WO2008135356A1 - Procédé de chemisage à zones expansées multiples au moyen d'une vessie gonflable - Google Patents

Procédé de chemisage à zones expansées multiples au moyen d'une vessie gonflable Download PDF

Info

Publication number
WO2008135356A1
WO2008135356A1 PCT/EP2008/054593 EP2008054593W WO2008135356A1 WO 2008135356 A1 WO2008135356 A1 WO 2008135356A1 EP 2008054593 W EP2008054593 W EP 2008054593W WO 2008135356 A1 WO2008135356 A1 WO 2008135356A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
well
wall
expanded
zone
Prior art date
Application number
PCT/EP2008/054593
Other languages
English (en)
Inventor
Frédéric Nicolas
Yoann Riou
Benjamin Saltel
Jean-Louis Saltel
Original Assignee
Saltel Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0702876A external-priority patent/FR2915264B1/fr
Priority claimed from FR0703992A external-priority patent/FR2917117B1/fr
Application filed by Saltel Industries filed Critical Saltel Industries
Priority to EA200970961A priority Critical patent/EA200970961A1/ru
Priority to US12/596,700 priority patent/US8157007B2/en
Priority to CN200880012553A priority patent/CN101680283A/zh
Publication of WO2008135356A1 publication Critical patent/WO2008135356A1/fr
Priority to NO20093351A priority patent/NO20093351L/no

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • E21B43/105Expanding tools specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/02Subsoil filtering
    • E21B43/10Setting of casings, screens, liners or the like in wells
    • E21B43/103Setting of casings, screens, liners or the like in wells of expandable casings, screens, liners, or the like
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/14Obtaining from a multiple-zone well

