WO2008135076A1 - Dielektrische barrieren-entladungslampe in doppelrohrkonfiguration - Google Patents

Dielektrische barrieren-entladungslampe in doppelrohrkonfiguration Download PDF

Info

Publication number
WO2008135076A1
WO2008135076A1 PCT/EP2007/054158 EP2007054158W WO2008135076A1 WO 2008135076 A1 WO2008135076 A1 WO 2008135076A1 EP 2007054158 W EP2007054158 W EP 2007054158W WO 2008135076 A1 WO2008135076 A1 WO 2008135076A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
electrode
slots
lamp according
slot
Prior art date
Application number
PCT/EP2007/054158
Other languages
English (en)
French (fr)
Inventor
Oliver Rosier
Markus Roth
Reinhold Wittkötter
Original Assignee
Osram Gesellschaft mit beschränkter Haftung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Gesellschaft mit beschränkter Haftung filed Critical Osram Gesellschaft mit beschränkter Haftung
Priority to CN2007800527696A priority Critical patent/CN101663731B/zh
Priority to DE112007003399T priority patent/DE112007003399A5/de
Priority to PCT/EP2007/054158 priority patent/WO2008135076A1/de
Priority to JP2010504459A priority patent/JP2010525531A/ja
Priority to KR1020097024845A priority patent/KR101142242B1/ko
Priority to US12/597,882 priority patent/US20100109505A1/en
Priority to TW097114742A priority patent/TWI459433B/zh
Publication of WO2008135076A1 publication Critical patent/WO2008135076A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0672Main electrodes for low-pressure discharge lamps characterised by the construction of the electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel

