JP2005124281A - Permanent magnet embedded type motor - Google Patents

Permanent magnet embedded type motor Download PDF

Info

Publication number
JP2005124281A
JP2005124281A JP2003355030A JP2003355030A JP2005124281A JP 2005124281 A JP2005124281 A JP 2005124281A JP 2003355030 A JP2003355030 A JP 2003355030A JP 2003355030 A JP2003355030 A JP 2003355030A JP 2005124281 A JP2005124281 A JP 2005124281A
Authority
JP
Japan
Prior art keywords
rotor
permanent magnet
electric motor
width
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003355030A
Other languages
Japanese (ja)
Other versions
JP4447278B2 (en
Inventor
Shoji Mano
鐘治 真野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Elec Co
Original Assignee
Aichi Elec Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Elec Co filed Critical Aichi Elec Co
Priority to JP2003355030A priority Critical patent/JP4447278B2/en
Publication of JP2005124281A publication Critical patent/JP2005124281A/en
Application granted granted Critical
Publication of JP4447278B2 publication Critical patent/JP4447278B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a motor where both magnet torque and reluctance torque of the motor are compatible, to reduce leakage of magnetic flux for improved motor efficiency, while the strength of a rotor is maintained without noise, vibration or the like. <P>SOLUTION: The width between adjoining first gaps, with the magnetic pole of a rotor of a permanent magnet embedded type motor in between, is equal to the tooth width of a stator or wider, to assure sufficient path where the reluctance torque acquired by an auxiliary magnetic pole flows in/out. The width of a second gap is extended much toward the magnetic pole center from the width of the first gap, so that the magnet torque acquired from a main magnetic pole of the rotor is concentrated, providing a rotor with no leakage of magnetic flux. Thus the efficiency of a motor is improved, to keep strength of the rotor while the motor is operated, resulting in reduced noise, vibration or the like. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固定子のスロットに巻線を巻き付けた固定子と、磁石収容孔に収容された永久磁石を有する回転子とを備える永久磁石埋め込み型電動機(以降電動機と称す)に関する。   The present invention relates to an embedded permanent magnet electric motor (hereinafter referred to as an electric motor) including a stator having a winding wound around a slot of the stator and a rotor having a permanent magnet accommodated in a magnet accommodation hole.

近年、環境問題等によって低電圧で駆動される電動機を搭載した電動車両の開発がされている。このような電動機には、隣り合う磁極が異極となるように永久磁石を埋め込んだ回転子をインバータ等の駆動装置によって運転している。例えば、車両本体を駆動するための駆動用電動機や、車両に搭載する密閉型電動圧縮機、或いは電動パワ−ステアリング等に使用されている。   In recent years, electric vehicles equipped with an electric motor driven at a low voltage due to environmental problems and the like have been developed. In such an electric motor, a rotor in which a permanent magnet is embedded so that adjacent magnetic poles are different from each other is operated by a drive device such as an inverter. For example, it is used for a driving electric motor for driving a vehicle body, a hermetic electric compressor mounted on a vehicle, an electric power steering, or the like.

この隣り合う磁極が異極となるように永久磁石を埋め込んだ回転子においては、リラクタンストルクとマグネットトルクを両立させることによって電動機の総合トルクTを向上し、その結果、電動機の効率を向上させることができる。
電動機の総合トルクTは、次式で表すことができる。
T=φ・Iq+(Ld−Lq)・Id・Iq ・・・・ (1)
この場合、φは磁束量、Iqはq軸電流、Idはd軸電流、Lqはq軸インダクタンス、Ldはd軸インダクタンスを示している。磁束量φが大きくなると総合トルクTも大きくなり電動機の効率を向上することができる。
In a rotor in which permanent magnets are embedded so that adjacent magnetic poles are different from each other, the total torque T of the motor is improved by reconciling reluctance torque and magnet torque, and as a result, the efficiency of the motor is improved. Can do.
The total torque T of the electric motor can be expressed by the following equation.
T = φ · Iq + (Ld−Lq) · Id · Iq (1)
In this case, φ is the amount of magnetic flux, Iq is the q-axis current, Id is the d-axis current, Lq is the q-axis inductance, and Ld is the d-axis inductance. As the amount of magnetic flux φ increases, the total torque T also increases and the efficiency of the motor can be improved.

このように永久磁石を埋め込んだ回転子は、リラクタンストルクとマグネットトルクとの両方を得ることができ総合トルクを向上し、電動機効率を向上することができるが、電動機の運転に伴いコギングトルク及びトルク脈動に起因する音、振動が発生している。   A rotor embedded with permanent magnets in this way can obtain both reluctance torque and magnet torque, improve overall torque and improve motor efficiency. However, cogging torque and torque are increased as the motor operates. Sound and vibration are generated due to pulsation.

また、この隣り合う磁極が異極となるように永久磁石を埋め込んだ回転子の磁極間においては磁束が短絡し易い。これらの問題に対しては、例えば特開11−98731号公報(特許文献1参照)のような回転子が開示されている。この回転子を図7を用いて説明する。図7には回転子2d内部の磁石収容孔8dに埋め込まれた永久磁石9dの端部に接するように磁束短絡防止用穴17を回転子2dの外周に沿うように円周方向に設け、永久磁石9d両端部の磁束の短絡を防ぎ、永久磁石9dの磁束が漏れないようにし、トルクを有効に得ている。また、磁束短絡防止用穴17の回転子2dの円周方向の幅を特定しコギングトルク及びトルク脈動を低減している。   Further, the magnetic flux is easily short-circuited between the magnetic poles of the rotor in which the permanent magnets are embedded so that the adjacent magnetic poles have different polarities. For these problems, for example, a rotor as disclosed in Japanese Patent Application Laid-Open No. 11-98731 (see Patent Document 1) is disclosed. This rotor will be described with reference to FIG. In FIG. 7, a magnetic flux short-circuit prevention hole 17 is provided in the circumferential direction so as to be in contact with the end of the permanent magnet 9d embedded in the magnet housing hole 8d inside the rotor 2d so as to follow the outer periphery of the rotor 2d. A short circuit of the magnetic flux at both ends of the magnet 9d is prevented, the magnetic flux of the permanent magnet 9d is prevented from leaking, and the torque is effectively obtained. Further, the circumferential width of the rotor 2d of the magnetic flux short-circuit prevention hole 17 is specified to reduce cogging torque and torque pulsation.

また、別の従来例として特開2002−305859号公報(特許文献2参照)の回転子を図8で説明する。図8の回転子2e内に埋め込まれた永久磁石9eは、隣り合う磁極が異極となるように磁石収容孔8eに埋め込まれ、永久磁石9eの端部と回転子2eの外周との間に磁束短絡防止用の切り欠き溝19が設けられている。また、この切り欠き溝19によって補助磁極部が設けられリラクタンストルクを積極的に利用している。これにより永久磁石9eの両端部において磁束の短絡を最小限に抑え、リラクタンストルクを有効に利用している。   As another conventional example, a rotor disclosed in Japanese Patent Laid-Open No. 2002-305859 (see Patent Document 2) will be described with reference to FIG. The permanent magnet 9e embedded in the rotor 2e of FIG. 8 is embedded in the magnet housing hole 8e so that adjacent magnetic poles are different from each other, and between the end of the permanent magnet 9e and the outer periphery of the rotor 2e. A notch groove 19 for preventing magnetic flux short-circuiting is provided. In addition, an auxiliary magnetic pole portion is provided by the notch groove 19 to actively use the reluctance torque. Thereby, the short circuit of the magnetic flux is minimized at both ends of the permanent magnet 9e, and the reluctance torque is effectively utilized.

