectively than in the first embodiment.
[0018]
Embodiment 4
FIG. 8 is a cross-sectional view showing a rotor core shape of a permanent magnet type rotating electric machine according to Embodiment 4 of the present invention. In the figure, the same components as those shown in FIG. 2 are denoted by the same reference numerals and will not be described. 8 differs from FIG. 7 in that the rotor core 3 has a switch reluctance structure having a salient pole portion 17 on the q-axis side and a d-axis concave portion 33 on the d-axis side. This also provides the same basic performance as the first embodiment.
[0019]
Embodiment 5
FIG. 9 is a sectional view showing a rotor core shape of a fifth embodiment of the permanent magnet type rotating electric machine according to the present invention. In the figure, the same components as those shown in FIG. 2 are denoted by the same reference numerals and will not be described. 9 differs from FIG. 2 in that a flat plate permanent magnet 32 is inserted into a permanent magnet insertion hole 31 in a rotor core 2 to provide a gap portion 22. This also provides the same basic performance as the first embodiment.
[0020]
-Embodiment 6
FIG. 10 is a sectional view showing a rotor core shape of a permanent magnet type rotating electric machine according to Embodiment 6 of the present invention. In the figure, the same components as those shown in FIG. 2 are denoted by the same reference numerals and will not be described. 10 differs from FIG. 9 in that the rotor core 3 has a switch reluctance structure having a salient pole portion 17 on the q-axis side and a d-axis concave portion 33 on the d-axis side. This also provides the same basic performance as the first embodiment.
[0021]
-Embodiment 7
FIG. 11 is a sectional view showing a rotor core shape of a permanent magnet type rotating electric machine according to Embodiment 7 of the present invention. In the figure, the same components as those shown in FIG. 2 are denoted by the same reference numerals and will not be described. 11 differs from FIG. 2 in that a U-shaped permanent magnet 35 is inserted into a permanent magnet insertion hole 34 in the rotor core 2 and a gap 36 is provided. This also provides the same basic performance as the first embodiment.
[0022]
Embodiment 8
FIG. 12 is a sectional view showing a rotor core shape of a permanent magnet type rotating electric machine according to Embodiment 8 of the present invention. In the figure, the same components as those shown in FIG. 2 are denoted by the same reference numerals and will not be described. 12 differs from FIG. 11 in that the rotor core 3 has a switch reluctance structure having a salient pole portion 17 on the q-axis side and a d-axis concave portion 33 on the d-axis side. This also provides the same basic performance as the first embodiment.
[0023]
Embodiment 9
FIG. 13 shows a rotor shape of Embodiment 9 of the permanent magnet type rotating electric machine according to the present invention. In the figure, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. 13 differs from FIG. 1 in that rotor 1 is configured by arranging rotor cores 3 at both axial ends of rotor core 2. Here, the axial length L2 of the rotor core 2 is configured to be longer than the combined length (L31 + L32) of the rotor core 3 in the axial direction. This also provides the same basic performance as the first embodiment.
[0024]
Embodiment 10
FIG. 14 shows a rotor shape of Embodiment 10 of the permanent magnet type rotating electric machine according to the present invention. In the figure, the same components as those shown in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted. 14 differs from FIG. 5 in that rotor 1 is configured by arranging rotor cores 3 at both axial ends of rotor core 2. In FIG. Here, the axial length L2 of the rotor core 2 is the combined length of the axial length of the rotor core 3 (L31 +
L32). This also provides the same basic performance as the first embodiment.
[0025]
-Embodiment 11
FIG. 15 shows a rotor shape of Embodiment 11 of the permanent magnet type rotating electric machine according to the present invention. In the figure, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and description thereof will be omitted. 15 differs from FIG. 1 in that rotor 1 is configured by arranging rotor cores 2 at both axial ends of rotor core 3. In FIG. Here, the combined length of the rotor core 2 in the axial direction (L21 + L22) is configured to be longer than the axial length L3 of the rotor core 3.
[0026]
Further, although the permanent magnet 5 is shown in a single V-shape in the drawing, a single or double (not shown) single-character, U-shape or V-shape can be used. This also provides the same basic performance as the first embodiment.
[0027]
-Embodiment 12
FIG. 16 shows a rotor shape of Embodiment 12 of the permanent magnet type rotating electric machine according to the present invention. In the figure, the same components as those shown in FIG. 5 are denoted by the same reference numerals, and description thereof will be omitted. 16 differs from FIG. 5 in that the rotor 1 is configured by arranging rotor cores 21 and 22 at both axial ends of the rotor core 3. Here, the combined length of the rotor core 2 in the axial direction (L21 + L22) is configured to be longer than the axial length L3 of the rotor core 3.
[0028]
Further, although the permanent magnet 5 is shown in a single V-shape in the drawing, a single or double (not shown) single-character, U-shape or V-shape can be used. This also provides the same basic performance as the first embodiment.
[0029]
-Embodiment 13
