JP2003264947A - Permanent magnet motor - Google Patents

Permanent magnet motor

Info

Publication number
JP2003264947A
JP2003264947A JP2002064004A JP2002064004A JP2003264947A JP 2003264947 A JP2003264947 A JP 2003264947A JP 2002064004 A JP2002064004 A JP 2002064004A JP 2002064004 A JP2002064004 A JP 2002064004A JP 2003264947 A JP2003264947 A JP 2003264947A
Authority
JP
Japan
Prior art keywords
tooth
rotor
permanent magnet
yoke
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002064004A
Other languages
Japanese (ja)
Inventor
Kenji Narita
憲治 成田
Yusuke Kikuchi
祐介 菊地
Yoshifumi Fukuda
好史 福田
Satoshi Tsukamoto
聡 塚本
Takushi Fujioka
琢志 藤岡
Yoichi Tanabe
洋一 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2002064004A priority Critical patent/JP2003264947A/en
Publication of JP2003264947A publication Critical patent/JP2003264947A/en
Pending legal-status Critical Current

Links

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Windings For Motors And Generators (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce vibration and noise by lessening the rate of change of a magnetic flux accompanying rotation, and also to contrive rise of lamination factor in groove of stator winding and cost reduction. <P>SOLUTION: In a permanent magnet motor where an armature is a stator 10 and a field is a rotor 3, the iron core of the stator 10 is made as divided into the iron core of a cylindrical yoke 11, and the iron core of a tooth part 12 is provided inside that yoke 11. The tooth 12 has a specified number of teeth 12 at equal intervals in circumferential direction, and both ends 12b and 12c of the end on rotor side of each tooth 12a are extended each in circumferential direction. Between adjacent teeth 12a, the extended ends 12b and 12c are coupled and integrated with each other by a coupling 12d. At the inside periphery of the yoke 11, a groove 11a is made in opposition to each groove 12a, and each tooth 12a of the tooth 12, where winding 13 is applied to a bobbin 14 and they are united together, is set in each groove. Then the yoke side of each groove 12 is press-fitted in the groove 11a of the yoke 11 from the direction of a rotary shaft. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、空気調和機などの
家電機器に用いられるインナーロータ型の永久磁石電動
機(例えば、ブラシレスDCモータ)に関し、さらに詳
しく言えば、トルク変動を小さくするように固定子に工
夫を施した永久磁石電動機に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner rotor type permanent magnet electric motor (for example, a brushless DC motor) used for home electric appliances such as an air conditioner, and more specifically, it is fixed so as to reduce torque fluctuation. The present invention relates to a permanent magnet electric motor that has been devised on a child.

【0002】[0002]

【従来の技術】永久磁石電動機は、固定子(電機子)の
内側にIPM型の回転子(界磁)を配置してなり、その
一例として三相4極モータの構成を図13に示す。
2. Description of the Related Art A permanent magnet electric motor has an IPM type rotor (field) arranged inside a stator (armature), and an example of a three-phase four-pole motor is shown in FIG.

【0003】永久磁石電動機の固定子1は、所定の厚さ
の円筒形であり、その内周には中心方向に延びた歯1a
が3n個(n;正の整数、この例ではn=2)分だけ円
周方向に等間隔に形成され、その各歯1aには集中巻2
が施されている。なお、各歯1aの回転子3側には円周
方向に延びた端部が設けられている。
The stator 1 of the permanent magnet motor is a cylindrical shape having a predetermined thickness, and the inner periphery of the stator 1 has teeth 1a extending toward the center.
3n (n; positive integer, n = 2 in this example) are formed at equal intervals in the circumferential direction, and the concentrated winding 2 is formed on each tooth 1a.
Has been applied. In addition, an end portion extending in the circumferential direction is provided on the rotor 3 side of each tooth 1a.

【0004】この例において、固定子1の内側に配置さ
れる回転子3は、一対の第1永久磁石(例えばフェライ
ト磁石)4a,4bおよび第2永久磁石(例えば希土類
磁石)5を円周方向に等間隔に埋め込んで4n極として
なる。
In this example, the rotor 3 disposed inside the stator 1 has a pair of first permanent magnets (for example, ferrite magnets) 4a and 4b and a second permanent magnet (for example, rare earth magnet) 5 in the circumferential direction. Embedded at equal intervals to form 4n poles.

【0005】第1永久磁石4a,4bは、断面長方形と
して外周から回転軸6側に向けてその4極分が埋め込ま
れ、第2永久磁石5は断面長方形として第1永久磁石4
a,4bと間で回転軸3側の端部間に埋め込まれてい
る。
The first permanent magnets 4a and 4b are rectangular in cross section, and four poles thereof are embedded from the outer circumference toward the rotary shaft 6 side, and the second permanent magnet 5 is rectangular in cross section.
It is embedded between the end portions on the side of the rotating shaft 3 between a and 4b.

【0006】すなわち、第1永久磁石4a,4bはq軸
に平行に埋め込まれ、第2永久磁石5は断面長方形の長
辺をd軸に直角になるように埋め込まれている。なお、
第1永久磁石4a,4bと第2永久磁石5の間には、磁
束の漏洩,短絡を防止するためにフラックスバリア7
a,7bがそれぞれ設けられている。
That is, the first permanent magnets 4a and 4b are embedded parallel to the q-axis, and the second permanent magnet 5 is embedded so that the long side of the rectangular section is perpendicular to the d-axis. In addition,
A flux barrier 7 is provided between the first permanent magnets 4a and 4b and the second permanent magnet 5 to prevent leakage of magnetic flux and short circuit.
a and 7b are provided respectively.

【0007】第1永久磁石4a,4bは断面長方形の長
辺側を極とし、かつ、それらの内側を同一極として配置
され、第2永久磁石5は回転軸6に対して反対側の長辺
を極とし、回転子3の磁極を形成している。また、第1
永久磁石4a,4bおよび第2永久磁石5の各極は、隣
接する他の第1永久磁石4a,4bおよび第2永久磁石
5と異極にしてなり、回転子3に4極の磁極を形成して
いる。
The first permanent magnets 4a and 4b are arranged such that the long side of the rectangular section has a pole and the insides thereof have the same pole, and the second permanent magnet 5 has the long side opposite to the rotary shaft 6. Is a pole, and the magnetic pole of the rotor 3 is formed. Also, the first
The poles of the permanent magnets 4a, 4b and the second permanent magnet 5 are different from the poles of the other adjacent first permanent magnets 4a, 4b and the second permanent magnet 5 to form a four-pole magnetic pole on the rotor 3. is doing.

【0008】この構成の永久磁石電動機によれば、固定
子1の内径寸法は同一で均一なエアギャップを有してお
り、回転子3のd軸にはリラクタンストルクを発生させ
るための電磁鋼板からなる磁極を有することになる。
According to the permanent magnet motor having this structure, the stator 1 has the same inner diameter and has a uniform air gap, and the d axis of the rotor 3 is made of a magnetic steel plate for generating reluctance torque. Will have magnetic poles.

【0009】また、固定子1の回転磁界と回転子3の永
久磁石4a,4b,5の磁界との相互作用により、回転
力となるマグネットトルクが発生する。しかも、第1永
久磁石4a,4bと第2永久磁石5との内側領域(電磁
鋼板)に固定子1からの磁束のうち一方のq軸から他方
のq軸への磁束の路(磁路)が確保され、一方のd軸か
ら他方のd軸への磁束の路が特に永久磁石5で阻害され
るため、d軸,q軸インダクタンス差が大きく、リラク
タンストルクが発生する。したがって、マグネットトル
クとリラクタンストルクとを併せたトータルトルクが大
きくなり、効率の高いモータを実現することが可能であ
る。
Further, due to the interaction between the rotating magnetic field of the stator 1 and the magnetic fields of the permanent magnets 4a, 4b, 5 of the rotor 3, a magnet torque which is a rotating force is generated. In addition, in the inner region (electromagnetic steel plate) of the first permanent magnets 4a and 4b and the second permanent magnet 5, the magnetic flux path (magnetic path) of the magnetic flux from the stator 1 from one q axis to the other q axis. Is ensured and the path of the magnetic flux from one d-axis to the other d-axis is blocked especially by the permanent magnet 5, so that the d-axis and q-axis inductance difference is large and reluctance torque is generated. Therefore, the total torque including the magnet torque and the reluctance torque becomes large, and it is possible to realize a highly efficient motor.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上記従
来の永久磁石電動機においては、固定子1の鉄心(コ
ア)には開溝が形成され、つまりコアの内周に歯1aが
形成され、内巻式巻線方式により巻線2がその溝を介し
て歯1aに施されるため、回転角に対するトルク変動が
大きなものとなり、振動、騒音が大きくなり、また、溝
内をニードルが往復するスペースが必要であり、どして
も巻線の溝占積率が小さくなり、その分、巻線抵抗が増
えて効率を低下させるという問題があった。
However, in the above-mentioned conventional permanent magnet motor, the iron core (core) of the stator 1 is formed with the open groove, that is, the tooth 1a is formed on the inner circumference of the core, and the inner winding is formed. Since the winding 2 is applied to the tooth 1a through the groove by the winding method, the torque fluctuation with respect to the rotation angle becomes large, the vibration and noise increase, and the space in which the needle reciprocates in the groove becomes large. It is necessary, and the groove space factor of the winding is reduced even if it is returned, and there is a problem in that the winding resistance increases and the efficiency decreases accordingly.

【0011】例えば、回転子3が反時計方向に所定角だ
け回転した場合には、図14に示すようにトルクが発生
する。なお、回転子3と固定子1の歯1aとの位置関係
は、図13に示す位置にあるときを基準の0度とする。
For example, when the rotor 3 rotates counterclockwise by a predetermined angle, torque is generated as shown in FIG. Note that the positional relationship between the rotor 3 and the teeth 1a of the stator 1 is 0 degree when it is at the position shown in FIG.

【0012】回転子3の極端部aが固定子1の歯1aの
端部bに接近したときに、トルクがピークAとなり、回
転子3の極端部cが歯1aの端部dに接近したときに、
トルクがピークBとなる。
When the extreme portion a of the rotor 3 approaches the end portion b of the tooth 1a of the stator 1, the torque reaches the peak A, and the extreme portion c of the rotor 3 approaches the end portion d of the tooth 1a. sometimes,
The torque reaches peak B.

【0013】永久磁石電動機がブラシレスDCモータで
ある場合には、電気角60度ごとに電機子巻線の通電パ
ターンを切り替えることから、トルクをできるだけ大き
く保つためにはピークA,Bの間を利用することが好ま
しい。
When the permanent magnet motor is a brushless DC motor, the energization pattern of the armature winding is switched every 60 electrical degrees, so that the peak A and B are used to keep the torque as large as possible. Preferably.

【0014】しかしながら、ピークトルクA,Bが大き
いほど、トルクリップルが大きくなる。すなわち、その
ピーク付近において、回転に伴う磁束の変化率が最も大
きくなるため、これによりトルク変動が大きく、したが
って振動、騒音が大きくなってしまう。
However, the larger the peak torques A and B, the larger the torque ripple. That is, since the rate of change of the magnetic flux due to the rotation is the maximum near the peak, the torque fluctuation is large, and thus the vibration and the noise are large.