Definitions

  • the present invention relates to a method of lining, with multiple expanded zones, of a well or pipe, for example of a casing, having a portion to be treated in order to make it tight, in particular to repair and / or butcher . It also relates to a method for controlling the production of fluid inside a well, by lining it.
  • the invention applies more particularly, but not necessarily, to the field of water production or oil production.
  • the boreholes for water collection are drilled into the ground and generally comprise a continuous jacket, or casing, made by a succession of steel tubes of relatively short length (of the order of 6 m to 12 m for example) welded or screwed end to end to each other.
  • This casing once cemented against the natural wall of the well provides a seal over the entire height of the well, to prevent contamination between the various layers of land.
  • the total length of the casing is for example between 20 meters and 1500 meters, while its inside diameter is between 75 and 250 millimeters.
  • This expansion can be carried out using an expansion tool comprising a mandrel, rollers or an inflatable bladder, or even by explosion.
  • the invention relates to a method of expansion by hydroforming, using an inflatable bladder, the radial expansion is achieved by introduction into the bladder of a fluid under pressure.
  • this expansion is performed by a succession of successive positions of the inflatable bladder along the tube with, in each position, a crimping operation by inflating the bladder, then deflating it to bring it to a position adjacent to the previous, and so on all along the tube.
  • the maximum number of expansion operations of such an inflatable bladder tool is generally about fifty.
  • the aim of the invention is to overcome these difficulties by proposing a method that makes it possible to jack a large area of the casing quickly and economically.
  • the invention can be applied not only to a casing as described above, but also to any well dug in the ground or to any pipe, buried or not, and that is why it is stated, in the description and the claims to follow, the lining of a well or pipe, the latter may be a casing or an open well, or any other duct, vertical, horizontal or oblique, rectilinear or curved.
  • the subject of the invention is therefore a method of lining a well or a channel, for example a casing by means of an inflatable bladder, all or only certain portions of the well or the pipe in front of it. be treated, especially repaired and / or clogged (s).
  • a cylindrical tube of long length is introduced into the well or into the pipe to be lined, formed of sections of pipe previously fixed end to end, for example by welding or screwing, after which the radial expansion is carried out.
  • the tube by means of an inflatable bladder, so that its wall comes to bear against that of the well or the pipe.
  • this expansion is carried out, not over the entire length of the tube, but only in certain areas thereof, which are spaced from one another by unexpanded portions, so that the total length of the expanded zones is substantially less than the total length of the unexpanded zones, the number of expanded zones being furthermore at least equal to three.
  • the technique of the invention has the disadvantage that the minimum inner diameter of the shirt finally obtained is lower than that which would have been obtained by proceeding to its complete radial expansion.
  • the technique of the invention also makes it possible to obtain, at the level of the expanded zones, a perfect centering of the liner with respect to the axis of the well or the pipe, even if its wall is not strictly cylindrical in shape and / or if it has surface irregularities in this area. A good centering is also obtained, correlatively, at the level of the unexpanded zone which connects two expanded zones.
  • the total length of the expanded zones is at least five times less than the total length of the unexpanded zones; in practice, the ratio of the total unexpanded liner length to the total length of unexpanded liner may be substantially greater than 5, for example between 10 and 20, or even more depending on the applications and depending on the configuration of the well or the pipeline.
  • the tube is externally lined with flexible and elastic sheaths at the zones to be expanded, so that after expansion they ensure the seal between these zones and the wall of the well or the pipe;
  • these flexible sheaths are housed in recesses formed in the wall of the tube so as not to protrude outwardly with respect to its external surface; it also causes the expansion of at least one end of the tube, to form a mouth which is applied against the wall of the well or the pipe;
  • At least one wall portion of the tube is perforated or porous and is adapted to serve as a strainer or filter; - Providing the tube, before expansion, at least one sensor that is positioned against its outer surface in an area that is not intended to be expanded between two areas to be expanded;
  • the tube is provided, before expansion, with at least one sensor which is placed against its external surface inside a wall recess intended to be only partially expanded; the different expansions of the tube are caused by successive steps, by displacing the inflatable bladder progressively from one end to the other of the tube, always in the same direction;
  • a liquid cement is injected between the outer surface of the tube and the wall of the well or the pipe, the partial expansion of the tube is carried out while the cement is still liquid, or semi-liquid, and then the cement is allowed to set.
  • the invention also relates to a method for controlling the production of fluid inside a well, allowing the clogging of a producing zone during operation.
  • zones - veins of oil or gas for example - being capable of producing fluids (liquid or gaseous) that one wishes to capture.
  • the object of the invention is to provide a method which makes it possible, in a simple and inexpensive way, to prevent the arrival of these undesirable fluids in the well, while of course continuing to authorize the production emanating from the other zones.
  • a cylindrical tube of great length whose diameter is slightly smaller than that of the well, is introduced axially into the well, this tube being formed of portions with a wall permeable to the fluid in question, alternating with portions with an impermeable wall; after which the tube is expanded radially at some of its impermeable wall portions, by means of an inflatable bladder, so that their wall comes to bear against that of the well, this of such that two adjacent expanded regions are situated on either side of the zone to be controlled and are connected to each other by a section of tube comprising a permeable portion and an impermeable portion, the latter being opposite the area to be controlled, and extending beyond that area towards the permeable portion;
  • the permeable zones of the tube may consist of a perforated, screened or porous wall.
  • the tube is for example made of metal, and its radial expansion is advantageously (but not necessarily) carried out by means of an inflatable bladder with flexible and elastic membrane, the inflation being done by introducing a liquid at high pressure into the bladder.
  • Figure 1 is an axial sectional view of a shaft or pipe to be lined.
  • Figures 2 to 5 are schematic views illustrating different steps of the method of the invention.
  • FIG. 6 is a cross-sectional view along the plane VI-VI of FIG. 5.
  • Figure 7 illustrates a recessed wall tube variant provided with a sealing sheath.
  • Figure 8 shows a sleeve with expanded ends.
  • Figure 9 shows a liner having an unexpanded portion with a perforated wall.
  • FIGS. 11 to 13 are axial sectional views of a well that is subjected to fluid production control, FIGS. 12 and 13 respectively showing the first and second stages of the process.
  • FIG. 1 represents a borehole for water collection, whose wall, of circular section, or approximately circular, bears the reference C.
  • This wall can either consist for example of a deteriorated pipe (or casing), which is desired seal it by lining it internally with a liner.
  • this drilling comprises a rectilinear first vertical upper part (I), a curved central part (II) and an oblique lower part (III).
  • the scale in order to facilitate reading, the scale has been substantially enlarged in the radial direction of the duct (perpendicular to the axis of the borehole) with respect to the scale used in the axial direction.
  • the well or the pipe has a length of the order of 915 m, and a diameter of 160 mm.
  • a metal tube for example steel, both ductile and able to resist corrosion of the medium to which it will be exposed; its outer diameter is chosen a little smaller than that of the wall C, for example equal to 145 mm; its wall thickness is for example 4 mm.
  • This tube referenced 1 in FIG. 2, is made from the surface S by end-to-end attachment and in a leaktight manner of tube sections 10, which are assembled together, for example by welding, and then progressive depression of the tube. As it is being manufactured inside the well or pipe, according to a well-known technique (see for example US 2 167 338).
  • these sections 10 have a length of 12 m. If the tube 1 has a length of 912 m, it consists of a set of 76 sections.
  • the tube Because of the great length of the tube 1 relative to its diameter, the tube has a certain flexibility, which allows it to accommodate the non-rectilinear configuration of the well, and to follow the curvature (considerably less pronounced than the suggest Figures 1 to 5 as a result of the above-mentioned scale difference).
  • this tube 1 It is planned to hydroform this tube 1 by means of a crimping tool in the form of an inflatable bladder.
  • Such a bladder, flexible and elastic membrane is adapted to be inserted inside the tube, in the deflated state, and be positioned in a given zone of the tube that is to be expanded.
  • the bladder is fed with high pressure liquid, able to radially expand the membrane outwards, so that it is pressed against the wall of the tube and also causes the radial expansion outwardly for the apply firmly, over a certain length, against the wall C.
  • the bladder is deflated and moved to be repositioned in a new area to be expanded.
  • This type of tool is usually referred to as "packer”.
  • the tool is connected to the surface by a rod allowing its handling, its positioning, as well as the control members for inflating and deflating.
  • a conduit for supplying and discharging the inflation liquid may be integrated into said rod.
  • the periphery is filled with a set of sheaths 2 of flexible and elastic material, for example natural rubber or polymeric material, suitable for sealing between the liner and the wall C .
  • Each sheath 2 is positioned on the tube 1 so that it surrounds an area to be expanded; it is fixed to the surface of the tube, for example by gluing.
  • FIGS. 2 to 5 show four zones to be expanded.
  • the tube 1 is centered and immobilized at the wellhead by means of appropriate equipment Z.
  • FIG. 3 illustrates the axial introduction into the tube 1 of an inflatable bladder-shaped dilator tool 3 mounted at the end of an operating and control rod 30, which is actuated from the surface from a pilot station not shown.
  • Appropriate position sensors associated with a control circuit make it possible to very precisely locate and position the bladder 3 at different predetermined locations of the tube 1, in this case with respect to each zone to be expanded.
  • the bladder 3, in the deflated state, is first brought into the zone to be expanded furthest from the surface, in the position 3 'shown in phantom in FIG. 3. It is then proceeded to its radial expansion, from such that it radially expands the wall portion of the tube against which it is applied, beyond the elastic limit of the wall of the tube, but below the limit of rupture. There is thus a plastic deformation of this wall, which is firmly applied against the wall C, with the interposition of the flexible sheath 2 which is intended to seal the connection. The bladder 3 is then deflated, and moved to the next area to be expanded, by pulling on the shaft 30, and then inflating / deflating (see Figure 4).
  • a lining of the well or the pipe is finally obtained by means of a tube 1 'having a set of expanded zones 4, which are applied in a sealed manner against the wall C, and which are spaced apart others and separated by unexpanded zones (of unchanged diameter).
  • FIG. 6 shows an oval section of this wall, against which the expanded zone 4 of the initially circular tube 1 nevertheless applies intimately, always with interposition of the annular seal 2.
  • the expanded tube area naturally takes the same shape as that of the wall against which it is applied, in this case the oval shape.
  • the expanded areas are therefore particularly effective anchoring points of the liner, even if the wall of the well or pipe has a relatively irregular and non-uniform section.
  • the number of expanded zones is therefore equal to 114 (912: 8).
  • the spacing between two expanded zones is not necessarily constant over the entire length of the tube. It is possible to provide certain expanded areas longer than the tool, the expansion in these areas being in adjacent steps (as provided in the aforementioned documents), but over a length area nevertheless reduced compared to the total length of the tube.
  • FIG. 7 shows an arrangement in which the tube 1 has wall recesses, that is to say annular recesses 6, which serve as housing for the sealing sheaths 2.
  • wall recesses that is to say annular recesses 6, which serve as housing for the sealing sheaths 2.
  • the difference of the radii of the outer wall of the tube is substantially equal to (or slightly greater than) the wall thickness of the flexible sheath 2.
  • the radial expansion at a necking produces an expanded zone 4 (shown in broken lines in Figure 7) which is similar to an expanded zone obtained from a nonshrink tube.
  • FIG. 8 shows a lining 1 'which, in addition to the expanded zones 4, also has expanded end portions forming mouths 40 which are applied against the wall C.
  • FIG. 9 represents a lining 1 'of which an unexpanded zone 5 situated between two expanded zones 4A and 4B comprises a perforated or porous wall section 7.
  • This arrangement may be useful for collecting inside the tube of the fluids present in the soil around the zone 5, the permeable section 7 acting as a strainer (or drain) and possibly a filter. Conversely, it may also be useful for injecting into the soil, around this zone 5, fluids coming from the tube.
  • the expansion of the tube could nevertheless be performed just as well in a zone with perforated or porous wall portion.
  • FIG. 10 represents a liner including an unexpanded zone
  • a sensor 8 located between two expanded zones 4A and 4B, is provided with a sensor 8; it is attached to the outer surface of the tube, for example by means of collars 80. It may be any sensor, for example pressure or temperature, which may be useful during the operation of the well or pipe.
  • the sensor 8 is in a closed and protected annular space, outside the pipe section 5 and near the wall C. The installation of such a sensor would not be compatible with a continuous expansion of the jacket .
  • the sensor could be initially placed in a recessed part of the tube, for example in a narrowing similar to that illustrated in FIG. 7 for the housing of a sealing sheath, in order to avoid the risks of snagging during the introduction and placement of the tube. This is followed by a partial radial expansion at this necking, in order to maintain the annular space required by the sensor.
  • the expansion zones may or may not have sealing members.
  • the present invention is particularly suitable for lining wells or pipes whose diameter can be understood, depending on the application, between 75 mm and 250 mm and the length between 15 m and 1500 m.
  • the tube for lining has a wall thickness advantageously between 2 mm and 8 mm approximately. This thickness, and the ductility of the material that composes it, are advantageously chosen to allow an increase in diameter in the expanded zones of between 5 and 20%, for example of the order of 10%.
  • the process can optionally be used in several phases. Some expansion zones 4 can be made from the initial placement of the cylindrical tube 1 while other areas will be expanded only later, on demand and as needed.
  • tube sections consisting of permeable walled portions 7 and solid wall portions of different lengths adapted to the well. zones being separated by areas of possible expansion. At first only one zone out of two is expanded, so that the well then produces fluid through all the permeable zones 7.
  • a zone of the well comprises a producing zone in the AB part of an ABC zone
  • the wall portion of the tube facing AB is full; the one next to BC is permeable.
  • the fluid is produced in front of the solid portion (facing AB), but flows in the annular space between the tube and the wall of the well so as to enter the tube, via the holes of the permeable portion which is next to BC.
  • the well is a rough hole in the ground or a borehole with a casing.
  • This well passes through a number of fluid producing areas, for example oil slicks and / or oil-soaked soil portions, of which two zones ZA and ZB are shown.
  • fluid producing areas for example oil slicks and / or oil-soaked soil portions, of which two zones ZA and ZB are shown.
  • Zone ZA is downstream of zone ZB.
  • a cylindrical tube 1 of great length consisting in practice of a number of tubes fixed end to end, was introduced axially inside this well.
  • the well C has for example a length of the order of 1000 m, and a diameter of the order of 160 mm.
  • the tube 1 has an outer diameter slightly smaller than that of the well, for example of the order of 140 mm. Its wall thickness is for example of the order of 4 mm.
  • It comprises impervious, solid-walled portions 200, 400 and 600, which are alternated with permeable portions 300, 500, perforated wall.
  • the location of the permeable portions and the positioning of the tube are chosen such that the permeable portions are not facing a production zone.
  • a first phase illustrated in Figure 12, causes radial expansion and partial portions of the tube 1 and, more specifically, some of its impervious portions 200, 400, 600.
  • portions 200 'downstream of zone ZA, 400' situated between zones ZA and ZB have been expanded from upstream to downstream. located upstream of zone ZB.
  • the expanded portions 200 'and 400' are just downstream of a permeable portion 300, respectively 500.
  • the expanded portions 400 'and 600' are just upstream of a zone ZA and respectively ZB.
  • the tube 1 is kept centered in the well by its expanded portions which apply intimately against its wall, constituting a liner.
  • each zone ZA, ZB produces fluid that flows directly into the well if its wall is rough borehole, via adequate holes drilled in the wall of the pipe, if there is a casing.
  • the fluid escaping from the zone ZA is first channeled into the annular space of the unexpanded and impermeable portion of the tube 1, flows downstream (because the upstream side is closed by the portion 400 ') as symbolized by the arrows GA, then enters the tube via the perforations of the permeable portion 300, as symbolized by the arrows HA.
  • zone ZB The path of the fluid produced by zone ZB is similar.
  • zone ZA produces an unwanted fluid that one does not wish to capture, a sludge for example.
  • portion of the tube just downstream of zone ZA, referenced 700 in FIG. 13 is expanded.
  • the fluid produced by this zone ZA is then confined in the annular space outside an impermeable portion. of the tube, between two expanded zones 400 'and 700 which form plugs. He can not enter the tube.
  • the other zone ZB continues to produce as before.