FIG. 17 is a diagram showing a refrigeration cycle of the air conditioner according to the present invention. In the figure, 37 is an outdoor unit, 38 is an indoor unit, 39 is a compressor, and a permanent magnet type rotating electric machine 40 and a compression unit 41 are sealed in the compressor 39. 42 is a condenser, 43 is an expansion valve, and 44 is an evaporator. The refrigeration cycle circulates the refrigerant in the direction of the arrow, and the compressor 39 compresses the refrigerant to perform heat exchange between the outdoor unit 37 including the condenser 42 and the expansion valve 43 and the indoor unit 38 including the evaporator 44. Exhibits cooling function.
[0030]
When the permanent magnet type rotating electric machine 40 shown in the present invention is used, the input can be reduced by improving the output of the permanent magnet type rotating electric machine 40, so that there is an effect that CO 2 emission leading to global warming can be reduced.
[0031]
Further, when the HFC refrigerant is used from the viewpoint of depletion of the ozone layer, if the permanent magnet type rotating electric machine 40 shown in the present invention is used, the design change of the entire refrigeration cycle of the permanent magnet type rotating electric machine 40 can be reduced.
[0032]
【The invention's effect】
According to the present invention, a recess is provided between magnetic poles (between magnets) near the outer peripheral surface of rotor core 2 containing permanent magnets, and an armature winding is formed inside the rotor core between magnetic poles (between magnets). By providing a gap for suppressing the flow of the armature reaction magnetic flux, it is difficult to pass the armature reaction magnetic flux, and in the rotor core 3 having only the reluctance magnetic circuit, the armature reaction magnetic flux is easily passed. Then, the iron loss and the copper loss are suppressed to effectively generate the torque by the permanent magnet, and the rotor core 3 generates a large armature reaction magnetic flux with a small armature current, so that the reluctance torque is effectively generated and the output is large. An efficient permanent magnet type rotating electric machine can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a rotor shape of a first embodiment of a permanent magnet type rotating electric machine according to the present invention.
FIG. 2 is a sectional view showing a rotor core shape of the permanent magnet type rotating electric machine according to the first embodiment of the present invention.
FIG. 3 is a sectional view showing a radial sectional shape of the permanent magnet type rotating electric machine according to the present invention.
FIG. 4 is a sectional view showing a radial sectional shape of the permanent magnet type rotating electric machine according to the present invention.
FIG. 5 is a view showing a rotor shape of a permanent magnet type rotating electric machine according to a second embodiment of the present invention.
FIG. 6 is a sectional view showing a rotor core shape of a permanent magnet type rotating electric machine according to a second embodiment of the present invention.
FIG. 7 is a sectional view showing a rotor core shape of a permanent magnet type rotating electric machine according to a third embodiment of the present invention.
FIG. 8 is a sectional view showing a rotor core shape of a permanent magnet type rotating electric machine according to a fourth embodiment of the present invention.
FIG. 9 is a sectional view showing a rotor core shape of a permanent magnet type rotating electric machine according to a fifth embodiment of the present invention.
FIG. 10 is a sectional view showing a rotor core shape of a permanent magnet type rotating electric machine according to a sixth embodiment of the present invention.
FIG. 11 is a sectional view showing a rotor core shape of a permanent magnet type rotating electric machine according to a seventh embodiment of the present invention.
FIG. 12 is a sectional view showing a rotor core shape of a permanent magnet type rotary electric machine according to Embodiment 8 of the present invention.
FIG. 13 is a view showing a rotor shape of a ninth embodiment of a permanent magnet type rotating electric machine according to the present invention.
FIG. 14 is a view showing a rotor shape of a permanent magnet type rotating electric machine according to a tenth embodiment of the present invention.
FIG. 15 is a diagram showing a rotor shape of Embodiment 11 of the permanent magnet type rotating electric machine according to the present invention.
FIG. 16 is a view showing a rotor shape of a twelfth embodiment of the permanent magnet type rotating electric machine according to the present invention.
FIG. 17 is a diagram showing a refrigeration cycle of the air conditioner according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Rotor, 2, 3 ... Rotor iron core, 4 ... Permanent magnet insertion hole, 5 ... Permanent magnet, 6 ... Iron core, 7 ... q axis recessed part, 8 ... Rotor shaft hole, 9 ... Rivet hole, 10 … Flux barrier, 11 steel plate rib, 12 stator, 13 stator iron, 14 teeth, 15 slot, 16 armature winding, 17 salient pole, 20, 21, 22, 36 ... air gap Part, 30, 33: d-axis recess, 31: flat plate permanent magnet insertion hole, 32: flat plate permanent magnet, 34: U-shaped permanent magnet insertion hole, 35: U-shaped permanent magnet, 37: outdoor unit, 38: indoor unit, 39: compressor, 40: permanent magnet type rotating electric machine, 41: compression unit, 42: condenser, 43: expansion valve, 44: evaporator.

