WO2008135059A1 - Gros moteur diesel à turbocompresseur avec réacteur scr - Google Patents

Gros moteur diesel à turbocompresseur avec réacteur scr Download PDF

Info

Publication number
WO2008135059A1
WO2008135059A1 PCT/EP2007/003915 EP2007003915W WO2008135059A1 WO 2008135059 A1 WO2008135059 A1 WO 2008135059A1 EP 2007003915 W EP2007003915 W EP 2007003915W WO 2008135059 A1 WO2008135059 A1 WO 2008135059A1
Authority
WO
WIPO (PCT)
Prior art keywords
turbine
exhaust gas
engine
exhaust
turbocharger
Prior art date
Application number
PCT/EP2007/003915
Other languages
English (en)
Inventor
Niels Kjemtrup
Original Assignee
Man Diesel Filial Af Man Diesel Se, Tyskland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Man Diesel Filial Af Man Diesel Se, Tyskland filed Critical Man Diesel Filial Af Man Diesel Se, Tyskland
Priority to CN2007800449451A priority Critical patent/CN101553648B/zh
Priority to JP2009540606A priority patent/JP4592816B2/ja
Priority to PCT/EP2007/003915 priority patent/WO2008135059A1/fr
Priority to KR1020097010575A priority patent/KR101118661B1/ko
Publication of WO2008135059A1 publication Critical patent/WO2008135059A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/04Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using kinetic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/005Exhaust driven pumps being combined with an exhaust driven auxiliary apparatus, e.g. a ventilator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/20Control of the pumps by increasing exhaust energy, e.g. using combustion chamber by after-burning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • F02B41/02Engines with prolonged expansion
    • F02B41/10Engines with prolonged expansion in exhaust turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/02Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for marine vessels or naval applications
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B61/00Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing
    • F02B61/04Adaptations of engines for driving vehicles or for driving propellers; Combinations of engines with gearing for driving propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B63/00Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices
    • F02B63/04Adaptations of engines for driving pumps, hand-held tools or electric generators; Portable combinations of engines with engine-driven devices for electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a large supercharged diesel engine, such as a main engine of a ship, fitted with a SCR (Selective Catalytic Reduction) reactor for purifying exhaust gases from NO x .
  • SCR Selective Catalytic Reduction
  • NO x in the exhaust gas can be reduced with primary and/or secondary reduction methods.
  • Primary methods are methods that affect the engine combustion process directly. The actual degree of reduction depends on engine type and reduction method, but varies from 10% to more than 50%.
  • the SCR reactor contains several layers of catalyst .
  • the catalyst volume and, consequently, the size of the reactor depend on the activity of the catalyst, the desired degree of NO x reduction required.
  • the catalyst has typically a monolithic structure, which means that it consists of blocks of catalyst with a large number of parallel channels, the walls of which are catalytically active.
  • the exhaust gases must have a temperature of at least 280-350 0 C, depending on fuel sulphur content, i.e. high sulphur content requires high temperatures and low temperatures requires low temperatures, at the inlet of the SCR reactor for an effective conversion of NO x into N 2 and H 2 0.
  • the exhaust gases at the high pressure side of the turbine of the turbocharger have a temperature of approximately 350-450 0 C, whilst the exhaust gases at the low pressure side of the turbine of the turbocharger typically have a temperature of approximately 250-300 0 C.
  • the amount of energy that is produced by a steam generator driven with steam provided by the exhaust gas boiler is approximately 7.7% of the engine output at the crankshaft.
  • the turbine of the turbocharger receives significantly more energy from the hotter exhaust gases.
  • the turbocharger does not require additional energy.
  • the additional energy of the exhaust gases at the high pressure side is in the "hot” engine concept also put to use. This is done by connecting the shaft of the turbocharger via a transmission to an electric generator or by branching off a portion of the exhaust gases at the high pressure side of the turbocharger turbine and using the branched off portion of the exhaust gases to drive a power turbine (gas turbine) connected to an electric generator.
  • the amount of energy that is produced by the generator driven by the power turbine is approximately 4.4% of the engine output at the crankshaft.
