WO2008139105A1 - Systeme de suralimentation comprenant deux turbocompresseurs et une vanne bi-permeabilite - Google Patents

Systeme de suralimentation comprenant deux turbocompresseurs et une vanne bi-permeabilite Download PDF

Info

Publication number
WO2008139105A1
WO2008139105A1 PCT/FR2008/050611 FR2008050611W WO2008139105A1 WO 2008139105 A1 WO2008139105 A1 WO 2008139105A1 FR 2008050611 W FR2008050611 W FR 2008050611W WO 2008139105 A1 WO2008139105 A1 WO 2008139105A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
valve
mode
engine
turbocharger
Prior art date
Application number
PCT/FR2008/050611
Other languages
English (en)
Inventor
Cedrick Hennion
Jacques Portalier
Antoine Van Doorn
Original Assignee
Peugeot Citroën Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroën Automobiles SA filed Critical Peugeot Citroën Automobiles SA
Publication of WO2008139105A1 publication Critical patent/WO2008139105A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • F02B37/002Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel the exhaust supply to one of the exhaust drives can be interrupted
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • F02B37/225Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits air passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the technical field of the invention relates to supercharging systems for motor vehicle engine ignition compression, involving two turbochargers placed in parallel and operating sequentially.
  • compression-ignition engines also called “diesel engines”
  • the sequential operation of this type of system generally involves three distinct phases: a first phase implementing a single turbocharger, a second phase implementing the two turbochargers and a transient phase to move from the first to the second phase.
  • the selection of the operating phase of the system is a function of engine speed and load, and is performed by means of a set of valves and sensors, the information collected by the sensors being used by a computer, to control the different valves.
  • the object of the present invention relates to a supercharging system involving two turbochargers in parallel, and having optimized means to ensure, under the best conditions, a smooth transition from one phase to another .
  • the "single-turbo" mode corresponds to a mode using only one turbocharger
  • the "bi-turbo” mode corresponds to a mode using both turbochargers.
  • the supercharging systems according to the invention comprise two turbochargers placed in parallel and operating in a sequential manner, and involve simplified means to ensure, with control and ability, good management of the various possible modes of operation .
  • These means involve in particular a valve, the simplicity of design and operation will generate a reduction of costs of the system according to the invention.
  • the present invention relates to a supercharging system for compression ignition engine, comprising a first and a second turbocharger connected in parallel and allowing a three-mode operation, one involving only the first turbocharger, the second involving the two turbochargers, and the third corresponding to a transition phase between the two preceding modes, said system comprising means for selecting an operating mode, as a function of the load and the engine speed.
  • the main characteristic of a system according to the invention is that it comprises a regulator of the supercharging pressure placed on the first turbine, and a flow regulator of the second turbine, in the form of a bi-permeability valve, said valve for isolating the second turbine in single-turbo mode, for accelerating said second turbine in transition mode, and for supplying gas with a minimum of pressure drops in two-turbo mode.
  • the first turbocharger rotates continuously, regardless of the engine speed, the second turbocharger being used only beyond a threshold speed.
  • the bi-permeability valve remains closed in mono turbo mode, then opens to switch to bi-turbo mode.
  • the bi-permeability valve can be used only in three configurations, The first corresponding to a closure, preventing the arrival of gases in the second turbine,
  • the second corresponds to a maximum opening, to allow a high gas flow, in order to supply the second turbine with a minimum of pressure losses
  • the third corresponds to an intermediate opening to allow the passage of gases with a moderate flow, in order to initiate the transition phase.
  • the bi-permeability valve offers three possibilities of use: the closure to prevent the exhaust gases from supplying the second turbine, an intermediate opening to begin, at the beginning of the transient phase, to smoothly accelerate the second turbine, while ensuring sufficient exhaust gas flow in the first turbine to control the boost pressure, and a maximum opening to accelerate the second turbine once the dual turbo mode has been triggered.
  • the intermediate opening generates a flow of gas, which must be sufficient to accelerate the second turbine to a regime allowing transitions without loss of torque perceptible by the driver, but low enough to ensure a flow in the turbine 1 which allows to manage the boost pressure.
  • the ratio of gas flow generated by the intermediate opening to the gas flow generated by the maximum opening is between 5% and 10%.
  • the exhaust of the engine exhaust splits into a first path feeding the first turbine and a second path feeding the second turbine, the bi-permeability valve being placed on said second path.
  • the bi-permeability valve only concerns the second turbine, and therefore has no direct influence on the first turbine.
  • the pressure regulator of the first turbine is a proportional control valve, positioned on the first exhaust gas path, parallel to said turbine. So, in function of the control of said valve, a more or less significant fraction of the gas will circumvent said turbine, allowing regulation of the flow of gas entering said turbine.
  • the first turbine is variable geometry.
  • This type of turbocharger makes it possible to accelerate the throttle at low revs to obtain good performances early enough in the operation of the engine, while accepting the high flows corresponding to the high revs. In this way, the pressure regulation is carried out by the very structure of the turbine.
  • the selection means comprise valves and sensors, the information collected by said sensors being used to drive said valves.