特開11−98731号公報JP 11-98731 A 特開2002−305859号公報JP 2002-305859 A

しかしながら、図7に示した様に、永久磁石9dの端部に接した磁束短絡防止用穴17を回転子2dの外周に沿うように円周方向に細長く設けることで、永久磁石9dの両端部の磁束短絡を防ぎ、コギングトルク及びトルク脈動を低減することはできるが、回転子2dの外周に近接し、細長い磁束短絡防止用穴17を設けているため回転子2dの強度を保つことができず、電動機運転中に回転子2dが膨らみ、図中の点線18で示した様に回転子2dの外周が変形し、最悪の場合は電動機の焼損事故につながる。   However, as shown in FIG. 7, both ends of the permanent magnet 9d are provided by elongating the magnetic flux short-circuit prevention hole 17 in contact with the end of the permanent magnet 9d in the circumferential direction along the outer periphery of the rotor 2d. The cogging torque and torque pulsation can be reduced, but the rotor 2d strength can be maintained because the elongated magnetic flux short-circuit prevention hole 17 is provided near the outer periphery of the rotor 2d. First, the rotor 2d swells during motor operation, and the outer periphery of the rotor 2d is deformed as shown by the dotted line 18 in the figure. In the worst case, the motor burns out.

また、図8のように、永久磁石9eの両端部に隣接させ切り欠き溝19を設け永久磁石9eの両端部における漏れ磁束を最小限に抑えことはできるが、回転子2eの外周に磁束が漏れないように大きな切り欠き溝19を設けているため、例えば装置内に冷媒16等を有する密閉型電動圧縮機などでは、圧縮機内の冷媒16を故意に掻き混ぜてしまい冷媒効率が落ちてしまっている。   Further, as shown in FIG. 8, the notch grooves 19 are provided adjacent to both ends of the permanent magnet 9e so that leakage magnetic flux at both ends of the permanent magnet 9e can be minimized. Since the large cutout groove 19 is provided so as not to leak, for example, in a hermetic electric compressor having the refrigerant 16 or the like in the apparatus, the refrigerant 16 in the compressor is intentionally mixed and the refrigerant efficiency is lowered. ing.

また、この切り欠き溝19があることにより回転子2eが回転する際の風きり音及び振動等が発生してしまう。この場合、この回転子2eの外周に設けた切り欠き溝19を塞ぎブリッジを形成した場合、固定子歯部を介して主磁極から補助磁極或いは、補助磁極部から主磁極へ磁束が漏れてしまう。仮に、漏れないようにブリッジ部分を細長く回転子2eの外周に沿うように形成した場合、先に述べたように電動機運転中に回転子2eが膨らみ変形してしまう。   Further, the presence of the notch groove 19 generates wind noise and vibration when the rotor 2e rotates. In this case, when a bridge is formed by closing the notch groove 19 provided on the outer periphery of the rotor 2e, the magnetic flux leaks from the main magnetic pole to the auxiliary magnetic pole or from the auxiliary magnetic pole to the main magnetic pole via the stator teeth. . If the bridge portion is elongated and formed along the outer periphery of the rotor 2e so as not to leak, the rotor 2e swells and deforms during motor operation as described above.

本発明は、補助磁極で得られるリラクタンストルクと、主磁極から得られるマグネットトルクとを両立し、漏れ磁束が極力発生することがなく電動機の効率を向上させると伴に、電動機運転時の回転子の強度を保ち、例えば装置内に冷媒等を有する密閉型電動圧縮機においても冷媒効率を向上させ、音、振動を低減させた電動機とすることを目的としている。   The present invention achieves both the reluctance torque obtained from the auxiliary magnetic pole and the magnet torque obtained from the main magnetic pole, improves the efficiency of the motor without generating leakage magnetic flux as much as possible, and at the same time the rotor during motor operation The purpose of the present invention is to improve the refrigerant efficiency and reduce the sound and vibration in a hermetic electric compressor having a refrigerant and the like, for example, having a refrigerant or the like in the apparatus.

固定子のスロットに巻線を巻き付けた電動機であって、固定子歯部と対向する回転子は、隣り合う磁極が異極となるように円周方向に永久磁石を埋め込んだ磁石収容孔が等配に設けられており、前記磁極が隣り合う磁極間にはリラクタンストルクを十分利用するための補助磁極が設けられた電動機において、
前記磁石収容孔の端部壁と永久磁石との間に第1の空隙が設けられ、磁石収容孔の端部壁と回転子外周との間に第2の空隙が設けられるとともに、
前記磁極間を挟んで隣り合う第1の空隙間の幅が前記固定子の歯幅と同じかそれ以上の幅を有しており、且つ、前記第2の空隙幅は、第1の空隙幅より磁極中心方向に大きく広げた電動機とする。
特に、固定子歯部に直接巻線を巻き付けた集中巻き方式の電動機とし、
例えば、装置内に冷媒等を有する、冷蔵庫用或いはエアコン用の室外機に搭載される密閉型電動圧縮機内の電動機や、
或いは、車両用途として搭載される電動機とすることにより優れた効果を得ることが出きる。
An electric motor in which a winding is wound around a slot of a stator, and the rotor facing the stator tooth portion has a magnet housing hole in which a permanent magnet is embedded in the circumferential direction so that adjacent magnetic poles are different from each other. In the electric motor provided with an auxiliary magnetic pole for sufficiently utilizing the reluctance torque between the adjacent magnetic poles,
A first gap is provided between the end wall of the magnet accommodation hole and the permanent magnet, a second gap is provided between the end wall of the magnet accommodation hole and the outer periphery of the rotor, and
The width between the first gaps adjacent to each other across the magnetic poles is equal to or larger than the tooth width of the stator, and the second gap width is the first gap width. The motor is greatly expanded in the direction of the magnetic pole center.
In particular, it is a concentrated winding type electric motor in which windings are wound directly around the stator teeth,
For example, an electric motor in a hermetic type electric compressor mounted on an outdoor unit for a refrigerator or an air conditioner having a refrigerant or the like in the device,
Alternatively, an excellent effect can be obtained by using an electric motor mounted as a vehicle application.

本発明は、固定子のスロットに巻線を巻き付けた電動機であって、固定子歯部と対向する回転子は、隣り合う磁極が異極となるように円周方向に永久磁石を埋め込んだ磁石収容孔が等配に設けられており、前記磁極が隣り合う磁極間にはリラクタンストルクを十分利用するための補助磁極が設けられた永久磁石埋め込み型電動機において、
前記磁石収容孔の端部壁と永久磁石との間に第1の空隙が設けることにより、補助磁極側、或いは主磁極側からの磁束の漏れを防ぐことができる。また、磁石収容孔の端部壁と回転子外周との間に第2の空隙を設けることにより、固定子歯部を経由するような短絡磁束の流出入を極力低減している。
The present invention relates to an electric motor in which a winding is wound around a slot of a stator, and a rotor facing a stator tooth portion includes a permanent magnet embedded in a circumferential direction so that adjacent magnetic poles are different from each other In the permanent magnet embedded electric motor in which the accommodation holes are provided at equal intervals, and the auxiliary magnetic pole is provided between the magnetic poles adjacent to each other to sufficiently use the reluctance torque.
By providing the first gap between the end wall of the magnet housing hole and the permanent magnet, leakage of magnetic flux from the auxiliary magnetic pole side or the main magnetic pole side can be prevented. Further, by providing a second gap between the end wall of the magnet housing hole and the outer periphery of the rotor, the inflow and outflow of the short-circuit magnetic flux passing through the stator tooth portion is reduced as much as possible.