Abstract

Selon ce procédé, on introduit dans le puits ou la canalisation à chemiser un tube (1) formé de tronçons de tube préalablement fixés bout à bout, après quoi on procède à l' expansion radiale du tube au moyen d' une vessie gonflable (3) de telle sorte que sa paroi vienne s'appliquer contre celle (C) du puits ou de la canalisation; le procédé est remarquable en ce qu' on procède à cette expansion, non pas sur toute la longueur du tube, mais en certaines zones (4) seulement de celui-ci, espacées les unes des autres par des portions non expansées (5), de telle sorte que la longueur totale des zones expansées (4) soit notablement inférieure à la longueur totale des zones non expansées (5), le nombre de zones expansées (4) étant en outre au moins égal à trois. Domaines de la production d'eau ou de pétrole.

Description

PROCEDE DE CHEMISAGE A ZONES EXPANSEES MULTIPLES AU MOYEN D'UNE VESSIE GONFLABLE.
La présente invention concerne un procédé de chemisage, à zones expansées multiples, d'un puits ou d'une canalisation, par exemple d'un cuvelage, présentant une portion à traiter afin de la rendre étanche, notamment à réparer et/ou à boucher. Elle concerne également un procédé de contrôle de la production de fluide à l'intérieur d'un puits, par chemisage de celui-ci.
L'invention s'applique plus particulièrement, mais non obligatoirement, au domaine de la production d'eau ou de la production pétrolière.
Dans la suite de la présente description, l'invention sera mise en œuvre, à titre d'exemple, dans le domaine de la production d'eau.
Les forages de captage d'eau sont forés dans le sol et comportent généralement une chemise continue, ou cuvelage, réalisée par une succession de tubes en acier de relativement faible longueur (de l'ordre de 6 m à 12 m par exemple) soudés ou vissés bout à bout les uns aux autres. Ce cuvelage, une fois cimenté contre la paroi naturelle du puits permet d'obtenir une étanchéité sur toute la hauteur du puits, afin d'éviter toute contamination entre les diverses couches de terrain.
A titre indicatif, la longueur totale du cuvelage est par exemple comprise entre 20 mètres et 1500 mètres, tandis que son diamètre intérieur est compris entre 75 et 250 millimètres.
Au fil du temps il arrive qu'une portion ou la totalité de la paroi du cuvelage doive être étanchéifïée, notamment lorsqu'elle a été dégradée, par exemple par usure prématurée et/ou corrosion, ou lorsque les perforations destinées au passage de l'eau doivent être bouchées, en particulier parce qu'elles produisent des fluides indésirables qui risquent de traverser la paroi du cuvelage et pénétrer à l'intérieur de celui-ci.
Pour réparer la paroi du cuvelage, il est connu de doubler la paroi existante par la mise en place d'un chemisage de diamètre inférieur au cuvelage existant et de cimenter par injection l'espace annulaire formé par le cuvelage ancien et le nouveau tube. Ce procédé a pour inconvénient de réduire fortement le diamètre du forage car l'espace annulaire nécessaire à une bonne cimentation est relativement important, généralement supérieur à 30 mm sur le diamètre. De plus une bonne co-axialité des deux tubes est difficile à assurer en particulier dans les parties courbes du puits, ce qui peut occasionner une mauvaise cimentation, et entraîner une contamination entre les différentes couches du terrain.
D'autres procédés consistent à positionner dans le cuvelage existant un chemisage de diamètre légèrement inférieur et de procéder à l'expansion radiale de la nouvelle chemise pour qu'elle vienne se plaquer contre la paroi à traiter.
Cette expansion peut être effectuée à l'aide d'un outil d'expansion comportant un mandrin, des rouleaux ou une vessie gonflable, voire par explosion.
L'invention concerne un procédé d'expansion par hydroformage, utilisant une vessie gonflable, dont l'expansion radiale est réalisée par introduction dans la vessie d'un fluide sous pression.
L'état de la technique en la matière peut être illustré par le document technique en langue anglaise daté du 30 juin 2000, de la Société australienne IPI (Inflatable Packers International Pty Ltd) intitulé « Slim-line Re-lining », ainsi que par le document EP- A 1 657 365. Selon ces techniques, on introduit dans le puits ou la canalisation à chemiser un tube de grande longueur, formé de tronçons de tube préalablement fixés bout à bout, après quoi on procède à l'expansion radiale du tube, sur toute sa longueur, de telle sorte que sa paroi vienne s'appliquer contre celle du puits ou de la canalisation ; cette expansion est réalisée par une succession de positionnements successifs de la vessie gonflable le long du tube avec, dans chaque position, une opération de sertissage par gonflage de la vessie, puis dégonflage de celle-ci pour l'amener à une position adjacente à la précédente, et ainsi de suite tout le long du tube.
Un tel procédé est très onéreux quand il s'agit d'expanser des longueurs importantes car sa mise en œuvre requiert beaucoup de temps.
De plus, il se produit une usure importante de l'outil de sertissage, si bien qu'il est nécessaire de changer cet outil périodiquement, car sa durée de vie est relativement limitée, en raison des fortes contraintes mécaniques auxquelles il est soumis à chaque étape. A titre indicatif, le nombre maximal d'opérations d'expansion d'un tel outil, à vessie gonflable, est généralement d'une cinquantaine.
Dans ces conditions, à titre d'exemple, si on doit chemiser une longueur de 1000 m avec un pas de 0,5 m, on doit procéder successivement à 2000 opérations de gonflage/dégonflage, ce qui nécessite d'utiliser une quarantaine d'outils différents. L'invention vise à pallier ces difficultés en proposant un procédé qui permette de chemiser une grande zone du cuvelage de façon rapide et économique.
L'invention peut s'appliquer non seulement à un cuvelage tel que décrit plus haut, mais aussi à tout puits creusé dans le sol ou à toute canalisation, enterrée ou non, et c'est pourquoi il est fait état, dans la description et les revendications à suivre, du chemisage d'un puits ou d'une canalisation, cette dernière pouvant être un cuvelage ou un puits ouvert, ou tout autre conduit, vertical, horizontal ou oblique, rectiligne ou courbe.
L'invention a donc pour objet un procédé de chemisage d'un puits ou d'une canalisation, par exemple d'un cuvelage au moyen d'une vessie gonflable, la totalité, ou certaines portions seulement, du puits ou de la canalisation devant être traitée(s), notamment réparée(s) et/ou à bouchée(s).
Comme cela est connu, on introduit dans le puits ou dans la canalisation à chemiser un tube cylindrique de grande longueur, formé de tronçons de tube préalablement fixés bout à bout, par exemple par soudage ou vissage, après quoi on procède à l'expansion radiale du tube au moyen d'une vessie gonflable, de telle sorte que sa paroi vienne s'appliquer contre celle du puits ou de la canalisation.
Conformément à l'invention, on procède à cette expansion, non pas sur toute la longueur du tube, mais en certaines zones seulement de celui-ci, qui sont espacées les unes des autres par des portions non expansées, ceci de telle sorte que la longueur totale des zones expansées soit notablement inférieure à la longueur totale des zones non expansées, le nombre de zones expansées étant en outre au moins égal à trois.
On comprend que grâce à cette technique, le temps nécessaire au chemisage est considérablement réduit par rapport aux techniques connues, puisqu'on traite une portion de longueur réduite du tube seulement.
De plus, le nombre d'étapes mises en œuvre, qui correspondent à chaque fois à un gonflage et à un dégonflage de la vessie, impliquant une usure de celle-ci, est également réduit ; on peut donc utiliser un seul outil, ou un nombre d'outils limité.
Certes, la technique de l'invention présente l'inconvénient que le diamètre intérieur minimal de la chemise finalement obtenue est plus faible que celui qu'on aurait obtenu en procédant à son expansion radiale complète.
Il est néanmoins supérieur à celui obtenu par cimentation traditionnelle d'une chemise cylindrique, en raison de l'importance du volume de l'espace annulaire qui est nécessaire à une bonne cimentation, comme cela a été expliqué plus haut.
En tout état de cause, il est suffisant dans la plupart des applications.
