WO2008147700A1 - Composition lubrifiante contenant du soufre, du phosphore et un agent anti-usure sans cendres et un agent de modification du frottement contenant une amine - Google Patents

Composition lubrifiante contenant du soufre, du phosphore et un agent anti-usure sans cendres et un agent de modification du frottement contenant une amine Download PDF

Info

Publication number
WO2008147700A1
WO2008147700A1 PCT/US2008/063653 US2008063653W WO2008147700A1 WO 2008147700 A1 WO2008147700 A1 WO 2008147700A1 US 2008063653 W US2008063653 W US 2008063653W WO 2008147700 A1 WO2008147700 A1 WO 2008147700A1
Authority
WO
WIPO (PCT)
Prior art keywords
lubricating composition
amine
antiwear agent
lubricating
acid
Prior art date
Application number
PCT/US2008/063653
Other languages
English (en)
Inventor
Jody Kocsis
Patrick E. Mosier
Original Assignee
The Lubrizol Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Lubrizol Corporation filed Critical The Lubrizol Corporation
Priority to CA2688091A priority Critical patent/CA2688091C/fr
Priority to US12/598,056 priority patent/US20100093573A1/en
Priority to EP08755495A priority patent/EP2160453B1/fr
Priority to JP2010509451A priority patent/JP2010528154A/ja
Publication of WO2008147700A1 publication Critical patent/WO2008147700A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M141/00Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential
    • C10M141/06Lubricating compositions characterised by the additive being a mixture of two or more compounds covered by more than one of the main groups C10M125/00 - C10M139/00, each of these compounds being essential at least one of them being an organic nitrogen-containing compound
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/02Hydroxy compounds
    • C10M2207/023Hydroxy compounds having hydroxy groups bound to carbon atoms of six-membered aromatic rings
    • C10M2207/028Overbased salts thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/26Overbased carboxylic acid salts
    • C10M2207/262Overbased carboxylic acid salts derived from hydroxy substituted aromatic acids, e.g. salicylates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/282Esters of (cyclo)aliphatic oolycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/288Partial esters containing free carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/28Esters
    • C10M2207/287Partial esters
    • C10M2207/289Partial esters containing free hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/02Amines, e.g. polyalkylene polyamines; Quaternary amines
    • C10M2215/04Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
    • C10M2215/042Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/08Amides
    • C10M2215/082Amides containing hydroxyl groups; Alkoxylated derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/086Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/28Amides; Imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2219/00Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
    • C10M2219/04Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
    • C10M2219/046Overbasedsulfonic acid salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2223/00Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
    • C10M2223/02Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having no phosphorus-to-carbon bonds
    • C10M2223/04Phosphate esters
    • C10M2223/045Metal containing thio derivatives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/42Phosphor free or low phosphor content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/43Sulfur free or low sulfur content compositions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/40Low content or no content compositions
    • C10N2030/45Ash-less or low ash content
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/54Fuel economy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines

Definitions

  • the invention provides a lubricating composition containing an oil of lubricating viscosity, an amine-containing friction modifier, and an ashless antiwear agent.
  • the lubricating composition is suitable for lubricating an internal combustion engine.
  • lubricating oils It is well known for lubricating oils to contain a number of additives used to protect the mechanical devices such as internal combustion engines from wear, soot deposits and acidity build up.
  • a common antiwear additive for engine lubricating oils is zinc dialkyldithiophosphate (ZDDP). It is believed that ZDDP antiwear additives protect the engine by forming a protective film on metal surfaces. ZDDP is also believed to have a detrimental impact on fuel economy and efficiency. Consequently, engine lubricants also contain friction modifier to obviate the detrimental impact of ZDDP on fuel economy and efficiency. Both ZDDP and friction modifier function by adsorption on sliding surfaces, and each may interfere with each other's respective functions.
  • ZDDP zinc dialkyldithiophosphate
  • International Publication WO 2005/087904 discloses a lubricant composition containing at least one hydroxycarboxylic acid ester or hydroxy polycarboxylic acid.
  • the lubricant composition disclosed may also contain zinc dihydrocarbyldithiophosphates, or other phosphorous-containing additives such as trilauryl phosphate or triphenylphosphorothionate.
  • the lubricant composition has anti-wear or anti-fatigue properties.
  • International Publication WO 2006/04441 1 discloses a low-sulphur, low-phosphorus, low-ash lubricant composition suitable for lubricating an internal combustion engine, containing a tartrate ester, or amide having 1 to 150 carbon atoms per ester of amide group.
  • US Patent 5,338,470 discloses alkylated citric acid derivatives obtained as a reaction product of citric acid and an alkyl alcohol or amine.
  • the alkylated citric acid derivative is effective as an antiwear agent and friction modifier.
  • U.S. Patent 4,237,022 discloses tartrimides useful as additives in lubricants and fuels for effective reduction in squeal and friction as well as improvement in fuel economy.
  • U.S. Patent 4,952,328 discloses lubricating oil compositions for internal combustion engines, comprising (A) oil of lubricating viscosity, (B) a carboxylic derivative produced by reacting a succinic acylating agent with certain amines, and (C) a basic alkali metal salt of sulphonic or carboxylic acid.
  • U.S. Patent 4,326,972 discloses lubricant compositions for improving fuel economy of internal combustion engines. The composition includes a specific sulphurised composition (based on an ester of a carboxylic acid) and a basic alkali metal sulphonate.
  • U.S. Patent Application 60/867534 discloses malonate esters suitable as antiwear agents.
  • Canadian Patent CA 1 183 125 discloses lubricants for gasoline engines containing alkyl-ester tartrates, where the sum of carbon atoms on the alkyl groups is at least 8.
  • a lubricating composition capable of providing at least one of (i) reducing or preventing phosphorus emissions, (ii) reducing or preventing sulphur emissions, (ii) wholly or partially replacing ZDDP in lubricating oils, (iii) improving fuel economy, (iv) fuel economy retention/efficiency, and (v) lead and copper corrosion resistance.
  • the present invention provides an antiwear agent capable of achieving at least one of (i), (ii) (iii), (iv), and (v). In addition it may also be desirable for the antiwear agent to not have a detrimental affect on other components of a mechanical device.
  • the invention provides a lubricating composition
  • a lubricating composition comprising an oil of lubricating viscosity, an amine-containing friction modifier, and an ashless antiwear agent represented by Formula (1):
  • X is independently -Z-O-Z'-, >CH 2 , >CHR 4 , >CR 4 R 5 , >C(OH)(CO 2 R 2 ), >C(CO 2 R%, >CH >CO : R ⁇ or >CHOR 6 ;
  • Z and Z' are independently >CH 2 , >CHR 4 , >CR 4 R 5 , >C(OH)(CO 2 R 2 ), or >CHOR 6 ;
  • m is 0 or 1 ;
  • R 1 is independently hydrogen or a hydrocarbyl group, typically containing 1 to 150, 4 to 30, or 6 to 20, or 10 to 20, or 11 to 18 carbon atoms, with the proviso that when R 1 is hydrogen, m is 0, and n is more than or equal to 1 ;
  • R 2 is a hydrocarbyl group, typically containing 1 to 150, 4 to 30, or 6 to 20, or 10 to 20, or 1 1 to 18 carbon atoms;
  • R 3 , R 4 and R 5 are independently hydrocarbyl groups or hydroxy- co ⁇ tai ⁇ ing hydrocarbyl yroup.s or earboxyl-coniaminy hydrocarbyl groups;
  • R 6 is independently hydrogen or a hydrocarbyl group, typically containing 1 to 150, or 4 to 30 carbon atoms.
  • the lubricating composition is characterised as having at least one of (i) a sulphur content of 0.8 wt % or less, (ii) a phosphorus content of 0.2 wt % or less, or (iii) a sulphated ash content of 2 wt % or less. [0017] In one embodiment the invention the lubricating composition is characterised as having (i) a sulphur content of 0.5 wt % or less, (ii) a phosphorus content of 0.1 wt % or less, and (iii) a sulphated ash content of 1.5 wt % or less.
  • the invention provides a method of lubricating an internal combustion engine comprising, supplying to the internal combustion engine a lubricating compositions as disclosed herein.
  • the invention provides for the use of a lubricating composition as disclosed herein for providing at least one of (i) reducing or preventing phosphorus emissions, (ii) reducing or preventing sulphur emissions, (ii) wholly or partially replacing ZDDP in lubricating oils, (iii) improving fuel economy, (iv) fuel economy retention/efficiency, and (v) lead and copper corrosion resistance.
  • the present invention provides a lubricating composition and a method for lubricating an engine as disclosed above.
  • the amine-containing friction modifier includes primary, secondary or tertiary amine.
  • the amine is hydrocarbyl- or div* ⁇ i K 1- substituted.
  • the amine-containing friction modifier may be a hydrocarbyl- substituted primary amine, a U) droC.n K i- substituted amine, or mixtures thereof u» m oacb I- -uKsuunod ⁇ nnru K
  • amine-containing friction modifier is a U) J ⁇ OW U ⁇ jive U K i- substituted amine, typically a tertiary amine.
  • the amine-containing friction modifier is the lu ib o ⁇ Jmb -vdr ⁇ i- substituted amine and is a tertiary amine
  • the amine typically contains two h ⁇ 1 groups and one hydrocarbyl group bonded directly to the nitrogen of the amine.
  • the hydrocarbyl group may contain 1 to 30, or 4 to 26, or 12 to 20 carbon atoms. In one embodiment the hydrocarbyl group contains 16 to 18 carbon atoms.
  • the friction modifier may be a diov> amine.
  • the oUv-,,i; K I- substituted amine may be derived from an alkoxy- group containing 1 to 10, 1 to 6 or 2 to 4 carbon atoms.
  • Examples of a suitable alkoxylated amine •; ⁇ -ucb watouah J ⁇ otk-n c JU d ⁇ include ethoxylated amines.
  • Ethoxylated amines may be derived from 1.79 % Ethomeen® T-12 and 0.90 % Tomah PA-I as described in Example E of US Patent 5,703,023, column 28, lines 30 to 46.
  • ETHOMEENTM C/12 bis[2-hydroxyethyl]-coco- amine
  • ETHOMEENTM C/20 polyoxyethylene[10]cocoamine
  • ETHOMEENTM S/12 bis[2-hydroxyethyl]soyamine
  • ETHOMEENTM T/12 bis[2-hydroxyethyl]- tallow-amine
  • ETHOMEENTM T/15 polyoxyethylene-[5]tallowamine
  • ETHOMEENTM 0/12 bis[2-hydroxyethyl]oleyl-amine
  • ETHOMEENTM 18/12 bis[2— hydroxyethyl]octadecylamine
  • hydrocarbyl- substituted amine is a primary amine
  • the hydrocarbyl group may contain 1 to 30, or 4 to 26, or 12 to 20 carbon atoms.
  • the hydrocarbyl group contains 14 to 18 carbon atoms
  • Primary amines include ethylamine, propylamine, butylamine, 2-ethylhexylamine, octylamine, and dodecylamine, as well as such fatty amines as n-octylamine, n-decylamine, n-dodecylamine, n-tetradecylamine, n-hexadecylamine, n-octadecylamine and oleyamine.
  • fatty amines include commercially available fatty amines such as "Armeen®” amines (products available from Akzo Chemicals, Chicago, Illinois), such as Armeen C, Armeen O, Armeen OL, Armeen T, Armeen HT, Armeen S and Armeen SD, wherein the letter designation relates to the fatty group, such as coco, oleyl, tallow, or stearyl groups.
  • the amine -containing friction modifier may be present at 0.01 wt % to 5 wt %, 0.02 wt % to 2 wt %, or 0.05 wt % to 1 wt % of the lubricating composition.
  • Ashless Antiwear Agent 0.01 wt % to 5 wt %, 0.02 wt % to 2 wt %, or 0.05 wt % to 1 wt % of the lubricating composition.
  • the compound of Formula (1) contains an imide group.
  • the compound of Formula (1) has m, n, X, and R 1 , R 2 and R 6 defined as follows: m is 0 or 1 , n is 1 to 2, X is >CHOR 6 , and R 1 , R 2 and R 6 are independently hydrocarbyl groups containing 4 to 30 carbon atoms.
  • Y and Y' are both -O-.
  • the compound of Formula (1) has m, n, X, Y, Y' and R 1 , R 2 and R 6 defined as follows: m is 0 or 1, n is 1 to 2, X is >CHOR 6 ; Y and Y' are both -O-, and R 1 , R 2 and R 6 are independently hydrogen or hydrocarbyl groups containing 4 to 30 carbon atoms.
  • the ashless antiwear agent includes imides, di- esters, di-amides, di-imides, ester-amides, ester-imides, or imide-amides. In one embodiment the antiwear agent includes imides, di-esters, di-amides, or ester- amides.
  • the di-esters, di-amides, ester-amide, ester-imide compounds of Formula (1) may be prepared by reacting a dicarboxylic acid (such as tartaric acid), with an amine or alcohol, optionally in the presence of a known esterification catalyst.
  • a dicarboxylic acid such as tartaric acid
  • an amine or alcohol optionally in the presence of a known esterification catalyst.
  • ester-imide compounds it is necessary to have at least three carboxylic acid groups (such as citric acid).
  • the amine or alcohol typically has sufficient carbon atoms to fulfill the requirements of R 1 and/or R 2 as defined in Formula (1).
  • R 1 and R 2 are independently linear or branch hydrocarbyl groups. In one embodiment the hydrocarbyl groups are branched. In one embodiment the hydrocarbyl groups are linear.
  • the R 1 and R 2 may be incorporated into Formula (1) by either an amine or an alcohol.
  • the alcohol includes both monohydric alcohol and polyhydric alcohol.
  • the carbon atoms of the alcohol may be linear chains, branched chains, or mixtures thereof.
  • Examples of a suitable branched alcohol include 2-ethylhexanol, isotridecanol, Guerbet alcohols, or mixtures thereof.
  • Examples of a monohydric alcohol include methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, octanol, nonanol, decanol, undecanol, dodecanol, tridecanol, tetradecanol, pentadecanol, hexadecanol, heptadecanol, octadecanol, nonadecanol, eicosanol, or mixtures thereof.
  • the monohydric alcohol contains 5 to 20 carbon atoms.
  • the alcohol includes either a monohydric alcohol or a polyhydric alcohol.