  • the overall fuel efficiency will fall from 54.5% to 53.5% when compared with the SCR reactor at the high pressure side of the turbocharger turbine .
  • Such a reduction in fuel efficiency is highly undesirable and will annihilate much of the progress in fuel efficiency in recent years .
  • a large supercharged diesel engine comprising a turbocharger having an exhaust gas-driven turbine and a compressor driven by the turbine for supplying charging air to the engine cylinders, a first exhaust conduit leading the exhaust gas from the cylinders to the inlet of the turbine, a SCR converter requiring a minimum temperature for the exhaust gas entering the SCR converter in order to effectively reduce NO x in the exhaust gas to N 2 and H 2 O, a second exhaust conduit leading the exhaust gas from the outlet of the turbine to the inlet of the SCR converter, a third exhaust conduit leading the exhaust gas from the outlet of the SCR converter further on its way to the atmosphere, a heating unit that heats up the exhaust gas upstream of the turbine in order obtain at least said minimum temperature of the exhaust gas at the inlet of the SCR converter, and a power turbine driven
  • the engine comprises an exhaust gas boiler placed in the exhaust conduit downstreams of the SCR reactor, and the engine may further comprise a steam turbine driven by the steam produced by said exhaust gas boiler, thereby further increasing the overall fuel efficiency.
  • the power turbine or the mechanical power takeoff is used to drive an electric generator.
  • the engine may further comprise an electric generator driven by the power turbine or by the power takeoff from the shaft of the turbocharger .
  • the heating unit can be a burner.
  • the activation and/or intensity of the burner is controlled by a controller in response to a temperature sensor at - or upstreams from - the inlet of the SCR Reactor.
  • Fig. 1 illustrates a diagram of the intake and exhaust systems of an internal combustion engine according to a first embodiment of the invention
  • Fig. 2 illustrates a diagram of the intake and exhaust systems of an internal combustion engine according to a second embodiment of the invention.
  • Fig. 1 shows a large turbocharged two-stroke diesel engine of the crosshead type 1 with its intake and exhaust systems.
  • the engine 1 has a charging air receiver 2 and an exhaust gas receiver 3.
  • the exhaust valves belonging to the combustion chambers are indicated by 4.
  • the engine 1 may e.g. be used as the main engine in an ocean going vessel or as a stationary engine for operating a generator in a power station.
  • the total output of the engine may, for example, range from 5,000 to 110,000 kW, but the invention may also be used in four-stroke diesel engines with an output of, for example, 1,000 kW.
  • the charging air is passed from the charging air receiver 2 to the scavenging air ports (not shown) of the individual cylinders.
  • the exhaust valve 4 When the exhaust valve 4 is opened, the exhaust gas flows through a first exhaust conduit into the exhaust receiver 3 and onwards through a first exhaust conduit 5 to a turbine 6 of a turbocharger, from which the exhaust gas flows away through a second exhaust conduit 7.
  • the turbine 6 drives a compressor 9 supplied via an air inlet 10.
  • the compressor 9 delivers pressurized charging air to a charging air conduit 11 leading to the charging air receiver 2.
  • the intake air in the conduit 11 passes through an intercooler 12 for cooling the charging air - that leaves the compressor at approximately 200 °C - to a temperature between 36 and 80 0 C.
  • the cooled charging air passes via an auxiliary blower 16 driven by an electric motor 17 that pressurizes the charging air flow in low or partial load conditions to the charging air receiver 2.
  • the turbocharger compressor 9 delivers sufficient compressed scavenging air and then the auxiliary blower 16 is bypassed via a non-return valve 15.
  • the exhaust gases in the first exhaust gas conduit 5 have to be heated up to an extent that results in the exhaust gases leaving the turbine 6 of the turbocharger having a temperature of at least 33O 0 C.
  • the temperature increase of the gases in the first exhaust conduit 5 has to be approximately 100 0 C.
  • a conduit 30 branches off from the exhaust conduit 5 downstream of the combustion unit 19 but upstream of the turbine 6.
  • the conduit 30 leads a portion (approximately 20% in a large two-stroke diesel engine) of the exhaust gases to an additional power turbine 31.
  • the additional power turbine 31 drives an electric generator 32.
  • the power turbine 31 has an output approximately equivalent to 7.0% of the output of the large two-stroke diesel engine 1.