Claims (10)

固定子鉄心に形成された複数のスロット内に電機子巻線が施された固定子鉄心と、
複数の永久磁石挿入孔と当該永久磁石挿入孔に配置された複数の永久磁石を有する第1の回転子鉄心と、
表面に複数の凹部を有する第2の回転子鉄心と、
前記第1の回転子鉄心と前記第2の回転子鉄心とを回転子の軸方向に組み合わせた回転子とを備え、
前記第1の回転子鉄心の磁束軸をd軸、d軸と電気角で90°異なる軸をq軸としたとき、
前記第1の回転子鉄心にはq軸上に空隙部が設けられ、
前記第2の回転子鉄心の表面に設けられた凹部は、d軸上に設けられていることを特徴とする永久磁石式回転電機。
A stator core having armature windings in a plurality of slots formed in the stator core,
A first rotor core having a plurality of permanent magnet insertion holes and a plurality of permanent magnets arranged in the permanent magnet insertion holes;
A second rotor core having a plurality of recesses on its surface;
A rotor in which the first rotor core and the second rotor core are combined in the axial direction of the rotor,
When the magnetic flux axis of the first rotor core is the d-axis, and the axis different from the d-axis by 90 ° in electrical angle is the q-axis,
A gap is provided on the q-axis in the first rotor core,
The concave portion provided on the surface of the second rotor core is provided on a d-axis, wherein the permanent magnet type rotating electric machine is provided.
請求項1において、前記第1の回転子の軸方向の長さが前記第2の回転子鉄心の軸方向の長さよりも長いことを特徴とする永久磁石式回転電機。The permanent magnet type rotating electric machine according to claim 1, wherein an axial length of the first rotor is longer than an axial length of the second rotor core. 請求項1において、前記第1の回転子鉄心を前記第2の回転子鉄心の両端に配置したことを特徴とする永久磁石式回転電機。2. The permanent magnet type rotating electric machine according to claim 1, wherein the first rotor core is disposed at both ends of the second rotor core. 請求項1において、前記第1の回転子鉄心に設けられた空隙部が所定のq軸上に複数設けられていることを特徴とする永久磁石式回転電機。2. The permanent magnet type rotating electric machine according to claim 1, wherein a plurality of gaps provided in the first rotor core are provided on a predetermined q axis. 請求項2において、前記第1の回転子鉄心に設けられた空隙部が所定のq軸上に複数設けられていることを特徴とする永久磁石式回転電機。3. The permanent magnet type rotating electric machine according to claim 2, wherein a plurality of air gaps provided in the first rotor core are provided on a predetermined q axis. 請求項1において、前記第2の回転子鉄心にはフラックスバリアが設けられ、前記フラックスバリアは前記第2の回転子鉄心の表面近傍かつq軸近傍において、略半径方向に向けて設けられていることを特徴とする永久磁石式回転電機。2. The flux core according to claim 1, wherein a flux barrier is provided on the second rotor core, and the flux barrier is provided substantially in the radial direction near the surface of the second rotor core and near the q-axis. A permanent magnet type rotating electric machine characterized by the above-mentioned. 請求項1において、前記第1の回転子鉄心に設けられた永久磁石挿入孔は、回転軸に対して凸のV字形状,U字形状、あるいはd軸に対してほぼ垂直な一文字形状であることを特徴とする永久磁石式回転電機。2. The permanent magnet insertion hole according to claim 1, wherein the permanent magnet insertion hole provided in the first rotor core has a V-shape, a U-shape that is convex with respect to the rotation axis, or a one-character shape that is substantially perpendicular to the d-axis. A permanent magnet type rotating electric machine characterized by the above-mentioned. 請求項2において、前記第1の回転子鉄心に設けられた永久磁石挿入孔は、回転軸に対して凸のV字形状,U字形状、あるいはd軸に対してほぼ垂直な一文字形状であることを特徴とする永久磁石式回転電機。In claim 2, the permanent magnet insertion hole provided in the first rotor core has a V-shape, a U-shape that is convex with respect to the rotation axis, or a one-character shape that is substantially perpendicular to the d-axis. A permanent magnet type rotating electric machine characterized by the above-mentioned. 固定子鉄心に形成された複数のスロット内に電機子巻線が施された固定子鉄心と、