  • suitable polyhydric alcohol include ethylene glycol, propylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,5-pentane diol, 1 ,6-hexane diol, glycerol, sorbitol, pentaerythritol, trimethylolpropane, starch, glucose, sucrose, methylglucoside, or mixtures thereof.
  • the polyhydric alcohol is used in a mixture along with a monohydric alcohol. Typically, in such a combination the monohydric alcohol constitutes at least 60 mole percent, or at least 90 mole percent of the mixture.
  • ashless antiwear agent is derived from tartaric acid.
  • the tartaric acid used for preparing the tartrates of the invention can be commercially available, and it is likely to exist in one or more isomeric forms such as d-tartaric acid, 1-tartaric acid or mesotartaric acid, often depending on the source (natural) or method of synthesis (from maleic acid).
  • a racemic mixture of d-tartaric acid and 1-tartaric acid is obtained from a catalysed oxidation of maleic acid with hydrogen peroxide (with tungstic acid catalyst).
  • These derivatives can also be prepared from functional equivalents to the diacid readily apparent to those skilled in the art, such as esters, acid chlorides, or anhydrides.
  • resultant tartrates may be solid, semi-solid, or oil depending on the particular alcohol used in preparing the tartrate.
  • the tartrates are advantageously soluble and/or stably dispersible in such oleaginous compositions.
  • compositions intended for use in oils are typically oil-soluble and/or stably dispersible in an oil in which they are to be used.
  • oil-soluble as used in this specification and appended claims does not necessarily mean that all the compositions in question are miscible or soluble in all proportions in all oils.
  • composition is soluble in an oil (mineral, synthetic, etc.) in which it is intended to function to an extent which permits the solution to exhibit one or more of the desired properties.
  • oil mineral, synthetic, etc.
  • solutions it is not necessary that such "solutions" be true solutions in the strict physical or chemical sense. They may instead be micro-emulsions or colloidal dispersions which, for the purpose of this invention, exhibit properties sufficiently close to those of true solutions to be, for practical purposes, interchangeable with them within the context of this invention.
  • the ashless antiwear agent includes a compound derived from a hydroxycarboxylic acid.
  • the ashless antiwear agent is derived from at least one of hydroxy-polycarboxylic acid di-ester, a hydroxy-polycarboxylic acid di-amide, a hydroxy-polycarboxylic acid di-imide, a hydroxy-polycarboxylic acid ester-amide, a hydroxy-polycarboxylic acid ester- imide, and a hydroxy-polycarboxylic acid imide-amide.
  • the ashless antiwear agent is derived from at least one of the group consisting of a hydroxy-polycarboxylic acid di-ester, a hydroxy-polycarboxylic acid di-amide, and a hydroxy-polycarboxylic acid ester-amide.
  • a suitable a hydroxycarboxylic acid examples include citric acid, tartaric acid, lactic acid, glycolic acid, hydroxy-propionic acid, hydroxyglutaric acid, or mixtures thereof.
  • ashless antiwear agent is derived from tartaric acid, citric acid, hydroxy-succinic acid, dihydroxy mono-acids, mono-hydroxy diacids, or mixtures thereof.
  • the ashless antiwear agent includes a compound derived from tartaric acid or citric acid.
  • the ashless antiwear agent includes a compound derived from tartaric acid.
  • US Patent Application 2005/198894 discloses suitable hydro xycarboxylic acid compounds, and methods of preparing the same.
  • Canadian Patent 1 183 125; US Patent Publication numbers 2006/0183647 and US-2006-0079413; US Patent Application number 60/867402; and British Patent 2 105 743 A all disclose examples of suitable tartaric acid derivatives.
  • the di-esters, di-amides, di-imides, ester-amide, ester-imide, imide-amide compounds are derived from a compound of Formula (1). In one embodiment the di-esters, di-amides, ester-amide, compounds are derived from a compound of Formula (1).
  • the ashless antiwear agent includes imide, di- esters, di-amides, ester-amide derivatives of tartaric acid.
  • the ashless antiwear agent of the invention may also function as rust and corrosion inhibitors, friction modifiers, antiwear agents and demulsifiers.
  • Examples of a suitable citric acid derivative include trialkyl citrates or borated trialkyl citrates. Suitable examples include triethyl citrate, tripentyl citrate with ethyl dipentyl citrate, borated triethyl citrate, tributyl citrate, triethyl citrate transesterified with 1 ,2-propandiol, triethyl O-acetyl citrate, triethyl citrate octadecyl succinate, oleyl citrate, or mixtures thereof.
  • suitable citrates is disclosed in WO 2005/087904 and U.S. Patent 5,338,470.
  • Other suitable citrates include 2-ethylhexyl citrate, dodecyl citrate, or mixtures thereof.
  • the ashless antiwear agent is not borated.
  • the ashless antiwear agent of the may be present at 0.01 wt % to 20 wt %, or 0.05 to 10 wt %, or 0.1 to 5 wt % of the lubricating composition. Oils of Lubricating Viscosity
  • the lubricating composition comprises an oil of lubricating viscosity.
  • oils include natural and synthetic oils, oil derived from hydrocracking, hydrogenation, and hydro finishing, unrefined, refined and re-refined oils and mixtures thereof.
  • Unrefined oils are those obtained directly from a natural or synthetic source generally without (or with little) further purification treatment.
  • Refined oils are similar to the unrefined oils except they have been further treated in one or more purification steps to improve one or more properties. Purification techniques are known in the art and include solvent extraction, secondary distillation, acid or base extraction, filtration, percolation and the like.
  • Re-refined oils are also known as reclaimed or reprocessed oils, and are obtained by processes similar to those used to obtain refined oils and often are additionally processed by techniques directed to removal of spent additives and oil breakdown products.
  • Natural oils useful in making the inventive lubricants include animal oils, vegetable oils (e.g., castor oil,), mineral lubricating oils such as liquid petroleum oils and solvent -treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types and oils derived from coal or shale or mixtures thereof.
  • animal oils e.g., castor oil,
  • mineral lubricating oils such as liquid petroleum oils and solvent -treated or acid-treated mineral lubricating oils of the paraffinic, naphthenic or mixed paraffinic-naphthenic types and oils derived from coal or shale or mixtures thereof.
  • Synthetic lubricating oils are useful and include hydrocarbon oils such as polymerized, o ⁇ gomemed, or interpolymerised olefins (e.g., polybutylenes, polypropylenes, propyleneisobutylene copolymers); poly(l-hexenes), poly(l- octenes), t ⁇ m ⁇ rs or oligomers of 1-d ⁇ c ⁇ ne, e.g., poly(l-decenes), such materials being often referred to as poly ⁇ -oicfirks, and mixtures thereof; alkyl-benzenes (e.g.
  • dodecylbenzenes dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di-(2-ethylhexyl)- benzenes); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenyls); diphenyl alkanes, alkylated diphenyl alkanes, alkylated diphenyl ethers and alkylated diphenyl sulphides and the derivatives, analogs and homologs thereof or mixtures thereof.
  • polyphenyls e.g., biphenyls, terphenyls, alkylated polyphenyls
  • diphenyl alkanes alkylated diphenyl alkanes, alkylated diphenyl ethers and alkylated diphenyl sulphides and the derivatives, analogs and homologs thereof or mixtures
  • Other synthetic lubricating oils include polyol esters (such as Prolube®3970), diesters, liquid esters of phosphorus-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, and the diethyl ester of decane phosphonic acid), or polymeric tetrahydrofurans.
  • Synthetic oils may be produced by Fischer-Tropsch reactions and typically may be hydroisomerised Fischer-Tropsch hydrocarbons or waxes. In one embodiment oils may be prepared by a Fischer-Tropsch gas-to-liquid synthetic procedure as well as other gas-to-liquid oils.
  • Oils of lubricating viscosity may also be defined as specified in the American Petroleum Institute (API) Base Oil Interchangeability Guidelines.
  • the five base oil groups are as follows: Group I (sulphur content >0.03 wt %, and/or ⁇ 90 wt % saturates, viscosity index 80-120); Group II (sulphur content ⁇ 0.03 wt %, and >90 wt % saturates, viscosity index 80-120); Group III (sulphur content ⁇ 0.03 wt %, and >90 wt % saturates, viscosity index >120); Group IV (all polyalphaolefins (PAOs)); and Group V (all others not included in Groups I, II, III, or IV).
  • PAOs polyalphaolefins
  • the oil of lubricating viscosity comprises an API Group I, Group II, Group III, Group IV, Group V oil or mixtures thereof. Often the oil of lubricating viscosity is an API Group I, Group II, Group III, Group IV oil or mixtures thereof. Alternatively the oil of lubricating viscosity is often an API Group II, Group III or Group IV oil or mixtures thereof.
  • the amount of the oil of lubricating viscosity present is typically the balance remaining after subtracting from 100 wt % the sum of the amount of the ashless antiwear agent, the amine-containing friction modifier and the other performance additives.
  • the lubricating composition may be in the form of a concentrate and/or a fully formulated lubricant. If the lubricating composition of the invention (comprising (i) the ashless antiwear agent and (ii) the amine- containing friction modifier is in the form of a concentrate (which may be combined with additional oil to form, in whole or in part, a finished lubricant), the ratio of the of components of the invention to the oil of lubricating viscosity and/or to diluent oil include the ranges of 1 :99 to 99: 1 by weight, or 80:20 to 10:90 by weight. Other Performance Additives
  • the composition optionally comprises other performance additives.
  • the other performance additives comprise at least one of metal deactivators, viscosity modifiers, detergents, friction modifiers (other than the ashless antiwear agent of the invention or the compound of formula (I)), antiwear agents (other than the ashless antiwear agent of the invention), corrosion inhibitors, dispersants, dispersant viscosity modifiers, extreme pressure agents, antioxidants, foam inhibitors, demulsifiers, pour point depressants, seal swelling agents and mixtures thereof.
  • fully-formulated lubricating oil will contain one or more of these performance additives.
  • the lubricating composition comprises the ashless antiwear agent and further comprises at least one of a viscosity modifier, an antioxidant, an overbased detergent, a succinimide dispersant, or mixtures thereof.
  • the lubricating composition comprising the ashless antiwear agent further comprises a phosphorus-containing antiwear agent.
  • the lubricant composition optionally further comprises other known neutral or overbased detergents.