【0015】本発明は、上記した課題を解決するために
なされたものであり、その目的は、回転に伴う磁束の変
化率を小さくして振動、騒音の低減を図り、また、固定
子巻線の溝占積率の向上、低コスト化を図ることができ
るようにした永久磁石電動機を提供することにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to reduce the rate of change of magnetic flux due to rotation to reduce vibration and noise, and to reduce the stator winding. An object of the present invention is to provide a permanent magnet electric motor capable of improving the groove space factor and reducing the cost.

【0016】[0016]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、電機子を固定子とし、界磁を回転子とし
て、上記回転子を上記固定子の内側に配置してなる永久
磁石電動機において、上記固定子の鉄心は、それぞれ分
割して形成された円筒形のヨーク部の鉄心と歯部の鉄心
とを含み、上記歯部には2n個(n;2以上の正の整
数)分の歯が円周方向に等間隔に設けられ、上記各歯の
回転子側が円周方向に延びた端部により互いに連結され
ているとともに、上記各歯には巻線が施され、上記歯部
が上記ヨーク部の内側にその軸線方向から圧入されてい
ることを特徴としている。
In order to achieve the above object, the present invention is a permanent magnet comprising an armature as a stator, a field as a rotor, and the rotor arranged inside the stator. In the magnet electric motor, the iron core of the stator includes an iron core of a cylindrical yoke portion and an iron core of a tooth portion which are formed separately, and the tooth portion has 2n pieces (n; a positive integer of 2 or more). ) Teeth are provided at equal intervals in the circumferential direction, the rotor side of each of the teeth is connected to each other by end portions extending in the circumferential direction, and each of the teeth is provided with a winding wire. It is characterized in that the tooth portion is press-fitted inside the yoke portion in the axial direction thereof.

【0017】この場合、上記ヨーク部の内側に、各歯の
ヨーク側端部と嵌合する凹溝を形成し、その各凹溝に歯
のヨーク側端部を圧入することにより、ずれなどを生じ
させることなく、ヨーク部と歯部とを確実に接合するこ
とができる。
In this case, a recessed groove is formed inside the yoke portion so as to fit with the yoke-side end portion of each tooth, and the yoke-side end portion of the tooth is press-fitted into each recessed groove to prevent misalignment. It is possible to reliably join the yoke portion and the tooth portion without causing them.

【0018】上記ヨーク部と歯部との接合部に、木工作
業でよく使われるあり溝とありとの組み合わせよりなる
あり継手もしくは先端を広くした凸部と凹溝との組み合
わせよりなるかま継手を適用するとが好ましい。
A dovetail joint made of a combination of dovetail groove and dovetail, which is often used in woodworking, or a hook joint made of a combination of a convex portion and a concave groove with a wide tip is used at the joint portion between the yoke portion and the tooth portion. It is preferably applied.

【0019】上記歯部の各歯の回転子側端部の延びた部
分を連結する連結部の厚さ(半径方向の厚さ)kは、そ
の延びた部分の厚さtよりも薄くすることが好ましい。
また、上記歯部の各歯の回転子側の端部は円周方向に延
ばすとともに、その厚さ(半径方向の厚さ)を徐々に薄
くし、かつ、その隣接する歯との中間点を最も薄くして
もよい。これによれば、連結部あるいは隣接する歯の中
間点の厚さが他の部分より薄いことから、磁束が歯側へ
多く流れ、またそのカ所における磁束が飽和状態に近く
なるが、平均トルクを低下させるような漏れ磁束が発生
することもない。
The thickness (radial thickness) k of the connecting portion connecting the extending portions of the rotor side ends of the teeth of the tooth portion should be smaller than the thickness t of the extending portion. Is preferred.
In addition, the end of each tooth of the teeth on the rotor side is extended in the circumferential direction, the thickness (thickness in the radial direction) is gradually reduced, and the midpoint between the adjacent teeth is May be thinnest. According to this, since the thickness of the connecting portion or the midpoint of the adjacent tooth is thinner than other portions, more magnetic flux flows to the tooth side, and the magnetic flux at that location is close to saturation, but the average torque is There is no leakage magnetic flux that would be reduced.

【0020】上記歯部の巻線は、各歯に電気絶縁を施し
て集中巻巻線を直に巻きむ込んでもよいし、あるいは各
歯にそのヨーク部端部から装着可能な電気絶縁材のボビ
ン(巻枠)に集中巻巻線を施したものを採用してもよ
い。いずれにしても、歯部にはヨーク部と分離した状態
で巻線が施され、ヨーク部にはその巻線を施した歯部が
接合されることから、ステータ巻線の溝占積率が大きく
とれ、低コスト化が図れる。
The tooth winding may be formed by directly winding a concentrated winding by electrically insulating each tooth, or by using an electrically insulating material that can be attached to each tooth from its yoke end. A bobbin (winding frame) with concentrated winding may be used. In any case, since the winding is applied to the tooth portion in a state where it is separated from the yoke portion, and the tooth portion having the winding is joined to the yoke portion, the groove space factor of the stator winding is reduced. It can be made large and cost can be reduced.

【0021】本発明の好ましい態様によると、上記界磁
は、断面長方形の永久磁石を所定極数分だけ上記回転子
の円周方向に等間隔に埋め込み、この永久磁石の断面長
方形の長辺をd軸に直角とするとともに、回転軸側に配
置することで回転子に磁極を形成してなり、それら永久
磁石の断面長方形の両端部(短辺側端部)には上記回転
子の外周側方向に延び、かつ、q軸に平行なフラックス
バリアが形成されている。これらフラックスバリアによ
り、永久磁石の磁束短絡、漏洩が防止される。また、永
久磁石の材質としてはその形状、位置から希土類磁石を
用いれば、マグネットトルクがある程度大きく、しかも
その使用量がそれほど多くなくて済む。
According to a preferred embodiment of the present invention, in the field magnet, permanent magnets having a rectangular cross section are embedded at equal intervals in the circumferential direction of the rotor by a predetermined number of poles, and the long sides of the rectangular cross section of the permanent magnet are embedded. Magnetic poles are formed on the rotor by arranging them at right angles to the d-axis and on the rotary shaft side, and the outer peripheral side of the rotor is at both ends (short side end parts) of the rectangular section of these permanent magnets. A flux barrier extending in the direction and parallel to the q-axis is formed. These flux barriers prevent magnetic flux short circuit and leakage of the permanent magnet. Further, if a rare earth magnet is used as the material of the permanent magnet due to its shape and position, the magnet torque will be large to some extent, and the amount used will not be so large.

【0022】また、別の態様によると、上記界磁は、断
面長方形の永久磁石を所定極数分だけ上記回転子の円周
方向に等間隔に埋め込み、この永久磁石の断面長方形の
長辺をd軸に直角とするとともに、上記回転子の外周側
に配置することで同回転子に磁極を形成してなり、それ
ら永久磁石の断面長方形の両端部(短辺側端部)には上
記回転子の外周のq軸付近が切り欠かれてフラックスバ
リアが形成されている。これによっても、永久磁石の磁
束短絡、漏洩が防止される。また、永久磁石の材質とし
てはその形状、位置から安価なフェライト磁石を用いて
も、マグネットトルクがある程度の大きく、効率の向上
が図れる。
According to another aspect, in the field magnet, permanent magnets having a rectangular cross section are embedded at equal intervals in the circumferential direction of the rotor by a predetermined number of poles, and the long sides of the rectangular cross section of the permanent magnet are embedded. Magnetic poles are formed on the rotor by arranging them at right angles to the d-axis and on the outer peripheral side of the rotor. The permanent magnet has the above-mentioned rotation at both ends (short side end) of the rectangular section. A flux barrier is formed by cutting out the vicinity of the q-axis on the outer periphery of the child. This also prevents magnetic flux short circuit and leakage of the permanent magnet. Further, even if an inexpensive ferrite magnet is used as the material of the permanent magnet due to its shape and position, the magnet torque is large to some extent and the efficiency can be improved.

【0023】さらに別の態様によると、上記界磁は、1
層あるいは多層構造とした断面円弧形状の永久磁石を当
該極数分だけd軸中心に埋め込み、その断面円弧形状の
頂点を回転軸に向けるとともに、断面円弧形状の両端部
をq軸に向けて配置することで回転子に磁極を形成して
なる。これにより、リラクタンストルクが大きく、マグ
ネットトルクと併せたトータルトルクが大きくなり、効
率の向上が図れる。
According to still another aspect, the field is 1
A permanent magnet with an arcuate cross-section having a layered or multi-layered structure is embedded in the center of the d-axis by the number of poles, and the apex of the arcuate cross-section is oriented toward the rotation axis and both ends of the arcuate cross-section are oriented toward the q-axis By doing so, magnetic poles are formed on the rotor. As a result, the reluctance torque is large, the total torque combined with the magnet torque is large, and the efficiency can be improved.

【0024】上記ヨーク部、歯部および回転子の鉄心は
電磁鋼板あるいは冷延鋼板の同一素材を打ち抜き、それ
ぞれを自動積層してかしめて得るとよい。また、上記ヨ
ーク部および歯部の鉄心を打ち抜いて同歯部に巻線を施
した後、その同ヨーク部と歯部とを接合する場合には、
先に打ち抜いた鉄心を後から打ち抜いた鉄心に抜き型上
の位置を合わせて打ち抜きのときと同じ方向から圧入し
て固定子を得ることが好ましい。
The yoke portion, the tooth portion, and the iron core of the rotor may be obtained by punching the same material of an electromagnetic steel plate or a cold-rolled steel plate and automatically laminating and caulking them. Further, when the iron cores of the yoke portion and the tooth portion are punched out and the tooth portion is wound, when the yoke portion and the tooth portion are joined,
It is preferable that the iron core punched out first is aligned with the iron core punched later and the position on the die is press-fitted in the same direction as when punching to obtain the stator.

【0025】また、上記ヨーク部に歯部を圧入する際に
は、そのヨーク部を加熱してから歯部を圧入して固定子
を得るとよい。これらの技術を採用することにより、既
に存在している自動積層方式が利用でき、また歯部を高
精度でヨーク部に圧入して接合することができる。
When the tooth portion is press-fitted into the yoke portion, it is preferable to heat the yoke portion and then press-fit the tooth portion to obtain the stator. By adopting these techniques, the existing automatic laminating method can be used, and the teeth can be press-fitted and joined to the yoke with high accuracy.

【0026】[0026]

【発明の実施の形態】以下、本発明の実施形態を図1な
いし図12を参照して詳しく説明する。なお図1中、先
の図13で説明した従来例と同一もしくは同一と見なさ
れてよい構成要素には同一符号を付している。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to FIGS. Note that, in FIG. 1, the same reference numerals are attached to the components that may be the same as or considered to be the same as those of the conventional example described in FIG.