複数の永久磁石挿入孔と当該永久磁石挿入孔に配置された複数の永久磁石を有する第1の回転子鉄心と、
表面に複数の凹部を有する第2の回転子鉄心と、
前記第1の回転子鉄心と前記第2の回転子鉄心とを回転子の軸方向に組み合わせた回転子とを有し、
前記第1の回転子鉄心の磁束軸をd軸,d軸と電気角で90°異なる軸をq軸としたとき、
前記第1の回転子鉄心にはq軸上に空隙部が設けられ、
前記第2の回転子鉄心の表面に設けられた凹部は、d軸上に設けられている永久磁石式回転電機と、
前記永久磁石回転電機により駆動される圧縮部とを備えることを特徴とする圧縮機。
A stator core having armature windings in a plurality of slots formed in the stator core,
A first rotor core having a plurality of permanent magnet insertion holes and a plurality of permanent magnets arranged in the permanent magnet insertion holes;
A second rotor core having a plurality of recesses on its surface;
A rotor in which the first rotor core and the second rotor core are combined in the axial direction of the rotor,
When the magnetic flux axis of the first rotor core is the d-axis, and the axis that differs from the d-axis by 90 ° in electrical angle is the q-axis,
The first rotor core has a gap on the q axis,
A concave portion provided on the surface of the second rotor core, a permanent magnet type rotating electric machine provided on the d-axis;
A compressor driven by the permanent magnet rotating electric machine.
固定子鉄心に形成された複数のスロット内に電機子巻線が施された固定子鉄心と、
複数の永久磁石挿入孔と当該永久磁石挿入孔に配置された複数の永久磁石を有する第1の回転子鉄心と、
表面に複数の凹部を有する第2の回転子鉄心と、
前記第1の回転子鉄心と前記第2の回転機鉄心とを回転子の軸方向に組み合わせた回転子とを有し、
前記第1の回転子鉄心の磁束軸をd軸,d軸と電気角で90°異なる軸をq軸としたとき、
前記第1の回転子鉄心にはq軸上に空隙部が設けられ、
前記第2の回転子鉄心の表面に設けられた凹部は、d軸上に設けられている永久磁石式回転電機と、
前記永久磁石回転電機により駆動される圧縮部とを備えることを特徴とする空気調和機。
A stator core having armature windings in a plurality of slots formed in the stator core,
A first rotor core having a plurality of permanent magnet insertion holes and a plurality of permanent magnets arranged in the permanent magnet insertion holes;
A second rotor core having a plurality of recesses on its surface;
A rotor in which the first rotor core and the second rotating machine core are combined in the axial direction of the rotor,
When the magnetic flux axis of the first rotor core is the d-axis, and the axis that differs from the d-axis by 90 ° in electrical angle is the q-axis,
The first rotor core has a gap on the q axis,
A concave portion provided on the surface of the second rotor core, a permanent magnet type rotating electric machine provided on the d-axis;
An air conditioner comprising: a compression unit driven by the permanent magnet rotating electric machine.
JP2002293154A 2002-10-07 2002-10-07 Permanent-magnet rotary electric machine Pending JP2004129448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002293154A JP2004129448A (en) 2002-10-07 2002-10-07 Permanent-magnet rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002293154A JP2004129448A (en) 2002-10-07 2002-10-07 Permanent-magnet rotary electric machine