La technique de l'invention permet en outre d'obtenir, au niveau des zones expansées un parfait centrage de la chemise par rapport à l'axe du puits ou de la canalisation, même si sa paroi n'est pas de forme strictement cylindrique et/ou si elle présente des irrégularités de surface en cet endroit. Un bon centrage est également obtenu, corrélativement, au niveau de la zone non expansée qui relie deux zones expansées. Par ailleurs, selon un certain nombre de caractéristiques additionnelles, non limitatives de l'invention :
- la longueur totale des zones expansées est au moins cinq fois inférieure à la longueur totale des zones non expansées ; en pratique le rapport de la longueur totale de chemise non expansée sur la longueur totale de chemise non expansée peut être nettement supérieur à 5, par exemple compris entre 10 et 20, voire plus selon les applications et en fonction de la configuration du puits ou de la canalisation.
- avant son expansion, on garnit extérieurement le tube de gaines souples et élastiques au niveau des zones à expanser, de telle sorte qu'après expansion elles assurent l'étanchéité entre ces zones et la paroi du puits ou de la canalisation ;
- ces gaines souples sont logées dans des renfoncements ménagés dans la paroi du tube de manière à ne pas faire saillie extérieurement par rapport à sa surface externe ; - on provoque également l'expansion de l'une au moins des extrémités du tube, afin d'y former une embouchure qui s'applique contre la paroi du puits ou de la canalisation ;
- au moins une portion de paroi du tube est perforée ou poreuse, et est adaptée pour faire office de crépine ou de filtre ; - on pourvoit le tube, avant son expansion, d'au moins un capteur que l'on positionne contre sa surface externe en une zone qui n'est pas destinée à être expansée, entre deux zones destinées à être expansée ;
- on pourvoit le tube, avant son expansion, d'au moins un capteur que l'on place contre sa surface externe à l'intérieur d'un renfoncement de paroi destiné à être seulement partiellement expansé ; - on provoque les différentes expansions du tube par étapes successives, en déplaçant la vessie gonflable progressivement d'une extrémité à l'autre du tube, toujours dans le même sens ;
- après avoir introduit le tube à l'intérieur du puits ou de la canalisation, on injecte un ciment liquide entre la surface extérieure du tube et la paroi du puits ou de la canalisation, on procède à l'expansion partielle du tube alors que le ciment est encore liquide, ou semi liquide, puis on laisse le ciment faire sa prise.
L'invention a également pour objet un procédé de contrôle de la production de fluide à l'intérieur d'un puits, permettant le bouchage d'une zone productrice en cours d'exploitation.
Elle s'applique plus particulièrement à des puits traversant plusieurs zones productrices réparties en différents endroits le long du puits, ces zones - veines de pétrole ou de gaz par exemple- étant susceptibles de produire des fluides (liquides ou gazeux) que l'on souhaite capter.
Au cours du temps, il arrive que certaines zones produisent des fluides indésirables, que l'on ne souhaite plus capter.
Il est alors souhaitable d'isoler ces zones de l'intérieur du puits.
L'invention a pour objectif un procédé permettant, de façon simple et peu coûteuse, d'empêcher l'arrivée de ces fluides indésirables dans le puits, tout en continuant bien sûr à autoriser la production émanant des autres zones.
Selon ce procédé de contrôle :
- dans un premier temps, on introduit axialement dans le puits un tube cylindrique de grande longueur, dont le diamètre est légèrement inférieur à celui du puits, ce tube étant formé de portions à paroi perméable au fluide considéré, alternées avec des portions à paroi imperméable, après quoi on procède à l'expansion radiale du tube au niveau de certaines de ses portions à paroi imperméable, ceci au moyen d'une vessie gonflable, de manière à ce que leur paroi vienne s'appliquer contre celle du puits, ceci de telle sorte que deux régions expansées voisines soient situées de part et d'autre de la zone à contrôler et soient reliées l'une à l'autre par un tronçon de tube comprenant une portion perméable et une partie imperméable, cette dernière se trouvant en regard de la zone à contrôler, et s 'étendant au-delà de cette zone en direction de la portion perméable ;
- ultérieurement, lorsqu'on souhaite empêcher la production de la zone à contrôler, on procède à l'expansion radiale du tube au niveau de la partie imperméable dudit tronçon de tube, au-delà de la zone à contrôler, du côté de la portion perméable.
On empêche ainsi toute communication de l'espace extérieur du tube qui est en regard de la zone en question avec la partie imperméable du tronçon de tube.
Les zones perméables du tube peuvent consister en une paroi perforée, grillagée ou poreuse.
Le tube est par exemple en métal, et son expansion radiale est avantageusement (mais non obligatoirement) réalisée au moyen d'une vessie gonflable à membrane souple et élastique, le gonflage se faisant par introduction d'un liquide à haute pression dans la vessie.
Dans le domaine pétrolier, ce genre d'outil est usuellement désigné par le terme anglais « packer ».
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description ci-après, faite en référence aux dessins annexés, sur lesquels:
La figure 1 est une vue en coupe axiale d'un puits ou d'une canalisation à chemiser.
Les figures 2 à 5 sont des vues schématiques illustrant différentes étapes du procédé de l'invention.
La figure 6 est une vue en coupe transversale selon le plan VI-VI de la figure 5.
La figure 7 illustre une variante de tube à paroi renfoncée pourvue d'une gaine d'étanchéité. La figure 8 montre un chemisage à extrémités expansées.
La figure 9 montre un chemisage comportant une portion non expansée à paroi perforée.
La figure 10 montre un chemisage dont une portion non expansée est pourvue d'un capteur. Les figures 11 à 13 sont des vues en coupe axiale d'un puits que l'on soumet au contrôle de la production de fluide, les figures 12 et 13 montrant respectivement la première et la seconde étape du procédé.
La figure 1 représente un forage de captage d'eau, dont la paroi, de section circulaire, ou approximativement circulaire, porte la référence C. Cette paroi peut soit consiste par exemple en une canalisation (ou cuvelage) détériorée, que l'on souhaite étanchéifîer en la garnissant intérieurement d'un chemisage. En partant du niveau du sol S en profondeur, ce forage comprend une première partie supérieure (I) verticale rectiligne, une partie centrale courbe (II) et une partie inférieure (III) oblique.
Sur les dessins, afin d'en faciliter la lecture, l'échelle a été sensiblement agrandie suivant la direction radiale du conduit (perpendiculairement à l'axe du forage) par rapport à l'échelle utilisée suivant la direction axiale.
A titre purement indicatif, le puits ou la canalisation a une longueur de l'ordre de 915 m, et un diamètre de 160 mm.
Pour en chemiser la paroi C, on utilise un tube métallique, par exemple en acier, à la fois ductile et apte à résister à la corrosion du milieu auquel il sera exposé ; son diamètre externe est choisi un peu inférieur à celui de la paroi C, par exemple égal à 145 mm ; son épaisseur de paroi est par exemple de 4 mm.
Ce tube, référencé 1 sur la figure 2, est confectionné depuis la surface S par fixation bout à bout et de manière étanche de tronçons de tube 10, qui sont assemblés les uns aux autres, par exemple par soudage, puis enfoncement progressif du tube au fur et à mesure de sa fabrication à l'intérieur du puits ou de la canalisation, selon une technique bien connue (voir par exemple le document US 2 167 338).
A titre indicatif, ces tronçons 10 ont une longueur de 12 m. Si le tube 1 a une longueur de 912 m, il est donc constitué d'un ensemble de 76 tronçons.
En raison de la grande longueur du tube 1 par rapport à son diamètre, le tube possède une certaine flexibilité, qui lui permet de s'accommoder à la configuration non rectiligne du puits, et d'en suivre la courbure (considérablement moins prononcée que le laissent supposer les figures 1 à 5 par suite de la différence d'échelle sus indiquée).
Il est prévu d'hydroformer ce tube 1 au moyen d'un outil de sertissage sous forme de vessie gonflable.
Une telle vessie, à membrane souple et élastique, est adaptée pour être insérée à l'intérieur du tube, à l'état dégonflé, et être positionnée en une zone donnée du tube que l'on souhaite expanser. La vessie est alimentée en liquide à haute pression, apte à dilater radialement la membrane vers l'extérieur, de sorte que celle-ci s'applique contre la paroi du tube et en provoque également l'expansion radiale vers l'extérieur pour l'appliquer fermement, sur une certaine longueur, contre la paroi C. Après formage, la vessie est dégonflée et déplacée afin d'être repositionnée en une nouvelle zone à expanser. Ce type d'outil est usuellement désigné par le terme anglais « packer ».