【0027】本発明の永久磁石電動機は、電機子を固定
子とし界磁を回転子としたインナーロータ型であり、固
定子のヨーク部と複数の歯を有する歯部はあらかじめ分
割して形成され、歯部に関しては隣接する歯の回転子側
端部間を連結して一体としている。その各歯に集中巻巻
線を施した状態で歯部をヨーク部に接合してなり、歯部
の端部とロータの磁極との出会いがしらにおけるピーク
トルク値を下げて回転に伴うトルク変化率を小さくし、
また、巻線占積率を上げるようにしている。
The permanent magnet electric motor of the present invention is an inner rotor type in which the armature is the stator and the field is the rotor, and the yoke portion of the stator and the tooth portion having a plurality of teeth are formed in advance by division. As for the teeth, the rotor-side ends of the adjacent teeth are connected to be integrated. The teeth are joined to the yoke while concentrated winding is applied to each tooth, and the peak torque value at the point where the end of the tooth and the magnetic pole of the rotor meet is lowered to reduce the torque change due to rotation. Lower the rate,
Also, the winding space factor is increased.

【0028】そのため、図1および図2に示すように、
本発明の永久磁石電動機に含まれる固定子10は、所定
肉厚の円筒形のヨーク部11と、ヨーク部11の内周側
に接合される歯部12と、歯部12に施された巻線13
とを備えている。
Therefore, as shown in FIG. 1 and FIG.
The stator 10 included in the permanent magnet electric motor of the present invention includes a cylindrical yoke portion 11 having a predetermined thickness, tooth portions 12 joined to the inner peripheral side of the yoke portion 11, and windings applied to the tooth portions 12. Line 13
It has and.

【0029】歯部12は、先の図13で説明した固定子
1と同様に、3n個(n;2以上の正の整数、この例で
はn=2)の歯12aを有し、各歯12aの回転子3側
の円周方向の端部12b,12cを、隣接する歯12a
の端部12b,12cと連結部(ブリッジ)12dで連
結して一体にしている。なお、回転子3は、2n個磁極
を構成する永久磁石を有し、図13の従来例の構造でよ
いことから、その説明を省略する。
The tooth portion 12 has 3n (n; a positive integer of 2 or more, n = 2 in this example) teeth 12a in the same manner as the stator 1 described in FIG. The circumferential ends 12b and 12c of the rotor 12 on the side of the rotor 3 are connected to adjacent teeth 12a.
The end portions 12b and 12c are connected by a connecting portion (bridge) 12d to be integrated. Since the rotor 3 has permanent magnets forming 2n magnetic poles and may have the structure of the conventional example of FIG. 13, the description thereof will be omitted.

【0030】固定子10を具体的に説明すると、図2か
ら明かなように、ヨーク部11の内周側には、歯12a
の外周側に嵌合する凹溝11aが、各歯12aと対向す
るように形成されている。
The stator 10 will be described in detail. As is clear from FIG. 2, the teeth 12a are formed on the inner peripheral side of the yoke portion 11.
A concave groove 11a fitted to the outer peripheral side is formed so as to face each tooth 12a.

【0031】この実施形態において、歯部12は6個の
歯12aを備えているが、各歯12aの回転子3側で円
周方向の両側に延ばされた各端部12b,12c間が連
結部12d介して一体的に連結されている。また、歯1
2aは断面長方形であり、各歯12aには集中巻の巻線
13が施されている。
In this embodiment, the tooth portion 12 is provided with six teeth 12a. However, between the end portions 12b and 12c extending on both sides in the circumferential direction on the rotor 3 side of each tooth 12a. They are integrally connected via the connecting portion 12d. Also, tooth 1
2a has a rectangular cross section, and each tooth 12a is provided with a concentrated winding 13.

【0032】各歯12aを固定子10の軸線方向に沿っ
てヨーク部11の凹溝11aに圧入させるとにより、歯
部12がヨーク部11に接合される。なお、歯12aの
半径方向の長さは、エアギャップを考慮して凹溝11a
の深さ分だけ長くすることが好ましい。
The teeth 12 are joined to the yoke 11 by press-fitting the teeth 12a into the concave grooves 11a of the yoke 11 along the axial direction of the stator 10. The radial length of the tooth 12a is set in consideration of the air gap.
It is preferable to increase the length by the depth.

【0033】各歯12aの両側の端部12b,12cは
先端ほど薄くしてなり、連結部12dは、その先端の厚
さ(半径方向の厚さ)をt(例えば1.5mm〜2m
m)とした場合、その半径方向の厚さkをその厚さtよ
りも薄くしてなる。
The ends 12b and 12c on both sides of each tooth 12a are made thinner toward the tip, and the connecting portion 12d has a thickness (radial thickness) at the tip t (for example, 1.5 mm to 2 m).
m), the thickness k in the radial direction is made smaller than the thickness t.

【0034】各歯12aには巻線13を施すが、例えば
電気絶縁材のボビン(巻枠)14に巻線(マグネットワ
イヤ)13を集中巻きして、このボビン14を歯12a
に納める。なお、各歯12aに絶縁膜を施し、その絶縁
膜の上に巻線を直に施すようにしてもよい。
A winding 13 is provided on each tooth 12a. For example, the winding (magnet wire) 13 is concentratedly wound on a bobbin (winding frame) 14 made of an electrically insulating material, and the bobbin 14 is moved to the tooth 12a.
Pay to. Alternatively, each tooth 12a may be provided with an insulating film, and the winding may be directly provided on the insulating film.

【0035】この永久磁石電動機において、固定子10
は、巻線13を施したボビン14を歯12aに納め、こ
れら巻線13を有する歯部12を回転軸6の軸方向から
ヨーク部11の溝11aに圧入し、ヨーク部11と歯部
12を接合することにより得られる(図3参照)。
In this permanent magnet motor, the stator 10
The bobbin 14 having the winding 13 is housed in the tooth 12a, and the tooth portion 12 having the winding 13 is press-fitted into the groove 11a of the yoke portion 11 from the axial direction of the rotary shaft 6 so that the yoke portion 11 and the tooth portion 12 Are obtained by joining (see FIG. 3).

【0036】そして、巻線13に通電を行い、例えば三
相通電切り替えを行うことにより、固定子10には回転
磁界が発生し、この回転磁界と回転子3の永久磁石4
a,4b,5の磁界との相互作用によるマグネットトル
クが発生し、かつ、従来同様ののリラクタンストルクが
発生し、これらにより回転子3が回転する。
By energizing the winding 13, for example, switching the three-phase energization, a rotating magnetic field is generated in the stator 10, and this rotating magnetic field and the permanent magnet 4 of the rotor 3 are generated.
Magnet torque is generated by the interaction with the magnetic fields of a, 4b and 5, and reluctance torque similar to the conventional one is generated, and these rotate the rotor 3.

【0037】このとき、回転子3が反時計方向に回転し
ている場合、図13の従来例に示すように、回転子3の
極端部が歯12aの端部12cの先端に近づくと、磁束
がその先端部分に集中するが、この磁束が連結部12d
を介して流れるため、その先端部分の磁束集中が緩和さ
れ、磁束が分散される。
At this time, when the rotor 3 is rotating counterclockwise, as shown in the conventional example of FIG. 13, when the extreme part of the rotor 3 approaches the tip of the end 12c of the tooth 12a, the magnetic flux Are concentrated on the tip, but this magnetic flux is applied to the connecting portion 12d.
, The magnetic flux concentration at the tip portion is relaxed and the magnetic flux is dispersed.

【0038】また、回転子3が時計方向に回転している
場合には、回転子3の極端部が歯12の端部12bの先
端に近づいたとき、その先端部分の磁束集中が緩和され
る。なお、連結部12dの厚さkを端部12b,12b
の厚さtよりも薄くしていることから、飽和状態に近く
なるものの、平均トルクを低下させるような漏れ磁束が
発生しない。
When the rotor 3 is rotating in the clockwise direction, when the extreme part of the rotor 3 approaches the tip of the end 12b of the tooth 12, the magnetic flux concentration at the tip is relaxed. . In addition, the thickness k of the connecting portion 12d is set to the end portions 12b, 12b.
Since it is thinner than the thickness t, the magnetic flux is close to the saturated state, but no leakage magnetic flux that reduces the average torque is generated.

【0039】このように、歯12の端部12cあるいは
端部12bにおける磁束集中が緩和されることから、例
えば図14に示すトルクのピークA,Bの値が低下し、
回転角に対する磁束の変化率が下がる。したがって、ト
ルクリップルが小さくなり、トルク変動の低下(振動、
騒音の低減)が図られる。
As described above, since the magnetic flux concentration at the end 12c or the end 12b of the tooth 12 is alleviated, the values of the torque peaks A and B shown in FIG.
The rate of change of magnetic flux with respect to the rotation angle decreases. Therefore, the torque ripple is reduced and the torque fluctuation is reduced (vibration,
Noise reduction).

【0040】また、ヨーク部11と歯部12とがそれぞ
れ分割して形成される構成としたことにより、上記従来
例のように、巻線13を巻き込むためのニードルの通過
スペースを考慮する必要がなくなる。したがって、巻線
13による溝占積率が大きく取れ、巻線抵抗を小さくす
ることができ、高効率が可能である。
Further, since the yoke portion 11 and the tooth portion 12 are formed separately, it is necessary to consider the passing space of the needle for winding the winding wire 13 as in the conventional example. Disappear. Therefore, the groove space factor of the winding 13 can be increased, the winding resistance can be reduced, and high efficiency can be achieved.

【0041】製造するにあたっては、電磁鋼板あるいは
冷延鋼板などの同一素材を打ち抜いて自動積層する方式
を採用し、電機子鉄心のヨーク部11および歯部12、
ならびに界磁心の回転子3を打ち抜きする。その打ち抜
いた電磁鋼板などをそれぞれ自動積層し、この積層時に
所定箇所にかしめ部11b,12e,8a,8bを形成
してかしめ、回転子3には永久磁石4a,4b,5を埋
め込む。
In manufacturing, a method of punching the same material such as an electromagnetic steel plate or a cold rolled steel plate and automatically laminating is adopted, and the yoke portion 11 and the tooth portion 12 of the armature core are
And the rotor 3 of the field core is punched out. The punched electromagnetic steel plates and the like are automatically laminated, and at the time of lamination, the caulked portions 11b, 12e, 8a, 8b are formed and caulked, and the permanent magnets 4a, 4b, 5 are embedded in the rotor 3.

【0042】ヨーク部11および歯部12を打ち抜く際
には、ヨーク部11の溝11aの凹形状および歯部12
の凸形状により、回転止め,位置決め機能が発揮され、
コア製造の高精度化が図れる。
When punching out the yoke portion 11 and the tooth portion 12, the concave shape of the groove 11a of the yoke portion 11 and the tooth portion 12 are formed.
With the convex shape of, the rotation stop and positioning functions are demonstrated,
High accuracy of core manufacturing can be achieved.

【0043】また、巻線13を施したボビン14を歯1
2aに納めた後、これをヨーク部11に圧入して接合す
るが、このとき図4に示すように、打ち抜いた際のバリ
が逆方向に現れている面同士を合わせてヨーク部11に
歯部12を嵌合させる。
The bobbin 14 having the winding 13 is attached to the tooth 1.
2a, after press-fitting this into the yoke portion 11 and joining, as shown in FIG. 4, the surfaces where the burrs appear in the opposite direction when punched are aligned and the teeth are attached to the yoke portion 11. The part 12 is fitted.