Definitions

  • the invention is based on a dielectric barrier discharge lamp with a discharge vessel in a coaxial double tube arrangement, ie an inner tube is arranged coaxially within an outer tube.
  • Inner tube and outer tube are connected to each other at their two end faces and thus form the gas-tight discharge vessel.
  • the discharge space enclosed by the discharge vessel thus extends between the inner and outer tubes.
  • This type of discharge lamps typically has a first electrode, which is integrally ⁇ arranged inside the inner tube and a second electrode which is disposed on the outer side of the outer tube ⁇ . Therefore be ⁇ find both electrodes outside the discharge vessel. In this case, therefore, it is a discharge impeded on both sides by dielectrics. If, in the following, the simplicity is occasionally referred to from the inner electrode or inner electrode and outer electrode or outer ⁇ electrode, so this term thus refers only to the spatial arrangement of the relevant electrode with respect to the coaxial double tube assembly, ie within the inner tube or on the outside of the outer tube.
  • the inner electrode should rest firmly against the wall of the inner tube, ie without sagging; on the other hand, it should be as easy to assemble as possible.
  • This type of lamp is used in particular for UV irradiation in process technology, for example for surface cleaning and activation, photolytics, ozone generation, drinking water purification, metallization, and UV curing.
  • the term radiator or UV lamps is also common.
  • the inner electrode is designed here as a spiral-shaped metal wire.
  • a disadvantage is that this type of inner electrode contacts the inner tube only on a relatively small surface area.
  • the spiral-shaped metal wire corresponds to a relatively long conductor track with correspondingly higher ohmic and inductive resistance, whereby the energy input deteriorates.
  • the object of the present invention is to provide a ⁇ lectric barrier discharge lamp in coaxial double specify tube arrangement with improved inner electrode.
  • a dielectric bar ⁇ Center discharge lamp having a discharge vessel comprising an outer tube and an inner tube wherein the inner tube is coaxially disposed within the outer tube, the in ⁇ nenrohr and the outer pipe are gas-tight connected to one another, whereby between the inner and outer tube, a filled with a discharge medium discharge space is formed, a first electrode and at least one further electrode, wherein the first electrode is disposed within the inner ⁇ pipe, characterized in that the first electrode is formed as a tube, the tube having At least one slot is provided, which has with respect to the longitudinal axis of the tube locally or at least from ⁇ section, both a component in the axial and in the azimuthal direction.
  • the object is also achieved in that the tube is provided with two or more axial slots.
  • the main idea of the invention is to distribute suitable wetting of the Schlit ⁇ provided for the inner electrode tube on the periphery or the outer surface of the pipe and not to limit as in the prior art to a straight axial slot.
  • the tube is provided with at least one slot which, when viewed in cylindrical coordinates, locally or at least in sections, both a component in the direction of the Has longitudinal axis (axial) and in the direction of the azimuth (azi ⁇ mutal). Due to the azimuthal component a better adaptation to local irregularities of the inner tube is achieved in the circumferential direction. Thereby, a BES sere contacting the tubular inner electrode to the inner tube of the discharge vessel of the lamp at gleichzei ⁇ tig improved mechanical stability is achieved.
  • the slot is spiral-shaped.
  • the slot spirals around the longitudinal axis of the tubular inner electrode.
  • the inner electrode may deform more locally and adapt to the unevenness and undulation of the inner tube.
  • the spiral slot creates a more homogeneous electric field compared to a straight slot. This, together with the ver ⁇ improved contact between the inner electrode and home nenrohr better energy coupling is achieved in the discharge space and finally an increase in the radiation yield.
  • the preferred number of rotations depends on the length of the electrodes, the wall thickness of the tube used for the inner electrode and the tube diameter.
  • the slot is triangular, rectangular or U-shaped, meander-shaped, in particular sinusoidal or serpentine.
  • the tubular inner electrode to two or more non-completeness, ⁇ dig continuous slots Preferably, the slots overlap each other.
  • the length of the overlap in mm is preferably in the range between 0.2-R and 8- /, more preferably in the range between IR and AR, where R denotes the radius of the inner tube in mm. Due to the non-continuous slit the inner ⁇ electrode is mechanically stable against external influences sen. This has advantages, for example, when transporting the lamps, where otherwise the displacement or even deformation of the inner electrode can occur. In addition, the handling of the inner electrode with several non-continuous slots is easier, for example when manufacturing the lamps or when replacing the inner electrode.
  • slots many different shapes are suitable for the slots, for example, also triangular, rectangular or U-shaped, meandering, in particular sinusoidal or serpentine.
  • slots are ge ⁇ suitable that both axially and can run obliquely. Be particularly suitable It has been found when longitudinal and transverse slots ⁇ are connected.