L'outil est relié à la surface par une tige permettant sa manipulation, son bon positionnement, ainsi que les organes de commande permettant de la gonfler et de la dégonfler. A cet effet, un conduit d'amenée et d'évacuation du liquide de gonflage peut être intégré à ladite tige.
Conformément à l'invention, il est prévu de procéder au sertissage du tube 1 contre la paroi C de façon limitée, en certaines zones seulement.
Au moment de la confection du tube 1, on en garnit la périphérie d'un ensemble de gaines 2 en matériau souple et élastique, par exemple en caoutchouc naturel ou en matière polymère, apte à assurer l'étanchéité entre le chemisage et la paroi C.
Chaque gaine 2 est positionnée sur le tube 1 de telle sorte qu'elle entoure une zone qui doit être expansée ; elle est fixée à la surface du tube, par exemple par collage.
Sur les figures 2 à 5 on a représenté quatre zones à expanser.
En début d'opération, le tube 1 est centré et immobilisé en tête de puits au moyen d'un équipement approprié Z.
Sur la figure 3 est illustrée l'introduction axiale dans le tube 1 d'un outil dilatateur en forme de vessie gonflable 3, montée à l'extrémité d'une tige de manœuvre et de commande 30, qui est actionnée depuis la surface à partir d'une station de pilotage non représentée.
Des capteurs de position appropriés associés à un circuit de contrôle permettent de localiser et de positionner de manière très précise la vessie 3 en différents endroits prédéterminés du tube 1, en l'occurrence en regard de chaque zone à expanser.
La vessie 3, à l'état dégonflé, est d'abord amenée dans la zone à expanser la plus éloignée de la surface, dans la position 3' représentée en traits interrompus sur la figure 3. On procède alors à son expansion radiale, de telle sorte qu'elle dilate radialement la portion de paroi du tube contre laquelle elle vient s'appliquer, au- delà de la limite d'élasticité de la paroi du tube, mais en deçà de la limite de rupture. On observe ainsi une déformation plastique de cette paroi, qui s'applique fermement contre la paroi C, avec interposition de la gaine souple 2 qui est destinée à assurer l'étanchéité de la liaison. La vessie 3 est ensuite dégonflée, et déplacée vers la zone suivante à expanser, par traction sur la tige 30, puis gonflage/dégonflage (voir figure 4).
Ce processus est réitéré jusqu'à la dernière zone à expanser, la plus proche de la surface S. II est possible, bien entendu, de procéder en sens contraire (de haut en bas) en poussant sur la tige 30, dès lors qu'elle est suffisamment rigide.
Comme illustré sur la figure 5, on obtient finalement un chemisage du puits ou la canalisation au moyen d'un tube 1 ' présentant un ensemble de zones expansées 4, qui sont appliquées de manière étanche contre la paroi C, et qui sont espacées les unes des autres et séparées par des zones 5 non expansées (de diamètre inchangé).
On comprend que ce procédé de chemisage est beaucoup plus rapide et moins coûteux à mettre en œuvre qu'un procédé du genre décrit dans les documents « Slim-line Re-lining » et EP- A 1 657 365 cités plus haut. Le nombre d'opérations successives de gonflage/dégonflage de l'outil requis pour l'opération est très inférieur à celui nécessité par un chemisage intégral, de sorte que le nombre de changements d'outil dus à l'usure s'en trouve considérablement réduit.
L'étanchéité globale et les caractéristiques mécaniques du chemisage restent satisfaisantes pour la plupart des applications, malgré la présence des zones non expansées. De même, pour nombre d'applications, la présence des tronçons non expansés, qui déterminent le diamètre interne minimal de la chemise, n'est pas gênante eu égard aux avantages qu'offre le procédé.
De plus, le fait que l'expansion de la paroi du tube se fait en des zones de longueur limitée, favorise un bon contact de toute la périphérie de ces zones avec la paroi C, même si celle-ci n'est pas parfaitement circulaire.
Ainsi, la vue en coupe de la figure 6 montre une section ovalisée de cette paroi, contre laquelle s'applique néanmoins intimement la zone expansée 4 du tube 1 initialement circulaire, toujours avec interposition du joint annulaire 2. Sous l'effet de la pression interne développée par la vessie gonflable, la zone de tube expansée prend naturellement la même forme que celle de la paroi contre laquelle elle est appliquée, en l'occurrence la forme ovale.
Les zones expansées sont donc des points d'ancrage particulièrement efficaces du chemisage, même si la paroi du puits ou de la canalisation a une section relativement irrégulière et non uniforme. A titre indicatif, on peut utiliser par exemple un outil permettant une expansion du tube sur une longueur de 0,75 m, et on réalise un sertissage tous les 8 mètres.
Pour une longueur de 912 m, le nombre de zones expansées est donc égal a 114 (912 : 8).
Longueur totale Li des zones expansées : 85,50 m (0,75 x 114).
Longueur totale Lo des zones non expansées : 826,50 m (912 - 85,50).
Rapport : Lo / Li = 9,66. Ce procédé peut être mis en œuvre de manière très souple, en fonction des contraintes de l'application et de la configuration du terrain.
Ainsi, l'écartement entre deux zones expansées n'est pas forcément constant sur toute la longueur du tube. Il est possible de prévoir certaines zones expansées de longueur supérieure à celle de l'outil, l'expansion en ces zones se faisant par pas adjacents (comme prévu dans les documents précités), mais sur une zone de longueur néanmoins réduite par rapport à la longueur totale du tube.
La figure 7 montre une disposition dans laquelle le tube 1 présente des renfoncements de paroi, c'est-à-dire des rétreints annulaires 6, qui servent de logement aux gaines d'étanchéité 2. Au niveau de ces rétreints, la différence des rayons de la paroi extérieure du tube est sensiblement égale (ou légèrement supérieure) à l'épaisseur de paroi de la gaine souple 2. Ainsi les gaines ne font pas saillie vers l'extérieur par rapport à l'enveloppe du tube 1, ce qui supprime les risques d'accrochage lors de sa mise en place. L'expansion radiale au niveau d'un rétreint produit une zone expansée 4 (représentée en traits interrompus sur la figure 7) qui est similaire à une zone expansée obtenue à partir d'un tube sans rétreint.
La figure 8 représente un chemisage 1 ' qui, en plus des zones expansées 4 présente des portions d'extrémité également expansées, formant des embouchures 40 qui sont appliquées contre la paroi C.
Ces embouchures 40, qui peuvent être formées au moyen du même outil à vessie gonflable que celui utilisé pour les zones 4, réduisent les risques d'accrochage, contre les chants d'extrémité du tube, de matériels susceptibles d'y être introduits ou d'en être retirés. Elles sont également avantageusement munies d'une gaine d'étanchéité périphérique. La figure 9 représente un chemisage 1 ' dont une zone non expansée 5, située entre deux zones expansées 4 A et 4B, comporte un tronçon de paroi perforé ou poreux 7.
Cette disposition peut être utile pour collecter à l'intérieur du tube des fluides présents dans le sol autour de la zone 5, le tronçon perméable 7 faisant office de crépine (ou drain) et éventuellement de filtre. A l'inverse, elle peut également être utile pour injecter dans le sol, autour de cette zone 5, des fluides provenant du tube.
L'expansion du tube pourrait néanmoins être tout aussi bien réalisée dans une zone à portion de paroi perforée ou poreuse.
La figure 10 représente un chemisage l' dont une zone non expansée
5, située entre deux zones expansées 4A et 4B, est munie d'un capteur 8 ; celui-ci est fixé à la surface externe du tube, par exemple à l'aide de colliers 80. Il peut s'agir d'un capteur quelconque, par exemple de pression ou de température, pouvant être utile lors de l'exploitation du puits ou de la canalisation.
Le capteur 8 se trouve dans un espace annulaire clos et protégé, à l'extérieur du tronçon de tube 5 et à proximité de la paroi C. La mise en place d'un tel capteur ne serait pas compatible avec une expansion continue de la chemise.