  • This control is performed from a computer that compares the measurements acquired by the sensors to threshold values of engine speed and load.
  • the engine air inlet circuit comprises an isolation valve placed downstream of the second compressor, said valve serving to isolate said compressor when the operating mode involves only the first turbocharger.
  • this isolation valve can be placed upstream of the second compressor.
  • the engine air intake circuit has a recirculation valve placed on a closed air circulation loop comprising the second compressor, said valve closing to switch from turbo mode to turbo bi mode.
  • the invention also relates to a compression ignition engine, and whose main feature is that it comprises a supercharging system according to the invention.
  • the supercharging systems according to the invention have the advantage of being solid and reliable, involving valves, whose simplified operating mechanisms reduce mechanical stresses.
  • Figure 1 is a schematic view of a supercharging system according to the invention.
  • FIG. 2 is a characteristic diagram of a bi-permeability valve showing the three possible permeabilities (Per) as a function of the position (Pos) of said valve.
  • a supercharging system 1 comprises a first turbocharger T 1, Cl and a second turbocharger T2, C2 mounted in parallel on the air line of a motor 2 to compression ignition.
  • Each of said turbochargers comprises a turbine T1, T2 coupled to a compressor C1, C2.
  • the fresh air intake circuit 3 splits into a first channel 4 supplying the first compressor C1 and a second channel 5 supplying the second compressor C2, said channels 4,5 joining downstream of said compressors C1, C2 and upstream of a cooler 6 supercharged air. Air from said cooler 6 then enters the intake manifold (not shown) of the engine 2, by means of a conduit 7 input.
  • the portion of the second air channel 5 located downstream of the second compressor C2 comprises an isolation valve 8 upstream of which, said portion has a loop 9 of air flow opening upstream of the split of the circuit 3 air inlet, said loop 9 comprising a valve 10 for recirculating air.
  • the isolation valve 8 when the isolation valve 8 is closed and the recirculation valve 10 is open, the air circulates in the circulation loop 9, thus protecting the second compressor from the pumping phenomenon.
  • the isolation valve 8 opens and the recirculation valve 10 closes, the air circulates in the two channels 4,5 to supply the two compressors C1, C2.
  • the outlet 11 of the exhaust gases of the engine 2 splits into a first channel 12 intended to feed the first turbine Tl, and into a second channel 13 intended to feed the second turbine T2, said second channel 13 being equipped with a bi-valve permeability 14 for regulating the flow of the exhaust gas to said second turbine T2.
  • a bi-permeability valve 14 can be used in three configurations.
  • the first configuration 15 corresponds to the closing of the second exhaust path 13, the exhaust gases from the engine 2 then all heading in the first channel 12 intended to feed the first turbine T1.
  • the second configuration 16 corresponds to a maximum opening (Om) to allow the passage of gases with a maximum flow, for the purpose of supplying gas to the second turbine with a minimum of pressure losses.
  • the third configuration 17 corresponds to an intermediate opening (Oi), to allow the passage of gases with a moderate flow, and thus to initiate the transition phase. It should be noted that there is a plurality of positions of the valve 14 for a given opening.
  • a proportional control valve 18 is located on the first path 12 of the exhaust gas, parallel to the first turbine Tl. In this way, the flow of exhaust gas arriving in the turbine is regulated by control means driving said proportional valve 18.
  • the air passes into the first compressor C1 where its pressure increases, the intake air can not pass through the second compressor C2, since the isolation valves 8 and air recirculation are closed.
  • the supercharged air is cooled by the cooler 6 located upstream of said engine 2.
  • the air then enters the combustion chambers of the engine to participate directly in the operation of the engine. 2.
  • the exhaust gas leaving said chambers is conveyed in the first channel 12 to feed the first turbine T1, since the bi-permeability valve 14 is closed and isolates the second turbine T2.
  • the valve of regulation 18 of the first turbine T1 controls the boost pressure by deriving more or less exhaust flow upstream of said turbine Tl. In this way, the first turbine T1 receives less energy to drive the first compressor Cl, d where a possible drop in the boost pressure.
  • the supercharging pressure is the air pressure at the inlet of the engine 2.
  • the second turbine T2 When the load and the speed reaches threshold values, then begins a transition phase, which corresponds to a phase of preparation for operation in bi-turbo mode. Indeed, in order to avoid a sudden drop in torque during the transition, the second turbine T2 must be accelerated so that its operating point is in a favorable zone of its optimal operating field.
  • the bi-permeability valve 14, which is controlled by a sensor partially opens up to its intermediate position (Oi), to allow a portion of the exhaust gas from the engine 2, to supply the second turbine T2 to accelerate it, while, at the same time, the control valve 18 of the first turbine T1 regulates the boost pressure.
  • the pressure generated by the second turbine T2 is however not sufficient to open the isolation valve 8 of the second compressor C2.
  • the recirculation valve 10 is open to put the output of the second compressor C2 into communication with the inlet portion of air 3 located upstream of the split, via the circulation loop 9.
  • Said loop 9 creates a pressure drop, so that the flow of air supplied upstream of the split sees its pressure drop.
  • the bi-permeability valve 14 is actuated to come to be in the maximum open position (Om), while the recirculation valve 10 closes and the isolation valve 8 of the second compressor C2 opens.
  • the two turbochargers then operate in parallel, and the supercharging pressure is regulated by the control valve 18 of the first turbine Tl.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