更に、前記磁極間を挟んで隣り合う第1の空隙間の幅が前記固定子の歯幅と同じかそれ以上の幅を有することにより、補助磁極で得られるリラクタンストルクの流出入する通路を十分確保することができる。また、前記第2の空隙幅は、第1の空隙の幅より回転子外周に沿うように磁極中心方向に大きく広げることによって、回転子の永久磁石から得られるマグネットトルクを集中させ、固定子歯部を経由するような短絡磁束のない回転子とすることができ、電動機の効率を向上させるとともに、電動機運転時の回転子の強度を保ち、コギングトルク及びトルク脈動に起因する音、振動を低減した電動機とすることができる。   Further, since the width between the first gaps adjacent to each other with the magnetic poles between them is equal to or greater than the tooth width of the stator, a passage through which reluctance torque obtained by the auxiliary magnetic poles flows in and out is sufficient. Can be secured. Further, the second gap width is greatly expanded in the direction of the magnetic pole center along the outer periphery of the rotor than the width of the first gap, thereby concentrating the magnet torque obtained from the permanent magnet of the rotor, and the stator teeth. The rotor can be free of short-circuit magnetic flux that passes through the section, improving the efficiency of the motor, maintaining the strength of the rotor during motor operation, and reducing the noise and vibration caused by cogging torque and torque pulsation The motor can be made.

特に、固定子歯部に直接巻線を巻き付けた集中巻き方式とした電動機に用いることによって漏れ磁束を低減し、音、振動を大幅に低減することができる。   In particular, the leakage magnetic flux can be reduced and the sound and vibration can be greatly reduced by using the motor with a concentrated winding method in which the winding is directly wound around the stator tooth portion.

また、装置内に冷媒等を有する、冷蔵庫用或いはエアコン用の室外機に搭載される密閉型電動圧縮機内の電動機に用いることによって冷媒等を故意に掻き混ぜてしまい冷媒効率を低下させてしまうこともなくなる。   Moreover, the refrigerant etc. are intentionally agitated by using it for the electric motor in the hermetic type electric compressor mounted in the outdoor unit for refrigerator or air conditioner having the refrigerant etc. in the apparatus, and the refrigerant efficiency is lowered. Also disappear.

また、車載用の装置内の電動機とすることによって、音、振動を低減した車両とすることができる。   Moreover, it can be set as the vehicle which reduced the sound and the vibration by setting it as the electric motor in a vehicle-mounted apparatus.

本発明の実施例について図面を用いて説明する。図1の電動機は、固定子1のスロット3に巻線を巻き付けた電動機であって、前記巻線が3相を形成した電動機である。尚、図中の固定子1のスロット3には、便宜上巻線の記載を省略している。この固定子1の歯部4と対向するように固定子1の内径側に永久磁石9を埋め込んだ永久磁石埋め込み型回転子を有している。この永久磁石埋め込み型回転子には、回転子2の外周に対して弦状に永久磁石9を埋め込む磁石収容孔8が設けられている。この磁石収容孔内8に埋め込まれた永久磁石9は、磁極が交互で異極となるように円周方向に等配に埋め込まれており4極を形成している。また、隣り合う磁極と磁極の間には、補助磁極6が設けられリラクタンストルクφ1が十分流れる幅を有している。   Embodiments of the present invention will be described with reference to the drawings. The electric motor shown in FIG. 1 is an electric motor in which a winding is wound around a slot 3 of a stator 1 and the winding forms three phases. Note that windings are not shown in the slots 3 of the stator 1 in the figure for convenience. A permanent magnet embedded rotor in which a permanent magnet 9 is embedded on the inner diameter side of the stator 1 is provided so as to face the tooth portion 4 of the stator 1. The permanent magnet embedded rotor is provided with a magnet accommodation hole 8 for embedding the permanent magnet 9 in a string shape on the outer periphery of the rotor 2. The permanent magnets 9 embedded in the magnet accommodation holes 8 are embedded in a uniform manner in the circumferential direction so that the magnetic poles are alternately different from each other to form four poles. Further, an auxiliary magnetic pole 6 is provided between adjacent magnetic poles, and has a width through which the reluctance torque φ1 flows sufficiently.

この回転子2の外周に対して弦状に永久磁石9を埋め込んだ磁石収容孔8の端部壁20と永久磁石9との間には、第1の空隙10が設けられている。この第1の空隙10は、磁石収容孔8より小さな永久磁石9を挿入することによって永久磁石9の両端部に空隙部を形成している。この場合永久磁石9は、磁石収容孔8のほぼ中央に位置するように配置されている。   A first gap 10 is provided between the end wall 20 of the magnet housing hole 8 in which the permanent magnet 9 is embedded in a string shape with respect to the outer periphery of the rotor 2 and the permanent magnet 9. In the first gap 10, gaps are formed at both ends of the permanent magnet 9 by inserting permanent magnets 9 smaller than the magnet accommodation holes 8. In this case, the permanent magnet 9 is arranged so as to be located at the approximate center of the magnet housing hole 8.

磁石収容孔8内に永久磁石9を固定する方法としては、図1に示した様に、永久磁石9の端部から回転子2の外周にかけて磁石収容孔8の側壁が先端先細形状12とすることにより磁石収容孔内8の端部壁20によって永久磁石9を固定している。また、更に、第1の空隙部10には樹脂等の絶縁材料で永久磁石9を固定してもよい。   As a method of fixing the permanent magnet 9 in the magnet housing hole 8, as shown in FIG. 1, the side wall of the magnet housing hole 8 is tapered from the end of the permanent magnet 9 to the outer periphery of the rotor 2. Thus, the permanent magnet 9 is fixed by the end wall 20 in the magnet accommodation hole 8. Further, the permanent magnet 9 may be fixed to the first gap portion 10 with an insulating material such as resin.

この第1の空隙10があることにより、図2に示したような補助磁極14aと主磁極15aとの間に発生する漏れ磁束φ4を低減することができ、図1で示したように第1の空隙10を設けることにより補助磁極部6で発生するリラクタンストルクと主磁極部7で発生するマグネットトルクとを確実に分けることができる。   The presence of the first air gap 10 can reduce the leakage magnetic flux φ4 generated between the auxiliary magnetic pole 14a and the main magnetic pole 15a as shown in FIG. 2, and the first magnetic flux 14 as shown in FIG. By providing the gap 10, the reluctance torque generated at the auxiliary magnetic pole portion 6 and the magnet torque generated at the main magnetic pole portion 7 can be reliably separated.