【0044】この場合、先に打ち抜いた鉄心を後から打
ち抜いた鉄心に抜き型上の位置を合わせ、打ち抜きのと
きと同じ方向から圧入して組み立てる。また、歯部12
をヨーク部11に圧入する際、ヨーク部11側を加熱
し、つまりヨーク部11を膨張させて歯部12を圧入す
るとよい。これにより、歯部12をヨーク部11に接合
させ、この一体とした固定子10が得られ、しかも容易
に組み立てられる。
In this case, the iron core punched first is aligned with the iron core punched afterwards on the punching die, and the iron core is press-fitted in the same direction as in the punching to assemble. Also, the tooth portion 12
When press-fitting into the yoke portion 11, it is preferable to heat the yoke portion 11 side, that is, to expand the yoke portion 11 and press-fit the tooth portion 12. As a result, the tooth portion 12 is joined to the yoke portion 11, and the integral stator 10 is obtained, and furthermore, it is easily assembled.

【0045】図5は、他の実施形態に係る固定子20の
概略的部分拡大図である。図中、図1と同一部分には同
一符号を付して重複説明を省略する。この固定子20
は、図1の歯部12と同様にヨーク部11の内周側に接
合する歯部21を有するが、この歯部21を構成する各
歯21aの回転子側の円周方向の両方の端部21a,2
1bを先端部に架けて徐々に薄くし、隣接する歯21a
の中間点で最も薄くした形状としてなる。
FIG. 5 is a schematic partially enlarged view of a stator 20 according to another embodiment. In the figure, the same parts as those in FIG. This stator 20
Has a tooth portion 21 joined to the inner peripheral side of the yoke portion 11 similarly to the tooth portion 12 of FIG. 1, but both ends of each tooth 21a constituting the tooth portion 21 on the rotor side in the circumferential direction. Parts 21a, 2
1b is hung on the tip and gradually thinned, and adjacent teeth 21a
It becomes the thinnest shape at the midpoint of.

【0046】この固定子20の製造において、上記実施
形態と同様に電磁鋼板あるいは冷延鋼板などを打ち抜い
て歯部21の鉄心を得るが、この実施形態によれば、上
記実施形態の歯部12の形状に比べて歯部21が複雑で
ないことから、歯部21の製造の高精度化が図れる。
In the manufacture of this stator 20, the iron core of the tooth portion 21 is obtained by punching out an electromagnetic steel plate or a cold rolled steel sheet as in the above embodiment, but according to this embodiment, the tooth portion 12 of the above embodiment is obtained. Since the tooth portion 21 is not complicated as compared with the shape of, the manufacturing accuracy of the tooth portion 21 can be improved.

【0047】なお、上記実施形態と同様に、歯部21に
は巻線13を施し、またボビン14に巻線13を施して
各歯21に納め、固定子20には回転子3を用いる。ま
た、固定子20および回転子3の製造については、上記
実施形態での説明と同じでよいことから、その説明を省
略する。
As in the above embodiment, the tooth portion 21 is provided with the winding 13, and the bobbin 14 is provided with the winding 13 and housed in each tooth 21, and the rotor 3 is used as the stator 20. Further, the manufacturing of the stator 20 and the rotor 3 may be the same as the description in the above-mentioned embodiment, and therefore the description thereof is omitted.

【0048】図6ないし図9は、それぞれ上述した各実
施形態の固定子の変形例を示す概略的部分拡大図であ
る。これらの変形例は、固定子のヨーク部と歯部の接合
方法が異なり、木工作業でよく使われる継手を利用した
図6に示すあり継や図7に示すかま継による接合方法、
図8および図9に示す他の形状による接合方法を説明し
ている。
6 to 9 are schematic partially enlarged views showing modifications of the stator of each of the above-described embodiments. These modified examples are different in the joining method between the yoke portion and the tooth portion of the stator, and the joining method using the joint shown in FIG. 6 or the hook joint shown in FIG. 7, which uses a joint often used in woodworking work,
A bonding method using another shape shown in FIGS. 8 and 9 has been described.

【0049】図6に示す固定子30には、ヨーク部31
と歯部32との接合部にあり継が用いられている。歯部
32は上述した実施形態と同様に本体の歯32aと、各
歯32aの回転子側端部で円周方向に延びた端部32
b,32cと、歯部32を円形状に一体とするために隣
接する歯32aの端部32b,32cを結合する連結部
32dとからなる。
The stator 30 shown in FIG. 6 includes a yoke portion 31.
And a joint is used at the joint between the tooth portion 32 and the tooth portion 32. As in the above-described embodiment, the tooth portion 32 includes the tooth 32a of the main body and the end portion 32 extending in the circumferential direction at the rotor side end portion of each tooth 32a.
b, 32c, and a connecting portion 32d for connecting the end portions 32b, 32c of the adjacent teeth 32a so as to integrally form the tooth portion 32 in a circular shape.

【0050】歯32aのヨーク側端部には鳩尾状のあり
32eが設けられ、ヨーク部31の内周側にはそのあり
32eに嵌合するあり溝31aが各歯32aに対向して
形成されている。また、歯32aの本体は上記実施形態
と同様に断面長方形であり、この本体のヨーク側端部の
一部分がヨーク部31に食い込むようしてなる。したが
って、ヨーク部31にはその断面長方形に嵌合する凹部
の溝が設けられるともに、この凹部の底側にはあり溝3
1eが形成されている。
A dovetail-shaped dovetail 32e is provided at the end of the tooth 32a on the yoke side, and a dovetail groove 31a fitted to the dovetail 32e is formed on the inner peripheral side of the yoke part 31 so as to face each tooth 32a. ing. Further, the main body of the tooth 32a has a rectangular cross section as in the above embodiment, and a part of the yoke side end portion of this main body is set to bite into the yoke portion 31. Therefore, the yoke portion 31 is provided with a groove of a concave portion that fits in the rectangular shape of the cross section, and the groove 3 is provided on the bottom side of the concave portion.
1e is formed.

【0051】図7に示す固定子40にはヨーク部41と
歯部42との結合部にかま継が用いられている。歯部4
2は上述した実施形態と同様に本体の歯42aと、各歯
42aの回転子側端部で円周方向に延びた端部42b,
42cと、歯部42を円形状に一体とするために隣接す
る歯42aの端部42b,42cを結合する連結部42
dとからなる。
In the stator 40 shown in FIG. 7, a hook joint is used at the connecting portion between the yoke portion 41 and the tooth portion 42. Tooth 4
2 is the tooth 42a of the main body and the end portions 42b extending in the circumferential direction at the rotor side end portion of each tooth 42a, as in the above-described embodiment.
42c and a connecting portion 42 that joins the end portions 42b and 42c of the adjacent teeth 42a in order to integrally form the tooth portion 42 into a circular shape.
It consists of d and.

【0052】歯42aのヨーク側端部には先を広くした
凸部42eが設けられ、ヨーク部41の内周側には歯4
2aの一部および凸部42eに嵌合する凹状溝41aが
各歯42aに対向して形成されている。なお、凸部42
aの形状はその左右の両端が丸められ、その先端が直線
的になっているが、長方形形状であってもよい。この場
合、ヨーク部41の内周側には階段状で底を広くした凹
部が形成されることになる。
A convex portion 42e having a wide tip is provided at the end of the tooth 42a on the yoke side, and the tooth 4 is provided on the inner peripheral side of the yoke portion 41.
A concave groove 41a that fits into a part of 2a and the convex portion 42e is formed facing each tooth 42a. The convex portion 42
Although the left and right ends of the shape of a are rounded and the ends thereof are linear, the shape of a may be rectangular. In this case, a stepwise concave portion having a wide bottom is formed on the inner peripheral side of the yoke portion 41.

【0053】図8に示す固定子50には、ヨーク部51
と歯部52との結合部に図6に示すあり継の継手形状と
同様の形状による方法が用いられている。歯部52は上
述した実施形態と同様に、本体の歯52aと、各歯52
aの回転子側端部で円周方向に延びた端部52b,52
cと、歯部52を円形状に一体とするために隣接する歯
52aを円形に結合する連結部52dとからなる。
The stator 50 shown in FIG. 8 includes a yoke portion 51.
A method having a shape similar to the joint shape of the dovetail joint shown in FIG. 6 is used for the joint between the tooth portion 52 and the tooth portion 52. The tooth portion 52 is similar to the above-described embodiment in that the tooth 52 a of the main body and each tooth 52 a
end portions 52b, 52 extending in the circumferential direction at the rotor side end portion of a
c, and a connecting portion 52d that connects adjacent teeth 52a in a circular shape in order to integrally form the tooth portion 52 in a circular shape.

【0054】歯52aのヨーク側端部には楕円形状の楕
円形凸部52eが設けれ、その端部と楕円凸部との間に
はくびれが形成されている。ヨーク部51には歯52a
の一部および楕円形凸部52eに嵌合する凹状溝51a
が各歯52aに対向して形成されている。
An elliptical elliptical convex portion 52e is provided at the yoke side end of the tooth 52a, and a constriction is formed between the end portion and the elliptical convex portion. The yoke portion 51 has teeth 52a
Groove 51a that fits into a part of the groove and the elliptical convex portion 52e
Are formed to face each tooth 52a.

【0055】図9に示す固定子60には、ヨーク部61
と歯部62との結合部に図7に示すかま継の継手形状と
逆形状(先を狭い形状)による方法が用いられている。
歯部62は上述した実施形態と同様に、本体の歯62a
と、各歯部62は第1の実施形態と同様に、本体の歯6
2aと、歯62aの回転子側端部に内周に沿って延びた
端部62b,62cと、歯部62を円形状に一体とする
ために隣接する歯62aを結合する連結部62dとから
なる。
The stator 60 shown in FIG. 9 includes a yoke portion 61.
For the joint between the tooth portion 62 and the tooth portion 62, a method using a joint shape of the hook joint shown in FIG.
The tooth portion 62 is the tooth 62a of the main body as in the above-described embodiment.
And each tooth portion 62 is similar to the first embodiment in that the tooth 6 of the main body is
2a, the end portions 62b and 62c extending along the inner circumference at the rotor side end portion of the tooth 62a, and the connecting portion 62d that joins the adjacent tooth 62a in order to make the tooth portion 62 into a circular shape. Become.

【0056】歯62aのヨーク側端部には台形形状の台
形凸部62eが設けられ、ヨーク部61には歯62aの
一部および台形凸部62eに嵌合する凹状溝61aが各
歯62aに対向して形成されている。
A trapezoidal trapezoidal convex portion 62e is provided at an end of the tooth 62a on the yoke side, and a concave groove 61a fitted to a part of the tooth 62a and the trapezoidal convex portion 62e is formed in each tooth 62a. It is formed facing each other.

【0057】この変形例は接合部が紙面に対して平行な
方向に引き離れ易い形状であるが、一体とした歯部62
を上記実施形態と同様に、回転軸6の軸方向からヨーク
部61に嵌入させてヨーク部61と歯部62を結合する
ことから、図6ないし図8に示す変形例のように引き離
れない形状でなくてもよい。
In this modified example, the joint portion is shaped so that it can be easily pulled away in the direction parallel to the paper surface, but the integrated tooth portion 62 is used.
As in the above embodiment, the yoke portion 61 is fitted in the axial direction of the rotary shaft 6 to connect the yoke portion 61 and the tooth portion 62, so that the yoke portion 61 and the tooth portion 62 are not separated from each other as in the modified examples shown in FIGS. It does not have to be a shape.