  • the slots connected in this way preferably extend once around the circumference of the tube, viewed over the entire length. In this Wei ⁇ se even more flexible adaptation of the inner electrode is achieved even at small bumps of the inner tube.
  • the tubular inner electrode can be made for example of a metal sheet.
  • the metal sheet is perforated.
  • Another advantage of the perforated inner electrode is that it increases the heat dissipation from the inner tube of the discharge vessel. This ultimately leads to a longer life of the lamp.
  • the imperforate area ratio with respect to the total area of the inner electrode is typically between 0.1 and 0.95, preferably between 0.3 and 0.7.
  • the maximum clear width of the perforation is preferably between 1 and 10 mm, since otherwise local field distortions result, which reduce the radiation yield.
  • 1a is a longitudinal sectional view of a dielectric barrier discharge lamp according to the invention
  • FIG. 1b is a longitudinal sectional view of the lamp of FIG. 1.
  • FIG. 2 is a side view of the inner tube including the inner electrode of the lamp of FIG. 1,
  • FIG. 3 is a side view of the inner tube including inner electrode of a variant with a continuous slot
  • FIG. 6 is a side view of the inner tube including inner electrode with non-continuous Schlit ⁇ zen,
  • the figures Ia, Ib show in a highly schematic representation of a side view and a cross-sectional view of a first embodiment of the inventions ⁇ inventive dielectric barrier discharge lamp 1.
  • the elongated discharge vessel of the lamp 1 be ⁇ is an outer tube 2 and an inner tube 3 in coaxial Double tube arrangement, which define the longitudinal axis of the discharge vessel.
  • the typical length of Roh ⁇ re is depending on the application between about 10 and 250 cm.
  • the outer tube 2 has a diameter of 40 mm and a wall thickness of 2 mm.
  • the inner tube 3 has a diam ⁇ ser of 16 mm and a wall thickness of 1 mm.
  • Both Roh ⁇ re 2, 3 consist of UV radiation permeable quartz glass.
  • the discharge vessel is closed at its two end faces such that an elongated, annular gap-shaped discharge space 4 is formed.
  • the discharge vessel at its two ends in each case suitably shaped, ring-like Gefäßabschnit ⁇ te 5.
  • a pumping tube (not shown) is attached to one of the vessel sections 5, with the aid of which the discharge chamber 4 is first evacuated and then filled with 15 kPa xenon.
  • a wire mesh 6 is wound, which forms the outer electrode of the lamp 1.
  • a ge ⁇ schlitztes metal tube 7 is arranged, which forms the inner electric ⁇ de of the lamp.
  • the inner electrode 7 consists of egg ⁇ nem 0.1 mm thick metal sheet, preferably VA sheet.
  • the slot 8 rotates along the length L of the inner electrode 7 - this is here 0.5 m - by one revolution, ie 360 °. In the longitudinal sectional view of Figure Ia the cut is thus only half the length of a half-shell of the slit metal tube 7 to he know ⁇ .
  • FIG. 2 shows the inner tube 3 including inner electrode 7 in a schematic side view.
  • the outer tube with additionallyelekt ⁇ rode is not shown for the sake of clarity.
  • the continuous slot 8 which in principle rotates helically around the longitudinal axis of the tubular inner electrode 7, but in this case only with a single revolution relative to the entire length L of the inner electrode 7.
  • the decisive factor here is that the slot 8 is longer than a straight slot that runs parallel to the longitudinal axis of the inner electrode.
  • Characterized the Certainlyelekt ⁇ rode 7 can locally deform and thus better conform to the inner wall of the inner tube 3, also in typical local irregularities of the quartz tubes.
  • the helical slot 8 produces an electric field which is more homogeneous than a straight slot.
  • FIGS. 3 to 5 further variants of a slotted inner electrode 7 are shown, in which the slot is continuous as in FIG.
  • FIGS. 3 to 5 show a zigzag slot 9, a rectangular slot 10 and finally a serpentine slot 11.
  • FIGS. 6 to 11 show different variants of an inner electrode 12 with several non-continuous slots. Due to the non-continuous slit, the inner electrode 12 is mechanically more stable against external influences. This has advantages, for example, when transporting the lamps, where otherwise the displacement or even deformation of the inner electrode can occur. In addition, the handling of the inner electrode 12 is simpler, for example when producing the lamps or when replacing the inner electrode 12.
  • the slots are arranged in an overlapping manner parallel to the longitudinal axis of the inner electrode 12 and in the direction of the longitudinal axis.
  • the figures 6 show to 9 straight slots 13, a zigzag-shaped slots 14, rectangular slots 15 and finally serpentine-shaped slots 16.
  • the a ⁇ individual slots are also arranged 12 either along the entire longitudinal extent of the inner electrode (Fig. 9) or at least the majority of the longitudinal extent (Fig. 6, 7 and 8).
  • the slots are vorzugswei ⁇ se distributed over the entire circumference of the inner electrode 12.
  • a plurality of longitudinal slots 17 are connected by means of transverse slots 18.
  • An even flex- xiblere adaptation of the inner electrode is achieved at small Unebenhei ⁇ th of the inner tube.
  • a plurality of straight slots 19 are inclined, that is not parallel to the longitudinal axis of the inner electrode ⁇ 12th
  • the inner electrode is in each case perforated. Round holes as well as rectangles, diamonds etc. are suitable as perforation patterns. This results in a higher flexibility of the inner electrode compared to the unperforated versions with the same wall thickness. This ensures that the inner electrode better adapts to unevenness especially on very klei ⁇ ner scale to the inner tube.