次に、図1で説明した電動機において、回転子2の磁極間付近をより詳しく説明するための部分拡大図を図3に示す。磁極間を挟んで隣り合う磁石収容孔8a、8bには、其々永久磁石9a、9bが挿入されている。磁石収容孔8a、8b内の永久磁石9a、9bと端部壁20との間には第1の空隙部10a、10bが設けられている。この永久磁石9a、9bの端部に設けられた第1の空隙間10a、10b間の距離、幅X1は、補助磁極6で得られるリラクタンストルクφ1が十分に流れるように、固定子1の歯幅4と同じかそれ以上の幅とすることによりリラクタンストルクφ1の磁束の流れを妨げること無くスムーズに流すことができ、主磁極7から得られるマグネットトルクφ2とを両立し電動機の総合トルクを向上させることができる。その結果、電動機の効率も向上させることができる。   Next, FIG. 3 shows a partially enlarged view for explaining in more detail the vicinity between the magnetic poles of the rotor 2 in the electric motor explained in FIG. Permanent magnets 9a and 9b are inserted in the magnet receiving holes 8a and 8b adjacent to each other with the magnetic poles interposed therebetween. Between the permanent magnets 9a and 9b in the magnet housing holes 8a and 8b and the end wall 20, first gap portions 10a and 10b are provided. The distance between the first air gaps 10a and 10b provided at the ends of the permanent magnets 9a and 9b and the width X1 are such that the reluctance torque φ1 obtained by the auxiliary magnetic pole 6 flows sufficiently. By making the width equal to or larger than the width 4, the flow of the magnetic flux of the reluctance torque φ1 can be smoothly flowed without interfering with the magnetic torque φ2 obtained from the main pole 7 and the total torque of the motor is improved. Can be made. As a result, the efficiency of the electric motor can also be improved.

尚、固定子側におけるリラクタンストルクφ1の磁束通路は、固定子1の歯幅4の主幹部分Y1が支配的となり、固定子1の歯幅4の両先端部5は磁気飽和してしまい有効的な磁束通路とはいえないが、リラクタンストルクφ1が流れる磁束通路幅を十分確保する場合、回転子2と対向している部分の固定子1の歯幅4の両先端部5も含んだ寸法とした方が効果的である。従って、第1の空隙間10a、10b間の幅X1は、Y1≦X1とすればよい。
また、逆を言えば、固定子1の歯部4の両先端部5のそれ以上に第1の空隙間10a、10b間の幅X1を広げてもリラクタンストルクφ1の磁束通路としてはあまり意味をなさないことになる。
In the magnetic flux path of the reluctance torque φ1 on the stator side, the main trunk portion Y1 of the tooth width 4 of the stator 1 is dominant, and both end portions 5 of the tooth width 4 of the stator 1 are magnetically saturated and effective. Although it cannot be said that the magnetic flux path is sufficient, when a sufficient width of the magnetic flux path through which the reluctance torque φ1 flows is ensured, the dimension including both end portions 5 of the tooth width 4 of the stator 1 at the portion facing the rotor 2 It is more effective. Accordingly, the width X1 between the first air gaps 10a and 10b may be Y1 ≦ X1.
In other words, even if the width X1 between the first gaps 10a and 10b is increased beyond the two end portions 5 of the teeth 4 of the stator 1, it is not very meaningful as a magnetic flux path for the reluctance torque φ1. I will not do it.

従って、磁極間を挟んで隣り合う磁石収容孔8a、8bの永久磁石9a、9bの端部の第1の空隙間10a、10bの幅X1は、固定子1の歯幅4(主幹部分Y1)と同じかそれ以上の幅とすることによりリラクタンストルクφ1がスムーズに得ることが出き、補助磁極6と主磁極7との間の磁束の漏れを防ぐことができる。また、磁気抵抗が少なくリラクタンストルクφ1とマグネットトルクφ2を最大限に利用した電動機とし、電動機効率も向上させることができる。   Therefore, the width X1 of the first gaps 10a and 10b at the ends of the permanent magnets 9a and 9b of the magnet receiving holes 8a and 8b adjacent to each other with the magnetic poles sandwiched between them is the tooth width 4 (main trunk portion Y1) of the stator 1. The reluctance torque φ1 can be obtained smoothly by setting the width to be equal to or greater than, and leakage of magnetic flux between the auxiliary magnetic pole 6 and the main magnetic pole 7 can be prevented. In addition, the motor efficiency is improved by using the electric motor with little magnetic resistance and utilizing the reluctance torque φ1 and the magnet torque φ2 to the maximum.

次に、第2の空隙11a、11bについて説明する。図3に示したように、磁石収容孔8a、8bの端部壁20と回転子2の外周との間の第2の空隙11a、11bを設けている。第2の空隙11a、11bを設けることによって、図4に示している様な固定子1の歯部4cを介して補助磁極部14bと主磁極部15bとの間に発生する漏れ磁束φ5を低減することができる。この場合、先に説明した様に回転子2内を経由する漏れ磁束φ4は、第1の空隙13a、13bによって低減できることは言うまでもない。   Next, the second gaps 11a and 11b will be described. As shown in FIG. 3, second gaps 11 a and 11 b are provided between the end walls 20 of the magnet housing holes 8 a and 8 b and the outer periphery of the rotor 2. By providing the second gaps 11a and 11b, the leakage magnetic flux φ5 generated between the auxiliary magnetic pole part 14b and the main magnetic pole part 15b via the teeth 4c of the stator 1 as shown in FIG. 4 is reduced. can do. In this case, needless to say, the leakage magnetic flux φ4 passing through the rotor 2 can be reduced by the first gaps 13a and 13b as described above.

また、第2の空隙11a、11bは、磁極中心方向に大きく伸ばした構造と成っている。この場合、第2の空隙11a、11bの深さは、磁束が固定子1の歯部4を介して補助磁極部6と主磁極部7が短絡し漏れ磁束が発生しない程度の深さとすればよい。   The second air gaps 11a and 11b have a structure that is greatly extended in the direction of the magnetic pole center. In this case, the depth of the second air gaps 11a and 11b is such that the magnetic flux is short-circuited between the auxiliary magnetic pole portion 6 and the main magnetic pole portion 7 via the teeth 4 of the stator 1 and no leakage magnetic flux is generated. Good.

また、例えば装置内に冷媒等を有する密閉型電動圧縮機などでは、圧縮機内の冷媒を回転子2の外周に設けた第2の空隙11a、11bで故意に掻き混ぜ、冷媒の流れを装置内で偏らせてしまい冷媒効率を低下させ、電動機が温度上昇し電動機効率が悪化しない程度の深さとすればよい。   Further, for example, in a sealed electric compressor having a refrigerant or the like in the apparatus, the refrigerant in the compressor is intentionally agitated in the second gaps 11a and 11b provided on the outer periphery of the rotor 2, and the refrigerant flow is And the refrigerant efficiency may be lowered, and the depth may be such that the motor temperature rises and the motor efficiency does not deteriorate.

図5には、回転子外周に設けた第2の空隙の深さをLとし、固定子と回転子との間のギャップをgとした場合のL/gと、冷媒抵抗の関係を示したグラフを示している。この場合、冷媒抵抗を考慮するとL/g≦0.5を満足する深さとすればよい。   FIG. 5 shows the relationship between the refrigerant resistance and L / g when the depth of the second gap provided on the outer periphery of the rotor is L and the gap between the stator and the rotor is g. The graph is shown. In this case, considering the refrigerant resistance, the depth may satisfy L / g ≦ 0.5.