  • Suitable detergent substrates include phenates, sulphur containing phenates, sulphonates, salixarates, salicylates, carboxylic acid, phosphorus acid, mono- and/or di- thiophosphoric acid, alkyl phenol, sulphur coupled alkyl phenol compounds, or saligenins.
  • the detergent substrate is typically salted with a metal such as calcium, magnesium, potassium, sodium, or mixtures thereof.
  • the lubricating composition further includes an overbased detergent.
  • the overbased detergent includes phenates, sulphur containing phenates, sulphonates, salixarates, salicylates, or mixtures thereof.
  • the detergent may be present at 0 wt % to 10 wt %, or 0.1 wt % to 8 wt %, or 1 wt % to 4 wt %, or greater than 4 to 8 wt %.
  • Dispersants may be present at 0 wt % to 10 wt %, or 0.1 wt % to 8 wt %, or 1 wt % to 4 wt %, or greater than 4 to 8 wt %.
  • Dispersants are often known as ashless-type dispersants because, prior to mixing in a lubricating oil composition, they do not contain ash-forming metals and they do not normally contribute any ash forming metals when added to a lubricant and polymeric dispersants.
  • Ashless type dispersants are characterised by a polar group attached to a relatively high molecular weight hydrocarbon chain.
  • Typical ashless dispersants include N-substituted long chain alkenyl succinimides. Examples of N-substituted long chain alkenyl succinimides include polyisobutylene succinimide with number average molecular weight of the polyisobutylene substituent in the range 350 to 5000, or
  • Succinimide dispersants and their preparation are disclosed, for instance in US Patent 3,172,892 or US Patent 4,234,435 or in EP 0355895.
  • Succinimide dispersants are typically the imide formed from a polyamine, typically a poly(ethyleneamine).
  • the invention further comprises at least one polyisobiityleoo succirmnidc disperswru derived from polyisobiitylotsc with number average molecular weight in the range 350 to 5000, or 500 to 3000.
  • the polyisobutylene succinimide may be used alone or in combination with other dispersants.
  • the invention further comprises at least one dispersant derived from polyisobutylene succinic anhydride, an amine and zinc oxide to form a polyisobutylene succinimide complex with zinc.
  • the polyisobutylene succinimide complex with zinc may be used alone or in combination.
  • Mannich bases Another class of ashless dispersant is Mannich bases.
  • Mannich dispersants are the reaction products of alkyl phenols with aldehydes (especially formaldehyde) and amines (especially polyalkylene polyamines).
  • the alkyl group typically contains at least 30 carbon atoms.
  • the dispersants may also be post-treated by conventional methods by a reaction with any of a variety of agents. Among these are boron, urea, thiourea, dimercaptothiadiazoles, carbon disulphide, aldehydes, ketones, carboxylic acids, hydrocarbon-substituted succinic anhydrides, maleic anhydride, nitriles, epoxides, and phosphorus compounds.
  • the dispersant may be present at 0 wt % to 20 wt %, or 0.1 wt % to
  • Antioxidant compounds include for example, sulphurised olefins (typically sulphurised 4-carbobutoxy cyclohexene, or triphenylphosphite equivalents thereof, or olefin sulphide), alkylated diphenylamines (e g . mmyi diphenylarnine, di-nonyl diphenylamine, octyl diphenylamine, di-octyl diphenylamine), hindered phenols, oil-soluble molybdenum compounds, or mixtures thereof.
  • Antioxidant compounds may be used alone or in combination.
  • the antioxidant may be present in ranges 0 wt % to 20 wt %, or 0.1 wt % to 10 wt %, or 1 wt % to 5 wt %, of the lubricating composition.
  • the hindered phenol antioxidant often contains a secondary butyl and/or a tertiary butyl group as a sterically hindering group.
  • the phenol group is often further substituted with a hydrocarbyl group and/or a bridging group linking to a second aromatic group.
  • Suitable hindered phenol antioxidants include 2,6-di-tert-butylphenol, 4-methyl-2,6-di-tert-butylphenol, 4- ethyl-2,6-di-tert-butylphenol, 4-propyl-2,6-di-tert-butylphenol or 4-butyl-2,6-di- tert-butylphenol, or 4-dodecyl-2,6-di-tert-butylphenol.
  • the hindered phenol antioxidant is an ester and may include, e.g., IrganoxTM L-135 from Ciba or an addition product derived from 2,6-di-tert-butylphenol and an alkyl acrylate, wherein the alkyl group may contain 1 to 18, or 2 to 12, or 2 to 8, or 2 to 6, or 4 carbon atoms.
  • IrganoxTM L-135 from Ciba
  • an addition product derived from 2,6-di-tert-butylphenol and an alkyl acrylate wherein the alkyl group may contain 1 to 18, or 2 to 12, or 2 to 8, or 2 to 6, or 4 carbon atoms.
  • the oil-soluble molybdenum compound may have the functional performance of an antiwear agent, an antioxidant, a friction modifier, or mixtures thereof.
  • the oil-soluble molybdenum compound includes molybdenum dithiocarbamates, molybdenum dialkyldithiophosphates, amine salts of molybdenum compounds, molybdenum xanthates, molybdenum sulphides, molybdenum carboxylates, molybdenum alkoxides, or mixtures thereof.
  • the molybdenum sulphides include molybdenum disulphide.
  • the molybdenum disulphide may be in the form of stable dispersions.
  • oil-soluble molybdenum compound may be selected from the group consisting of molybdenum dithiocarbamates, molybdenum dialkyldithiophosphates, amine salts of molybdenum compounds, and mixtures thereof. In one embodiment the oil-soluble molybdenum compound is a molybdenum dithio carbamate.
  • Suitable examples of molybdenum dithiocarbamates which may be used as an antioxidant include commercial materials sold under the trade names such as MoIy van 822TM and MolyvanTM A from R. T. Vanderbilt Co., Ltd., and Adeka Sakura-LubeTM S-IOO, S-165, S-515, and S-600 from Asahi Denka Kogyo K. K and mixtures thereof.
  • the oil-soluble molybdenum compound may be present in an amount sufficient to provide 0.5 ppm to 2000 ppm, 1 ppm to 700 ppm, 1 ppm to 550 ppm, 5 ppm to 300 ppm, or 20 ppm to 250 ppm of molybdenum.
  • Viscosity Modifiers may be present in an amount sufficient to provide 0.5 ppm to 2000 ppm, 1 ppm to 700 ppm, 1 ppm to 550 ppm, 5 ppm to 300 ppm, or 20 ppm to 250 ppm of molybdenum.
  • Viscosity modifiers include hydrogenated copolymers of styrene- butadiene, ethylene-propylene copolymers, polyisobutenes, hydrogenated styrene-isoprene polymers, hydrogenated isoprene polymers, polymethacrylates, poly aery lates, polyalkyl styrenes, hydrogenated alkenyl aryl conjugated diene copolymers, polyolefins, esters of maleic anhydride-styrene copolymers, or esters of (alpha-olefin maleic anhydride) copolymers, or mixtures thereof.
  • Dispersant Viscosity Modifiers include hydrogenated copolymers of styrene- butadiene, ethylene-propylene copolymers, polyisobutenes, hydrogenated styrene-isoprene polymers, hydrogenated isoprene polymers, polymethacrylates, poly
  • Dispersant viscosity modifiers include functionalised polyolefins, for example, ethylene-propylene copolymers that have been functionalised with the reaction product of an acylating agent (such as maleic anhydride) and an amine; polymethacrylates functionalised with an amine, or esterified maleic anhydride-styrene copolymers reacted with an amine.
  • an acylating agent such as maleic anhydride
  • the total amount of viscosity modifier and/or dispersant viscosity modifier may be 0 wt % to 20 wt %, 0.1 wt % to 15 wt %, or 0.1 wt % to 10 wt %, of the lubricating composition.
  • Antiwear Agents 0 wt % to 20 wt %, 0.1 wt % to 15 wt %, or 0.1 wt % to 10 wt %, of the lubricating composition.
  • the lubricant composition optionally further comprises at least one other antiwear agent other than the ashless antiwear agent of the invention.
  • suitable antiwear agents include phosphate esters, sulphurised olefins, sulphur-containing anti-wear additives including metal dihydrocarbyldithiophosphates (such as zinc dialkyldithiophosphates), thiocarbamate-containing compounds including, thiocarbamate esters, alkylene- coupled thiocarbamates, and bis(S-alkyldithiocarbamyl) disulphides.
  • the dithiocarbamate-containing compounds may be prepared by reacting a di thiocarbamate acid or salt with an unsaturated compound.
  • the dithio carbamate containing compounds may also be prepared by simultaneously reacting an amine, carbon disulphide and an unsaturated compound. Generally, the reaction occurs at a temperature of 25 0 C to 125 0 C.
  • US Patents 4,758,362 and 4,997,969 describe dithiocarbamate compounds and methods of making them.
  • Suitable olefins that may be sulphurised to form an the sulphurised olefin include propylene, butylene, isobutylene, pentene, hexane, heptene, octane, nonene, decene, undecene, dodecene, undecyl, tridecene, tetradecene, pentadecene, hexadecene, heptadecene, octadecene, octadecenene, nonodecene, eicosene or mixtures thereof.
  • hexadecene, heptadecene, octadecene, octadecenene, nonodecene, eicosene or mixtures thereof and their dimers, trimers and tetramers are especially useful olefins.
  • the olefin may be a Diels-Alder adduct of a diene such as 1,3-butadiene and an unsaturated ester, such as, butylacrylate.
  • Another class of sulphurised olefin includes fatty acids and their esters. The fatty acids are often obtained from vegetable oil or animal oil and typically contain 4 to 22 carbon atoms.
  • Suitable fatty acids and their esters include triglycerides, oleic acid, linoleic acid, palmitoleic acid or mixtures thereof. Often, the fatty acids are obtained from lard oil, tall oil, peanut oil, soybean oil, cottonseed oil, sunflower seed oil or mixtures thereof. In one embodiment fatty acids and/or ester are mixed with olefins, ⁇ ;uch n;s ⁇ -oletms. [0084] In one embodiment the composition further comprises a monoester of a polyol and an aliphatic carboxylic acid, often an acid containing 12 to 24 carbon atoms.
  • the monoester of a polyol and an aliphatic carboxylic acid is in the form of a mixture with a sunflower oil or the like, which may be present in the ashless antiwear agent mixture include 5 to 95, or in other embodiments 10 to 90, or 20 to 85, or 20 to 80 weight percent of said mixture.
  • the aliphatic carboxylic acids which form the esters are those acids typically containing 12 to 24 or 14 to 20 carbon atoms. Examples of carboxylic acids include dodecanoic acid, stearic acid, lauric acid, behenic acid, and oleic acid.
  • Polyols include diols, triols, and alcohols with higher numbers of alcoholic OH groups.
  • Polyhydric alcohols include ethylene glycols, including di-, tri- and tetraethylene glycols; propylene glycols, including di-, tri- and tetrapropylene glycols; glycerol; butanediol; hexanediol; sorbitol; arabitol; mannitol; sucrose; fructose; glucose; cyclohexane diol; erythritol; and pentaerythritols, including di- and tripentaerythritol.
  • the polyol is diethyl- ene glycol, triethylene glycol, glycerol, sorbitol, pentaerythritol or dipentaerythritol.
  • the commercial material known as glycerol monooleate is believed to include about 60 + 5 percent by weight of the chemical species "glycerol monooleate,” along with 35 + 5 percent glycerol dioleate, and less than about 5 percent trioleate and oleic acid.