Le capteur pourrait être initialement placé dans une partie renfoncée du tube, par exemple dans un rétreint similaire à celui illustré sur la figure 7 pour le logement d'une gaine d'étanchéité, afin d'éviter les risques d'accrochage lors de l'introduction et la mise en place du tube. On réalise ensuite une expansion radiale partielle au niveau de ce rétreint, afin de conserver l'espace annulaire nécessaire au capteur. Les zones d'expansion peuvent être munies ou non d'organes d'étanchéité.
Sur les figures 8 à 10, le chemisage a été représenté sans utilisation de tels organes.
Une telle utilisation est bien évidemment également possible ici. Le procédé de l'invention est parfaitement compatible avec une cimentation de la chemise.
Pour cela on cimente l'espace annulaire entre le tube et la paroi à traiter et on réalise l'expansion des zones d'étanchéité avant que le ciment ne durcisse. Grâce au procédé, le tubage se trouve automatiquement correctement centré par rapport à la paroi au moment du gonflage de la vessie, et la cimentation est de bonne qualité.
La présente invention est particulièrement adaptée au chemisage de puits ou de canalisations dont le diamètre peut être compris, en fonction des applications, entre 75 mm et 250 mm et la longueur comprise entre 15 m et 1500 m. Le tube servant au chemisage a une épaisseur de paroi avantageusement comprise entre 2 mm et 8 mm environ. Cette épaisseur, et la ductilité de la matière qui le compose, sont avantageusement choisies pour autoriser un accroissement de diamètre dans les zones expansées compris entre 5 et 20%, par exemple de l'ordre de 10%.
Le procédé peut éventuellement être utilisé en plusieurs phases. Certaines zones d'expansion 4 peuvent être réalisées dès la mise en place initiale du tube cylindrique 1 alors que d'autres zones seront expansées seulement plus tard, à la demande et en fonction des besoins.
Ceci est particulièrement intéressant pour chemiser des zones productrices de puits pétroliers ou de puits d'eau dont le profil de production peut se modifier au cours du temps, certaines zones pouvant en effet produire des fluides indésirables au bout d'un certain temps. Pour avoir la possibilité de faire arrêter la production de certaine zones, II suffit en effet de faire alterner en regard de ces zones des tronçons de tube constitués de portions à paroi perméables 7 et à paroi pleines, de longueurs différentes et adaptées au puits, ces zones étant séparées par des zones d'expansion possible. Dans un premier temps il est n'est expansé qu'une zone 4 sur deux, si bien que le puits produit alors du fluide à travers toutes les zones perméables 7.
Dans un deuxième temps et en fonction des besoins, il est possible de fermer une (ou plusieurs) zones perméables 7 en expansant la zone adjacente à la zone perméable que l'on veut ne plus faire produire. Cette zone perméable est alors isolée de la zone de production, et ne produit plus.
Ainsi, si une zone du puits comporte une zone productrice dans la partie AB d'une zone ABC, on peut installer en regard de la zone ABC une portion de chemise (non expansée) bordée par deux zones d'expansion, l'une juste en amont de A et l'autre juste en aval de C. La portion de paroi du tube située en regard de AB est pleine ; celle située en regard de BC est perméable.
Le fluide est produit en face de la portion pleine (en regard de AB), mais s'écoule dans l'espace annulaire entre le tube et la paroi du puits de manière à rentrer dans le tube, via les trous de la portion perméable qui est en regard de BC.
Lorsque la partie AB du puits va produire des fluides indésirables, on expanse une zone juste en aval du point B pour isoler la partie pleine se trouvant en regard de AB.
On bloque ainsi la sortie du fluide hors de la partie AB. Cette technique va être décrite plus en détail ci-après, en référence aux figures 11, 12 et 13.
La portion du puits C illustrée sur ces dessins est représentée dans une disposition horizontale, et la tête de puits (par laquelle se fait l'échappement du fluide) se trouve sur la gauche. Bien entendu, le puits peut être vertical ou oblique. On désignera donc par côté amont la partie du puits tournée vers la droite, et par côté aval sa partie tournée vers la gauche.
Le puits est un forage brut dans le sol ou un forage pourvu d'un cuvelage (canalisation).
Ce puits traverse un certains nombre de zones productrices de fluide, par exemple des nappes de pétrole et/ou des portions de sol gorgées de pétrole, dont deux zones ZA et ZB sont représentées.
La zone ZA se trouve en aval de la zone ZB.
Un tube cylindrique 1 de grande longueur, composé en pratique d'un certain nombre de tubes fixés bout à bout, a été introduit axialement à l'intérieur de ce puits.
A titre indicatif, le puits C a par exemple une longueur de l'ordre de 1000 m, et un diamètre de l'ordre de 160 mm.
Le tube 1 a un diamètre externe légèrement inférieur à celui du puits, par exemple de l'ordre de 140 mm. Son épaisseur de paroi est par exemple de l'ordre de 4 mm.
Il s'agit d'un tube métallique, par exemple en acier, à la fois ductile et apte à résister à la corrosion en milieu ambiant.
Il comprend des portions imperméables, à paroi pleine, 200, 400 et 600, qui sont alternées avec des portions perméables 300, 500, à paroi perforée. L'emplacement des parties perméables et le positionnement du tube sont choisis de telle sorte que les portions perméables ne se trouvent pas en regard d'une zone de production.
Dans une première phase, illustrée à la figure 12, on provoque l'expansion radiale et partielle de certaines portions du tube 1 et, plus précisément, de certaines de ses portions imperméables 200, 400, 600.
Ainsi, en se référant à la figure 2, on observe qu'ont été expansées de l'aval vers l'amont des portions 200' située en aval de la zone ZA, 400' située entre les zones ZA et ZB, et 600' située en amont de la zone ZB. Les portions expansées 200' et 400' se trouvent juste en aval d'une portion perméable 300, respectivement 500.
Les portions expansées 400' et 600' se trouvent juste en amont d'une zone ZA et, respectivement ZB.
En regard de ces zones, on trouve une paroi de tube imperméable et non expansée.
Le tube 1 est maintenu centré dans le puits par ses portions expansées qui s'appliquent intimement contre sa paroi, constituant un chemisage.
En période normale d'exploitation, chaque zone ZA, ZB produit du fluide qui débouche directement dans le puits si sa paroi est brute de forage, via des orifices adéquats percés dans la paroi de la canalisation, s'il existe un cuvelage.
Cette production est symbolisée par les flèches FA et FB sur la figure 12.
Le fluide s'échappant de la zone ZA est d'abord canalisé dans l'espace annulaire de la portion non expansée et imperméable du tube 1, s'écoule vers l'aval (car le côté amont est obturé par la portion 400'), comme symbolisé par les flèches GA, puis pénètre dans le tube via les perforations de la portion perméable 300, comme symbolisé par les flèches HA.
Le cheminement du fluide produit par la zone ZB est similaire.
Il est visualisé sur la figure 12 par les flèches FB, GB et HB. Les deux fluides se rejoignent et sont évacuées vers l'aval pour être collectés à la tête du puits.
Bien entendu, il peut y avoir plus de deux zones productrices le long du puits.
On suppose qu'après une certaine période d'exploitation, la zone ZA produit un fluide indésirable que l'on ne souhaite pas capter, une boue par exemple. Dans ce cas on provoque l'expansion de la portion de tube située juste en aval de la zone ZA, référencée 700 sur la figure 13. Le fluide produit par cette zone ZA se trouve alors confiné dans l'espace annulaire extérieur à une portion imperméable du tube, entre deux zones dilatées 400' et 700 qui forment des bouchons obturateurs. Il ne peut pas pénétrer dans le tube.
L'autre zone ZB continue à produire comme précédemment.
L'expansion des différentes portions du tube, aussi bien dans la première phase qu'ultérieurement, lorsqu'on veut isoler une zone de production, se fait de manière simple et peu coûteuse. II suffit pour cela d'amener dans le tube 1, depuis la tête de puits, une vessie gonflable initialement dégonflée, de la positionner dans la zone à expanser, de la gonfler pour déformer radialement la portion de tube au-delà de sa limite élastique afin qu'elle s'applique hermétiquement contre la paroi du puits, de dégonfler la vessie et de la retirer. Ce procédé est particulièrement intéressant pour chemiser des zones productrices de puits pétroliers ou de puits d'eau dont le profil de production peut se modifier au cours du temps.