Abstract

Eine dielektrische Barrieren-Entladungslampe in koaxialer Doppelrohranordnung weist eine Außen- und eine Innenelektrode auf. Die Innenelektrode ist als Rohr ausgebildet ist, wobei das Rohr mit mindestens einem Schlitz versehen ist, der bezüglich der Längsachse des Rohrs lokal oder zumindest abschnittsweise sowohl eine Komponente in axialer als auch in azimutaler Richtung aufweist.

Description

Beschreibung
Dielektrische Barrieren-Entladungslampe in Doppelrohrkon¬ figuration
Technisches Gebiet
Die Erfindung geht aus von einer dielektrische Barrieren- Entladungslampe mit einem Entladungsgefäß in koaxialer Doppelrohranordnung, d.h. ein Innenrohr ist koaxial innerhalb eines Außenrohrs angeordnet. Dabei sind Innenrohr und Außenrohr an ihren beiden Stirnseiten miteinander verbunden und bilden so das gasdichte Entladungsgefäß. Der vom Entladungsgefäß umschlossene Entladungsraum er¬ streckt sich also zwischen Innen- und Außenrohr.
Diese Art von Entladungslampen weist typischerweise eine erste Elektrode auf, die innerhalb des Innenrohrs ange¬ ordnet ist und eine zweite Elektrode, die auf der Außen¬ seite des Außenrohrs angeordnet ist. Beide Elektroden be¬ finden sich somit außerhalb des Entladungsgefäßes. Es handelt sich in diesem Fall also um eine zweiseitig die- lektrisch behinderte Entladung. Wenn im Folgenden der Einfachheit wegen gelegentlich von der inneren Elektrode oder Innenelektrode und äußeren Elektrode oder Außen¬ elektrode die Rede ist, so bezieht sich diese Bezeichnung folglich lediglich auf die räumliche Anordnung der betreffenden Elektrode bezüglich der koaxialen Doppelrohranordnung, d.h. innerhalb des Innenrohrs bzw. auf der Außenseite des Außenrohrs. Einerseits soll die innere E- lektrode fest an der Wand des Innenrohrs anliegen, d.h. ohne durchzuhängen, andererseits soll sie möglichst leicht zu montieren sein. Anwendung findet dieser Lampentyp insbesondere für die UV-Bestrahlung in der Prozesstechnik, beispielsweise für die Oberflächenreinigung und -aktivierung, Photolytik, Ozonerzeugung, Trinkwasserreinigung, Metallisierung, und UV-Curing. In diesem Zusammenhang ist auch die Bezeichnung Strahler oder UV-Strahler gebräuchlich.
Stand der Technik
Aus der Schrift DE 42 22 130 Al ist ein koaxialer Doppel¬ rohrstrahler bekannt. Die Innenelektrode ist hier als spiralförmiger Metalldraht ausgeführt. Nachteilig ist al- lerdings, dass diese Art der Innenelektrode das Innenrohr nur auf einem relativ kleinen Flächenanteil kontaktiert. Außerdem entspricht der spiralförmige Metalldraht einer relativ langen Leiterbahn mit entsprechend höherem ohm- schen und induktiven Widerstand, wodurch sich die Ener- gieeinkoppelung verschlechtert.
In der Schrift EP 0 703 603 Al ist ein koaxialer Doppel¬ rohrstrahler offenbart, dessen rohrförmige Innenelektrode in Längsachsrichtung einen durchgängigen geraden Schlitz aufweist. Als Alternative ist eine rohrförmige Innen- elektrode aus zwei gegeneinander beabstandeten Halbscha¬ len offenbart. Nachteilig ist jedenfalls, dass sowohl Schwankungen des Durchmessers längs des Innenrohrs als auch Welligkeiten und sonstige Unebenheiten in Umfangs- richtung nicht ausgeglichen werden können.
Darstellung der Erfindung
Die Aufgabe der vorliegenden Erfindung ist es, eine die¬ lektrische Barrieren-Entladungslampe in koaxialer Doppel- rohranordnung mit verbesserter inneren Elektrode anzugeben .
Diese Aufgabe wird gelöst durch eine dielektrische Bar¬ rieren-Entladungslampe mit einem Entladungsgefäß, das ein Außenrohr und ein Innenrohr umfasst, wobei das Innenrohr koaxial innerhalb des Außenrohrs angeordnet ist, das In¬ nenrohr und das Außenrohr gasdicht miteinander verbunden sind, wodurch zwischen Innen- und Außenrohr ein mit einem Entladungsmedium gefüllter Entladungsraum gebildet ist, einer ersten Elektrode und mindestens einer weiteren E- lektrode, wobei die erste Elektrode innerhalb des Innen¬ rohrs angeordnet ist, dadurch gekennzeichnet, dass die erste Elektrode als Rohr ausgebildet ist, wobei das Rohr mit mindestens einem Schlitz versehen ist, der bezüglich der Längsachse des Rohrs lokal oder zumindest ab¬ schnittsweise sowohl eine Komponente in axialer als auch in azimutaler Richtung aufweist.
Außerdem wird die Aufgabe auch dadurch gelöst, dass das Rohr mit zwei oder mehr axialen Schlitzen versehen ist.
Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.
Der Hauptgedanke der Erfindung besteht darin, die Schlit¬ zung des für die Innenelektrode vorgesehenen Rohrs auf den Umfang bzw. die Mantelfläche des Rohr geeignet zu verteilen und nicht wie im Stand der Technik auf einen geraden axialen Schlitz zu beschränken. Zu diesem Zweck ist das Rohr erfindungsgemäß mit mindestens einem Schlitz versehen, der - wenn man die Mantelfläche des Rohrs in Zylinderkoordinaten betrachtet - lokal oder zumindest ab- schnittsweise sowohl eine Komponente in Richtung der Längsachse (axial) als auch in Richtung des Azimut (azi¬ mutal) aufweist. Durch die azimutale Komponente wird auch in Umfangsrichtung eine bessere Anpassung an lokale Unebenheiten des Innenrohrs erzielt. Dadurch wird eine bes- sere Kontaktierung der rohrförmigen Innenelektrode an das Innenrohr des Entladungsgefäßes der Lampe bei gleichzei¬ tig verbesserter mechanischen Stabilität erreicht.