  • the surplus of energy in the exhaust gas stream is thus converted to electric power, i.e. energy with a high exergy.
  • the amount of exhaust gas that is branched off to the power turbine 31 can be regulated by a variable flow regulator (not shown) in conduit 30.
  • the exhaust gases that leave the power turbine 31 are reintroduced into the main exhaust gas flow at the low pressure side of the turbine 6 upstreams the SCR reactor.
  • the second exhaust conduit 7 leads the exhaust gas from the outlet of the turbine 6 to the inlet of a SCR reactor 20. If the temperature of the exhaust gas at the inlet of the SCR reactor 20 is sufficiently high, i.e. typically above approximately 330 0 C, the NO x in the exhaust gas is converted to N 2 and H 2 O .
  • a third exhaust conduit 22 leads the charging air from the outlet of the SCR reactor 20 to the inlet of a boiler 25.
  • a fourth exhaust conduit 27 leads the exhaust gas from the outlet of the boiler 25 to the inlet of a silencer 28.
  • a fifth exhaust conduit 29 leads the exhaust gas from the outlet of the silencer 28 to the atmosphere.
  • the boiler 25 uses the heat in the exhaust gas stream to produce (superheated) steam under pressure.
  • a conduit 34 leads the steam produced by the boiler 25 to a steam turbine 37.
  • the steam turbine 37 drives an electric generator 35.
  • the steam turbine has an output power equivalent to approximately 10.8% of the output of the large two-stroke diesel engine.
  • FIG. 2 shows an alternative embodiment of the invention. This embodiment corresponds substantially to the first embodiment, except that the power turbine is replaced with a power takeoff from the turbocharger .
  • a transmission 36 connects the shaft 8 of the turbocharger with an electric generator 33.
  • the fuel efficiency of the large two-stroke diesel engine 1 is 48.7%.
  • the overall fuel efficiency in both embodiments is:
  • the engine according to the invention with the heating unit 19 on the high pressure side of the turbine 6 is with 54.2% significantly more fuel efficient than the engine described in the background art with the heating unit on the low pressure side of the turbine 6 and a fuel efficiency of 53.6%.
  • the constructional advantage of a SCR reactor on the low pressure side of the turbocharger turbine 6 can be obtained with only a small decrease in fuel efficiency when compared to the "hot engine” with the SCR reactor on the high pressure side of the turbocharger turbine that has many practical constructional problems.
  • the steam produced by the boiler 25 could be used for other purposes than driving a steam turbine, such as for heating purposes.
  • Each of the embodiments can be provided with a temperature sensor (not shown) placed near the inlet of the SCR reactor 20 for measuring the temperature of the exhaust gases in the second exhaust conduit 7.
  • the signal of the temperature sensor is communicated to a controller (not shown).
  • the controller controls heating unit 19.
  • the controller increases the activity of the heating unit 19 when the temperature of the exhaust gases in the second exhaust gas conduit 7 is not sufficiently high and reduces the activity of the combustion unit 19 when the temperature of the exhaust gases in the second exhaust gas conduit 7 is above the minimum temperature for an effective operation of the SCR reactor.
  • Both embodiments can be devised as a so-call humid air engine (not shown), e.g. an engine that is operated with charging/scavenging air with a very high absolute water (vapour) content .
  • the charging air is in this variation of the invention approximately 60 to 90 0 C (as opposed to 37 0 C in a conventional engine) and the absolute humidity is about 40 to 80 g/kg i.e. approximately 4 to 8 times the water (vapour) content of a "non-humid air” motor.
  • the humidification obtained by injecting relatively warm water in a "scrubber” (not shown) ) causes the energy content of the charging/scavenging air and thus of the exhaust gases to increase substantially.
  • the additional energy in the charging air is obtained in two ways:
  • the intercooler by reducing the amount of energy withdrawn from the charging/scavenging air by the intercooler, i.e. the amount of "waste" energy created by the intercooler is reduced, and by injecting water warmed up with hot water from the cooling system of the engine, i.e. injecting water containing "waste energy” .
  • the additional energy in the exhaust gases can be relatively efficiently recuperated in the power turbine, and thus an even higher overall fuel efficiency than indicated in the examples above can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Supercharger (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