【0058】なお、図6ないし図9に示す各変形例は上
記各実施形態に適用してもよく、また、上述した実施形
態と同様に、各変形例の歯部32,42,52,62に
は巻線13を施し、あるいいはボビン14に巻線13を
施して各歯32a,42a,52a,62aに納め、さ
らに各固定子30,40,50,60には回転子3を用
いる。また、各固定子30,40,50,60の製造に
ついては、上記第1の実施形態での説明と同じでよいこ
とから、その説明を省略する。
The modified examples shown in FIGS. 6 to 9 may be applied to each of the above-described embodiments, and the tooth portions 32, 42, 52, 62 of each modified example are similar to the above-described embodiments. Winding 13 is applied to each of the teeth, or the winding 13 is applied to the bobbin 14 and housed in each tooth 32a, 42a, 52a, 62a, and the rotor 3 is used for each stator 30, 40, 50, 60. . Further, the manufacturing of each of the stators 30, 40, 50, 60 may be the same as that described in the first embodiment, and therefore the description thereof will be omitted.

【0059】ところで、上述した各実施形態および図6
ないし図9の各変形例に適用する回転子としては、図1
0ないし図12に示す回転子70,80,90を適用し
てもよい。図10に示す回転子70は、界磁となる断面
長方形の永久磁石(例えば希土類磁石)71を2n(n
=2)個分だけ回転子70の円周方向に等間隔に埋め込
んでなる。
By the way, the above-mentioned respective embodiments and FIG.
The rotor applied to each modified example of FIG. 9 to FIG.
The rotors 70, 80, 90 shown in FIGS. 0 to 12 may be applied. The rotor 70 shown in FIG. 10 includes a permanent magnet (for example, a rare earth magnet) 71 having a rectangular cross section, which serves as a field, and has 2n (n).
= 2) the rotors 70 are embedded at equal intervals in the circumferential direction of the rotor 70.

【0060】各永久磁石71は、断面長方形の長辺側を
回転軸6に向けてd軸と直角とし、かつ、外周側よりも
回転軸6に近い場所に配置して磁極を形成し、各永久磁
石71の両端側(断面長方形の短辺側)には、外周側に
直線的に延び、かつ、q軸に平行なフラックスバリア7
2a,72bを形成してなる。
Each of the permanent magnets 71 has a long side of the rectangular cross section facing the rotating shaft 6 at a right angle to the d axis and is arranged closer to the rotating shaft 6 than the outer peripheral side to form magnetic poles. On both end sides of the permanent magnet 71 (shorter sides of the rectangular section), the flux barriers 7 extending linearly toward the outer periphery and parallel to the q-axis.
2a and 72b are formed.

【0061】また、隣接する永久磁石71,71は異極
とし、相対する永久磁石71,71は同極としてなる。
上記回転子70によれば、永久磁石21の磁石使用量が
図1の回転子3よりも少ないことから、マグネトトルク
が前実施例よりも小さくなるが、リラタンストルクの効
果的発生が期待でき、かつ、低コスト化を実現すること
ができる。
The adjacent permanent magnets 71, 71 have different polarities, and the opposing permanent magnets 71, 71 have the same polarities.
According to the rotor 70, since the amount of permanent magnet 21 used is smaller than that of the rotor 3 of FIG. 1, the magneto torque is smaller than that of the previous embodiment, but effective generation of relatance torque can be expected. In addition, cost reduction can be realized.

【0062】図11に示す回転子80は、界磁となる断
面長方形の永久磁石81を2n(n=2)個分だけ回転
子80の円周方向に等間隔に埋め込んでなる各永久磁石
81は、断面長方形の長辺側を回転軸6側に向けd軸と
直角とし、かつ、回転軸6よりも外周側に近い場所に配
置して磁極を形成し、各永久磁石71の両端側には回転
子80の外周を切り欠いてフラックスバリア32を形成
してなる。
The rotor 80 shown in FIG. 11 has permanent magnets 81 of 2n (n = 2), which are rectangular in cross section and serve as field magnets, embedded at equal intervals in the circumferential direction of the rotor 80. Is arranged so that the long side of the rectangular cross section faces the rotating shaft 6 at a right angle to the d-axis and is located closer to the outer peripheral side than the rotating shaft 6 to form magnetic poles. Is formed by cutting out the outer periphery of the rotor 80 to form the flux barrier 32.

【0063】フラックスバリア82の切り欠き形状は、
隣接する永久磁石81の断面長方形の短辺に平行として
1/4円とする。また、隣接する永久磁石81,81は
異極とし、相対する永久磁石81,81は同極としてな
る。
The notch shape of the flux barrier 82 is
It is 1/4 circle parallel to the short side of the rectangular section of the adjacent permanent magnet 81. The adjacent permanent magnets 81, 81 have different polarities, and the opposing permanent magnets 81, 81 have the same polarities.

【0064】上記回転子80によれば、永久磁石81の
材質として例えば希土類磁石あるいはフェライト磁石な
どを用いるが、永久磁石81を回転子80の外周側に近
く配置していることから、回転子70の場合よりも磁石
使用量が多くできるため、図1の回転子3と同程度の効
果を有し、また、フェライト磁石を用いても、その回転
子70と同程度のマグネットトルクの発生が期待でき、
その分低コスト化を実現することができることになる。
According to the rotor 80, for example, a rare earth magnet or a ferrite magnet is used as the material of the permanent magnet 81, but since the permanent magnet 81 is arranged near the outer peripheral side of the rotor 80, the rotor 70. Since the amount of magnet used can be larger than in the case of No. 3, it has the same effect as the rotor 3 of FIG. You can
Therefore, cost reduction can be realized.

【0065】図12に示す回転子90は、界磁となる断
面円弧形状(幅薄の断面扇形状)の永久磁石91を2n
(n=2)個分だけd軸中心に埋め込んでなる。各永久
磁石91は、断面円弧形状の頂点を回転軸6側に向ける
とともに、その断面円弧形状の両端部をq軸方向に向
け、逆円弧状に配置して磁極を形成してなる。また、隣
接する永久磁石91,91は異極とし、相対する永久磁
石91,91は同極としててなる。
A rotor 90 shown in FIG. 12 has a permanent magnet 91 having a circular arc shape in cross section (thin cross section fan shape) which becomes a field.
Only (n = 2) pieces are embedded in the center of the d-axis. Each of the permanent magnets 91 has magnetic poles formed by arranging the vertices of the arcuate cross section toward the rotating shaft 6 and arranging both ends of the arcuate cross section in the q-axis direction in an inverse arc shape. Adjacent permanent magnets 91, 91 have different polarities, and opposing permanent magnets 91, 91 have the same polarities.

【0066】上記回転子90によれば、永久磁石91の
材質として例えば希土類磁石あるいはフェライト磁石な
どを用いるが、永久磁石81を逆断面円弧形状としてい
ることから、図1の回転子3と同程度の効果を有し、ま
た、回転子70よりも磁石使用量が多くできるため、第
2の変形例と同様にフェライト磁石を用いても、第1の
変形例と同程度のマグネットトルクの発生が期待でき、
その分低コスト化を実現することができることになる。
According to the rotor 90, for example, a rare earth magnet or a ferrite magnet is used as the material of the permanent magnet 91, but since the permanent magnet 81 has an arc-shaped cross section, the rotor 3 has substantially the same shape as the rotor 3 of FIG. In addition, since the amount of magnet used can be larger than that of the rotor 70, even if a ferrite magnet is used as in the second modification, the same generation of magnet torque as in the first modification can be achieved. Can be expected,
Therefore, cost reduction can be realized.

【0067】なお、図示しないが、上述した変形例の他
には、図12の回転子90の永久磁石(1層構造)91
に代えて、断面円弧形状の永久磁石を多層構造とした界
磁であってもよい。また、回転子の界磁としては、断面
長方形の永久磁石を2個逆ハの字形状にし、この一対の
永久磁石を2n(n=2)個分だけd軸中心に埋め込ん
で得てもよい。
Although not shown, in addition to the modification described above, a permanent magnet (one-layer structure) 91 of the rotor 90 shown in FIG.
Instead of this, a field magnet having a multilayer structure of permanent magnets having an arc-shaped cross section may be used. As the field of the rotor, two permanent magnets having a rectangular cross section may be formed into an inverted V shape, and 2n (n = 2) of the pair of permanent magnets may be embedded in the center of the d-axis. .

【0068】さらに、回転子3の界磁としては、断面台
形の永久磁石をd軸中心にしてその上辺を回転軸6側に
向け、その底辺を回転子6の外周側に向けてなり、ある
いは断面円弧形状の永久磁石をd軸中心にして、その外
側円弧を回転子3の外周側に向け、その内側円弧を回転
軸6側に向けてなり、もしくは断面台形の底辺を回転子
3の外周に沿った断面形状の永久磁石をd軸中心にして
なり、それら永久磁石を各回転子毎にそれぞれ2n(n
=2)分だけ回転子3の円周方向に等間隔に埋め込んで
得てもよい。
Further, as the field of the rotor 3, the permanent magnet having a trapezoidal cross section is used as the center of the d-axis so that its upper side faces the rotating shaft 6 side and its bottom side faces the outer peripheral side of the rotor 6, or The permanent magnet having an arc cross section is centered on the d-axis, the outer arc is directed toward the outer peripheral side of the rotor 3, and the inner arc is directed toward the rotary shaft 6 side, or the base of the trapezoidal cross section is the outer peripheral side of the rotor 3. A permanent magnet having a cross-sectional shape along the axis is centered on the d-axis, and each of the permanent magnets is 2n (n
= 2) may be embedded at equal intervals in the circumferential direction of the rotor 3.

【0069】このように、モータの使用目的に合わせて
回転子3を適宜選択することができる。本発明による永
久磁石電動機を例えば空気調和機の圧縮機モータなどと
して利用すれば、空気調和機の低コスト化、空気調和機
の性能アップ(運転効率の上昇、振動や騒音の低下)を
図ることができる。
As described above, the rotor 3 can be appropriately selected according to the purpose of use of the motor. If the permanent magnet motor according to the present invention is used as, for example, a compressor motor of an air conditioner, the cost of the air conditioner can be reduced and the performance of the air conditioner can be improved (operation efficiency is increased, vibration and noise are decreased). You can

【0070】なお、図1の実施形態においては、6スロ
ットの固定子10にU相,W相,V相の巻線13を施
し、4極構成とした回転子3を用いているが、例えば9
スロットの固定子と6極の回転子とから構成し、また、
12スロットの固定子と8極の回転子とから構成した場
合に適用してもよい。
In the embodiment shown in FIG. 1, a rotor 3 having a four-pole structure is used, in which a U-phase, W-phase, V-phase winding 13 is provided on a stator 10 having 6 slots. 9
It is composed of a slot stator and a 6-pole rotor.
It may be applied to a case where the stator is composed of 12 slots and a rotor having 8 poles.