Im Falle eines einzigen Schlitzes ist dieser vorzugsweise durchgängig. Im Falle von mehreren Schlitzes ist höchs- tens einer durchgängig und die anderen Schlitze nicht, damit die rohrförmigen Innenelektrode nicht in mehrere Einzelteile zerfällt, was die Handhabung nahezu unmöglich machen würde .
In einer ersten Ausführungsform ist der Schlitz spiral- förmig. Mit anderen Worten dreht sich der Schlitz spiralförmig um die Längsachse der rohrförmigen Innenelektrode. Durch den im Vergleich zu der im Stand der Technik geraden Schlitzung der Innenelektrode erfindungsgemäß verlän¬ gerten Schlitz kann sich die Innenelektrode besser lokal verformen und den Unebenheiten und Welligkeiten des Innenrohrs anpassen. Außerdem wird durch den spiralförmigen Schlitz ein im Vergleich zu einem geraden Schlitz homogeneres elektrisches Feld erzeugt. Damit und mit der ver¬ besserten Kontaktierung zwischen Innenelektrode und In- nenrohr wird eine bessere Energieeinkopplung in den Entladungsraum erreicht und schließlich eine Erhöhung der Strahlungsausbeute. Die bevorzugte Anzahl von Drehungen hängt dabei von der Länge der Elektroden, die Wandstärke des für die Innenelektrode verwendeten Rohres sowie dem Rohrdurchmesser ab. Es hat sich als günstig erwiesen, wenn die Anzahl der Drehungen zwischen X-i-d und lOO-i'-J, vorzugsweise zwischen 5-l-d und 50-£-d liegt, wobei £ die Länge der Innenelektrode in Meter (m) und d die Wandstär¬ ke der Innenelektrode in Millimeter (mm) bezeichnen. Es hat sich nämlich gezeigt, dass der Rohrcharakter der In- nenelektrode erhalten bleiben muss. Wenn nämlich die Innenelektrode gar als Spiralband ausgeführt wird, hat das den Nachteil, dass es unter Umständen nicht komplett über die gesamte Länge des Innenrohr anliegt sondern sich bei der Montage nach dem Entspannen im Innenrohr nur an ein- zelnen Stellen, vornehmlich am vorderen und hinteren Ende, des Innenrohrs anlegt.
In Varianten der vorstehend erläuterten Ausführungsform ist der Schlitz dreieckförmig, rechteck- oder U-förmig, mäanderförmig, insbesondere sinusförmig oder schlangenli- nienförmig.
In einer weiteren bevorzugten Ausführungsform weist die rohrförmige Innenelektrode zwei oder mehr nicht vollstän¬ dig durchgängige Schlitze auf. Vorzugsweise überlappen sich die Schlitze gegenseitig. Die Länge der Überlappung in mm liegt dabei vorzugsweise im Bereich zwischen 0,2-R und 8-/?, besonders bevorzugt im Bereich zwischen I R und A-R, wobei R den Radius des Innenrohrs in mm bezeichnet. Durch die nicht durchgängige Schlitzung ist die Innen¬ elektrode mechanisch stabiler gegenüber äußeren Einflüs- sen. Dies hat z.B. beim Transport der Lampen Vorteile, wo es ansonsten zur Verschiebung oder gar Verformung der Innenelektrode kommen kann. Außerdem ist die Handhabung der Innenelektrode mit mehreren nicht durchgängigen Schlitzen einfacher, z.B. beim Herstellen der Lampen oder beim Aus- wechseln der Innenelektrode. Bei dieser Ausführungsform sind viele verschiedene Formen für die Schlitze geeignet, z.B. auch dreieckförmige, rechteck- oder U-förmige, mäan- derförmige, insbesondere sinusförmig oder schlangenli- nienförmige. Darüber hinaus sind auch gerade Schlitze ge¬ eignet, die sowohl axial auch schräg verlaufen können. Als besonders geeignet hat es sich erwiesen, wenn Längs¬ und Querschlitze miteinander verbunden sind. Bevorzugt verlaufen die so verbundenen Schlitze auf die gesamte Länge betrachtet einmal um den Rohrumfang. Auf diese Wei¬ se wird eine noch flexiblere Anpassung der Innenelektrode auch an kleine Unebenheiten des Innenrohrs erreicht.
Die rohrförmige Innenelektrode kann beispielsweise aus einem Metallblech gefertigt sein. In einer bevorzugten Weiterbildung ist das Metallblech perforiert. Als Perfo¬ rationsmuster eignen sich unter anderem runde Löcher aber auch Rechtecke, Rauten etc.. Daraus resultiert im Ver¬ gleich zu den unperforierten Ausführungen bei gleicher Wandstärke eine höhere Flexibilität der Innenelektrode. Dadurch wird erreicht, dass sich die Innenelektrode bei Unebenheiten auch auf sehr kleiner Skala besser an das Innenrohr anpasst. Ein weiterer Vorteil der perforierten Innenelektrode ist, dass dadurch die Wärmeabfuhr aus dem Innenrohr des Entladungsgefäßes erhöht wird. Dies führt letztlich zu einer höheren Lebensdauer der Lampe. Der unperforierte Flächenanteil bezüglich der Gesamtfläche der Innenelektrode liegt typischerweise zwischen 0,1 und 0,95, vorzugsweise zwischen 0,3 und 0,7. Die maximale lichte Weite der Perforierung liegt bevorzugt zwischen 1 und 10 mm, da sonst lokale Feldverzerrungen resultieren, die die Strahlungsausbeute reduzieren. Kurze Beschreibung der Zeichnungen
Im Folgenden soll die Erfindung anhand von Ausführungs¬ beispielen näher erläutert werden. Die Figuren zeigen:
Fig. Ia eine Längsschnittsdarstellung einer erfindungsgemäßen dielektrischen Barrieren- Entladungslampe,
Fig. Ib eine Längsschnittsdarstellung der Lampe aus Fig. 1
Fig. 2 eine Seitenansicht des Innenrohrs einschließlich Innenelektrode der Lampe aus Fig. 1,
Fig. 3 eine Seitenansicht des Innenrohrs einschließlich Innenelektrode einer Variante mit durchgängigem Schlitz,
Fig. 4 und 5 weitere Varianten einer Innenelektrode mit durchgängigem Schlitz in Seitenansicht,
Fig. 6 eine Seitenansicht des Innenrohrs einschließlich Innenelektrode mit nicht durchgängigen Schlit¬ zen,
Fig. 7 bis 11 verschiedene Varianten einer Innenelektro¬ de mit nicht durchgängigen Schlitzen in Seiten- ansieht.
Bevorzugte Ausführung der Erfindung