La présente invention concerne un gros moteur diesel à turbocompresseur (1) comprenant un turbocompresseur équipé d'une turbine entraînée par des gaz d'échappement (6) et d'un compresseur (9) entraîné par la turbine et chargeant les cylindres du moteur en air. Le moteur (1) est équipé d'un réacteur SCR (20) en aval de la turbine (6) qui réduit l'oxyde d'azote (NOx) dans les gaz d'échappement en N2 et H2O. Une unité chauffante (19) augmente la température des gaz d'échappement du côté haute pression de la turbine du turbocompresseur (6) de sorte que les gaz d'échappement entrent dans le réacteur SCR (20) à une température d'au moins 330°C. Une partie du flux des gaz d'échappement est déviée en amont de la turbine de turbocompresseur (6) vers une turbine électrique (31). L'efficacité globale du carburant du moteur est améliorée par rapport à un moteur dans lequel à la fois l'unité chauffante (19) et le réacteur SCR (20) sont placés sur le côté basse pression de la turbine du turbocompresseur.
PCT/EP2007/003915 2007-05-03 2007-05-03 Gros moteur diesel à turbocompresseur avec réacteur scr WO2008135059A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2007800449451A CN101553648B (zh) 2007-05-03 2007-05-03 具有选择性催化还原反应器的大型增压柴油发动机
JP2009540606A JP4592816B2 (ja) 2007-05-03 2007-05-03 Scr反応器を備える大型ターボ過給型ディーゼルエンジン
PCT/EP2007/003915 WO2008135059A1 (fr) 2007-05-03 2007-05-03 Gros moteur diesel à turbocompresseur avec réacteur scr
KR1020097010575A KR101118661B1 (ko) 2007-05-03 2007-05-03 크로스 헤드를 구비한 대형 2행정 슈퍼 차져 디젤 엔진