L'invention se rapporte à un système de suralimentation (1) pour moteur à allumage par compression, comprenant un premier (T 1,Cl) et un deuxième (T2,C2) turbocompresseurs montés en parallèle et permettant un fonctionnement à trois modes, l'un impliquant uniquement le premier turbocompresseur (Tl, Cl), l'autre impliquant les deux turbocompresseurs (T 1,Cl, T2,C2), et le troisième correspondant à une phase de transition entre les deux modes précédents, ledit système (1) comprenant des moyens de sélection d'un mode de fonctionnement en fonction de la charge et du régime du moteur (2) La principale caractéristique d'un système de suralimentation selon l'invention est qu'il comprend un régulateur (18) de la pression de suralimentation placé sur la première turbine, et un régulateur de débit de la deuxième turbine, sous la forme d'une vanne bi- perméabilité, ladite vanne permettant d'isoler la deuxième turbine en mode mono-turbo, d'accélérer ladite deuxième turbine en mode de transition, et de l'alimenter en gaz avec un minimum de pertes de charge en mode bi-turbo.

Description

SYSTEME DE SURALIMENTATION COMPRENANT DEUX TURBOCOMPRESSEURS ET UNE VANNE BI-PERMEABILITE
[0001] La présente invention revendique la priorité de la demande française 0754614 déposée le 20/04/2007 dont le contenu (description, revendications et dessins) est incorporé ici par référence.
[0002] Le domaine technique de l'invention concerne les systèmes de suralimentation pour moteur de véhicule automobile à allumage par compression, impliquant deux turbocompresseurs placés en parallèle et fonctionnant de façon séquentielle. D'une manière générale, les moteurs à allumage par compression, appelés aussi « moteurs diesel », nécessitent l'emploi d'un système de suralimentation pour obtenir des performances d'un niveau satisfaisant. Le fonctionnement séquentiel de ce type de système, implique généralement trois phases distinctes: une première phase mettant en œuvre un seul turbocompresseur, une deuxième phase mettant en œuvre les deux turbocompresseurs et une phase transitoire permettant de passer de la première à la deuxième phase. La sélection de la phase de fonctionnement du système est fonction du régime et de la charge du moteur, et s'effectue au moyen d'un ensemble de vannes et de capteurs, les informations recueillies par les capteurs étant exploitées par un calculateur, pour piloter les différentes vannes. Plus précisément, l'objet de la présente invention se rapporte à un système de suralimentation impliquant deux turbocompresseurs en parallèle, et possédant des moyens optimisés permettant d'assurer, dans les meilleures conditions, un passage en douceur d'une phase à l'autre.
[0003] Dans le but de clarifier la description, le mode « mono-turbo » correspond à un mode n'utilisant qu'un seul turbocompresseur, le mode « bi-turbo » correspond à un mode utilisant les deux turbocompresseurs.
[0004] Les systèmes de suralimentation pour moteur à allumage par compression, et impliquant deux turbocompresseurs montés en parallèle, existent et ont déjà fait l'objet de brevet. On peut, par exemple, citer le brevet US5154057 qui se rapporte à un système de suralimentation pour moteur à combustion interne, et impliquant deux turbocompresseurs montés en parallèle. Le système décrit dans ce brevet s'applique plutôt à des moteurs à essence, et met en jeu des vannes de type « ON/OFF » selon un arrangement complexe, pour parvenir à gérer les différents modes de fonctionnement.
[0005] Les systèmes de suralimentation selon l'invention, comprennent deux turbocompresseurs placés en parallèle et fonctionnant de façon séquentielle, et mettent en jeu des moyens simplifiés permettant d'assurer, avec maîtrise et Habilité, une bonne gestion des différents modes de fonctionnement possibles. Ces moyens impliquent notamment une vanne, dont la simplicité de conception et de fonctionnement va engendrer une réduction des coûts du système selon l'invention.