図6は、図3と同様に図1で説明した回転子2の磁極間付近をより詳しく説明するための部分拡大図である。ここでは、第2の空隙部分11a、11bの回転子円周方向の幅Zについて説明する。回転子2の第2の空隙11a、11bは、永久磁石9a、9bが挿入された磁石収容孔8a、8bの端部壁20と回転子外周との間に設けられている。ここで回転子外周部分に設けた第2の空隙部分11a、11bの回転子円周方向の幅Zは、先に説明したように補助磁極のリラクタンストルクφ1を確実に得ることができ、固定子1の歯部4を介して補助磁極部6と主磁極部7との間に漏れ磁束が発生しないように磁極中心方向に向い第2の空隙11a、11bを回転子外周に沿って設けている。   FIG. 6 is a partially enlarged view for explaining in more detail the vicinity between the magnetic poles of the rotor 2 described in FIG. 1 as in FIG. Here, the width Z in the rotor circumferential direction of the second gap portions 11a and 11b will be described. The second gaps 11a and 11b of the rotor 2 are provided between the end walls 20 of the magnet housing holes 8a and 8b into which the permanent magnets 9a and 9b are inserted and the outer periphery of the rotor. Here, the width Z in the rotor circumferential direction of the second gap portions 11a and 11b provided in the outer peripheral portion of the rotor can reliably obtain the reluctance torque φ1 of the auxiliary magnetic pole as described above. The second air gaps 11a and 11b are provided along the outer periphery of the rotor so as not to generate a leakage magnetic flux between the auxiliary magnetic pole part 6 and the main magnetic pole part 7 via one tooth part 4. .

具体的には、第2の空隙11a、11bの幅は、回転子2と対向している部分の固定子1の歯幅4の両先端部5のそれ以上とすることによって磁束漏れの少ない回転子2とすることができる。仮に、第2の空隙11a、11bの幅Zが、固定子1の歯幅4の両先端部5より狭い場合、磁束が固定子1の歯部4もしくは、歯部4の両先端部5を介して漏れてしまうことに成る。従って、歯幅4の両先端部5の幅をY2とした場合、Y2≦Zとすれば良いことになる。   Specifically, the width of the second gaps 11a and 11b is set to be greater than that of both end portions 5 of the tooth width 4 of the stator 1 at the portion facing the rotor 2, so that rotation with less magnetic flux leakage is achieved. Child 2 can be used. If the width Z of the second gaps 11a and 11b is narrower than the both end portions 5 of the tooth width 4 of the stator 1, the magnetic flux is applied to the tooth portions 4 of the stator 1 or both end portions 5 of the tooth portions 4. Will leak through. Therefore, if the width of the both end portions 5 of the tooth width 4 is Y2, Y2 ≦ Z may be satisfied.

また、第2の空隙11a、11bの幅は、磁極間を挟み第1の空隙10aと10bとによってリラクタンストルクφ1が支障がなく流れるように確保した幅X1より磁極間側に飛び出ないようにしている。これは、当然ではあるが磁極間を挟み確保したリラクタンストルクφ1の磁束通路を狭めることになるからである。また、第2の空隙11a、11bの幅を第1の空隙10a、10bの幅より磁極中心方向に大きく広げることにより端部壁20の強度を維持しながら主磁極7で発生するマグネットトルクφ2を磁極中心に集中させることができ、インバータ側から見た通電区間に磁束を集中させることができる。この場合、1つの磁極内における第2の空隙11間の距離としては回転子の軸孔を中心として開角50度〜70度(電気角にて)程度にすればよい。   Further, the width of the second gaps 11a and 11b is set so that the reluctance torque φ1 flows between the magnetic poles with the first gaps 10a and 10b so that the reluctance torque φ1 flows without hindrance from the gap X1. Yes. This is because, of course, the magnetic flux path of the reluctance torque φ1 secured between the magnetic poles is narrowed. Also, the magnet torque φ2 generated in the main magnetic pole 7 is maintained while maintaining the strength of the end wall 20 by widening the width of the second air gaps 11a and 11b to the magnetic pole center direction larger than the width of the first air gaps 10a and 10b. The magnetic flux can be concentrated on the magnetic pole center, and the magnetic flux can be concentrated on the energization section as viewed from the inverter side. In this case, the distance between the second air gaps 11 in one magnetic pole may be about 50 to 70 degrees (in electrical angle) with respect to the rotor shaft hole.

尚、実施形態の第2の空隙11a、11bでは、回転子外周に対して若干の凹形状の空隙としているため、図7で示した様に大きな磁束短絡防止用穴を形成することがないため、回転子2の外周に細長いブリッジを設ける必要がなく強度的にもすぐれた回転子とすることができる。   In the second gaps 11a and 11b of the embodiment, since the gap is slightly concave with respect to the outer periphery of the rotor, a large magnetic flux short-circuit prevention hole is not formed as shown in FIG. In addition, it is not necessary to provide an elongated bridge on the outer periphery of the rotor 2, and the rotor can be excellent in strength.

従って、磁石収容孔8(8a、8b)の端部壁20と永久磁石9(9a、9b)との間に第1の空隙10(10a、10b)を設けることにより補助磁極6と主磁極7とを確実に分けることができ、其々からの磁束の漏れを防ぐことができる。前記磁極間を挟んで隣り合う第1の空隙同士10a、10bの幅が前記固定子1の歯幅4と同じかそれ以上の幅とすることによって補助磁極6で得られるリラクタンストルクφ1をスムーズに流すことができる。   Therefore, the auxiliary magnetic pole 6 and the main magnetic pole 7 are provided by providing the first gap 10 (10a, 10b) between the end wall 20 of the magnet housing hole 8 (8a, 8b) and the permanent magnet 9 (9a, 9b). Can be reliably separated, and leakage of magnetic flux from each can be prevented. By making the widths of the first gaps 10a and 10b adjacent to each other with the gap between the magnetic poles equal to or larger than the tooth width 4 of the stator 1, the reluctance torque φ1 obtained by the auxiliary magnetic pole 6 can be smoothly increased. It can flow.

また、磁石収容孔8(8a、8b)の端部壁20と回転子2の外周との間に第2の空隙11(11a、11b)を設け、第2の空隙11(11a、11b)幅を第1の空隙10(10a、10b)の幅より磁極中心方向に大きく広げることにより端部壁20の強度を維持しながら、固定子1の歯部4を介して補助磁極6と主磁極7との間の漏れ磁束を低減することができる。これによって、補助磁極6で得られるリラクタンストルクφ1と主磁極7で得られるマグネットトルクφ2とを両立させることができ電動機の総合トルクを上げることができる。   Further, the second gap 11 (11a, 11b) is provided between the end wall 20 of the magnet housing hole 8 (8a, 8b) and the outer periphery of the rotor 2, and the width of the second gap 11 (11a, 11b) is provided. Is greatly expanded in the direction of the magnetic pole center from the width of the first gap 10 (10a, 10b), and the auxiliary magnetic pole 6 and the main magnetic pole 7 are interposed via the teeth 4 of the stator 1 while maintaining the strength of the end wall 20. The leakage magnetic flux between the two can be reduced. As a result, the reluctance torque φ1 obtained by the auxiliary magnetic pole 6 and the magnet torque φ2 obtained by the main magnetic pole 7 can both be achieved, and the total torque of the electric motor can be increased.