Publications (1)

Publication Number Publication Date
JP2004129448A true JP2004129448A (en) 2004-04-22

Family

ID=32284143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002293154A Pending JP2004129448A (en) 2002-10-07 2002-10-07 Permanent-magnet rotary electric machine

Country Status (1)

Country Link
JP (1) JP2004129448A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081377A (en) * 2004-09-13 2006-03-23 Nissan Motor Co Ltd Rotor of rotary electric machine
JP2008125203A (en) * 2006-11-10 2008-05-29 Meidensha Corp Sequential salient pole motor suitable for bearingless motor
JP2008187830A (en) * 2007-01-30 2008-08-14 Nissan Motor Co Ltd Rotor for reluctance motor, and reluctance motor equipped with the same
JP2008301610A (en) * 2007-05-31 2008-12-11 Toyota Motor Corp Rotating electric machine
JP2010161883A (en) * 2009-01-09 2010-07-22 Hitachi Ltd Permanent magnet type rotary electric machine
JP2010183800A (en) * 2009-02-09 2010-08-19 Mitsubishi Electric Corp Rotor of electric motor, electric motor, air blower and compressor
JP2010259304A (en) * 2009-04-28 2010-11-11 Asmo Co Ltd Rotor and motor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006081377A (en) * 2004-09-13 2006-03-23 Nissan Motor Co Ltd Rotor of rotary electric machine
JP4574297B2 (en) * 2004-09-13 2010-11-04 日産自動車株式会社 Rotating electrical machine rotor
JP2008125203A (en) * 2006-11-10 2008-05-29 Meidensha Corp Sequential salient pole motor suitable for bearingless motor
JP2008187830A (en) * 2007-01-30 2008-08-14 Nissan Motor Co Ltd Rotor for reluctance motor, and reluctance motor equipped with the same
JP2008301610A (en) * 2007-05-31 2008-12-11 Toyota Motor Corp Rotating electric machine
WO2008149865A1 (en) * 2007-05-31 2008-12-11 Toyota Jidosha Kabushiki Kaisha Rotary machine
JP4719183B2 (en) * 2007-05-31 2011-07-06 トヨタ自動車株式会社 Rotating electric machine
JP2010161883A (en) * 2009-01-09 2010-07-22 Hitachi Ltd Permanent magnet type rotary electric machine
JP2010183800A (en) * 2009-02-09 2010-08-19 Mitsubishi Electric Corp Rotor of electric motor, electric motor, air blower and compressor
JP2010259304A (en) * 2009-04-28 2010-11-11 Asmo Co Ltd Rotor and motor

Similar Documents

Publication Publication Date Title
JP2002354729A (en) Permanent magnet electric rotating machine and air conditioner using the same
EP1261104A2 (en) Permanent magnet type rotating electrical machine
JP5329902B2 (en) Rotor structure of rotating electrical machine
JP2002315243A (en) Permanent magnet type rotary electric machine
JP2003264947A (en) Permanent magnet motor
JP2004201428A (en) Motor
JP3797122B2 (en) Permanent magnet rotating electric machine
JP2002112476A (en) Permanent magnet rotating electric machine
JP5188746B2 (en) Brushless DC motor
JP2002064949A (en) Motor
JP2005124281A (en) Permanent magnet embedded type motor
JP2000333389A (en) Permanent magnet motor
JP4602958B2 (en) Permanent magnet motor, hermetic compressor and fan motor
JP2001095182A (en) Permanent magent electric motor
JPH11285184A (en) Permanent-magnet motor
JP2001251825A (en) Permanent magnet synchronous motor and air conditioner using the same
JPH11206046A (en) Permanent magnet motor and magnetizing method
JP2001333553A (en) Permanent magnet motor
JP2005323498A (en) Permanent magnet type dynamo-electric machine
JP2003309953A (en) Permanent magnet rotor for inner rotor type rotary electric machine
JP2004129448A (en) Permanent-magnet rotary electric machine
JP2003088019A (en) Permanent-magnet motor
JPH11220846A (en) Magnet rotor and rotating electric machine using the same
JP2007202333A (en) Rotating electric machine
JP4267360B2 (en) Permanent magnet rotating electric machine