  • the amounts of the monoesters, described below, are the amounts of the commercial grade material.
  • the composition further comprises an ashless antiwear agent (other than the compound of Formula (1), which may also be described as a friction modifier) may be a fatty acid amide (such as oleyl amide).
  • the antiwear agent may be present in ranges including 0 wt % to 15 wt %, or 0 wt % to 10 wt %, or 0.05 wt % to 5 wt %, or 0.1 wt % to 3 wt % of the lubricating composition.
  • the lubricating composition is free of zinc dihydrocarbyl dithiophosphate. In one embodiment the lubricating composition further includes zinc dihydrocarbyl dithiophosphate. Extreme Pressure Agents
  • EP agents that are soluble in the oil include sulphur- and chlorosulphur-containing EP agents, chlorinated hydrocarbon EP agents and phosphorus EP agents.
  • EP agents include chlorinated wax; organic sulphides and polysulphides such as dibenzyldisulphide, bis-(chlorobenzyl) disulphide, dibutyl tetrasulphide, sulphurised methyl ester of oleic acid, sulphurised alkylphenol, sulphurised dipentene, sulphurised terpene, and sulphurised Diels-Alder adducts; phosphosulphurised hydrocarbons such as the reaction product of phosphorus sulphide with turpentine or methyl oleate; phosphorus esters such as the dihydrocarbon and trihydrocarbon phosphites, e.g., dibutyl phosphite, diheptyl phos
  • the composition further comprises a friction modifier other than the amine-containing friction modifier of the invention.
  • the friction modifier may be present in ranges including 0 wt % to 10 wt %, or 0 wt % to 8 wt %, or 0 wt % to 4 wt %.
  • Friction modifiers may also encompass materials such as sulphurised fatty compounds and olefins, sunflower oil or monoester of a polyol and an aliphatic carboxylic acid (all these friction modifiers have been described as antioxidants or antiwear agents).
  • the friction modifier is a long chain fatty acid ester (previously described above as an ashless antiwear agent).
  • the long chain fatty acid ester is a mono-ester and in another embodiment the long chain fatty acid ester is a (tri)glyceride. h ⁇ ono embedment ibe ti cii nn ost. i a Other Additives
  • corrosion inhibitors include those described in paragraphs 5 to 8 of US Application US05/038319 (filed on October 25, 2004 McAtee and Boyer as named inventors), octylamine octanoate, and condensation products of dodecenyl succinic acid or anhydride and a fatty acid such as oleic acid with a polyamine.
  • the corrosion inhibitors include the Synalox® corrosion inhibitor.
  • the Synalox® corrosion inhibitor is typically a homopolymer or copolymer of propylene oxide.
  • the Synalox® corrosion inhibitor is described in more detail in a product brochure with Form No. 118-01453-0702 AMS, published by The Dow Chemical Company.
  • the product brochure is entitled "SYNALOX Lubricants, High-Performance Polyglycols for Demanding Applications.”
  • Metal deactivators including derivatives of benzotriazoles (typically tolyltriazole), dimercaptothiadiazole derivatives, 1 ,2,4-triazoles, benzimidazoles, 2-alkyldithiobenzimidazoles, or 2-alkyldithiobenzothiazoles; foam inhibitors including copolymers of ethyl acrylate and 2-ethylhexylacrylate and optionally vinyl acetate; demulsifiers including trialkyl phosphates, polyethylene glycols, polyethylene oxides, polypropylene oxides and (ethylene oxide-propylene oxide) polymers; pour point depressants including esters of maleic anhydride-styrene, polymethacrylates, polyacrylates or polyacrylamides.
  • the lubricating composition may be utilised in a range of surfaces typically found in mechanical devices, mebidine aluminium- alloy surfaces.
  • the mechanical devices include an internal combustion engine, a gearbox, an automatic transmission, a hydraulic or a turbine.
  • the lubricating composition may be an engine oil, a gear oil, an automatic transmission oil, a hydraulic fluid, a turbine oil, a metal working fluid or a circulating oil.
  • the mechanical device is an internal combustion engine.
  • the internal combustion engine may be a diesel fuelled engine, a gasoline fuelled engine, a natural gas fuelled engine or a mixed gasoline/alcohol fuelled engine.
  • the internal combustion engine may be a diesel fuelled engine and in another embodiment a gasoline fuelled engine.
  • the internal combustion engine may be a 2-stroke or 4-stroke engine. Suitable internal combustion engines include marine diesel engines, aviation piston engines, low-load diesel engines, and automobile and truck engines. [0098] In one embodiment the internal combustion engine contains components of an aluminium-alloy.
  • the aluminium-alloy includes aluminium silicates, aluminium oxides, or other ceramic materials. In one embodiment the aluminium-alloy is an aluminium-silicate surface. Vs us> d bcrun.
  • the lubricant composition for an internal combustion engine may be suitable for any engine lubricant irrespective of the sulphur, phosphorus or sulphated ash (ASTM D-874) content.
  • the sulphur content of the engine oil lubricant may be 1 wt % or less, or 0.8 wt % or less, or 0.5 wt % or less, or 0.3 wt % or less. In one embodiment the sulphur content may be in the range of 0.001 wt % to 0.5 wt %, or 0.01 wt % to 0.3 wt %.
  • the phosphorus content may be 0.2 wt % or less, or 0.1 wt % or less, or 0.085 wt % or less, or even 0.06 wt % or less, 0.055 wt % or less, or 0.05 wt % or less. In one embodiment the phosphorus content may be 100 ppm to 1000 ppm, or 325 ppm to 700 ppm.
  • the total sulphated ash content may be 2 wt % or less, or 1.5 wt % or less, or 1.1 wt % or less, or 1 wt % or less, or 0.8 wt % or less, or 0.5 wt % or less.
  • the sulphated ash content may be 0.05 wt % to 0.9 wt %, or 0.1 wt % - ⁇ 0.2 wt % to 0.45 wt %.
  • the lubricating composition is an engine oil, wherein the lubricating composition is characterised as having (i) a sulphur content of 0.5 wt % or less, (ii) a phosphorus content of 0.1 wt % or less, and (iii) a sulphated ash content of 1.5 wt % or less.
  • the lubricating composition is suitable for a 2- stroke or a 4-stroke marine diesel internal combustion engine.
  • the marine diesel combustion engine is a 2-stroke engine.
  • the ashless antiwear agent of the invention may be added to a marine diesel lubricating composition at 0.01 to 20 wt %, or 0.05 to 10 wt %, or 0.1 to 5 wt %.
  • diluent oil constitutes 20 wt % to 90 wt % of each component.
  • diluent oil constitutes 20 wt % to 90 wt % of each component.
  • antiwear agents, corrosion inhibitors, antioxidants the amounts shown are on an actives basis i.e. excluding diluent oil because the components are typically not carried in diluent oil.
  • Example 1 A lubricating composition is prepared containing 0.2 wt % of di-2-ethylhexyl tartrate, 0.2 wt % of hydroxys Iky 1 amine (Ethomeen T/12), 0.86 wt % of other antiwear agents (including zinc dialkdithiophosphate), 5 wt % of dispersants, 1.5 wt % of detergents, 1.3 wt % of antioxidants, 4.3 wt % of viscosity modifier.
  • the lubricating composition has a phosphorus content of about 760 ppm, and a sulphur content of 0.25 wt %.
  • Comparative Example 1 is similar to Example 2 except the composition does not contain di-2-ethylhexyl tartrate and docs not contain hydroxylalky l amine.
  • Comparative Example 2 is similar to Example 2 except the composition does not contain hydroxyaJkyl amine.
  • Comparative Example 3 is similar to Example 2 except the composition does not contain di-2-ethylhexyl tartrate.
  • Test 1 10 g samples of the examples above are each treated with one volume percent of cumene hydroperoxide. The samples (2 ml portions) are then evaluated for wear performance in an isothermal temperature high frequency reciprocating rig (HFRR) available from PCS Instruments. HFRR conditions for the evaluations are 50Og load, 75 minute duration, 1000 micrometer stroke, 20 hertz frequency, and at 105 0 C. Wear scar in micrometers, coefficient of friction and film formation as percent film thickness are then measured with lower wear scar values and higher film formation values indicating improved wear performance. Typically, an engine oil lubricant with a coefficient of friction of less than 0.18 is acceptable. All of the samples evaluated have acceptable wear scar performance.
  • HFRR isothermal temperature high frequency reciprocating rig
  • Test 2 ASTM D6594-05 testing diesel engine lubricants to determine their tendency to corrode various metals, specifically alloys of lead and copper commonly used in cam followers and bearings. The pass levels for copper and lead corrosion are less than 20 ppm and less than 100 ppm respectively.
  • Test 3 Cold crank simulator at -30 0 C (CCS -30), as specified by
  • the lubricating composition of the invention is capable of at least one of, (most or all of) (i) reducing or preventing phosphorus emissions, (ii) reducing or preventing sulphur emissions, (ii) wholly or partially replacing ZDDP in lubricating oils, (iii) improving fuel economy, (iv) fuel economy retention/efficiency, and (v) lead and copper corrosion resistance.
  • hydrocarbyl substituent or “hydrocarbyl group” is used in its ordinary sense, which is well-known to those skilled in the art. Specifically, it refers to a group having a carbon atom directly attached to the remainder of the molecule and having predominantly hydrocarbon character.
  • hydrocarbyl groups include:
  • hydrocarbon substituents that is, aliphatic (e.g., alkyl or alkenyl), alicyclic (e.g., cycloalkyl, cycloalkenyl) substituents, and aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents, as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring);
  • aliphatic e.g., alkyl or alkenyl
  • alicyclic e.g., cycloalkyl, cycloalkenyl
  • aromatic-, aliphatic-, and alicyclic-substituted aromatic substituents as well as cyclic substituents wherein the ring is completed through another portion of the molecule (e.g., two substituents together form a ring);
  • substituted hydrocarbon substituents that is, substituents containing non-hydrocarbon groups which, in the context of this invention, do not alter the predominantly hydrocarbon nature of the substituent (e.g., halo (especially chloro and fluoro), hydroxy, alkoxy, mercapto, alkylmercapto, nitro, nitroso, and sulphoxy);
  • hetero substituents that is, substituents which, while having a predominantly hydrocarbon character, in the context of this invention, contain other than carbon in a ring or chain otherwise composed of carbon atoms.
  • Heteroatoms include sulphur, oxygen, nitrogen, and encompass substituents as pyridyl, furyl, thienyl and imidazolyl.
  • no more than two, preferably no more than one, non-hydrocarbon substituent will be present for every ten carbon atoms in the hydrocarbyl group; typically, there will be no non- hydrocarbon substituents in the hydrocarbyl group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