In den Figuren werden gleiche oder funktionsgleiche Ele¬ mente mit den gleichen Bezugszeichen versehen. Die Figuren Ia, Ib zeigen in stark schematisierter Darstellung eine Seitenansicht bzw. eine Querschnittsdarstellung eines ersten Ausführungsbeispiels der erfin¬ dungsgemäßen dielelektrischen Barrieren-Entladungs- lampe 1. Das längliche Entladungsgefäß der Lampe 1 be¬ steht aus einem Außenrohr 2 und einem Innenrohr 3 in koaxialer Doppelrohranordnung, die so die Längsachse des Entladungsgefäßes definieren. Die typische Länge der Roh¬ re beträgt je nach Anwendung zwischen ca. 10 und 250 cm. Das Außenrohr 2 hat einen Durchmesser von 40 mm und eine Wandstärke von 2 mm. Das Innenrohr 3 hat einen Durchmes¬ ser von 16 mm und eine Wandstärke von 1 mm. Beide Roh¬ re 2, 3 bestehen aus UV-Strahlung durchlässigem Quarzglas. Außerdem ist das Entladungsgefäß an seinen beiden Stirnseiten derart verschlossen, dass ein länglicher, ringspaltförmiger Entladungsraum 4 gebildet ist. Zu diesem Zweck weist das Entladungsgefäß an seinen beiden Enden jeweils geeignet geformte, ringartige Gefäßabschnit¬ te 5 auf. Außerdem ist an einem der Gefäßabschnitte 5 ein Pumprohr (nicht dargestellt) angesetzt, mit Hilfe dessen der Entladungsraum 4 zunächst evakuiert und anschließend mit 15 kPa Xenon gefüllt wird. Auf der Außenseite der Wand des Außenrohrs 2 ist ein Drahtnetz 6 aufgezogen, das die Außenelektrode der Lampe 1 bildet. Im Inneren des In- nenrohrs 3, d.h. ebenfalls außerhalb des durch das Entla¬ dungsgefäß umschlossenen Entladungsraums 4, ist ein ge¬ schlitztes Metallrohr 7 angeordnet, das die Innenelektro¬ de der Lampe bildet. Die Innenelektrode 7 besteht aus ei¬ nem 0,1 mm dicken Metallblech, vorzugsweise VA-Blech. Der Schlitz 8 dreht sich entlang der Länge L der Innenelektrode 7 - diese beträgt hier 0,5 m - um eine Umdrehung, d.h. 360°. In der Längsschnittdarstellung von Figur Ia ist der Schnitt folglich nur auf der halben Länge einer Halbschale des längs geschnittenen Metallrohrs 7 zu er¬ kennen .
Im Folgenden wird auf Figur 2 verwiesen, die das Innen- röhr 3 einschließlich Innenelektrode 7 in einer schematischen Seitenansicht zeigt. Das Außenrohr mit Außenelekt¬ rode ist der besseren Übersichtlichkeit wegen hier nicht dargestellt. In dieser Darstellung sieht man deutlich den durchgängigen Schlitz 8, der sich prinzipiell spiralför- mig um die Längsachse der rohrförmigen Innenelektrode 7 dreht, hier allerdings nur mit einer einzigen Umdrehung bezogen auf die gesamte Länge L der Innenelektrode 7. Entscheidend ist hier, dass der Schlitz 8 länger ist als ein gerader Schlitz, der parallel zur Längsachse der In- nenelektrode verläuft. Dadurch kann sich die Innenelekt¬ rode 7 lokal besser verformen und damit an die Innenwand des Innenrohrs 3 anschmiegen, auch bei typischen lokalen Unebenheiten von Quarzrohren. Außerdem wird durch den spiralförmigen Schlitz 8 ein im Vergleich zu einem gera- den Schlitz homogeneres elektrisches Feld erzeugt. Damit und mit der verbesserten Kontaktierung zwischen Innenelektrode 7 und Innenrohr 3 wird eine bessere Energieein¬ kopplung in den Entladungsraum 4 (siehe Fig. Ia) erreicht und schließlich eine Erhöhung der Strahlungsausbeute.
In den Figuren 3 bis 5 sind weitere Varianten einer geschlitzten Innenelektrode 7 gezeigt, bei denen der Schlitz wie in Fig. 2 jeweils durchgängig ist. Im Detail zeigen die Figuren 3 bis 5 einen zickzackförmigen Schlitz 9, einen rechteckförmigen Schlitz 10 und schließ- lieh einen schlangenlinienförmigen Schlitz 11. Die Figuren 6 bis 11 zeigen verschiedene Varianten einer Innenelektrode 12 mit mehreren nicht durchgängigen Schlitzen. Durch die nicht durchgängige Schlitzung ist die Innenelektrode 12 mechanisch stabiler gegenüber äuße- ren Einflüssen. Dies hat z.B. beim Transport der Lampen Vorteile, wo es ansonsten zur Verschiebung oder gar Verformung der Innenelektrode kommen kann. Außerdem ist die Handhabung der Innenelektrode 12 einfacher, z.B. beim Herstellen der Lampen oder beim Auswechseln der Innen- elektrode 12.
In den Figuren 6 bis 9 sind die Schlitze parallel zur Längsachse der Innenelektrode 12 und in Richtung der Längsachse betrachtet überlappend angeordnet. Im Detail zeigen die Figuren 6 bis 9 gerade Schlitze 13 , zickzack- förmige Schlitze 14, rechteckförmige Schlitze 15 und schließlich schlangenlinienförmige Schlitze 16. Die ein¬ zelnen Schlitze sind außerdem entweder entlang der gesamten Längsausdehnung der Innenelektrode 12 angeordnet (Fig. 9) oder zumindest des Großteils der Längsausdehnung (Fig. 6, 7 und 8) . Außerdem sind die Schlitze vorzugswei¬ se über den gesamten Umfang der Innenelektrode 12 verteilt angeordnet.
In der Figur 10 sind mehrere Längsschlitze 17 mittels Querschlitzen 18 verbunden. Dadurch wird eine noch fle- xiblere Anpassung der Innenelektrode an kleine Unebenhei¬ ten des Innenrohrs erreicht. In der Figur 11 sind mehrere gerade Schlitze 19 schräg, d.h. nicht parallel zur Längs¬ achse der Innenelektrode 12 angeordnet.
In nicht dargestellten Varianten der in den Figuren 2 bis 11 gezeigten Ausführungen ist die Innenelektrode jeweils perforiert. Als Perforationsmuster eignen sich unter anderem runde Löcher aber auch Rechtecke, Rauten etc.. Daraus resultiert im Vergleich zu den unperforierten Ausführungen bei gleicher Wandstärke eine höhere Flexibilität der Innenelektrode. Dadurch wird erreicht, dass sich die Innenelektrode bei Unebenheiten vor allem auf sehr klei¬ ner Skala besser an das Innenrohr anpasst.