【0071】[0071]

【発明の効果】以上説明したように、本発明によれば、
電機子を固定子とし、界磁を回転子としているインナー
ロータ型の永久磁石電動機において、固定子の鉄心は円
筒形のヨーク部の鉄心と同ヨーク部の内側に設けられる
歯部の鉄心とに分割され、その歯部は歯を2n個(n;
2以上の正の整数)分だけ円周方向に等間隔に有して各
歯の回転子側端部の両端をそれぞれ円周方向に延ばすと
ともに、隣接する歯でその延びた端部を連結しており、
その一体とした歯部の各歯に巻線を施し、この歯部をヨ
ーク部に回転軸方向から圧入して接合するようにしてい
ることから、トルクを発生させるための磁束が隣接する
歯の回転子側端部の連結箇所で緩和され、つまり回転に
伴う磁束の変化率が小さくなり(トルク変動が小さくな
り)、振動、騒音の低減が図れる。
As described above, according to the present invention,
In an inner rotor type permanent magnet electric motor that uses an armature as a stator and a field as a rotor, the stator core is composed of a cylindrical yoke core and a tooth core provided inside the yoke core. The tooth part is divided into 2n teeth (n;
2 and more positive integers) at equal intervals in the circumferential direction to extend both ends of the rotor side end of each tooth in the circumferential direction, and to connect the extended ends with adjacent teeth. And
Since winding is applied to each tooth of the integrated tooth portion and this tooth portion is press-fitted and joined to the yoke portion from the direction of the rotation axis, magnetic flux for generating torque is applied to adjacent teeth. It is alleviated at the connecting portion of the rotor side end portion, that is, the rate of change of magnetic flux accompanying rotation is small (torque fluctuation is small), and vibration and noise can be reduced.

【0072】また、ヨーク部と分かれた歯部に巻線を施
すことから、巻線スペースが広く、テータ巻線の溝占積
率が向上し、低コスト化が図れる
Further, since the winding is formed on the tooth portion separated from the yoke portion, the winding space is wide, the groove space factor of the data winding is improved, and the cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施形態に係る永久磁石電動機の概略
的構造図。
FIG. 1 is a schematic structural diagram of a permanent magnet electric motor according to an embodiment of the present invention.

【図2】図1に示す固定子の概略的部分的拡大図。2 is a schematic partial enlarged view of the stator shown in FIG. 1. FIG.

【図3】図1に示す固定子のヨーク部と歯部の接合状態
を説明するための概略的断面図。
FIG. 3 is a schematic cross-sectional view for explaining a joined state of a yoke portion and a tooth portion of the stator shown in FIG.

【図4】図3に示すヨーク部と歯部の接合状態を説明す
るための固定子の概略的部分図。
4 is a schematic partial view of a stator for explaining a joined state of a yoke portion and a tooth portion shown in FIG.

【図5】本発明の他の実施形態に係る示す永久磁石電動
機の固定子の概略的部分図。
FIG. 5 is a schematic partial view of a stator of a permanent magnet electric motor according to another embodiment of the present invention.

【図6】上記ヨーク部と歯部との接合部分の第1変形例
を示す固定子の概略的部分図。
FIG. 6 is a schematic partial view of a stator showing a first modified example of a joint portion between the yoke portion and the tooth portion.

【図7】上記ヨーク部と歯部との接合部分の第2変形例
を示す固定子の概略的部分図。
FIG. 7 is a schematic partial view of a stator showing a second modification of the joint portion between the yoke portion and the tooth portion.

【図8】上記ヨーク部と歯部との接合部分の第3変形例
を示す固定子の概略的部分図。
FIG. 8 is a schematic partial view of a stator showing a third modification of the joint portion between the yoke portion and the tooth portion.

【図9】上記ヨーク部と歯部との接合部分の第3変形例
を示す固定子の概略的部分図。
FIG. 9 is a schematic partial view of a stator showing a third modified example of the joint portion between the yoke portion and the tooth portion.

【図10】本発明の永久磁石電動機に用いる回転子の一
例を説明する概略的構造図。
FIG. 10 is a schematic structural diagram illustrating an example of a rotor used in the permanent magnet motor of the present invention.

【図11】本発明の永久磁石電動機に用いる回転子の他
の例を説明する概略的構造図。
FIG. 11 is a schematic structural diagram illustrating another example of a rotor used in the permanent magnet motor of the present invention.

【図12】本発明の永久磁石電動機に用いる回転子の他
の例を説明する概略的構造図。
FIG. 12 is a schematic structural diagram illustrating another example of a rotor used in the permanent magnet electric motor of the present invention.

【図13】従来の永久磁石電動機を説明するための概略
的構造図。
FIG. 13 is a schematic structural diagram for explaining a conventional permanent magnet electric motor.

【図14】図13に示す永久磁石電動機の特性を説明す
るための概略的トルクグラフ図。
14 is a schematic torque graph diagram for explaining characteristics of the permanent magnet electric motor shown in FIG.

【符号の説明】[Explanation of symbols]

3,70,80,90 回転子 4a,4b 第1永久磁石 5 第2永久磁石 6 回転軸 8a,8b 11b,12e かしめ部 10,20,30,40,50,60 固定子 11 ヨーク部 11a 凹溝) 12 歯部 12a 歯 12b,12c 端部 12d 連結部 13 巻線 14 ボビン k 連結部の厚さ t 端部の厚さ 3,70,80,90 rotor 4a, 4b 1st permanent magnet 5 Second permanent magnet 6 rotation axes 8a, 8b 11b, 12e caulking portion 10, 20, 30, 40, 50, 60 Stator 11 Yoke part 11a concave groove) 12 teeth 12a teeth 12b, 12c ends 12d connection part 13 windings 14 bobbins k Thickness of connecting part t Edge thickness

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H02K 1/27 H02K 1/27 501K 3/18 3/18 P 21/16 21/16 M (72)発明者 福田 好史 神奈川県川崎市高津区末長1116番地 株式 会社富士通ゼネラル内 (72)発明者 塚本 聡 神奈川県川崎市高津区末長1116番地 株式 会社富士通ゼネラル内 (72)発明者 藤岡 琢志 神奈川県川崎市高津区末長1116番地 株式 会社富士通ゼネラル内 (72)発明者 田邉 洋一 神奈川県川崎市高津区末長1116番地 株式 会社富士通ゼネラル内 Fターム(参考) 5H002 AA01 AA04 AA07 AB06 AC06 AE07 AE08 5H603 AA01 BB01 BB07 BB09 BB12 CA01 CA05 CB02 CC03 CC17 CC18 CD21 5H621 AA04 BB07 BB10 GA01 GA04 GA16 GB08 HH01 5H622 AA03 CA02 CA05 CA07 CA10 CA13 CB02 CB03 CB04 DD01 PP11 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H02K 1/27 H02K 1/27 501K 3/18 3/18 P 21/16 21/16 M (72) Invention Person Yoshifumi Fukuda 1116 Suenaga, Takatsu-ku, Kawasaki-shi, Kanagawa Incorporated Fujitsu General (72) Inventor Satoshi Tsukamoto 1116 Suenaga, Takatsu-ku, Kawasaki-shi, Kanagawa Incorporated (72) Incorporated, Fujitsu Taku Fujioka Kawasaki, Kanagawa 1116 Suenaga, Takatsu-ku, Ltd. Within Fujitsu General Co., Ltd. (72) Inventor Yoichi Tanabe 1116 Suenaga, Takatsu-ku, Kawasaki City, Kanagawa Prefecture F-Term within Fujitsu General Co., Ltd. BB12 CA01 CA05 CB02 CC03 CC17 CC18 CD21 5H621 AA04 BB07 BB10 GA01 GA04 GA16 GB08 HH01 5H622 AA03 CA02 CA05 CA07 CA10 CA13 CB02 CB0 3 CB04 DD01 PP11