L'invention concerne une composition lubrifiante contenant une huile présentant une viscosité de lubrification, un agent de modification du frottement contenant une amine et un agent anti-usure sans cendres. La composition lubrifiante est appropriée pour lubrifier un moteur à combustion interne.
PCT/US2008/063653 2007-05-24 2008-05-15 Composition lubrifiante contenant du soufre, du phosphore et un agent anti-usure sans cendres et un agent de modification du frottement contenant une amine WO2008147700A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2688091A CA2688091C (fr) 2007-05-24 2008-05-15 Composition lubrifiante contenant du soufre, du phosphore et un agent anti-usure sans cendres et agent de modification du frottement contenant une aminene
US12/598,056 US20100093573A1 (en) 2007-05-24 2008-05-15 Lubricating Composition Containing Sulphur, Phosphorus and Ashfree Antiwear Agent and Amine Containing Friction Modifier
EP08755495A EP2160453B1 (fr) 2007-05-24 2008-05-15 Composition lubrifiante contenant un agent anti-usure sans cendres, sans soufre et sans phosphore à base d'un dérivé d'acide citrique et un agent de modification du frottement contenant une amine
JP2010509451A JP2010528154A (ja) 2007-05-24 2008-05-15 無硫黄、無リンおよび無灰の磨耗防止剤ならびにアミン含有摩擦調整剤を含有する潤滑組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US93995207P 2007-05-24 2007-05-24
US60/939,952 2007-05-24

