WO2008129197A2 - Charges composites integrant des particules de pigment et des particules creuses, et leur procede de fabrication - Google Patents

Charges composites integrant des particules de pigment et des particules creuses, et leur procede de fabrication Download PDF

Info

Publication number
WO2008129197A2
WO2008129197A2 PCT/FR2008/050417 FR2008050417W WO2008129197A2 WO 2008129197 A2 WO2008129197 A2 WO 2008129197A2 FR 2008050417 W FR2008050417 W FR 2008050417W WO 2008129197 A2 WO2008129197 A2 WO 2008129197A2
Authority
WO
WIPO (PCT)
Prior art keywords
particles
pigment
composite
composite filler
advantageously
Prior art date
Application number
PCT/FR2008/050417
Other languages
English (en)
Other versions
WO2008129197A3 (fr
Inventor
Patrice Nortier
Elisa Zeno
Original Assignee
Centre Technique De L'industrie Des Papiers, Cartons Et Celluloses
Institut Polytechnique De Grenoble
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre Technique De L'industrie Des Papiers, Cartons Et Celluloses, Institut Polytechnique De Grenoble filed Critical Centre Technique De L'industrie Des Papiers, Cartons Et Celluloses
Publication of WO2008129197A2 publication Critical patent/WO2008129197A2/fr
Publication of WO2008129197A3 publication Critical patent/WO2008129197A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3045Treatment with inorganic compounds
    • C09C1/3054Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0081Composite particulate pigments or fillers, i.e. containing at least two solid phases, except those consisting of coated particles of one compound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/028Compounds containing only magnesium as metal
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/405Compounds of aluminium containing combined silica, e.g. mica
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/40Compounds of aluminium
    • C09C1/407Aluminium oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/63Inorganic compounds
    • D21H17/67Water-insoluble compounds, e.g. fillers, pigments
    • D21H17/69Water-insoluble compounds, e.g. fillers, pigments modified, e.g. by association with other compositions prior to incorporation in the pulp or paper
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/06Paper forming aids
    • D21H21/10Retention agents or drainage improvers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/32Bleaching agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • the invention relates to a composite filler incorporating pigment particles, in particular titanium oxide, and hollow particles filled with air, as well as a process for their manufacture.
  • optical qualities such as opacity or whiteness are usually imparted through the addition of pigment particles.
  • pigment means any substance, generally in fine powder, practically insoluble in the usual suspension media, used because of some of its optical properties, protective or decorative.
  • the pigments can be introduced into the mass or in the form of an added layer after manufacture of the paper.
  • charge is used in an equivalent manner to the term "pigment”.
  • titanium oxide (TiO 2 ) is particularly advantageous because it has a very high refractive index of light.
  • particles of silica (SiO 2 ), kaolin or calcium carbonate are particularly advantageous because it has a very high refractive index of light.
  • titanium oxide is used in the anatase or rutile crystalline form, with a median particle size of elemental particle close to 0.2 ⁇ m.
  • the pigmentary titanium oxide is manufactured by well known methods.
  • the pigments usually used in paper and paint contain an amount of between 90% and 100% (by weight) of titanium oxide, the remainder being consisting of additives, for example surface treatments intended to improve their compatibility properties with the application media. It is therefore in fact a pigment based on titanium oxide, called in the following application, "titanium oxide pigment".
  • titanium oxide is purchased by the papermaker in the form of an aqueous powder or suspension and added to the fiber suspension. This suspension is then filtered on a fabric to give a fibrous mat. Spinning and then drying turn the mattress into paper itself.
  • the titanium oxide particles can either integrate with the fibrous mat or be washed away with the filtrate ("white water”). This sharing is characterized by the fraction of particles incorporated in the mattress, relative to the total amount of particles used, called “retention”. High retention is sought by paper manufacturers.
  • the characteristics sought in fine are: the whiteness and the opacity of the paper, which increase with the titanium oxide content contained in the paper and its better dispersion.
  • Titanium oxide being a more expensive product than cellulosic fiber
  • papermakers therefore seek to obtain the objective of whiteness and opacity by adding as little titanium oxide as possible (pigment efficiency), and they seek to this addition is done with the best possible performance (retention).
  • the Applicant has obtained a product that satisfies all of these requirements.
  • the present invention relates to a composite filler comprising:
  • At least one species of hollow particles filled with air having a median size greater than 0.2 ⁇ m.
  • the pigment which constitutes the first essential element of the composite filler according to the invention, has a high refractive index.
  • it is titanium oxide (TiO 2 ).
  • TiO 2 titanium oxide