また第2の空隙11(11a、11b)を設けることにより磁束の流れが急激に変わることがなくなるため、コギングトルク及びトルク脈動に起因する音、振動等も低減することができる。また、第2の空隙11(11a、11b)は回転子2の外周に大きくて深い切り欠け溝を設ける必要が無いため、例えば装置内に冷媒等を有する密閉型電動圧縮機などの冷媒効率を低下させることもなくなり、切り欠け溝が原因となるような風きり音や振動等を低減することができる。   Further, since the flow of magnetic flux does not change abruptly by providing the second gap 11 (11a, 11b), it is possible to reduce noise, vibration, and the like caused by cogging torque and torque pulsation. In addition, since the second gap 11 (11a, 11b) does not need to have a large and deep notch groove on the outer periphery of the rotor 2, for example, the refrigerant efficiency of a hermetic electric compressor having a refrigerant or the like in the apparatus can be improved. It is possible to reduce wind noise, vibration and the like caused by notch grooves.

このような回転子2を、磁束の集中が大きくなる固定子1の歯部4に直接巻線を巻き付けた集中巻き方式の電動機に用いることによって補助磁極6で得られるリラクタンストルクφ1と主磁極で得られるマグネットトルクφ2とを確実に両立することができ総合トルクを上げることができる。また、コギングトルク及びトルク脈動も少なく、漏れ磁束が少ない電動機とすることができ、強度的に優れ、音、振動等が少ない電動機とすることができる。
特に、固定子1の歯部4に直接巻線を巻き付けた集中巻方式の電動機においては、固定子1の歯部4に磁束が集中するため、例えば6スロット、9スロット、12スロットの固定子に用いることによって効果は絶大である。
By using such a rotor 2 in a concentrated winding type motor in which a winding is directly wound around the tooth portion 4 of the stator 1 where the concentration of magnetic flux increases, the reluctance torque φ1 obtained by the auxiliary magnetic pole 6 and the main magnetic pole The obtained magnet torque φ2 can be reliably achieved and the total torque can be increased. Further, it is possible to obtain an electric motor with less cogging torque and torque pulsation, less leakage magnetic flux, excellent strength, and less noise, vibration and the like.
In particular, in the concentrated winding type motor in which the winding is directly wound around the tooth portion 4 of the stator 1, the magnetic flux concentrates on the tooth portion 4 of the stator 1, and thus, for example, a 6-slot, 9-slot, 12-slot stator. The effect is tremendous when used for.

また、先にも述べたように、装置内に冷媒等を有する、冷蔵庫用或いはエアコン用の室外機に搭載される密閉型電動圧縮機内の電動機とすることにより、回転子2が冷媒を掻き混ぜて圧縮機内に偏らせ冷媒効率を低下させることもなくなり、補助磁極6で得られるリラクタンストルクφ1と主磁極7で得られるマグネットトルクφ2とを確実に両立することができ総合トルクを上げることができる。また、コギングトルクやトルク脈動も低減し、漏れ磁束が少なく、風きり音や振動等の少ない電動機とすることができる。   In addition, as described above, the rotor 2 stirs the refrigerant by using an electric motor in a hermetic electric compressor that is installed in an outdoor unit for a refrigerator or air conditioner that has a refrigerant or the like in the apparatus. Thus, the refrigerant efficiency is not reduced by biasing in the compressor, and the reluctance torque φ1 obtained by the auxiliary magnetic pole 6 and the magnet torque φ2 obtained by the main magnetic pole 7 can be reliably made compatible and the total torque can be increased. . Further, the cogging torque and torque pulsation are reduced, the leakage magnetic flux is small, and an electric motor with little wind noise and vibration can be obtained.

また、電動機をインバータ等によって低電圧で駆動される電動車両に搭載することによって、補助磁極6で得られるリラクタンストルクφ1と、主磁極7から得られるマグネットトルクφ2とを両立し、漏れ磁束が極力発生することがなく、電動機の効率を向上させることにより、より省エネの電動車両とすることができる。更に、電動機運転時の回転子2の強度を保ち、音、振動を低減させた静音設計の電動車両とすることができる。例えば、車両本体を駆動する駆動用電動機や、車両搭載用の密閉型電動圧縮機や、電動パワ−ステアリング等に用いる事により優れた効果を得ることができる。   Further, by mounting the electric motor on an electric vehicle driven at a low voltage by an inverter or the like, the reluctance torque φ1 obtained from the auxiliary magnetic pole 6 and the magnet torque φ2 obtained from the main magnetic pole 7 are both compatible, and the leakage magnetic flux is as much as possible. It is possible to make the electric vehicle more energy-saving by improving the efficiency of the electric motor without being generated. Furthermore, it can be set as the electric vehicle of the silent design which maintained the intensity | strength of the rotor 2 at the time of an electric motor driving | operation, and reduced the sound and vibration. For example, an excellent effect can be obtained by using it for a driving motor for driving a vehicle body, a hermetic electric compressor mounted on a vehicle, an electric power steering, or the like.

特に、この電動機は、60V以下の低電圧で、インバータによって駆動される電動機において、固定子1の歯部4にφ0.8〜φ1.2の線径の巻線を直接巻き付けた集中巻き方式による電動機に用いることによりリラクタンストルクφ1とマグネットトルクφ2とがスムーズに流すことができ、総合トルクを上げることができコギングトルクやトルク脈動の少ない電動機とすることができる。   In particular, this electric motor uses a concentrated winding method in which a winding having a wire diameter of φ0.8 to φ1.2 is directly wound around the tooth portion 4 of the stator 1 in a motor driven by an inverter at a low voltage of 60 V or less. When used in an electric motor, the reluctance torque φ1 and the magnet torque φ2 can flow smoothly, the total torque can be increased, and an electric motor with less cogging torque and torque pulsation can be obtained.

尚、本発明では、回転子2の外周に対して弦状に永久磁石9を磁石収容孔8に埋め込んだ回転子で説明したが、永久磁石の埋め込み形状が、V字型、凹字型、逆円弧型等でもよく、また、永久磁石を多層に埋め込んだ場合にも同様に適用できる。   In the present invention, the description has been given of the rotor in which the permanent magnet 9 is embedded in the magnet housing hole 8 in a string shape with respect to the outer periphery of the rotor 2, but the embedded shape of the permanent magnet is V-shaped, concave-shaped, A reverse arc type or the like may be used, and the present invention can be similarly applied when a permanent magnet is embedded in multiple layers.

本発明の実施形態における電動機の断面図。Sectional drawing of the electric motor in embodiment of this invention. 第1の空隙がない場合の漏れ磁束φ4を説明する図。The figure explaining the magnetic flux leakage φ4 when there is no first gap. 図1で説明した実施形態の第1の空隙部分を説明する部分拡大図。The elements on larger scale explaining the 1st space | gap part of embodiment described in FIG. 第1の空隙部のみの場合の漏れ磁束φ5を説明する図。The figure explaining leakage magnetic flux (phi) 5 in the case of only a 1st clearance part. 冷媒抵抗と第2の空隙深さとの関係を示したグラフ。The graph which showed the relationship between refrigerant resistance and the 2nd space | gap depth. 図1で説明した実施形態の第2の空隙部分を説明する部分拡大図。The elements on larger scale explaining the 2nd space | gap part of embodiment described in FIG. 従来例の永久磁石埋め込み型回転子の断面図。Sectional drawing of the permanent magnet embedded type rotor of a prior art example. 別の従来例の永久磁石埋め込み型回転子の断面図。Sectional drawing of the permanent magnet embedded type rotor of another prior art example.