Publications (1)

Publication Number Publication Date
WO2008147700A1 true WO2008147700A1 (fr) 2008-12-04

Family

ID=39595597

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/063653 WO2008147700A1 (fr) 2007-05-24 2008-05-15 Composition lubrifiante contenant du soufre, du phosphore et un agent anti-usure sans cendres et un agent de modification du frottement contenant une amine

Country Status (5)

Country Link
US (1) US20100093573A1 (fr)
EP (1) EP2160453B1 (fr)
JP (1) JP2010528154A (fr)
CA (1) CA2688091C (fr)
WO (1) WO2008147700A1 (fr)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010053893A1 (fr) 2008-11-05 2010-05-14 The Lubrizol Corporation Procédé de lubrification d’un moteur à combustion interne
WO2010077630A1 (fr) 2008-12-09 2010-07-08 The Lubrizol Corporation Composition lubrifiante contenant un composé issu d'un acide hydroxycarboxylique
WO2010141530A1 (fr) 2009-06-04 2010-12-09 The Lubrizol Corporation Composition lubrifiante contenant un modificateur de frottement et un modificateur de viscosité
WO2010141528A1 (fr) 2009-06-04 2010-12-09 The Lubrizol Corporation Polymethacrylates comme modificateurs de viscosite a iv eleve
WO2010141003A1 (fr) * 2008-03-19 2010-12-09 The Lubrizol Corporation Composition anti-usure, et procédé de lubrification d'équipement de ligne cinématique
WO2011022263A1 (fr) * 2009-08-18 2011-02-24 The Lubrizol Corporation Composition anti-usure et procédé de lubrification d'un dispositif de transmission
WO2011022266A3 (fr) * 2009-08-18 2011-05-19 The Lubrizol Corporation Composition lubrifiante contenant un agent anti-usure
WO2011075403A1 (fr) 2009-12-14 2011-06-23 The Lubrizol Corporation Composition lubrifiante contenant un agent anti-usure
WO2011066141A3 (fr) * 2009-11-30 2011-07-21 The Lubrizol Corporation Mélanges stabilisés contenant des modificateurs de friction
JP2011522057A (ja) * 2008-12-05 2011-07-28 ザ ルブリゾル コーポレイション 改善された燃料効率のための船舶ディーゼルシリンダー潤滑油
JP2011195774A (ja) * 2010-03-23 2011-10-06 Adeka Corp 内燃機関用潤滑油組成物
WO2011161406A1 (fr) * 2010-06-25 2011-12-29 Castrol Limited Utilisations et compositions
WO2012087773A1 (fr) 2010-12-21 2012-06-28 The Lubrizol Corporation Composition lubrifiante contenant un agent anti-usure
JP2012520350A (ja) * 2009-03-10 2012-09-06 ザ ルブリゾル コーポレイション 動力伝達系路デバイスを潤滑する、耐摩耗組成物および方法
CN102884163A (zh) * 2010-03-10 2013-01-16 卢布里佐尔公司 作为润滑剂中的添加剂的钛和钼化合物和络合物
WO2013066585A1 (fr) 2011-10-31 2013-05-10 The Lubrizol Corporation Modificateurs de frottement sans cendre pour compositions lubrifiantes
CN104419499A (zh) * 2013-08-30 2015-03-18 中国石油天然气股份有限公司 一种具有极性两端的螺旋高分子摩擦改进剂
US9127232B2 (en) 2010-10-26 2015-09-08 Castrol Limited Non-aqueous lubricant and fuel compositions comprising fatty acid esters of hydroxy-carboxylic acids, and uses thereof
WO2017184688A1 (fr) 2016-04-20 2017-10-26 The Lubrizol Corporation Lubrifiant pour moteurs à deux temps
WO2018017913A1 (fr) 2016-07-22 2018-01-25 The Lubrizol Corporation Composés de borate tétraédrique aliphatique destinés à des compositions lubrifiantes à formulation complète
US9976104B2 (en) 2009-08-18 2018-05-22 The Lubrizol Corporation Antiwear composition and method of lubricating driveline device
WO2020023437A1 (fr) * 2018-07-24 2020-01-30 Exxonmobil Research And Engineering Company Compositions d'huile lubrifiante à protection contre la corrosion du moteur

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101722380B1 (ko) * 2009-10-09 2017-04-05 쉘 인터내셔날 리써취 마트샤피지 비.브이. 윤활 조성물
AU2011296353A1 (en) 2010-08-31 2013-03-14 The Lubrizol Corporation Lubricating composition containing an antiwear agent
AU2011349660B2 (en) 2010-12-21 2017-03-09 The Lubrizol Corporation Lubricating composition containing a detergent
WO2012112635A1 (fr) 2011-02-16 2012-08-23 The Lubrizol Corporation Composition lubrifiante et procédé de lubrification d'un dispositif de transmission
US9321979B2 (en) * 2012-03-13 2016-04-26 Chemtura Corporation Friction modifier composition for lubricants
US10072230B2 (en) * 2012-05-23 2018-09-11 Chemtura Corporation Method for reducing engine wear with lubricants comprising 2-hydroxyalkylamide friction modifying/anti-wear compositions
PL2864457T3 (pl) 2012-06-20 2018-01-31 Castrol Ltd Modyfikatory tarcia i ich zastosowanie w smarach i paliwach
US9200229B2 (en) 2012-06-20 2015-12-01 Castrol Limited Friction modifier and their use in lubricants and fuels
US20140187455A1 (en) * 2012-12-28 2014-07-03 Chevron Oronite LLC Ultra-low saps lubricants for internal combustion engines
EP3004297A2 (fr) * 2013-05-30 2016-04-13 The Lubrizol Corporation Compositions synergiques d'additifs pour des huiles d'engrenages industrielles
JP6776495B2 (ja) * 2015-03-20 2020-10-28 出光興産株式会社 潤滑油組成物
US9879198B2 (en) * 2015-11-25 2018-01-30 Santolubes Llc Low shear strength lubricating fluids
US11739280B2 (en) * 2019-03-14 2023-08-29 Nof Corporation Lubricant additive, lubricant additive composition, and lubricating oil composition containing the same
US11739283B2 (en) 2019-03-14 2023-08-29 Nof Corporation Lubricant additive, lubricant additive composition, and lubricating oil composition containing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2105743A (en) 1981-09-10 1983-03-30 Lubrizol Corp Fuel economy additives or lubricants
US5338470A (en) 1992-12-10 1994-08-16 Mobil Oil Corporation Alkylated citric acid adducts as antiwear and friction modifying additives
EP0721978A2 (fr) * 1995-01-12 1996-07-17 Ethyl Corporation Fluides de transmission synthétiques aux performances améliorées
US20050198894A1 (en) 2004-03-11 2005-09-15 Crompton Corporation Lubricant and fuel compositions containing hydroxy carboxylic acid and hydroxy polycarboxylic acid esters
US20060079413A1 (en) 2004-10-12 2006-04-13 The Lubrizol Corporation, A Corporation Of The State Of Ohio Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof
US20060183647A1 (en) 2004-10-12 2006-08-17 Jody Kocsis Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4234979B2 (ja) * 2002-11-06 2009-03-04 新日本石油株式会社 省燃費型内燃機関用潤滑油組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2105743A (en) 1981-09-10 1983-03-30 Lubrizol Corp Fuel economy additives or lubricants
CA1183125A (fr) 1981-09-10 1985-02-26 Daniel E. Barrer Compositions, concentres, lubrifiants et methodes pour reduire la consommation de carburant des moteurs a combustion interne
US5338470A (en) 1992-12-10 1994-08-16 Mobil Oil Corporation Alkylated citric acid adducts as antiwear and friction modifying additives
EP0721978A2 (fr) * 1995-01-12 1996-07-17 Ethyl Corporation Fluides de transmission synthétiques aux performances améliorées
US20050198894A1 (en) 2004-03-11 2005-09-15 Crompton Corporation Lubricant and fuel compositions containing hydroxy carboxylic acid and hydroxy polycarboxylic acid esters
WO2005087904A2 (fr) 2004-03-11 2005-09-22 Chemtura Corporation Compositions de lubrifiant et de combustible contenant des esters de l'acide carboxylique et de l'acide polycarboxylique hydroxyle
US20060079413A1 (en) 2004-10-12 2006-04-13 The Lubrizol Corporation, A Corporation Of The State Of Ohio Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof
WO2006044411A1 (fr) * 2004-10-12 2006-04-27 The Lubrizol Corporation Dérivés d’acide tartarique permettant d’augmenter les économies de combustible et jouant le rôle d’agents anti-usure dans les huiles de carter, et préparations basées sur lesdits dérivés
US20060183647A1 (en) 2004-10-12 2006-08-17 Jody Kocsis Tartaric acid derivatives as fuel economy improvers and antiwear agents in crankcase oils and preparation thereof