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2007/003915 WO2008135059A1 (fr) 2007-05-03 2007-05-03 Gros moteur diesel à turbocompresseur avec réacteur scr

Publications (1)

Publication Number Publication Date
WO2008135059A1 true WO2008135059A1 (fr) 2008-11-13

Family

ID=38961103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/003915 WO2008135059A1 (fr) 2007-05-03 2007-05-03 Gros moteur diesel à turbocompresseur avec réacteur scr

Country Status (4)

Country Link
JP (1) JP4592816B2 (fr)
KR (1) KR101118661B1 (fr)
CN (1) CN101553648B (fr)
WO (1) WO2008135059A1 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275954A (ja) * 2009-05-29 2010-12-09 Mitsubishi Heavy Ind Ltd 脱硝部付き内燃機関
JP2011027053A (ja) * 2009-07-28 2011-02-10 Mitsubishi Heavy Ind Ltd タービン発電機の制御方法および装置
WO2011023848A1 (fr) 2009-08-28 2011-03-03 Wärtsilä Finland Oy Agencement de moteur à combustion interne
WO2011049183A1 (fr) * 2009-10-23 2011-04-28 三菱重工業株式会社 Système de turborécupération et procédé d'utilisation
WO2011065304A1 (fr) * 2009-11-26 2011-06-03 三菱重工業株式会社 Système de production d'énergie à turbine à vapeur et navire en étant équipé
WO2011087031A1 (fr) * 2010-01-15 2011-07-21 三菱重工業株式会社 Système de dénitration des gaz d'échappement, bateau équipé de ce système et procédé pour commander un système de dénitration des gaz d'échappement
US20120315204A1 (en) * 2010-01-25 2012-12-13 Kazuo Osumi Exhaust purification device and exhaust purification method for diesel engine
JP2013029111A (ja) * 2012-09-28 2013-02-07 Mitsubishi Heavy Ind Ltd 発電方法、タービン発電機、タービン発電機の制御方法、制御装置、および該タービン発電機を備えた船舶
EP2636876A1 (fr) * 2010-11-05 2013-09-11 Mitsubishi Heavy Industries, Ltd. Équipement pour récupérer l'énergie des gaz d'échappement d'un moteur
DE102012009318A1 (de) * 2012-05-10 2013-11-14 Man Diesel & Turbo, Filial Af Man Diesel & Turbo Se, Tyskland Dieselmotor und Verfahren zur Leistungssteigerung eines bestehenden Dieselmotors
JP2014015944A (ja) * 2013-10-31 2014-01-30 Mitsubishi Heavy Ind Ltd 発電方法、タービン発電機、タービン発電機の制御方法、制御装置、および該タービン発電機を備えた船舶
WO2014170559A1 (fr) * 2013-04-15 2014-10-23 Valeo Systemes De Controle Moteur Procède d'amélioration du rendement énergétique d'un système d'entraînement
EP2799687A4 (fr) * 2011-12-27 2015-09-02 Mitsubishi Heavy Ind Ltd Compresseur électrique se servant de la chaleur perdue provenant d'un moteur à combustion interne et procédé d'alimentation de celui-ci
EP3037635A1 (fr) 2014-12-22 2016-06-29 Alfa Laval Corporate AB Système et procédé de traitement de gaz d'échappement, ainsi que navire comprenant et utilisant un tel système
JP2017110632A (ja) * 2015-11-02 2017-06-22 マン ディーゼル アンド ターボ フィリアル エーエフ マン ディーゼル アンド ターボ エスイー ティスクランド 排気ガスレシーバの下流に設けられたscrリアクタを有する2ストローク内燃エンジン
CN107642400A (zh) * 2017-09-06 2018-01-30 哈尔滨工程大学 柴油机废气余热发电风扇增压系统
IT201800010899A1 (it) * 2018-12-07 2020-06-07 Fpt Motorenforschung Ag Metodo e dispositivo di gestione termica di un sistema di post trattamento (ats) di gas esausto di un motore a combustione interna