Claims

REVENDICATIONS
1. Procédé de chemisage d'un puits ou d'une canalisation au moyen d'une vessie gonflable (3), selon lequel on introduit dans le puits ou la canalisation à chemiser un tube cylindrique (1) de grande longueur, formé de tronçons de tube (10) préalablement fixés bout à bout, après quoi on procède à l'expansion radiale du tube, au moyen de ladite vessie gonflable (3), de telle sorte que sa paroi vienne s'appliquer contre celle du puits ou de la canalisation (C), caractérisé par le fait qu'on procède à cette expansion, non pas sur toute la longueur du tube, mais en certaines zones (4) seulement de celui-ci, dont le nombre est au moins égal à trois, et qui sont espacées les unes des autres par des portions non expansées (5), de telle sorte que la longueur totale des zones expansées (4) soit notablement inférieure à la longueur totale des zones non expansées (5).
2. Procédé selon la revendication 1, caractérisé par le fait que la longueur totale des zones expansées (4) est au moins cinq fois inférieure à la longueur totale des zones non expansées (5).
3. Procédé la revendication 1 ou 2, caractérisé par le fait qu'avant son expansion on garnit extérieurement le tube (1) de gaines souples et élastiques
(2) au niveau des zones à expanser, de telle sorte qu'après expansion elles assurent l'étanchéité entre ces zones (4) et la paroi (C) du puits ou de la canalisation.
4. Procédé selon la revendication 3, caractérisé par le fait que les gaines souples (2) sont logées dans des renfoncements (6) ménagés dans la paroi du tube (1) de manière à ne pas faire saillie extérieurement par rapport à sa surface externe.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé par le fait que l'on provoque également l'expansion de l'une au moins des extrémités du tube (1), afin d'y former une embouchure (40) qui s'applique contre la paroi (C) du puits ou de la canalisation.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé par le fait qu'au moins une portion de paroi (7) du tube (1) est perforée ou poreuse, et adaptée pour faire office de crépine ou de filtre.
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé par le fait qu'on pourvoit le tube (1), avant son expansion, d'au moins un capteur (8) que l'on positionne contre sa surface externe en une zone (5) qui n'est pas destinée à être expansée, entre deux zones (4A, 4B) destinées à être expansées.
8. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé par le fait qu'on pourvoit le tube (1), avant son expansion, d'au moins un capteur (8) que l'on place contre sa surface externe à l'intérieur d'un renfoncement de paroi destiné à être seulement partiellement expansé.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé par le fait qu'on provoque les différentes expansions du tube par étapes successives, en déplaçant la vessie gonflable (3) progressivement d'une extrémité à l'autre du tube, toujours dans le même sens.
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé par le fait qu'après avoir introduit le tube (1) à l'intérieur du puits ou de la canalisation, on injecte un ciment liquide entre la surface extérieure du tube et la paroi du puits ou de la canalisation, on procède à l'expansion partielle du tube alors que le ciment est encore liquide, ou semi liquide, puis on laisse le ciment faire sa prise.
11. Procédé de contrôle de la production de fluide à l'intérieur d'un puits, permettant le bouchage d'une zone productrice en cours d'exploitation, selon lequel :
- dans un premier temps, on introduit axialement dans le puits un tube cylindrique (1) de grande longueur, dont le diamètre est légèrement inférieur à celui du puits, ce tube (1) étant formé de portions (300, 500) dont la paroi est perméable au fluide considéré, ces portions étant alternées avec des portions (200, 400, 600) à paroi imperméable, après quoi on procède à l'expansion radiale du tube au niveau de certaines de ses portions à paroi imperméable, de telle sorte que leur paroi vienne s'appliquer contre celle du puits (C), ceci de telle sorte que deux régions expansées voisines (200'-40O' ; 400'-60') soient situées de part et d'autre de la zone à contrôler (ZA ; ZB) et soient reliées l'une à l'autre par un tronçon de tube comprenant une portion perméable (300 ; 500) et une partie imperméable, cette dernière se trouvant en regard de la zone à contrôler, et s 'étendant au-delà de cette zone en direction de la portion perméable (300 ; 500) ; - ultérieurement, lorsqu'on souhaite empêcher la production d'une zone à contrôler (ZA), on procède à l'expansion radiale du tube au niveau de la partie imperméable (700) dudit tronçon de tube, au-delà de la zone à contrôler, du côté de la portion perméable (300).
PCT/EP2008/054593 2007-04-20 2008-04-16 Procédé de chemisage à zones expansées multiples au moyen d'une vessie gonflable WO2008135356A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EA200970961A EA200970961A1 (ru) 2007-04-20 2008-04-16 Способ обсаживания посредством множества расширенных участков с использованием по меньшей мере одной надувной камеры
US12/596,700 US8157007B2 (en) 2007-04-20 2008-04-16 Method for casing using multiple expanded areas and using at least one inflatable bladder
CN200880012553A CN101680283A (zh) 2007-04-20 2008-04-16 利用多个膨胀区域以及利用至少一个可膨胀囊的装衬方法
NO20093351A NO20093351L (no) 2007-04-20 2009-11-17 Fremgangsmate for utforing, med et antall ekspanderte omrader ved hjelp av en oppblasar blaere

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR07/02876 2007-04-20
FR0702876A FR2915264B1 (fr) 2007-04-20 2007-04-20 Procede de chemisage d'un puits ou d'une canalisation au moyen d'une vessie gonflable.
FR0703992A FR2917117B1 (fr) 2007-06-05 2007-06-05 Procede de controle de la production de fluide a l'interieur d'un puits.
FR07/03992 2007-06-05

Publications (1)

Publication Number Publication Date
WO2008135356A1 true WO2008135356A1 (fr) 2008-11-13

Family

ID=39591768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/054593 WO2008135356A1 (fr) 2007-04-20 2008-04-16 Procédé de chemisage à zones expansées multiples au moyen d'une vessie gonflable

Country Status (5)