[0006] La présente invention a pour objet un système de suralimentation pour moteur à allumage par compression, comprenant un premier et un deuxième turbocompresseurs montés en parallèle et permettant un fonctionnement à trois modes, l'un impliquant uniquement le premier turbocompresseur, le deuxième impliquant les deux turbocompresseurs, et le troisième correspondant à une phase de transition entre les deux modes précédents, ledit système comprenant des moyens de sélection d'un mode de fonctionnement, en fonction de la charge et du régime du moteur. La principale caractéristique d'un système selon l'invention est qu'il comprend un régulateur de la pression de suralimentation placé sur la première turbine, et un régulateur de débit de la deuxième turbine, sous la forme d'une vanne bi-perméabilité, ladite vanne permettant d'isoler la deuxième turbine en mode mono-turbo, d'accélérer ladite deuxième turbine en mode de transition, et de l'alimenter en gaz avec un minimum de pertes de charge en mode bi-turbo. . Pour cette configuration, le premier turbocompresseur tourne en permanence, quel que soit le régime moteur, le deuxième turbocompresseur n'étant utilisé qu'au-delà d'un régime seuil. La vanne bi-perméabilité reste fermée en mode mono turbo, puis s'ouvre pour passer en mode bi-turbo.
[0007] Préférentiellement, la vanne bi-perméabilité ne peut être utilisée que selon trois configurations, La première correspondant à une fermeture, empêchant l'arrivée des gaz dans la deuxième turbine,
La deuxième correspondant à une ouverture maximale, pour permettre un débit de gaz élevé, dans le but d'alimenter la deuxième turbine avec un minimum de pertes de charge,
La troisième correspondant à une ouverture intermédiaire pour permettre le passage des gaz avec un débit modéré, dans le but d'amorcer la phase de transition.
De cette manière, la vanne bi-perméabilité offre trois possibilités d'utilisation : la fermeture pour empêcher les gaz d'échappement d'alimenter la deuxième turbine, une ouverture intermédiaire pour commencer, en début de phase transitoire, à accélérer en douceur la deuxième turbine, tout en assurant un débit de gaz d'échappement suffisant dans la première turbine pour contrôler la pression de suralimentation, et une ouverture maximale pour accélérer la deuxième turbine une fois que le mode bi turbo a été déclenché. L'ouverture intermédiaire engendre un débit de gaz, qui doit être suffisant pour accélérer la deuxième turbine jusqu'à un régime permettant des transitions sans perte de couple perceptible par le conducteur, mais suffisamment faible pour assurer un débit dans la turbine 1 qui permette de gérer la pression de suralimentation.
Avantageusement, le rapport du débit de gaz engendré par l'ouverture intermédiaire sur le débit de gaz engendré par l'ouverture maximale est compris entre 5% et 10%.
De façon avantageuse, la sortie des gaz d'échappement du moteur, se scinde en une première voie alimentant la première turbine et en une deuxième voie alimentant la deuxième turbine, la vanne bi-perméabilité étant placée sur ladite deuxième voie. De cette manière, la vanne bi-perméabilité ne concerne que la deuxième turbine, et n'a donc aucune influence directe sur la première turbine.
[0008] Selon un premier mode de réalisation préféré de l'invention, le régulateur de pression de la première turbine est une vanne de régulation proportionnelle, positionnée sur la première voie de gaz d'échappement, parallèlement à ladite turbine. Ainsi, en fonction du pilotage de ladite vanne, une fraction plus ou moins importante des gaz va contourner ladite turbine, permettant une régulation du débit des gaz entrant dans ladite turbine.
[0009] Selon un deuxième mode de réalisation préféré de l'invention, la première turbine est à géométrie variable. Ce type de turbocompresseur permet d'accélérer les gaz à bas régime pour obtenir de bonnes performances assez tôt dans le fonctionnement du moteur, tout en acceptant les débits importants correspondant aux régimes élevés. De cette manière, la régulation de pression est réalisée par la structure même de la turbine.