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101367114B1 (ko) * 2009-12-08 2014-02-26 대우조선해양 주식회사 배기가스의 탈질 시스템
DK177631B1 (en) * 2010-05-10 2014-01-06 Man Diesel & Turbo Deutschland Large two-stroke diesel engine with exhaust gas purification system
KR101312793B1 (ko) * 2010-09-24 2013-09-27 미츠비시 쥬고교 가부시키가이샤 터빈 발전기의 제어 방법 및 장치
FI20125820A (fi) 2012-07-30 2014-01-31 Waertsilae Finland Oy Polttomoottori
CN102787889A (zh) * 2012-08-14 2012-11-21 天津大学 柴油机排气余热双效回收系统
JP5976498B2 (ja) * 2012-10-26 2016-08-23 三菱重工業株式会社 内燃機関システムおよびこれを備えた船舶ならびに内燃機関システムの運転方法
CN102979614A (zh) * 2012-11-16 2013-03-20 宁夏送变电工程公司 一种牵张设备预热装置
DK177616B1 (en) * 2012-12-03 2013-12-09 Man Diesel & Turbo Deutschland Large, slow-moving, turbocharged, two-stroke internal two-stroke internal combustion engine with cross heads and steam turbine
KR101496043B1 (ko) 2013-10-31 2015-02-25 현대중공업 주식회사 디젤 엔진용 scr 시스템
KR20150092917A (ko) * 2014-02-06 2015-08-17 현대중공업 주식회사 디젤 엔진용 scr 시스템
US9387438B2 (en) 2014-02-14 2016-07-12 Tenneco Automotive Operating Company Inc. Modular system for reduction of sulphur oxides in exhaust
CN104314649A (zh) * 2014-09-30 2015-01-28 东风商用车有限公司 一种废气旁通动力涡轮系统
CN205909322U (zh) * 2015-12-31 2017-01-25 南通亚泰工程技术有限公司 一种设有scr的废气锅炉
JP6540595B2 (ja) * 2016-05-13 2019-07-10 株式会社デンソー 車両のエンジンシステム
CN107642399A (zh) * 2017-09-06 2018-01-30 哈尔滨工程大学 柴油机废气余热发电风扇增压防喘振系统
DK180561B1 (en) * 2020-03-06 2021-06-24 Man Energy Solutions Filial Af Man Energy Solutions Se Tyskland An internal combustion engine configured for determining specific emissions and a method for determining specific emissions of an internal combustion engine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10349164A1 (de) * 2002-10-23 2004-05-13 Toyota Jidosha Kabushiki Kaisha, Toyota Steuervorrichtung und dessen Steuerverfahren für eine Brennkraftmaschine mit Turbolader mit Generator
EP1550796A1 (fr) * 2003-12-29 2005-07-06 Iveco S.p.A. Méthode et dispositif pour contrôler la température des gaz d'échappement d'un moteur
US20060053773A1 (en) * 2002-10-15 2006-03-16 Thorsten Mayer Exhaust-gas cleaning system for an internal combustion engine, and method for cleaning the engine exhaust gases
US20060236692A1 (en) * 2005-04-25 2006-10-26 Kolavennu Soumitri N Control of exhaust temperature for after-treatment process in an e-turbo system
WO2006138174A2 (fr) * 2005-06-15 2006-12-28 Emcon Technologies Llc Bruleur a stabilisation de remous pour gestion thermique de systeme d'echappement, et procede associe
WO2007115579A2 (fr) * 2006-04-12 2007-10-18 Man Diesel A/S Moteur diesel à turbocompresseur de grande taille doté d'un dispositif de récupération d'énergie

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111310U (ja) * 1982-01-26 1983-07-29 日産自動車株式会社 過給機付内燃機関の排気浄化装置
JPH10252517A (ja) * 1997-03-14 1998-09-22 Hino Motors Ltd 内燃機関の制動および補助動力装置
JPH116602A (ja) * 1997-06-13 1999-01-12 Isuzu Ceramics Kenkyusho:Kk 熱交換器の構造
JP4509495B2 (ja) * 2003-05-21 2010-07-21 三菱ふそうトラック・バス株式会社 内燃機関の排気浄化装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060053773A1 (en) * 2002-10-15 2006-03-16 Thorsten Mayer Exhaust-gas cleaning system for an internal combustion engine, and method for cleaning the engine exhaust gases
DE10349164A1 (de) * 2002-10-23 2004-05-13 Toyota Jidosha Kabushiki Kaisha, Toyota Steuervorrichtung und dessen Steuerverfahren für eine Brennkraftmaschine mit Turbolader mit Generator
EP1550796A1 (fr) * 2003-12-29 2005-07-06 Iveco S.p.A. Méthode et dispositif pour contrôler la température des gaz d'échappement d'un moteur
US20060236692A1 (en) * 2005-04-25 2006-10-26 Kolavennu Soumitri N Control of exhaust temperature for after-treatment process in an e-turbo system
WO2006138174A2 (fr) * 2005-06-15 2006-12-28 Emcon Technologies Llc Bruleur a stabilisation de remous pour gestion thermique de systeme d'echappement, et procede associe
WO2007115579A2 (fr) * 2006-04-12 2007-10-18 Man Diesel A/S Moteur diesel à turbocompresseur de grande taille doté d'un dispositif de récupération d'énergie