符号の説明Explanation of symbols

1・・・固定子、2,2a,2b,2c,2d,2e・・・回転子、3・・・スロット、4,4b,4c・・・歯幅、5,5b,5c・・・歯部先端部、6,14a、14b・・・補助磁極、7,15a、15b・・・主磁極、8,8a,8b,8c,8d・・・磁石収容孔、9,9a,9b,9c,9d・・・永久磁石、10,10a,10b,13a,13b・・・第1の空隙部、11,11a,11b・・・第2の空隙部、12・・・先端先細部、16・・・冷媒、17・・・磁束短絡防止用穴、18・・・変形部、19・・・切り欠き溝、20・・・端部壁、φ1・・・リラクタンストルク、φ2・・・マグネットトルク、φ4,φ5・・・漏れ磁束。   DESCRIPTION OF SYMBOLS 1 ... Stator, 2, 2a, 2b, 2c, 2d, 2e ... Rotor, 3 ... Slot, 4, 4b, 4c ... Teeth width, 5, 5b, 5c ... Teeth Tip part, 6, 14a, 14b ... auxiliary magnetic pole, 7, 15a, 15b ... main magnetic pole, 8, 8a, 8b, 8c, 8d ... magnet housing hole, 9, 9a, 9b, 9c, 9d ... Permanent magnet 10, 10a, 10b, 13a, 13b ... First gap, 11, 11a, 11b ... Second gap, 12 ... Tip details, 16 ... -Refrigerant, 17 ... Magnetic flux short-circuit prevention hole, 18 ... Deformed portion, 19 ... Notch groove, 20 ... End wall, φ1 ... Reluctance torque, φ2 ... Magnet torque, φ4, φ5 ... Magnetic flux leakage.

Claims (4)

固定子のスロットに巻線を巻き付けた電動機であって、固定子歯部と対向する回転子は、隣り合う磁極が異極となるように円周方向に永久磁石を埋め込んだ磁石収容孔が等配に設けられており、前記磁極が隣り合う磁極間にはリラクタンストルクを十分利用するための補助磁極が設けられた永久磁石埋め込み型電動機において、
前記磁石収容孔の端部壁と永久磁石との間に第1の空隙が設けられ、磁石収容孔の端部壁と回転子外周との間に第2の空隙が設けられるとともに、
前記磁極間を挟んで隣り合う第1の空隙間の幅が前記固定子の歯幅と同じかそれ以上の幅を有しており、
且つ、前記第2の空隙幅は、第1の空隙幅より磁極中心方向に大きく広げたことを特徴とする永久磁石埋め込み型電動機。
An electric motor in which a winding is wound around a slot of a stator, and the rotor facing the stator tooth portion has a magnet housing hole in which a permanent magnet is embedded in the circumferential direction so that adjacent magnetic poles are different from each other. In the permanent magnet embedded electric motor provided with an auxiliary magnetic pole for sufficiently utilizing the reluctance torque between the magnetic poles adjacent to each other,
A first gap is provided between the end wall of the magnet accommodation hole and the permanent magnet, a second gap is provided between the end wall of the magnet accommodation hole and the outer periphery of the rotor, and
The width between adjacent first gaps across the magnetic poles is equal to or greater than the tooth width of the stator;
In addition, the permanent magnet embedded type electric motor is characterized in that the second gap width is larger than the first gap width in the magnetic pole center direction.
固定子歯部に直接巻線を巻き付けた集中巻き方式としたことを特徴とする請求項1項記載の永久磁石埋め込み型電動機。 2. The permanent magnet embedded type electric motor according to claim 1, wherein a concentrated winding system in which a winding is directly wound around a stator tooth portion. 装置内に冷媒等を有する、冷蔵庫用或いはエアコン用の室外機に搭載される密閉型電動圧縮機内の電動機としたことを特徴とする請求項1項または請求項2項記載の永久磁石埋め込み型電動機。 3. The permanent magnet-embedded electric motor according to claim 1, wherein the electric motor is a motor in a hermetic electric compressor having a refrigerant in the apparatus and mounted in an outdoor unit for a refrigerator or an air conditioner. . 車両用途として搭載される電動機としたことを特徴とする請求項1項または請求項2項記載の永久磁石埋め込み型電動機。

3. The permanent magnet embedded type electric motor according to claim 1, wherein the electric motor is mounted for use in a vehicle.

JP2003355030A 2003-10-15 2003-10-15 Permanent magnet embedded motor Expired - Lifetime JP4447278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003355030A JP4447278B2 (en) 2003-10-15 2003-10-15 Permanent magnet embedded motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003355030A JP4447278B2 (en) 2003-10-15 2003-10-15 Permanent magnet embedded motor

Publications (2)

Publication Number Publication Date
JP2005124281A true JP2005124281A (en) 2005-05-12
JP4447278B2 JP4447278B2 (en) 2010-04-07

Family

ID=34612769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003355030A Expired - Lifetime JP4447278B2 (en) 2003-10-15 2003-10-15 Permanent magnet embedded motor

Country Status (1)

Country Link
JP (1) JP4447278B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097387A (en) * 2005-08-31 2007-04-12 Toshiba Corp Rotary electric machine
WO2007072622A1 (en) * 2005-12-21 2007-06-28 Honda Motor Co., Ltd. Electric motor
JP2008141869A (en) * 2006-12-01 2008-06-19 Mitsubishi Electric Corp Rotary electric machine
WO2008099871A1 (en) * 2007-02-15 2008-08-21 Daikin Industries, Ltd. Motor rotor and compressor with the same
JP2008278553A (en) * 2007-04-25 2008-11-13 Toshiba Industrial Products Manufacturing Corp Rotor of rotating electric machine and rotating electric machine
JP2009112166A (en) * 2007-10-31 2009-05-21 Fujitsu General Ltd Magnet embedded rotor, motor using the rotor, and compressor using the motor
DE112008001567T5 (en) 2007-06-13 2010-08-19 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Rotating electrical machine
JP2011062059A (en) * 2009-09-14 2011-03-24 Toyota Industries Corp Permanent magnet embedded rotating electrical machine
KR101095556B1 (en) * 2005-06-13 2011-12-19 삼성전자주식회사 A permanent magnet motor
JP2013540931A (en) * 2010-09-20 2013-11-07 ハラ クライメート コントロール コーポレーション Electric compressor for vehicles
WO2014027631A1 (en) * 2012-08-16 2014-02-20 株式会社ミツバ Brushless motor and rotor for brushless motor
CN104038011A (en) * 2014-06-03 2014-09-10 广东美芝制冷设备有限公司 Permanent magnetic synchronous reluctance motor and compressor including same
CN104052227A (en) * 2014-06-03 2014-09-17 广东美芝制冷设备有限公司 Permanent magnet synchronous reluctance motor and compressor with same
WO2016002002A1 (en) * 2014-07-01 2016-01-07 三菱電機株式会社 Interior permanent magnet electric motor, compressor, and refrigerating and air-conditioning device
JP2016052196A (en) * 2014-09-01 2016-04-11 多摩川精機株式会社 Ipm motor and method for suppressing cogging torque thereof
EP2012410A4 (en) * 2006-04-24 2017-03-01 Fujitsu General Limited Buried magnet rotor, motor using this rotor, and compressor using this motor
JP2017070040A (en) * 2015-09-29 2017-04-06 アイシン精機株式会社 Three-phase rotary electric machine
JP2020524477A (en) * 2017-06-30 2020-08-13 広東美芝制冷設備有限公司 Permanent magnet motor, compressor and refrigeration system
JP2021002958A (en) * 2019-06-24 2021-01-07 三菱電機株式会社 Rotary electric machine
CN112737178A (en) * 2021-01-06 2021-04-30 杭州微光技术有限公司 High-speed rotor and high-speed drive and control integrated servo motor with same