[0010] De façon préférentielle, les moyens de sélection comprennent des vannes et des capteurs, les informations recueillies par lesdits capteurs étant exploitées pour piloter lesdites vannes. Ce pilotage est réalisé à partir d'un calculateur qui compare les mesures acquises par les capteurs à des valeurs seuil de régime et de charge du moteur.
[0011] Avantageusement, le circuit d'arrivée d'air du moteur, comprend une vanne d'isolement placée en aval du deuxième compresseur, ladite vanne servant à isoler ledit compresseur lorsque le mode de fonctionnement n'implique que le premier turbocompresseur. Selon un autre mode de réalisation préféré de l'invention, cette vanne d'isolement peut être placée en amont du deuxième compresseur.
[0012] Préférentiellement, le circuit d'arrivée d'air du moteur possède une vanne de recirculation placée sur une boucle fermée de circulation d'air comprenant le deuxième compresseur, ladite vanne se fermant pour passer du mode mono turbo au mode bi turbo.
[0013] L'invention porte également sur un moteur à allumage par compression, et dont la principale caractéristique est qu'il comprend un système de suralimentation conforme à l'invention.
[0014] Les systèmes de suralimentation selon l'invention présentent l'avantage d'être solides et fiables, en impliquant des vannes, dont les mécanismes de fonctionnement simplifiés réduisent les contraintes mécaniques. [0015] On donne ci-après une description détaillée d'un mode de réalisation préféré d'un système de suralimentation selon l'invention en se référant aux figures 1 et 2.
La figure 1 est une vue schématique d'un système de suralimentation selon l'invention.
La figure 2 est un diagramme caractéristique d'une vanne bi-perméabilité montrant les trois perméabilités (Per) possibles en fonction de la position (Pos) de ladite vanne.
[0016] En se référant à la figure 1, un système de suralimentation 1 selon l'invention comprend un premier turbocompresseur T 1,Cl et un deuxième turbocompresseur T2,C2 montés en parallèle sur la ligne d'air d'un moteur 2 à allumage par compression. Chacun desdits turbocompresseurs comprend une turbine T1,T2 couplée à un compresseur C1,C2. Le circuit 3 d'entrée d'air frais se scinde en une première voie 4 alimentant le premier compresseur Cl et en une deuxième voie 5 alimentant le deuxième compresseur C2, lesdites voies 4,5 se rejoignant en aval desdits compresseurs C1,C2 et en amont d'un refroidisseur 6 d'air suralimenté. L'air issu dudit refroidisseur 6 pénètre alors dans le collecteur d'admission (non représenté) du moteur 2, au moyen d'un conduit 7 d'entrée. La portion de la deuxième voie 5 d'air située en aval du deuxième compresseur C2, comporte une vanne 8 d'isolement en amont de laquelle, ladite portion présente une boucle 9 de circulation d'air débouchant en amont de la scission du circuit 3 d'entrée d'air, ladite boucle 9 comprenant une vanne 10 de recirculation d'air. De cette manière, lorsque la vanne 8 d'isolement est fermée et la vanne 10 de recirculation est ouverte, l'air circule dans la boucle 9 de circulation, protégeant ainsi le deuxième compresseur du phénomène de pompage. Lorsque la vanne 8 d'isolement s'ouvre et la vanne 10 de recirculation se ferme, l'air circule dans les deux voies 4,5 pour alimenter les deux compresseurs Cl, C2.
La sortie 11 des gaz d'échappement du moteur 2, se scinde en une première voie 12 destinée à alimenter la première turbine Tl, et en une deuxième voie 13 destinée à alimenter la deuxième turbine T2, ladite deuxième voie 13 étant équipée d'une vanne bi- perméabilité 14 pour réguler le débit des gaz d'échappement vers ladite deuxième turbine T2.
[0017] En se référant à la figure 2, une vanne bi-perméabilité 14 peut être utilisée selon trois configurations. La première configuration 15 correspond à la fermeture de la deuxième voie 13 d'échappement, les gaz d'échappement issus du moteur 2 se dirigeant alors tous dans la première voie 12 destinée à alimenter la première turbine Tl. La deuxième configuration 16 correspond à une ouverture maximale (Om) pour permettre le passage des gaz avec un flux maximal, dans le but d'alimenter en gaz la deuxième turbine avec un minimum de pertes de charge. La troisième configuration 17 correspond à une ouverture intermédiaire (Oi), pour permettre le passage des gaz avec un flux modéré, et ainsi amorcer la phase de transition. Il convient de préciser qu'il existe une pluralité de positions de la vanne 14 pour une ouverture donnée.