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 電機子を固定子とし、界磁を回転子とし
て、上記回転子を上記固定子の内側に配置してなる永久
磁石電動機において、 上記固定子の鉄心は、それぞれ分割して形成された円筒
形のヨーク部の鉄心と歯部の鉄心とを含み、上記歯部に
は2n個(n;2以上の正の整数)分の歯が円周方向に
等間隔に設けられ、上記各歯の回転子側が円周方向に延
びた端部により互いに連結されているとともに、上記各
歯には巻線が施され、上記歯部が上記ヨーク部の内側に
その軸線方向から圧入されていることを特徴とする永久
磁石電動機。
1. A permanent magnet electric motor in which an armature is a stator, a field is a rotor, and the rotor is arranged inside the stator. In the permanent magnet electric motor, the iron core of the stator is formed separately. A cylindrical yoke portion and a tooth portion, each of which has 2n (n; a positive integer of 2 or more) teeth at equal intervals in the circumferential direction. The rotor side of each tooth is connected to each other by an end portion extending in the circumferential direction, and each tooth is provided with a winding wire, and the tooth portion is press-fitted inside the yoke portion from its axial direction. Permanent magnet electric motor characterized by having.
【請求項2】 上記ヨーク部の内側には上記各歯のヨー
ク側端部と嵌合する凹溝が形成されており、上記各凹溝
に上記各歯のヨーク側端部が圧入されている請求項1に
記載の永久磁石電動機。
2. The inside of the yoke portion is formed with a concave groove that fits with the yoke side end portion of each tooth, and the yoke side end portion of each tooth is press-fitted into each concave groove. The permanent magnet electric motor according to claim 1.
【請求項3】 上記ヨーク部と上記歯部とがあり継手に
よって一体的に接合されている請求項1または2に記載
の永久磁石電動機。
3. The permanent magnet electric motor according to claim 1, wherein the yoke portion and the tooth portion are integrally joined by a joint.
【請求項4】 上記ヨーク部と上記歯部とがかま継手に
よって一体的に接合されている請求項1または2に記載
の永久磁石電動機。
4. The permanent magnet electric motor according to claim 1, wherein the yoke portion and the tooth portion are integrally joined by a rotary hook joint.
【請求項5】 上記各歯の回転子側から円周方向に延ば
された端部間を連結する連結部の厚さ(半径方向の厚
さ)が、上記端部の厚さよりも薄くされている請求項1
ないし4のいずれか1項に記載の永久磁石電動機。
5. The thickness (radial thickness) of a connecting portion that connects end portions of each tooth extending in the circumferential direction from the rotor side is thinner than the thickness of the end portion. Claim 1
The permanent magnet electric motor according to any one of items 1 to 4.
【請求項6】 上記各歯の回転子側の端部が、厚さ(半
径方向の厚さ)を徐々に薄くされながら円周方向に延ば
されており、隣接する上記歯の端部との中間点の厚さが
最も薄くされている請求項1ないし4のいずれか1項に
記載の永久磁石電動機。
6. The rotor-side end of each tooth extends in the circumferential direction while gradually reducing the thickness (thickness in the radial direction), and the end of the adjacent tooth is The permanent magnet electric motor according to any one of claims 1 to 4, wherein the thickness of the intermediate point is the smallest.
【請求項7】 上記歯部の巻線は、上記各歯に電気絶縁
を施して集中巻巻線を巻きむ込んでなり、あるいは上記
各歯にそのヨーク部端部から装着可能な電気絶縁材のボ
ビン(巻枠)に集中巻巻線を施してなる請求項1ないし
6のいずれか1項に記載の永久磁石電動機。
7. The winding of the tooth portion is formed by winding a concentrated winding wire by electrically insulating each tooth, or an electric insulating material that can be attached to each tooth from the end of its yoke portion. The permanent magnet electric motor according to any one of claims 1 to 6, wherein the bobbin (reel) is provided with concentrated windings.
【請求項8】 上記界磁は、断面長方形の永久磁石を所
定極数分だけ上記回転子の円周方向に等間隔に埋め込
み、上記各永久磁石の断面長方形の長辺をd軸に対して
直角とするとともに、上記回転子の軸心側に配置するこ
とにより上記回転子に磁極を形成してなり、上記各永久
磁石の断面長方形の両端部(短辺側端部)には、上記回
転子の外周側方向に延び、かつ、q軸に対して平行なフ
ラックスバリアが形成されている請求項1に記載の永久
磁石電動機。
8. The field magnet has permanent magnets of rectangular cross section embedded at equal intervals in the circumferential direction of the rotor by a predetermined number of poles, and the long sides of the rectangular cross sections of the permanent magnets with respect to the d-axis. Magnetic poles are formed on the rotor by arranging them at right angles and arranging them on the axial center side of the rotor. The permanent magnet electric motor according to claim 1, wherein a flux barrier extending in the outer peripheral direction of the child and parallel to the q axis is formed.
【請求項9】 上記界磁は、断面長方形の永久磁石を所
定極数分だけ上記回転子の円周方向に等間隔に埋め込
み、上記各永久磁石の断面長方形の長辺をd軸に対して
直角とするとともに、上記回転子の外周側に配置するこ
とにより上記回転子に磁極を形成してなり、上記各永久
磁石の断面長方形の両端部(短辺側端部)には、上記回
転子の外周のq軸付近が切り欠かれてフラックスバリア
が形成されている請求項1に記載の永久磁石電動機。
9. The field magnet has permanent magnets of rectangular cross section embedded at equal intervals in the circumferential direction of the rotor by a predetermined number of poles, and the long sides of the rectangular cross sections of the permanent magnets with respect to the d-axis. Magnetic poles are formed on the rotor by arranging them at right angles and on the outer peripheral side of the rotor, and the rotor is provided at both ends (short side end) of the rectangular section of each permanent magnet. The permanent magnet electric motor according to claim 1, wherein a flux barrier is formed by cutting out the vicinity of the q-axis on the outer periphery of the flux barrier.
【請求項10】 上記界磁は、1層あるいは多層構造と
した断面円弧形状の永久磁石を所定極数分だけd軸中心
に埋め込み、その断面円弧形状の頂点を上記回転子の軸
心側に向けるとともに、断面円弧形状の両端部をq軸側
に向けて配置することにより上記回転子に磁極を形成し
てなる請求項1に記載の永久磁石電動機。
10. The field magnet is formed by embedding a permanent magnet having a one-layer or multi-layer structure and having an arcuate cross-section in the center of the d-axis by a predetermined number of poles, and the vertex of the arcuate cross-section is located on the axial center side of the rotor. The permanent magnet electric motor according to claim 1, wherein the rotor has magnetic poles formed by arranging both ends of the arcuate cross section toward the q-axis side.
【請求項11】 上記ヨーク部、歯部および回転子の鉄
心は、電磁鋼板あるいは冷延鋼板の同一素材を打ち抜
き、それぞれを自動積層してなる請求項1ないし10の
いずれか1項に記載の永久磁石電動機。
11. The yoke, the teeth and the iron core of the rotor are formed by punching out the same material of an electromagnetic steel plate or a cold rolled steel plate and automatically laminating each of them. Permanent magnet electric motor.
【請求項12】 上記ヨーク部および上記歯部の各鉄心
を打ち抜き、上記歯部に巻線を施した状態で上記ヨーク
部と上記歯部とを接合するにあたって、先に打ち抜いた
鉄心を後から打ち抜いた鉄心に抜き型上の位置を合わせ
て打ち抜きのときと同じ方向から圧入してなる請求項1
1に記載の永久磁石電動機。
12. When the iron cores of the yoke portion and the tooth portion are punched out and the yoke portion and the tooth portion are joined in a state where the tooth portion is wound, the iron core punched out first The press-fitting is performed in the same direction as in the punching by aligning the position on the punching die with the punched iron core.
1. The permanent magnet electric motor according to 1.
【請求項13】 上記ヨーク部を加熱した状態で上記歯
部を圧入してなる請求項12に記載の永久磁石電動機。
13. The permanent magnet electric motor according to claim 12, wherein the tooth portion is press-fitted while the yoke portion is heated.
JP2002064004A 2002-03-08 2002-03-08 Permanent magnet motor Pending JP2003264947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002064004A JP2003264947A (en) 2002-03-08 2002-03-08 Permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002064004A JP2003264947A (en) 2002-03-08 2002-03-08 Permanent magnet motor

Publications (1)

Publication Number Publication Date
JP2003264947A true JP2003264947A (en) 2003-09-19

Family

ID=29196996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002064004A Pending JP2003264947A (en) 2002-03-08 2002-03-08 Permanent magnet motor

Country Status (1)

Country Link
JP (1) JP2003264947A (en)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10345417A1 (en) * 2003-09-30 2005-05-12 Minebea Co Ltd Permanent magnet rotor for electric motor has magnets in rotor connected together in pairs at their inner ends by auxiliary magnets
JP2005269831A (en) * 2004-03-19 2005-09-29 Nidec Shibaura Corp Brushless dc motor
US6987342B2 (en) 2003-04-24 2006-01-17 Minebea Co., Ltd. Rotor for an electric motor
JP2006271156A (en) * 2005-03-25 2006-10-05 Sanyo Denki Co Ltd Permanent magnet rotary motor
US7196446B2 (en) 2003-04-24 2007-03-27 Minebea Co., Ltd. Rotor for an electric motor
JP2007519387A (en) * 2003-10-06 2007-07-12 ライト・エンジニアリング・インコーポレーテッド Efficient axial air gap electronic machine with front iron
JP2007181259A (en) * 2005-12-27 2007-07-12 Matsushita Electric Ind Co Ltd Brushless motor
JP2008148448A (en) * 2006-12-11 2008-06-26 Mitsubishi Electric Corp Stator core, method for manufacturing stator core, and stator
JP2008199838A (en) * 2007-02-15 2008-08-28 Fuji Electric Fa Components & Systems Co Ltd Permanent magnet rotary machine
JP2009100531A (en) * 2007-10-16 2009-05-07 Mabuchi Motor Co Ltd Inner-rotor brushless motor and manufacturing method therefor
WO2009116384A1 (en) * 2008-03-17 2009-09-24 株式会社小松製作所 Electric motor rotor structure
JP2009225588A (en) * 2008-03-17 2009-10-01 Denso Corp Rotating machine
JP2010207067A (en) * 2009-03-06 2010-09-16 Hyundai Motor Co Ltd Magnet-embedded rotor
JP2011114967A (en) * 2009-11-27 2011-06-09 Denso Corp Rotary electric machine
US8049388B2 (en) 2006-08-31 2011-11-01 Abb Oy Rotor for a permanent-magnet electrical machine
JP2012005338A (en) * 2010-05-19 2012-01-05 Yaskawa Electric Corp Rotary electric machine, method for manufacturing the same, and wind turbine generator system
JP2012050178A (en) * 2010-08-24 2012-03-08 Aisin Seiki Co Ltd Stator core, stator and method of attaching the stator core
JP2012065510A (en) * 2010-09-17 2012-03-29 Aisin Seiki Co Ltd Stator
JP2012080715A (en) * 2010-10-05 2012-04-19 Sinfonia Technology Co Ltd Motor
WO2012015209A3 (en) * 2010-07-27 2012-05-03 Song Kil Bong Segmented armature motor
CN102761182A (en) * 2011-08-05 2012-10-31 珠海格力电器股份有限公司 Motor rotor and electromotor employing same
CN102769367A (en) * 2012-03-05 2012-11-07 珠海格力节能环保制冷技术研究中心有限公司 Permanent magnet assisted synchronous reluctance motor and installation method thereof
JP2013192359A (en) * 2012-03-14 2013-09-26 Mitsuba Corp Brushless motor
WO2013157165A1 (en) * 2012-04-20 2013-10-24 三菱電機株式会社 Permanent magnet type rotating electrical machine and method for manufacturing same
CN103872807A (en) * 2012-12-17 2014-06-18 Lg伊诺特有限公司 Motor
CN104852482A (en) * 2014-02-13 2015-08-19 株式会社日立制作所 Concentrated winding type permanent magnet motor, elevator tractor and elevator provided with same
CN104852489A (en) * 2015-05-22 2015-08-19 湖州佳力机电科技有限公司 Stator punching sheet of combination structure
JP2015220875A (en) * 2014-05-19 2015-12-07 三菱電機株式会社 Stator of rotary electric machine
WO2015186455A1 (en) * 2014-06-06 2015-12-10 三菱電機株式会社 Permanent magnet motor and drive-integrated permanent magnet motor
WO2016098574A1 (en) * 2014-12-17 2016-06-23 サンデンホールディングス株式会社 Compressor motor and compressor equipped with same
WO2016147945A1 (en) * 2015-03-16 2016-09-22 株式会社 豊田自動織機 Rotor for rotating electrical machine
JP2016195488A (en) * 2015-03-31 2016-11-17 アイチエレック株式会社 Stator and rotary machine
JP2016195489A (en) * 2015-03-31 2016-11-17 アイチエレック株式会社 Stator and rotary machine
CN106385126A (en) * 2016-10-27 2017-02-08 佛山市三水日彩电器有限公司 Low-frequency, mute and efficient direct current machine external winding structure
CN106451853A (en) * 2016-10-27 2017-02-22 佛山市三水日彩电器有限公司 Low-frequency mute efficient direct-current motor
WO2017110476A1 (en) * 2015-12-25 2017-06-29 サンデンホールディングス株式会社 Compressor motor and compressor equipped with same
CN107959361A (en) * 2016-10-18 2018-04-24 中国科学院宁波材料技术与工程研究所 The stator of permanent magnet torque motor and the permanent magnet torque motor with high torque density
WO2020129574A1 (en) * 2018-12-20 2020-06-25 サンデンホールディングス株式会社 Electric compressor motor, electric compressor provided with same, and method for manufacturing electric compressor motor
US10749388B2 (en) 2016-05-30 2020-08-18 Mitsubishi Electric Corporation Stator, motor, compressor, and refrigeration air conditioner
US10833544B2 (en) 2016-05-30 2020-11-10 Mitsubishi Electric Corporation Stator, motor, compressor, and refrigeration air conditioner
JP2020202618A (en) * 2019-06-06 2020-12-17 ヤマハモーターエレクトロニクス株式会社 Armature core and motor
WO2021093680A1 (en) * 2019-11-13 2021-05-20 苏州宝时得电动工具有限公司 Motor
CN113839476A (en) * 2021-09-18 2021-12-24 广东美芝制冷设备有限公司 Motor, compressor and refrigeration plant