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010275954A (ja) * 2009-05-29 2010-12-09 Mitsubishi Heavy Ind Ltd 脱硝部付き内燃機関
JP2011027053A (ja) * 2009-07-28 2011-02-10 Mitsubishi Heavy Ind Ltd タービン発電機の制御方法および装置
WO2011023848A1 (fr) 2009-08-28 2011-03-03 Wärtsilä Finland Oy Agencement de moteur à combustion interne
JP2013503290A (ja) * 2009-08-28 2013-01-31 ワルトシラ フィンランド オサケユキチュア 内燃エンジン装置
WO2011049183A1 (fr) * 2009-10-23 2011-04-28 三菱重工業株式会社 Système de turborécupération et procédé d'utilisation
JP2011089488A (ja) * 2009-10-23 2011-05-06 Mitsubishi Heavy Ind Ltd ターボコンパウンドシステムおよびその運転方法
WO2011065304A1 (fr) * 2009-11-26 2011-06-03 三菱重工業株式会社 Système de production d'énergie à turbine à vapeur et navire en étant équipé
WO2011087031A1 (fr) * 2010-01-15 2011-07-21 三菱重工業株式会社 Système de dénitration des gaz d'échappement, bateau équipé de ce système et procédé pour commander un système de dénitration des gaz d'échappement
CN102472139A (zh) * 2010-01-15 2012-05-23 三菱重工业株式会社 废气脱硝系统及具备该系统的船舶以及废气脱硝系统的控制方法
EP2525057A4 (fr) * 2010-01-15 2016-08-10 Mitsubishi Heavy Ind Ltd Système de dénitration des gaz d'échappement, bateau équipé de ce système et procédé pour commander un système de dénitration des gaz d'échappement
US20120315204A1 (en) * 2010-01-25 2012-12-13 Kazuo Osumi Exhaust purification device and exhaust purification method for diesel engine
EP2636876A1 (fr) * 2010-11-05 2013-09-11 Mitsubishi Heavy Industries, Ltd. Équipement pour récupérer l'énergie des gaz d'échappement d'un moteur
EP2636876A4 (fr) * 2010-11-05 2015-07-22 Mitsubishi Heavy Ind Ltd Équipement pour récupérer l'énergie des gaz d'échappement d'un moteur
EP2799687A4 (fr) * 2011-12-27 2015-09-02 Mitsubishi Heavy Ind Ltd Compresseur électrique se servant de la chaleur perdue provenant d'un moteur à combustion interne et procédé d'alimentation de celui-ci
US10066532B2 (en) 2011-12-27 2018-09-04 Mitsubishi Heavy Industries, Ltd. Electric supercharging device utilizing waste heat of internal combustion engine and power supplying method thereof
DE102012009318A1 (de) * 2012-05-10 2013-11-14 Man Diesel & Turbo, Filial Af Man Diesel & Turbo Se, Tyskland Dieselmotor und Verfahren zur Leistungssteigerung eines bestehenden Dieselmotors
DE102012009318B4 (de) * 2012-05-10 2021-05-06 MAN Energy Solutions, branch of MAN Energy Solutions SE, Germany Dieselmotor und Verfahren zur Leistungssteigerung eines bestehenden Dieselmotors
JP2013029111A (ja) * 2012-09-28 2013-02-07 Mitsubishi Heavy Ind Ltd 発電方法、タービン発電機、タービン発電機の制御方法、制御装置、および該タービン発電機を備えた船舶
WO2014170559A1 (fr) * 2013-04-15 2014-10-23 Valeo Systemes De Controle Moteur Procède d'amélioration du rendement énergétique d'un système d'entraînement
JP2014015944A (ja) * 2013-10-31 2014-01-30 Mitsubishi Heavy Ind Ltd 発電方法、タービン発電機、タービン発電機の制御方法、制御装置、および該タービン発電機を備えた船舶
WO2016102211A1 (fr) 2014-12-22 2016-06-30 Alfa Laval Corporate Ab Système et procédé de traitement de gaz d'échappement, ainsi que bateau équipé d'un tel système et utilisant celui-ci
EP3037635A1 (fr) 2014-12-22 2016-06-29 Alfa Laval Corporate AB Système et procédé de traitement de gaz d'échappement, ainsi que navire comprenant et utilisant un tel système
RU2666936C1 (ru) * 2014-12-22 2018-09-13 Альфа Лаваль Корпорейт Аб Система и способ очистки выхлопных газов, а также судно, содержащее такую систему, и ее использование
US10533473B2 (en) 2014-12-22 2020-01-14 Alfa Laval Corporate Ab Exhaust gas treatment system and method, as well as ship comprising, and use of, such a system
JP2017110632A (ja) * 2015-11-02 2017-06-22 マン ディーゼル アンド ターボ フィリアル エーエフ マン ディーゼル アンド ターボ エスイー ティスクランド 排気ガスレシーバの下流に設けられたscrリアクタを有する2ストローク内燃エンジン
CN107642400A (zh) * 2017-09-06 2018-01-30 哈尔滨工程大学 柴油机废气余热发电风扇增压系统
IT201800010899A1 (it) * 2018-12-07 2020-06-07 Fpt Motorenforschung Ag Metodo e dispositivo di gestione termica di un sistema di post trattamento (ats) di gas esausto di un motore a combustione interna
EP3663552A1 (fr) * 2018-12-07 2020-06-10 FPT Motorenforschung AG Procédé et dispositif de gestion thermique d'un système de post-traitement (ats) d'un moteur à combustion interne