[0018] En se référant à la figure 1, une vanne 18 de régulation proportionnelle est implantée sur la première voie 12 des gaz d'échappement, parallèlement à la première turbine Tl. De cette manière, le débit des gaz d'échappement arrivant dans la turbine est régulé par des moyens de commande pilotant ladite vanne 18 proportionnelle.
[0019] La stratégie de fonctionnement d'un système de suralimentation 1 selon l'invention, est connue et est détaillée dans certains brevets. Afin d'éviter de décrire une nouvelle fois cette stratégie qui est complexe et longue, seules les étapes marquantes et spécifiques à l'invention sont mentionnées ci-après.
Lors d'un fonctionnement à faible régime et à faible charge, l'air passe dans le premier compresseur Cl où sa pression augmente, l'air d'admission ne pouvant pas passer à travers le deuxième compresseur C2, puisque les vannes d'isolement 8 et de recirculation 10 d'air sont fermées. Avant d'être dirigé vers le collecteur d'admission du moteur 2, l'air suralimenté est refroidi par le refroidisseur 6 situé en amont dudit moteur 2. L'air pénètre ensuite dans les chambres de combustion du moteur pour participer directement au fonctionnement du moteur 2. Les gaz d'échappement en sortie desdites chambres sont acheminés dans la première voie 12 pour alimenter la première turbine Tl, puisque la vanne bi-perméabilité 14 est fermée et isole la deuxième turbine T2. La vanne de régulation 18 de la première turbine Tl contrôle la pression de suralimentation en dérivant plus ou moins de débit d'échappement en amont de ladite turbine Tl. De cette manière, la première turbine Tl reçoit moins d'énergie pour entrainer le premier compresseur Cl, d'où une baisse éventuelle de la pression de suralimentation. Pour rappel, la pression de suralimentation est la pression de l'air à l'entrée du moteur 2.
Lorsque la charge et le régime atteignent des valeurs seuil, débute alors une phase de transition, qui correspond à une phase de préparation au fonctionnement en mode bi-turbo. En effet, afin d'éviter une brusque baisse du couple lors de la transition, la deuxième turbine T2 doit être accélérée pour que son point de fonctionnement se trouve dans une zone favorable de son champ de fonctionnement optimal. Dans cette optique, la vanne bi- perméabilité 14, qui est contrôlée par un capteur, s'ouvre partiellement jusqu'à sa position intermédiaire (Oi), pour permettre à une partie des gaz d'échappement issue du moteur 2, d'alimenter la deuxième turbine T2 pour l'accélérer, alors que, dans le même temps, la vanne de régulation 18 de la première turbine Tl régule la pression de suralimentation. La pression générée par la deuxième turbine T2 n'est cependant pas suffisante pour ouvrir la vanne d'isolement 8 du deuxième compresseur C2. Afin que le deuxième compresseur C2 n'entre pas en pompage, puisque la pression croît et le débit d'air est quasiment nul, la vanne de recirculation 10 est ouverte pour mettre en communication la sortie du deuxième compresseur C2 avec la partie d'entrée d'air 3 située en amont de la scission, via la boucle de circulation 9. Ladite boucle 9 créée une perte de charge, de sorte que le débit d'air acheminée en amont de la scission voit sa pression baisser.
Lorsque cette phase de d'accélération de la deuxième turbine est terminée, et les conditions de passage en mode bi-turbo définies par le calculateur sont atteintes,, la vanne bi- perméabilité 14 est actionnée pour venir se placer en position d'ouverture maximale (Om), tandis que la vanne de recirculation 10 se ferme et la vanne d'isolement 8 du deuxième compresseur C2 s'ouvre. Les deux turbocompresseurs fonctionnent alors en parallèle, et la pression de suralimentation est régulée grâce à la vanne 18 de régulation de la première turbine Tl.