Claims

Ansprüche
1. Dielektrische Barrieren-Entladungslampe (1) mit
o einem Entladungsgefäß, das ein Außenrohr (2) und ein Innenrohr (3) umfasst, wobei - das Innenrohr (3) koaxial innerhalb des Außen¬ rohrs (2) angeordnet ist,
- das Innenrohr (3) und das Außenrohr (2) gasdicht miteinander verbunden sind, wodurch zwischen Innen- und Außenrohr ein mit einem Ent- ladungsmedium gefüllter Entladungsraum (4) gebildet ist, o einer ersten Elektrode (7; 12) und mindestens einer weiteren Elektrode (6), wobei die erste Elektrode (7; 12) innerhalb des Innen- rohrs (3) angeordnet ist, dadurch gekennzeichnet, dass o die erste Elektrode (7; 12) als Rohr ausgebildet ist, wobei das Rohr mit mindestens einem Schlitz (8-11; 13-19) versehen ist, der bezüglich der Längsachse des Rohrs lokal oder zumindest ab¬ schnittsweise sowohl eine Komponente in axialer als auch in azimutaler Richtung aufweist.
2. Lampe nach Anspruch 1, wobei der Schlitz (8-11) sich über die gesamte Länge des Elektrodenrohrs (7) er- streckt.
3. Lampe nach Anspruch 1 oder 2, wobei der Schlitz (8) spiralförmig ist.
4. Lampe nach Anspruch 3, wobei Anzahl der spiralförmigen Drehungen des Schlitzes (8) zwischen X-H- d und XOO-£-d, vorzugsweise zwischen 5-£-d und 50-£-d liegt, wobei £ die Länge der Innenelektrode in Meter (m) und d die Wandstärke der Innenelektrode in Millimeter (mm) bezeichnen.
5. Lampe nach Anspruch 1 oder 2, wobei der Schlitz (9) dreieckförmig ist.
6. Lampe nach Anspruch 1 oder 2, wobei der Schlitz (10) rechteck- oder U-förmig ist.
7. Lampe nach Anspruch 1 oder 2, wobei der Schlitz (11) mäanderförmig, insbesondere sinusförmig oder schlan- genlinienförmig ist.
8. Lampe nach Anspruch 1, wobei das Elektrodenrohr (12) mehrere Schlitze (13-19) aufweist, die längs des E- lektrodenrohrs (12) angeordnet sind.
9. Lampe nach Anspruch 8, wobei zumindest ein Teil der Schlitze (13-16; 19) sich gegenseitig überlappen und die Länge der Überlappung dabei vorzugsweise im Be¬ reich zwischen 0,2-R und 8-/?, besonders bevorzugt im Bereich zwischen 1-7? und A-R, liegt, wobei R den Radius des Innenrohrs in mm bezeichnet.
10. Lampe nach Anspruch 8 oder 9, wobei zumindest einige der Schlitze (13-19) an unterschiedlichen Stellen des Umfangs des Elektrodenrohrs (12) angeordnet sind.
11. Lampe nach Anspruch 7 oder 8, wobei die Schlitze (13) geradlinig sind.
12. Lampe nach Anspruch 7 oder 8, wobei die Schlitze (14) dreieckförmig sind.
13. Lampe nach Anspruch 7 oder 8, wobei die Schlitze (15) rechteck- oder U-förmig sind.
14. Lampe nach Anspruch 7 oder 8, wobei die Schlitze (16) mäanderförmig, insbesondere sinusförmig oder schlan- genlinienförmig sind.
15. Lampe nach einem der Ansprüche 7 bis 12, wobei die Schlitze (13-17) parallel zur Längsachse des Entla¬ dungsrohrs (12) angeordnet sind.
16. Lampe nach einem der Ansprüche 7 bis 12, wobei die Schlitze (19) schräg zur Längsachse des Entladungs¬ rohrs (12) angeordnet sind.
17. Lampe nach Anspruch 9, wobei ein Teil (17) der Schlitze parallel zur Längsachse des Entladungs¬ rohrs (12) angeordnet sind und wobei diese Längs¬ schlitze (17) mittels Querschlitze (18) miteinander verbunden sind.
18. Dielektrische Barrieren-Entladungslampe (1) mit
o einem Entladungsgefäß, das ein Außenrohr (2) und ein Innenrohr (3) umfasst, wobei - das Innenrohr (3) innerhalb des Außenrohrs (2) angeordnet ist,
- das Innenrohr (3) und das Außenrohr (2) gasdicht miteinander verbunden sind, wodurch zwischen Innen- und Außenrohr ein mit einem Ent- ladungsmedium gefüllter Entladungsraum (4) gebildet ist, o einer ersten Elektrode (12) und mindestens einer weiteren Elektrode (6), wobei die erste Elektrode (12) innerhalb des Innen- rohrs (3) angeordnet ist, dadurch gekennzeichnet, dass o die erste Elektrode (12) als Rohr ausgebildet ist, wobei das Rohr mit zwei oder mehr axialen Schlitzen (8-11; 13-19) versehen ist.
19. Lampe nach einem der vorstehenden Ansprüche, wobei die Innenelektrode aus Blech gefertigt ist.
20. Lampe nach Anspruch 19 mit einer Perforierung.
PCT/EP2007/054158 2007-04-27 2007-04-27 Dielektrische barrieren-entladungslampe in doppelrohrkonfiguration WO2008135076A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN2007800527696A CN101663731B (zh) 2007-04-27 2007-04-27 双管配置的介电阻挡放电灯
DE112007003399T DE112007003399A5 (de) 2007-04-27 2007-04-27 Dielektrische Barrieren-Entladungslampe in Doppelrohrkonfiguration
PCT/EP2007/054158 WO2008135076A1 (de) 2007-04-27 2007-04-27 Dielektrische barrieren-entladungslampe in doppelrohrkonfiguration
JP2010504459A JP2010525531A (ja) 2007-04-27 2007-04-27 誘電体バリア放電ランプ
KR1020097024845A KR101142242B1 (ko) 2007-04-27 2007-04-27 이중관으로 구성되는 유전체 장벽 방전 램프
US12/597,882 US20100109505A1 (en) 2007-04-27 2007-04-27 Dielectric Barrier Discharge Lamp Configured as a Double Tube
TW097114742A TWI459433B (zh) 2007-04-27 2008-04-23 雙管結構之介電阻障式放電燈

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/054158 WO2008135076A1 (de) 2007-04-27 2007-04-27 Dielektrische barrieren-entladungslampe in doppelrohrkonfiguration

Publications (1)

Publication Number Publication Date
WO2008135076A1 true WO2008135076A1 (de) 2008-11-13

Family

ID=38235461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/054158 WO2008135076A1 (de) 2007-04-27 2007-04-27 Dielektrische barrieren-entladungslampe in doppelrohrkonfiguration

Country Status (7)

Country Link
US (1) US20100109505A1 (de)
JP (1) JP2010525531A (de)
KR (1) KR101142242B1 (de)
CN (1) CN101663731B (de)
DE (1) DE112007003399A5 (de)
TW (1) TWI459433B (de)
WO (1) WO2008135076A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009069015A1 (en) * 2007-11-28 2009-06-04 Philips Intellectual Property & Standards Gmbh Dielectric barrier discharge lamp
KR100943185B1 (ko) * 2008-04-24 2010-02-19 삼성모바일디스플레이주식회사 유기 발광 디스플레이 장치
US8399869B2 (en) * 2008-12-11 2013-03-19 Osram Gesellschaft Mit Beschraenkter Haftung UV luminaire having a plurality of UV lamps, particularly for technical product processing
KR101103991B1 (ko) * 2009-08-12 2012-01-06 한전케이피에스 주식회사 원자로 상부안내구조물의 인양시 연료집합체의 동시 인양 확인장치
JP6281502B2 (ja) * 2014-06-12 2018-02-21 株式会社村田製作所 積層セラミックコンデンサ
KR102399306B1 (ko) * 2020-03-20 2022-05-19 주식회사 아인스 방전관 및 이의 제조 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0607960A1 (de) * 1993-01-20 1994-07-27 Ushiodenki Kabushiki Kaisha Entladungslampe mit dielektrischer Sperrschicht
JPH0714553A (ja) * 1993-06-25 1995-01-17 Ushio Inc 誘電体バリヤ放電ランプ
EP0767484A1 (de) * 1995-10-02 1997-04-09 Ushiodenki Kabushiki Kaisha Entladungslampe mit dielektrischer Sperrschicht
EP0871205A1 (de) * 1997-04-07 1998-10-14 Nec Corporation Edelgasentladungslampe
DE19856428C1 (de) * 1998-12-08 2000-05-04 Heraeus Noblelight Gmbh Entladungslampe