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102037108A (zh) * 2008-03-19 2011-04-27 卢布里佐尔公司 润滑传动系统器件的抗磨组合物和方法
US9034809B2 (en) 2008-03-19 2015-05-19 The Lubrizol Corporation Antiwear composition and method of lubricating driveline device
AU2009342167B2 (en) * 2008-03-19 2014-02-20 The Lubrizol Corporation Antiwear composition and method of lubricating driveline device
WO2010141003A1 (fr) * 2008-03-19 2010-12-09 The Lubrizol Corporation Composition anti-usure, et procédé de lubrification d'équipement de ligne cinématique
WO2010053893A1 (fr) 2008-11-05 2010-05-14 The Lubrizol Corporation Procédé de lubrification d’un moteur à combustion interne
JP2011522057A (ja) * 2008-12-05 2011-07-28 ザ ルブリゾル コーポレイション 改善された燃料効率のための船舶ディーゼルシリンダー潤滑油
CN105602652A (zh) * 2008-12-09 2016-05-25 路博润公司 含衍生自羟基羧酸的化合物的润滑组合物
WO2010077630A1 (fr) 2008-12-09 2010-07-08 The Lubrizol Corporation Composition lubrifiante contenant un composé issu d'un acide hydroxycarboxylique
CN102307976A (zh) * 2008-12-09 2012-01-04 卢布里佐尔公司 含衍生自羟基羧酸的化合物的润滑组合物
JP2012511593A (ja) * 2008-12-09 2012-05-24 ザ ルブリゾル コーポレイション ヒドロキシカルボン酸から誘導される化合物を含む潤滑組成物
JP2012520350A (ja) * 2009-03-10 2012-09-06 ザ ルブリゾル コーポレイション 動力伝達系路デバイスを潤滑する、耐摩耗組成物および方法
WO2010141530A1 (fr) 2009-06-04 2010-12-09 The Lubrizol Corporation Composition lubrifiante contenant un modificateur de frottement et un modificateur de viscosité
EP3460028A1 (fr) 2009-06-04 2019-03-27 The Lubrizol Corporation Polyméthacrylates comme modificateurs de viscosité à indice de viscosité élevé
WO2010141528A1 (fr) 2009-06-04 2010-12-09 The Lubrizol Corporation Polymethacrylates comme modificateurs de viscosite a iv eleve
US9051529B2 (en) 2009-06-04 2015-06-09 The Lubrizol Corporation Lubricating composition containing friction modifier and viscosity modifier
US9976104B2 (en) 2009-08-18 2018-05-22 The Lubrizol Corporation Antiwear composition and method of lubricating driveline device
CN102575186A (zh) * 2009-08-18 2012-07-11 卢布里佐尔公司 抗磨损组合物及润滑传动装置的方法
WO2011022263A1 (fr) * 2009-08-18 2011-02-24 The Lubrizol Corporation Composition anti-usure et procédé de lubrification d'un dispositif de transmission
US9738849B2 (en) 2009-08-18 2017-08-22 The Lubrizol Corporation Lubricating composition containing an antiwear agent
US8951943B2 (en) 2009-08-18 2015-02-10 The Lubrizol Corporation Antiwear composition and method of lubricating driveline device
WO2011022266A3 (fr) * 2009-08-18 2011-05-19 The Lubrizol Corporation Composition lubrifiante contenant un agent anti-usure
US9528067B2 (en) 2009-11-30 2016-12-27 The Lubrizol Corporation Stabilized blends containing friction modifiers
WO2011066141A3 (fr) * 2009-11-30 2011-07-21 The Lubrizol Corporation Mélanges stabilisés contenant des modificateurs de friction
WO2011075403A1 (fr) 2009-12-14 2011-06-23 The Lubrizol Corporation Composition lubrifiante contenant un agent anti-usure
US9249372B2 (en) 2010-03-10 2016-02-02 The Lubrizol Corporation Titanium and molybdenum compounds and complexes as additives in lubricants
CN102884163A (zh) * 2010-03-10 2013-01-16 卢布里佐尔公司 作为润滑剂中的添加剂的钛和钼化合物和络合物
JP2011195774A (ja) * 2010-03-23 2011-10-06 Adeka Corp 内燃機関用潤滑油組成物
WO2011161406A1 (fr) * 2010-06-25 2011-12-29 Castrol Limited Utilisations et compositions
AU2011268759B2 (en) * 2010-06-25 2015-07-09 Castrol Limited Uses and compositions
US9080120B2 (en) 2010-06-25 2015-07-14 Castrol Limited Uses and compositions
US9127232B2 (en) 2010-10-26 2015-09-08 Castrol Limited Non-aqueous lubricant and fuel compositions comprising fatty acid esters of hydroxy-carboxylic acids, and uses thereof
US9828564B2 (en) 2010-10-26 2017-11-28 Castrol Limited Non-aqueous lubricant and fuel compositions comprising fatty acid esters of hydroxy-carboxylic acids, and uses thereof
WO2012087773A1 (fr) 2010-12-21 2012-06-28 The Lubrizol Corporation Composition lubrifiante contenant un agent anti-usure
US10704006B2 (en) 2010-12-21 2020-07-07 The Lubrizol Corporation Lubricating composition containing an antiwear agent
WO2013066585A1 (fr) 2011-10-31 2013-05-10 The Lubrizol Corporation Modificateurs de frottement sans cendre pour compositions lubrifiantes
US10590363B2 (en) 2011-10-31 2020-03-17 Daniel J. Saccomando Ashless-friction modifiers for lubricating compositions
CN104419499A (zh) * 2013-08-30 2015-03-18 中国石油天然气股份有限公司 一种具有极性两端的螺旋高分子摩擦改进剂
WO2017184688A1 (fr) 2016-04-20 2017-10-26 The Lubrizol Corporation Lubrifiant pour moteurs à deux temps
WO2018017911A1 (fr) 2016-07-22 2018-01-25 The Lubrizol Corporation Composés borates tétraédriques aliphatiques pour compositions lubrifiantes
WO2018017913A1 (fr) 2016-07-22 2018-01-25 The Lubrizol Corporation Composés de borate tétraédrique aliphatique destinés à des compositions lubrifiantes à formulation complète
WO2020023437A1 (fr) * 2018-07-24 2020-01-30 Exxonmobil Research And Engineering Company Compositions d'huile lubrifiante à protection contre la corrosion du moteur

Also Published As

Publication number Publication date
CA2688091A1 (fr) 2008-12-04
CA2688091C (fr) 2015-04-14
JP2010528154A (ja) 2010-08-19
EP2160453A1 (fr) 2010-03-10
US20100093573A1 (en) 2010-04-15
EP2160453B1 (fr) 2012-07-11

Similar Documents

Publication Publication Date Title
CA2688091C (fr) Composition lubrifiante contenant du soufre, du phosphore et un agent anti-usure sans cendres et agent de modification du frottement contenant une aminene
EP2463358B1 (fr) Composition de lubrification contenant un agent anti-usure sans cendres basé sur un dérivé d'acide hydroxypolycarboxylique et un composé de molybdène
EP2152837B1 (fr) Procédé de lubrification d'une surface composite de silicate d'aluminium avec un lubrifiant comprenant un agent anti-usure dépourvu de soufre, de phosphore, sans cendre
EP2540811B1 (fr) Utilisation de composés hétérocycliques pour la lubrification d'un moteur à combustion interne
US20100048437A1 (en) Antiwear Agent and Lubricating Composition Thereof
US9738849B2 (en) Lubricating composition containing an antiwear agent
US9765275B2 (en) Composition containing ester compounds and a method of lubricating an internal combustion engine
CA2742292C (fr) Lubrification de moteurs a combustion interne en presence de contaminant d'eau
EP2721128A1 (fr) Composition lubrifiante contenant un ester d'un acide carboxylique aromatique
EP2513272B1 (fr) Composition lubrifiante contenant un agent anti-usure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08755495

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12598056

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010509451

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2688091

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008755495

Country of ref document: EP