Claims

REVENDICATIONS
1. Système de suralimentation (1) pour moteur à allumage par compression, comprenant un premier (T 1,Cl) et un deuxième (T2,C2) turbocompresseurs montés en parallèle et permettant un fonctionnement à trois modes, l'un impliquant uniquement le premier turbocompresseur (T 1,Cl), le deuxième impliquant les deux turbocompresseurs (T 1,Cl, T2,C2), et le troisième correspondant à une phase de transition entre les deux modes précédents, ledit système (1) comprenant des moyens de sélection d'un mode de fonctionnement en fonction de la charge et du régime du moteur (2), caractérisé en ce qu'il comprend un régulateur (18) de la pression de suralimentation placé sur la première turbine, et un régulateur de débit de la deuxième turbine, sous la forme d'une vanne bi-perméabilité, ladite vanne permettant d'isoler la deuxième turbine en mode mono-turbo, d'accélérer ladite deuxième turbine en mode de transition, et de l'alimenter en gaz avec un minimum de pertes de charge en mode bi-turbo.
2. Système selon la revendication 1, caractérisé en ce que la vanne bi-perméabilité (14) ne peut être utilisée que selon trois configurations,
La première correspondant à une fermeture, empêchant l'arrivée des gaz dans la deuxième turbine (T2),
La deuxième correspondant à une ouverture maximale, pour permettre un débit de gaz élevé, dans le but d'alimenter la deuxième turbine avec un minimum de pertes de charge,
La troisième correspondant à une ouverture intermédiaire pour permettre le passage des gaz avec un flux modéré, dans le but d'amorcer la phase de transition.
3. Système selon la revendication 2, caractérisé en ce que la sortie (11) des gaz d'échappement du moteur (2), se scinde en une première voie (12) alimentant la première turbine (Tl) et en une deuxième voie (13) alimentant la deuxième turbine (T2), la vanne bi-perméabilité (14) étant placée sur ladite deuxième voie (13).
4. Système selon la revendication 3, caractérisé en ce que le régulateur (18) de pression de la première turbine (Tl) est une vanne de régulation proportionnelle, positionnée sur la première voie (12) de gaz d'échappement, parallèlement à ladite turbine (Tl).
5. Système selon la revendication 3, caractérisé en ce que la première turbine (Tl) est à géométrie variable.
6. Système selon la revendication 1, caractérisé en ce que les moyens de sélection comprennent des vannes (8,10,14,18) et des capteurs, les informations recueillies par lesdits capteurs étant exploitées pour piloter lesdites vannes (8,10,14,18) .
7. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que le circuit (3) d'arrivée d'air du moteur (2), comprend une vanne (8) d'isolement placée en aval du deuxième compresseur (C2), ladite vanne (8) servant à isoler ledit compresseur (C2) lorsque le mode de fonctionnement n'implique que le premier turbocompresseur (T 1,Cl).
8. Système selon l'une quelconque des revendications précédentes, caractérisé en ce que le circuit (3) d'arrivée d'air du moteur (2) possède une vanne (10) de recirculation, placée sur une boucle (9) fermée de circulation d'air comprenant le deuxième compresseur (C2), ladite vanne (10) de recirculation se fermant pour passer du mode mono turbo au mode bi turbo.
9. Système selon la revendication 2, caractérisé en ce que le rapport du débit de gaz engendré par l'ouverture intermédiaire sur le débit de gaz engendré par l'ouverture maximale est compris entre 5% et 10%.
10. Véhicule comprenant un moteur (2) à allumage par compression, caractérisé en qu'il comprend un système de suralimentation (1) conforme à l'une des revendications précédentes.
PCT/FR2008/050611 2007-04-20 2008-04-07 Systeme de suralimentation comprenant deux turbocompresseurs et une vanne bi-permeabilite WO2008139105A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0754614 2007-04-20
FR0754614A FR2915240B1 (fr) 2007-04-20 2007-04-20 Systeme de suralimentation comprenant deux turbocompresseurs et une vanne bi-permeabilite

Publications (1)

Publication Number Publication Date
WO2008139105A1 true WO2008139105A1 (fr) 2008-11-20

Family

ID=38720689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050611 WO2008139105A1 (fr) 2007-04-20 2008-04-07 Systeme de suralimentation comprenant deux turbocompresseurs et une vanne bi-permeabilite

Country Status (2)