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101095556B1 (en) * 2005-06-13 2011-12-19 삼성전자주식회사 A permanent magnet motor
JP2007097387A (en) * 2005-08-31 2007-04-12 Toshiba Corp Rotary electric machine
WO2007072622A1 (en) * 2005-12-21 2007-06-28 Honda Motor Co., Ltd. Electric motor
JPWO2007072622A1 (en) * 2005-12-21 2009-05-28 本田技研工業株式会社 Electric motor
US8339010B2 (en) 2005-12-21 2012-12-25 Honda Motor Co., Ltd Dual rotor electric machine having a field-controlling rotor
EP2012410A4 (en) * 2006-04-24 2017-03-01 Fujitsu General Limited Buried magnet rotor, motor using this rotor, and compressor using this motor
JP2008141869A (en) * 2006-12-01 2008-06-19 Mitsubishi Electric Corp Rotary electric machine
US8044542B2 (en) 2007-02-15 2011-10-25 Daikin Industries, Ltd. Motor rotor and compressor equipped with the motor rotor
WO2008099871A1 (en) * 2007-02-15 2008-08-21 Daikin Industries, Ltd. Motor rotor and compressor with the same
JP2008199843A (en) * 2007-02-15 2008-08-28 Daikin Ind Ltd Motor rotor and compressor with the same
AU2008215478B2 (en) * 2007-02-15 2011-07-28 Daikin Industries, Ltd. Motor rotor and compressor equipped with the motor rotor
JP2008278553A (en) * 2007-04-25 2008-11-13 Toshiba Industrial Products Manufacturing Corp Rotor of rotating electric machine and rotating electric machine
DE112008001567T5 (en) 2007-06-13 2010-08-19 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Rotating electrical machine
US7960886B2 (en) 2007-06-13 2011-06-14 Toyota Jidosha Kabushiki Kaisha Rotating electric machine
JP2009112166A (en) * 2007-10-31 2009-05-21 Fujitsu General Ltd Magnet embedded rotor, motor using the rotor, and compressor using the motor
KR101133489B1 (en) 2009-09-14 2012-04-10 가부시키가이샤 도요다 지도숏키 Permanent magnet embedded type rotating electric machine
JP2011062059A (en) * 2009-09-14 2011-03-24 Toyota Industries Corp Permanent magnet embedded rotating electrical machine
US8659200B2 (en) 2009-09-14 2014-02-25 Kabushiki Kaisha Toyota Jidoshokki Permanent magnet embedded rotating electrical machine
JP2013540931A (en) * 2010-09-20 2013-11-07 ハラ クライメート コントロール コーポレーション Electric compressor for vehicles
JPWO2014027631A1 (en) * 2012-08-16 2016-07-25 株式会社ミツバ Brushless motor and brushless motor rotor
WO2014027631A1 (en) * 2012-08-16 2014-02-20 株式会社ミツバ Brushless motor and rotor for brushless motor
CN104038011B (en) * 2014-06-03 2017-06-09 广东美芝制冷设备有限公司 Permanent-magnet synchronous reluctance motor and the compressor with it
CN104052227A (en) * 2014-06-03 2014-09-17 广东美芝制冷设备有限公司 Permanent magnet synchronous reluctance motor and compressor with same
CN104038011A (en) * 2014-06-03 2014-09-10 广东美芝制冷设备有限公司 Permanent magnetic synchronous reluctance motor and compressor including same
JPWO2016002002A1 (en) * 2014-07-01 2017-04-27 三菱電機株式会社 Permanent magnet embedded electric motor, compressor and refrigeration air conditioner
WO2016002002A1 (en) * 2014-07-01 2016-01-07 三菱電機株式会社 Interior permanent magnet electric motor, compressor, and refrigerating and air-conditioning device
US10608486B2 (en) 2014-07-01 2020-03-31 Mitsubishi Electric Corporation Interior permanent magnet electric motor, compressor, and refrigerating and air-conditioning device
JP2016052196A (en) * 2014-09-01 2016-04-11 多摩川精機株式会社 Ipm motor and method for suppressing cogging torque thereof
JP2017070040A (en) * 2015-09-29 2017-04-06 アイシン精機株式会社 Three-phase rotary electric machine
CN106953431A (en) * 2015-09-29 2017-07-14 爱信精机株式会社 Three-phase rotating electric machine
US10361599B2 (en) 2015-09-29 2019-07-23 Aisin Seiki Kabushiki Kaisha Three-phase rotating electrical machine
JP2020524477A (en) * 2017-06-30 2020-08-13 広東美芝制冷設備有限公司 Permanent magnet motor, compressor and refrigeration system
US11177705B2 (en) 2017-06-30 2021-11-16 Guangdong Meizhi Compressor Co., Ltd. Permanent magnet motor, compressor and refrigeration system
JP2021002958A (en) * 2019-06-24 2021-01-07 三菱電機株式会社 Rotary electric machine
CN112737178A (en) * 2021-01-06 2021-04-30 杭州微光技术有限公司 High-speed rotor and high-speed drive and control integrated servo motor with same

Also Published As

Publication number Publication date
JP4447278B2 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
JP4447278B2 (en) Permanent magnet embedded motor
JP4898201B2 (en) Permanent magnet rotating machine
EP1115189B1 (en) Permanent magnet type synchronous motor
KR100877465B1 (en) Single-phase electric motor and closed compressor
JP4815204B2 (en) Permanent magnet rotating machine and compressor
US7482724B2 (en) Ipm electric rotating machine
JP5259927B2 (en) Permanent magnet rotating electric machine
JP2006314152A (en) Permanent-magnet motor
JP2005027422A (en) Permanent magnet type rotating electric machine and electric compressor using the same
JP2006304546A (en) Permanent magnet reluctance type rotary electric machine
JP4602958B2 (en) Permanent magnet motor, hermetic compressor and fan motor
JP3790774B2 (en) Permanent magnet rotating electric machine and automobile
JP4452488B2 (en) Permanent magnet type motor
JP2016521113A (en) Rotating electric machine rotor and rotating electric machine equipped with the same
JP2005323498A (en) Permanent magnet type dynamo-electric machine
JP2001333553A (en) Permanent magnet motor
KR20110058057A (en) Permanent magnet type motor
JP2005237107A (en) Vehicle power generating motor
JP2004173375A (en) Laminated core with permanent magnet
JP2005287265A (en) Permanent magnet motor
JP2006109700A (en) Interior permanent magnet motor
JP2004129448A (en) Permanent-magnet rotary electric machine
JP3790773B2 (en) Permanent magnet rotating electric machine and automobile
JP3790765B2 (en) Permanent magnet rotating electric machine and electric vehicle using permanent magnet rotating electric machine
JP2006158147A (en) Alternator for vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130129

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4447278

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160129

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term