Also Published As

Publication number Publication date
JP2010513766A (ja) 2010-04-30
KR101118661B1 (ko) 2012-03-06
CN101553648A (zh) 2009-10-07
KR20090087002A (ko) 2009-08-14
JP4592816B2 (ja) 2010-12-08
CN101553648B (zh) 2011-08-17

Similar Documents

Publication Publication Date Title
WO2008135059A1 (fr) Gros moteur diesel à turbocompresseur avec réacteur scr
CN102216593B (zh) 用于降低车辆内燃机的排气中的NOx含量的方法和设备
US6286312B1 (en) Arrangement for a combustion engine
KR101674237B1 (ko) 내연기관 구성
WO2007115579A2 (fr) Moteur diesel à turbocompresseur de grande taille doté d'un dispositif de récupération d'énergie
KR20150114585A (ko) 엔진 배기 가스 정화 장치
US8495876B2 (en) Two-stage supercharging system with exhaust gas purification device for internal-combustion engine and method for controlling same
CN101749148A (zh) 带有串接的两个废气涡轮增压器的内燃机
EP2574753A1 (fr) Système de refroidissement pour moteurs chargés à deux phases
WO2011141631A1 (fr) Dispositif et procédé de recirculation des gaz d'échappement et suralimentation par turbosoufflante
KR100982225B1 (ko) 가습공기 디젤 엔진
WO2014022208A1 (fr) Système et procédé d'utilisation d'un turboalternateur dans un système de gaz d'échappement pour générer de l'énergie
CN107795414B (zh) 一种具有改进scr催化器结构的船用egr柴油机
KR101071873B1 (ko) 볼텍스튜브를 이용한 배기가스재순환시스템
KR101071874B1 (ko) 볼텍스튜브를 이용한 엔진시스템
JP2009235944A (ja) エンジンの過給装置
JP3231230U (ja) ディーゼル機関排ガスの新型の低圧選択触媒還元脱窒システム
KR101845487B1 (ko) 배기가스 정화 시스템을 구비하는 대형 2-행정 터보차지 압축 점화 내연 기관
US9784170B2 (en) Thermal management system for aftertreatment system
CN205638686U (zh) 一种船舶柴油机废气再利用装置
GB2533157B (en) Thermal energy management system and method
CN117404174A (zh) 一种船舶主机废气回收再利用系统及方法
Kadunic et al. Potential of Exhaust Energy Use for Charge Air Cooling in Supercharged Diesel Engines
KR20160150055A (ko) 배기가스 정화 시스템을 구비하는 대형 2-행정 터보차지 압축 점화 내연 기관
WO2009058056A1 (fr) Moteur à combustion interne avec recirculation des gaz d'échappement

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780044945.1

Country of ref document: CN

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07724840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2009540606

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020097010575

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07724840

Country of ref document: EP

Kind code of ref document: A1