Country Link
FR (1) FR2915240B1 (fr)
WO (1) WO2008139105A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110700921A (zh) * 2018-07-10 2020-01-17 现代自动车株式会社 用于强制再生汽油微粒过滤器的系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206356A1 (de) * 2012-04-18 2013-10-24 Mtu Friedrichshafen Gmbh Verfahren zur Steuerung einer Brennkraftmaschine mit einem Motor und einer Abgas-Turboaufladegruppe und mit einem Getriebe, Steuereinrichtung und Brennkraftmaschine
JP7012611B2 (ja) * 2018-06-25 2022-01-28 株式会社豊田自動織機 過給システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989011585A1 (fr) * 1988-05-20 1989-11-30 Audi Ag Moteur multicylindre a combustion interne
US5313798A (en) * 1991-08-02 1994-05-24 Toyota Jidosha Kabushiki Kaisha Charging control apparatus for an internal combustion engine with a dual turbocharger system
WO2001009495A1 (fr) * 1999-07-30 2001-02-08 Alliedsignal Limited Turbocompresseur

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989011585A1 (fr) * 1988-05-20 1989-11-30 Audi Ag Moteur multicylindre a combustion interne
US5313798A (en) * 1991-08-02 1994-05-24 Toyota Jidosha Kabushiki Kaisha Charging control apparatus for an internal combustion engine with a dual turbocharger system
WO2001009495A1 (fr) * 1999-07-30 2001-02-08 Alliedsignal Limited Turbocompresseur

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110700921A (zh) * 2018-07-10 2020-01-17 现代自动车株式会社 用于强制再生汽油微粒过滤器的系统

Also Published As

Publication number Publication date
FR2915240A1 (fr) 2008-10-24
FR2915240B1 (fr) 2009-06-12

Similar Documents

Publication Publication Date Title
EP2867515B1 (fr) Ensemble comprenant un moteur thermique et un compresseur electrique
JPH09508691A (ja) 負荷バイパス及び周囲バイパスを有する冷却排気再循環システム
FR2562161A1 (fr) Moteur a pistons comportant un turbocompresseur permanent a gaz d'echappement et au moins un turbocompresseur desactivable
FR2920834A1 (fr) Dispositif et procede de recirculation des gaz d'echappement d'un moteur thermique
US20170350329A1 (en) Apparatus and method for engine control
WO2018002037A1 (fr) Dispositif et methode de controle de l'introduction d'air et de gaz d'echappement a l'admission d'un moteur a combustion interne suralimente
JP6060492B2 (ja) 内燃機関、及びその制御方法
JP6414572B2 (ja) エンジンの過給装置
EP1908937A1 (fr) Moteur a combustion interne suralimenté et procédé de suralimentation
FR2884866A1 (fr) Moteur a suralimentation sequentielle et a distribution variable
FR2992356A1 (fr) Groupe moteur avec ligne de recirculation
WO2008139105A1 (fr) Systeme de suralimentation comprenant deux turbocompresseurs et une vanne bi-permeabilite
EP2129895A1 (fr) Systeme de suralimentation a double etage pour moteur a combustion interne
EP1645736B1 (fr) Dispositif de controle d'un système de suralimentation pour moteur diesel
FR2841298A1 (fr) Dispositif de recirculation des gaz d'echappement pour moteur a allumage commande suralimente
FR2907848A1 (fr) Moteur a combustion interne comportant au moins un turbocompresseur a fonctionnement a bas regime ameliore
EP1908951B1 (fr) Dispositif de recirculation des gaz d'échappement d'un moteur à combustion interne et moteur à combustion interne équipé d'un tel dispositif
FR2875849A1 (fr) Procede de fonctionnement d'un moteur a combustion interne comprenant un compresseur a ondes de pression
WO2015092291A1 (fr) Ensemble comprenant un moteur thermique et un compresseur électrique configure pour faire du balayage des gaz brules résiduels
US12006858B2 (en) Electronic pump/compressor for an engine system
JP2018017126A (ja) エンジンシステム
EP3494298B1 (fr) Refroidisseur d'air de suralimentation pour moteur à combustion interne et circuit de suralimentation associé
US20230010956A1 (en) Electronic pump/compressor for an engine system
FR2947867A3 (fr) Moteur a combustion interne pour vehicule automobile suralimente par deux turbocompresseurs
FR2689180A1 (fr) Dispositif de suralimentation d'un moteur à combustion interne utilisant deux compresseurs en parallèles.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08788134

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08788134

Country of ref document: EP

Kind code of ref document: A1