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2775699B2 (ja) * 1994-09-20 1998-07-16 ウシオ電機株式会社 誘電体バリア放電ランプ
DE19817477A1 (de) * 1998-04-20 1999-10-21 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Leuchtstofflampe mit auf die geometrische Entladungsverteilung abgestimmter Leuchtstoffschichtdicke
DE19839329A1 (de) * 1998-08-28 2000-03-09 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Elektronisches Vorschaltgerät für Entladungslampe mit dielektrisch behinderten Entladungen
DE19843419A1 (de) * 1998-09-22 2000-03-23 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Entladungslampe mit dielektrisch behinderten Elektroden
JP3439679B2 (ja) * 1999-02-01 2003-08-25 株式会社オーク製作所 高輝度光照射装置
DE10147961A1 (de) * 2001-09-28 2003-04-10 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Dielektrische Barriere-Entladungslampe und Verfahren sowie Schaltunggsanordnung zum Zünden und Betreiben dieser Lampe
EP1328007A1 (de) * 2001-12-14 2003-07-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielectric barrier discharge lamp with starting aid
JP2005005174A (ja) * 2003-06-13 2005-01-06 Hoya Candeo Optronics株式会社 エキシマランプ
DE102004020398A1 (de) * 2004-04-23 2005-11-10 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Dielektrische Barriere-Entladungslampe mit Außenelektroden und Beleuchtungssystem mit dieser Lampe
EP1769525B1 (de) * 2004-07-09 2010-03-03 Philips Intellectual Property & Standards GmbH Entladungslampe mit dielektrischer barriere mit integrierten multifunktionsmitteln

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0607960A1 (de) * 1993-01-20 1994-07-27 Ushiodenki Kabushiki Kaisha Entladungslampe mit dielektrischer Sperrschicht
JPH0714553A (ja) * 1993-06-25 1995-01-17 Ushio Inc 誘電体バリヤ放電ランプ
EP0767484A1 (de) * 1995-10-02 1997-04-09 Ushiodenki Kabushiki Kaisha Entladungslampe mit dielektrischer Sperrschicht
EP0871205A1 (de) * 1997-04-07 1998-10-14 Nec Corporation Edelgasentladungslampe
DE19856428C1 (de) * 1998-12-08 2000-05-04 Heraeus Noblelight Gmbh Entladungslampe

Also Published As

Publication number Publication date
KR20100005148A (ko) 2010-01-13
TW200903568A (en) 2009-01-16
CN101663731B (zh) 2011-09-07
TWI459433B (zh) 2014-11-01
CN101663731A (zh) 2010-03-03
DE112007003399A5 (de) 2010-08-05
KR101142242B1 (ko) 2012-05-07
US20100109505A1 (en) 2010-05-06
JP2010525531A (ja) 2010-07-22

Similar Documents

Publication Publication Date Title
WO2008135076A1 (de) Dielektrische barrieren-entladungslampe in doppelrohrkonfiguration
WO2007065790A2 (de) Dampferzeugerrohr, zugehöriges herstellungsverfahren sowie durchlaufdampferzeuger
WO2006120068A1 (de) Wärmetauscher
EP1718115A1 (de) Rohrheizkörper mit konischer Heizleiterwendel
WO2007033921A1 (de) FILTERELEMENT UND RUßFILTER MIT GEOMETRISCH ÄHNLICHEN KANÄLEN
EP2297772B1 (de) Dielektrische barriere-entladungslampe in koaxialer doppelrohranordnung mit getter
EP2547977B1 (de) Wärmetauscher mit halteelement
WO2015078704A1 (de) Heizvorrichtung
EP1849178B1 (de) Dielektrische barriere-entladungslampe in doppelrohrkonfiguration
DE112008003418B4 (de) Dielektrische Barriere-Entladungslampe mit Haltescheibe
EP2149770B1 (de) Verwendung eines Röhrenwärmeüberträgers und Verfahren zur Wärmeübertragung zwischen wenigstens zwei Lebensmittelströmen
WO2013050176A1 (de) Stützstruktur für ein filterelement
EP0745813A2 (de) Wärmeübertrager, insbesondere für einen Heizkessel
WO2009068073A1 (de) Dielektrische barrieren-entladungslampe in doppelrohrkonfiguration
EP3953646B1 (de) Elektrisches heizgerät
DE102009036297B3 (de) Excimerlampe
EP3385590B1 (de) Wickelschlauch
WO2011117045A1 (de) Dielektrische barriere-entladungslampe mit haltescheibe
WO2001009544A1 (de) Schlauch mit gewellter innenfläche und einschubteil
EP3871300A1 (de) Elektrode für die erzeugung einer koronaentladung
DE102009007859A1 (de) Dielektrische Barriere-Entladungslampe mit Zentrierelement
DE102017112328A1 (de) Elektrische Heizvorrichtung und Verfahren zur Herstellung einer elektrischen Heizvorrichtung
DE8432762U1 (de) Waermeaustauscher, insbesondere fuer waermepumpen und kaelteanlagen
DE304924C (de)
WO2009043741A1 (de) VERFAHREN ZUM VERBINDEN EINES ENTLADUNGSGEFÄßES EINER ENTLADUNGSLAMPE MIT EINEM ROHRSTÜCK, INSBESONDERE EINEM PUMPROHR

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780052769.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07728613

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1120070033991

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2010504459

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12597882

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20097024845

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 07728613

Country of ref document: EP

Kind code of ref document: A1

REF Corresponds to

Ref document number: 112007003399

Country of ref document: DE

Date of ref document: 20100805

Kind code of ref document: P