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6987342B2 (en) 2003-04-24 2006-01-17 Minebea Co., Ltd. Rotor for an electric motor
US7196446B2 (en) 2003-04-24 2007-03-27 Minebea Co., Ltd. Rotor for an electric motor
DE10345417A1 (en) * 2003-09-30 2005-05-12 Minebea Co Ltd Permanent magnet rotor for electric motor has magnets in rotor connected together in pairs at their inner ends by auxiliary magnets
JP2007519387A (en) * 2003-10-06 2007-07-12 ライト・エンジニアリング・インコーポレーテッド Efficient axial air gap electronic machine with front iron
JP2005269831A (en) * 2004-03-19 2005-09-29 Nidec Shibaura Corp Brushless dc motor
JP2006271156A (en) * 2005-03-25 2006-10-05 Sanyo Denki Co Ltd Permanent magnet rotary motor
JP4691376B2 (en) * 2005-03-25 2011-06-01 山洋電気株式会社 Permanent magnet type rotary motor
JP2007181259A (en) * 2005-12-27 2007-07-12 Matsushita Electric Ind Co Ltd Brushless motor
US8049388B2 (en) 2006-08-31 2011-11-01 Abb Oy Rotor for a permanent-magnet electrical machine
JP4680875B2 (en) * 2006-12-11 2011-05-11 三菱電機株式会社 Stator core manufacturing method
JP2008148448A (en) * 2006-12-11 2008-06-26 Mitsubishi Electric Corp Stator core, method for manufacturing stator core, and stator
JP2008199838A (en) * 2007-02-15 2008-08-28 Fuji Electric Fa Components & Systems Co Ltd Permanent magnet rotary machine
JP2009100531A (en) * 2007-10-16 2009-05-07 Mabuchi Motor Co Ltd Inner-rotor brushless motor and manufacturing method therefor
JP2009225588A (en) * 2008-03-17 2009-10-01 Denso Corp Rotating machine
WO2009116384A1 (en) * 2008-03-17 2009-09-24 株式会社小松製作所 Electric motor rotor structure
JP2010207067A (en) * 2009-03-06 2010-09-16 Hyundai Motor Co Ltd Magnet-embedded rotor
KR101575353B1 (en) 2009-03-06 2015-12-07 현대자동차주식회사 Rotor having embedded permanent magnet
JP2011114967A (en) * 2009-11-27 2011-06-09 Denso Corp Rotary electric machine
JP2012005338A (en) * 2010-05-19 2012-01-05 Yaskawa Electric Corp Rotary electric machine, method for manufacturing the same, and wind turbine generator system
WO2012015209A3 (en) * 2010-07-27 2012-05-03 Song Kil Bong Segmented armature motor
RU2550506C2 (en) * 2010-07-27 2015-05-10 Киль Пон СОН Segmented motor with armature
CN103026588A (en) * 2010-07-27 2013-04-03 宋吉奉 Segmented armature motor
US9484780B2 (en) 2010-07-27 2016-11-01 Kil Bong Song Segmented armature motor having a segmented coil frame having coil windings on the outer surface
JP2012050178A (en) * 2010-08-24 2012-03-08 Aisin Seiki Co Ltd Stator core, stator and method of attaching the stator core
JP2012065510A (en) * 2010-09-17 2012-03-29 Aisin Seiki Co Ltd Stator
JP2012080715A (en) * 2010-10-05 2012-04-19 Sinfonia Technology Co Ltd Motor
CN102761182A (en) * 2011-08-05 2012-10-31 珠海格力电器股份有限公司 Motor rotor and electromotor employing same
CN102769367A (en) * 2012-03-05 2012-11-07 珠海格力节能环保制冷技术研究中心有限公司 Permanent magnet assisted synchronous reluctance motor and installation method thereof
JP2013192359A (en) * 2012-03-14 2013-09-26 Mitsuba Corp Brushless motor
JP5677622B2 (en) * 2012-04-20 2015-02-25 三菱電機株式会社 Permanent magnet type rotating electric machine and manufacturing method thereof
WO2013157165A1 (en) * 2012-04-20 2013-10-24 三菱電機株式会社 Permanent magnet type rotating electrical machine and method for manufacturing same
JPWO2013157165A1 (en) * 2012-04-20 2015-12-21 三菱電機株式会社 Permanent magnet type rotating electric machine and manufacturing method thereof
CN103872807A (en) * 2012-12-17 2014-06-18 Lg伊诺特有限公司 Motor
EP2744072A3 (en) * 2012-12-17 2016-08-10 LG Innotek Co., Ltd. Motor
CN104852482A (en) * 2014-02-13 2015-08-19 株式会社日立制作所 Concentrated winding type permanent magnet motor, elevator tractor and elevator provided with same
JP2015220875A (en) * 2014-05-19 2015-12-07 三菱電機株式会社 Stator of rotary electric machine
JP5944066B2 (en) * 2014-06-06 2016-07-05 三菱電機株式会社 PERMANENT MAGNET MOTOR, DRIVE DEVICE INTEGRATED PERMANENT MAGNET MOTOR AND MANUFACTURING METHOD FOR PERMANENT MAGNET MOTOR
WO2015186455A1 (en) * 2014-06-06 2015-12-10 三菱電機株式会社 Permanent magnet motor and drive-integrated permanent magnet motor
US9800100B2 (en) 2014-06-06 2017-10-24 Mitsubishi Electric Corporation Permanent magnet motor and driving apparatus-integrated permanent magnet motor
JPWO2015186455A1 (en) * 2014-06-06 2017-04-20 三菱電機株式会社 PERMANENT MAGNET MOTOR, DRIVE DEVICE INTEGRATED PERMANENT MAGNET MOTOR AND MANUFACTURING METHOD FOR PERMANENT MAGNET MOTOR
JP2016116391A (en) * 2014-12-17 2016-06-23 サンデンホールディングス株式会社 Motor for compressor, and compressor comprising the same
WO2016098574A1 (en) * 2014-12-17 2016-06-23 サンデンホールディングス株式会社 Compressor motor and compressor equipped with same
JPWO2016147945A1 (en) * 2015-03-16 2017-10-19 株式会社豊田自動織機 Rotating electrical machine rotor
WO2016147945A1 (en) * 2015-03-16 2016-09-22 株式会社 豊田自動織機 Rotor for rotating electrical machine
US10923973B2 (en) 2015-03-16 2021-02-16 Kabushiki Kaisha Toyota Jidoshokki Rotor for rotating electrical machine
CN107431397B (en) * 2015-03-16 2020-06-12 株式会社丰田自动织机 Rotor of rotating electric machine
CN107431397A (en) * 2015-03-16 2017-12-01 株式会社丰田自动织机 The rotor of electric rotating machine
JP2016195489A (en) * 2015-03-31 2016-11-17 アイチエレック株式会社 Stator and rotary machine
JP2016195488A (en) * 2015-03-31 2016-11-17 アイチエレック株式会社 Stator and rotary machine
CN104852489A (en) * 2015-05-22 2015-08-19 湖州佳力机电科技有限公司 Stator punching sheet of combination structure
WO2017110476A1 (en) * 2015-12-25 2017-06-29 サンデンホールディングス株式会社 Compressor motor and compressor equipped with same
US10840750B2 (en) 2015-12-25 2020-11-17 Sanden Holdings Corporation Compressor motor and compressor equipped with same
JP2017118744A (en) * 2015-12-25 2017-06-29 サンデンホールディングス株式会社 Compressor motor and compressor having the same
US10749388B2 (en) 2016-05-30 2020-08-18 Mitsubishi Electric Corporation Stator, motor, compressor, and refrigeration air conditioner
US10833544B2 (en) 2016-05-30 2020-11-10 Mitsubishi Electric Corporation Stator, motor, compressor, and refrigeration air conditioner
CN107959361B (en) * 2016-10-18 2024-04-23 中国科学院宁波材料技术与工程研究所 Stator of permanent magnet torque motor and permanent magnet torque motor with high torque density
CN107959361A (en) * 2016-10-18 2018-04-24 中国科学院宁波材料技术与工程研究所 The stator of permanent magnet torque motor and the permanent magnet torque motor with high torque density
CN106451853A (en) * 2016-10-27 2017-02-22 佛山市三水日彩电器有限公司 Low-frequency mute efficient direct-current motor
CN106385126A (en) * 2016-10-27 2017-02-08 佛山市三水日彩电器有限公司 Low-frequency, mute and efficient direct current machine external winding structure
WO2020129574A1 (en) * 2018-12-20 2020-06-25 サンデンホールディングス株式会社 Electric compressor motor, electric compressor provided with same, and method for manufacturing electric compressor motor
CN113195893A (en) * 2018-12-20 2021-07-30 三电控股株式会社 Motor for electric compressor, electric compressor including the same, and method for manufacturing motor for electric compressor
CN113195893B (en) * 2018-12-20 2023-04-11 三电株式会社 Motor for electric compressor, electric compressor including the same, and method for manufacturing motor for electric compressor
JP2020102911A (en) * 2018-12-20 2020-07-02 サンデンホールディングス株式会社 Motor for electric compressor, electric compressor with the same, and manufacturing method of motor for electric compressor
JP2020202618A (en) * 2019-06-06 2020-12-17 ヤマハモーターエレクトロニクス株式会社 Armature core and motor
JP7303030B2 (en) 2019-06-06 2023-07-04 ヤマハモーターエレクトロニクス株式会社 Armature core and motor
WO2021093680A1 (en) * 2019-11-13 2021-05-20 苏州宝时得电动工具有限公司 Motor
CN113839476A (en) * 2021-09-18 2021-12-24 广东美芝制冷设备有限公司 Motor, compressor and refrigeration plant

Similar Documents

Publication Publication Date Title
JP2003264947A (en) Permanent magnet motor
JP3906882B2 (en) Permanent magnet motor
JP3906883B2 (en) Permanent magnet motor
US6975049B2 (en) Electrical machine and method of manufacturing the same
EP1734638A1 (en) Permanent-magnet motor
JPWO2007123107A1 (en) motor
JPH11103546A (en) Permanent magnet motor
JP2002084722A (en) Permanent magnet motor
JP2002136011A (en) Permanent magnet motor
JP3821183B2 (en) Permanent magnet motor
JP2000333389A (en) Permanent magnet motor
JP2000197325A (en) Reluctance motor
JPH11243653A (en) Permanent magnet motor
JP2001095182A (en) Permanent magent electric motor
JP2002153029A (en) Reluctance motor
JP3832535B2 (en) Permanent magnet motor
WO2007123057A1 (en) Motor
JP2003088019A (en) Permanent-magnet motor
JP2001333553A (en) Permanent magnet motor
JP2001211582A (en) Permanent magnet motor
JPH1189133A (en) Permanent magnet type motor
JP2002165391A (en) Synchronous motor
JP4248778B2 (en) Permanent magnet motor rotor
JP4299391B2 (en) Permanent magnet rotor
JP4091933B2 (en) Permanent magnet motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070912

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080206