Country Link
US (1) US8157007B2 (fr)
CN (1) CN101680283A (fr)
EA (1) EA200970961A1 (fr)
NO (1) NO20093351L (fr)
WO (1) WO2008135356A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2918700B1 (fr) * 2007-07-12 2009-10-16 Saltel Ind Soc Par Actions Sim Procede de chemisage d'un puits ou d'une canalisation au moyen d'une vessie gonflable.
DK2466065T3 (da) * 2010-12-17 2013-05-27 Welltec As Brøndkomplettering
CN102182409B (zh) * 2011-04-28 2013-04-24 中国石油天然气集团公司 连续管导入装置
US8826974B2 (en) * 2011-08-23 2014-09-09 Baker Hughes Incorporated Integrated continuous liner expansion method
US9777557B2 (en) * 2014-05-14 2017-10-03 Baker Hughes Incorporated Apparatus and method for operating a device in a wellbore using signals generated in response to strain on a downhole member
EP3255240A1 (fr) * 2016-06-10 2017-12-13 Welltec A/S Système de chevauchement de fond de trou
US10794158B2 (en) 2016-11-01 2020-10-06 Shell Oil Company Method for sealing cavities in or adjacent to a cured cement sheath surrounding a well casing
EP3415711A1 (fr) * 2017-06-13 2018-12-19 Welltec A/S Outil de pose de pièce rapportée de fond de trou
US11377927B2 (en) 2018-07-20 2022-07-05 Shell Usa, Inc. Method of remediating leaks in a cement sheath surrounding a wellbore tubular
AU2020206966B2 (en) * 2019-01-08 2022-09-22 Welltec A/S Downhole method
CN110130459A (zh) * 2019-06-19 2019-08-16 嘉兴古辛达贸易有限公司 一种以智慧城市为蓝本的下水道设计方法
US11156052B2 (en) * 2019-12-30 2021-10-26 Saudi Arabian Oil Company Wellbore tool assembly to open collapsed tubing
CN112228041A (zh) * 2020-11-23 2021-01-15 西南石油大学 一种油井小段流量测量工具
US11448026B1 (en) 2021-05-03 2022-09-20 Saudi Arabian Oil Company Cable head for a wireline tool
US11859815B2 (en) 2021-05-18 2024-01-02 Saudi Arabian Oil Company Flare control at well sites
US11905791B2 (en) 2021-08-18 2024-02-20 Saudi Arabian Oil Company Float valve for drilling and workover operations
US11913298B2 (en) 2021-10-25 2024-02-27 Saudi Arabian Oil Company Downhole milling system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2167338A (en) 1937-07-26 1939-07-25 U C Murcell Inc Welding and setting well casing
US20020020524A1 (en) * 2000-05-04 2002-02-21 Halliburton Energy Services, Inc. Expandable liner and associated methods of regulating fluid flow in a well
GB2382828A (en) * 2001-12-10 2003-06-11 Shell Int Research Zonal isolation apparatus with flow valves controlled in response to sensor outputs
US20060065408A1 (en) * 1999-12-22 2006-03-30 Weatherford/Lamb, Inc. Methods and apparatus for expanding tubular strings and isolating subterranean zones
EP1657365A2 (fr) 2004-11-15 2006-05-17 Hydro-Invest Procédé de chemisage de puits
EP1719873A1 (fr) * 2005-05-04 2006-11-08 Services Petroliers Schlumberger Manchon extensible

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5368809B1 (en) * 1986-03-31 1997-10-21 Nu Pipe Inc Method of installing a new pipe inside an existing conduit by progressive rounding
MY108743A (en) * 1992-06-09 1996-11-30 Shell Int Research Method of greating a wellbore in an underground formation
FR2737533B1 (fr) 1995-08-04 1997-10-24 Drillflex Manchon tubulaire gonflable pour tuber ou obturer un puits ou une canalisation
GB9920935D0 (en) * 1999-09-06 1999-11-10 E2 Tech Ltd Apparatus for and a method of anchoring a first conduit to a second conduit
GB0023032D0 (en) * 2000-09-20 2000-11-01 Weatherford Lamb Downhole apparatus
GB2389606B (en) * 2000-12-22 2005-06-29 E2Tech Ltd Method and apparatus for downhole remedial or repair operations
OA13126A (en) 2003-04-25 2006-11-10 Shell Int Research Expander system for stepwise expansion of a tubular element.
WO2005056979A1 (fr) * 2003-12-08 2005-06-23 Baker Hughes Incorporated Variante de perforation de trou tube
US7533731B2 (en) * 2006-05-23 2009-05-19 Schlumberger Technology Corporation Casing apparatus and method for casing or repairing a well, borehole, or conduit
FR2918700B1 (fr) * 2007-07-12 2009-10-16 Saltel Ind Soc Par Actions Sim Procede de chemisage d'un puits ou d'une canalisation au moyen d'une vessie gonflable.

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2167338A (en) 1937-07-26 1939-07-25 U C Murcell Inc Welding and setting well casing
US20060065408A1 (en) * 1999-12-22 2006-03-30 Weatherford/Lamb, Inc. Methods and apparatus for expanding tubular strings and isolating subterranean zones
US20020020524A1 (en) * 2000-05-04 2002-02-21 Halliburton Energy Services, Inc. Expandable liner and associated methods of regulating fluid flow in a well
GB2382828A (en) * 2001-12-10 2003-06-11 Shell Int Research Zonal isolation apparatus with flow valves controlled in response to sensor outputs
EP1657365A2 (fr) 2004-11-15 2006-05-17 Hydro-Invest Procédé de chemisage de puits
EP1719873A1 (fr) * 2005-05-04 2006-11-08 Services Petroliers Schlumberger Manchon extensible

Also Published As

Publication number Publication date
CN101680283A (zh) 2010-03-24
NO20093351L (no) 2009-11-17
EA200970961A1 (ru) 2010-04-30
US20100132952A1 (en) 2010-06-03
US8157007B2 (en) 2012-04-17

Similar Documents

Publication Publication Date Title
WO2008135356A1 (fr) Procédé de chemisage à zones expansées multiples au moyen d'une vessie gonflable
EP0842347B9 (fr) Dispositif et procede pour le chemisage d'une bifurcation de canalisation, en particulier dans un puits petrolier
FR2918700A1 (fr) Procede de chemisage d'un puits ou d'une canalisation au moyen d'une vessie gonflable.
WO2007063016A1 (fr) Procédé et dispositif de cimentation d'un puits ou d'une canalisation
EP0527932B1 (fr) Preforme et procede pour tuber et/ou chemiser un volume cylindrique
CA2410425C (fr) Joint filete tubulaire apte a subir une expansion diametrale
FR2901837A1 (fr) Procede et dispositif de chemisage d'un puits par hydroformage d'une chemise tubulaire metallique, et chemise destinee a cet usage
CA2778217C (fr) Dispositif de pose d'une chemise expansible avec controle du diametre de pose a l'avancement
WO2002029208A1 (fr) Methode et systeme pour augmenter la resistance a la pression d'un cuvelage
FR2808557A1 (fr) Procede et dispositif pour la regulation du debit des fluides de formation produits par un puits petrolier ou analogue
WO1999025951A1 (fr) Dispositif de mise en place d'une enveloppe filtrante a l'interieur d'un puits
FR2757209A1 (fr) Dispositif et procede d'obturation pour tubages de puits
FR2958966A1 (fr) Procede et dispositif d'obturation d'un puits au moyen d'un bouchon expansible, bouchon pour la mise en oeuvre du procede, et outil extracteur adapte pour le retirer
EP3099967B1 (fr) Outil pour intervention sur la paroi d'une canalisation - méthode associée
EP3164258B1 (fr) Dispositif et procédé de mise en place d'un manchon tubulaire de jonction pour conduite comportant un chemisage interne
WO2015193404A1 (fr) Dispositif de chemisage ou d'obturation d'un puits ou d'une canalisation
EP0457653B1 (fr) Manchon de sécurité pour puits communiquant notamment avec une réserve souterraine de fluide sous pression, ensemble de sécurité et procédé d'exploitation de puits associés
FR2927650A1 (fr) Procede et dispositif de tubage d'une portion de puits foree
FR2915264A1 (fr) Procede de chemisage d'un puits ou d'une canalisation au moyen d'une vessie gonflable.
WO1996001937A1 (fr) Preforme, dispositif et procede pour le tubage d'un puits
FR2989412A1 (fr) Conduite pourvue d'un element metallique serti
FR2942496A1 (fr) Dispositif de support d'un equipement a l'interieur d'un puits, un procede pour sa fixation et un procede de mise en place d'un tel equipement
EP0692606A1 (fr) Procédé de réalisation d'un tunnel revêtu
EP1657365A2 (fr) Procédé de chemisage de puits
FR2917117A1 (fr) Procede de controle de la production de fluide a l'interieur d'un puits.

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880012553.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08736270

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12596700

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 200970961

Country of ref document: EA

122 Ep: pct application non-entry in european phase

Ref document number: 08736270

Country of ref document: EP

Kind code of ref document: A1