  • it may be a pigment based on TiO 2 , that is to say containing at least 90% by weight of TiO 2 .
  • pigments in particular colored mineral pigments such as: Zinc Chromate (Pigment Index Code: Pigment Yellow 36), Sulfur Cerium (Pigment Indies Code: Pigment Orange 78, marketed by Rhodia under the brand name Neolor), iron oxide (Pigment Index Code: Pigment Yellow 101).
  • colored mineral pigments such as: Zinc Chromate (Pigment Index Code: Pigment Yellow 36), Sulfur Cerium (Pigment Indies Code: Pigment Orange 78, marketed by Rhodia under the brand name Neolor), iron oxide (Pigment Index Code: Pigment Yellow 101).
  • Such pigments are also in the form of particles of compatible size and have high refractive indices.
  • the pigment is in the form of particles.
  • TiO 2 is advantageously in the form of particles having a median size of less than or equal to 1 ⁇ m.
  • Particle oxide in the form of particles of about 0.2 ⁇ m is preferred and commercially available, for example under the reference R-794 (DuPont).
  • the term "median size" of particles the size such that 50% by weight of the particles have a size smaller than this and 50% by weight a size greater than that. this.
  • the second component of the composite filler consists of air-filled hollow particles having a median size greater than about 0.2 ⁇ m.
  • Hollow particles filled with air are defined as particles whose core is air and whose bark is made of any other material forming a rigid shell, so that the shape of the particles is maintained.
  • the material constituting the bark may be chosen from amorphous or microcrystalline inorganic materials, preferably from the following materials: silicates, for example alumino-silicates or mixed oxides of silica and titanium, or organically modified silicates ( Ormosils);
  • phosphates for example aluminum or titanium phosphates
  • oxides and hydroxides for example silica, amorphous aluminum hydroxide, pseudo-boehmite
  • hydroxycarbonates for example magnesium hydroxycarbonate and magnesium aluminum hydroxycarbonate.
  • the hollow particles filled with air are advantageously constituted by a silica (SiO 2 ) bark, the manufacture of which is known to those skilled in the art, particularly in view of the teachings of US Pat. No. 2,885,366 and WO 97/40106.
  • the hollow particles filled with air have a bark made of polymers, and therefore of organic nature.
  • this second population of particles has a median size greater than half the average length of visible light, or about 0.2 microns.
  • the pigment particles and the hollow particles form agglomerates.
  • the present invention provides a controlled and controlled composite charge of nature and arrangement, whose optical and physical properties, as well as cost, are determined.
  • This composite filler consisting of an agglomerate of at least these two particulate types, is advantageously provided in the form of a powder.
  • these agglomerates are dispersed in an aqueous solution, thereby giving an aqueous suspension also targeted by the invention. Note that, as will be detailed below about the process, it is particularly in this form that is the load before the drying step which ensures the replacement of water, initially contained in the hollow particles, by air.
  • the final size of the composite filler is advantageously controlled and depends on the desired application. In the paper application, it is large enough to be retained on the canvas. In practice, the size of the composite charge is advantageously greater than 1 ⁇ m and less than 100 ⁇ m, or even less than or equal to 20 ⁇ m. Even more advantageously, it is between 5 and 10 microns.
  • the pigment particles and hollow particles filled with air are interposed or dispersed. More exactly, this means that the pigment particles are at least partly separated from each other by hollow particles so as to obtain an alternation of these two types of particles. More preferably, the pigment particles are in individualized, non-agglomerated form. It is in this configuration that the minimum pigment load must be provided and the optical properties of the pigment are optimized.
  • the present invention also relates to all "derived" products incorporating the composite filler according to the invention, in particular paper, paints or plastics.
  • the papers include, in addition to the composite filler, at least one retention agent, such as a cationic polyacrylamide.
  • the present invention also provides a method for making composite fillers comprising pigment particles and hollow silica particles.
  • this process comprises the following steps: - dispersion of at least pigment particles and particles of a carrier material to form aqueous suspensions, said carrier material having a median particle size greater than 0.2 ⁇ m and not being silica or of the same nature as the pigment; agglomeration of particles; - lamination of the particles with a silica (SiO 2 ) layer; substrate removal; recovery of the composite charge.
  • the pigment is titanium oxide pigment (TiO 2 ), advantageously in the form of particles having a median size of less than or equal to 1 ⁇ m, more advantageously approximately equal to 0, 2 ⁇ m.
  • the particles are dispersed to form aqueous suspensions.
  • the particles can be added simultaneously or shifted in the same dispersion.
  • each species of particles is subjected to a separate dispersion and the dispersions are mixed to bring into contact the particles of different kinds.
  • Conventional dispersion promoting means such as stirring, grinding, sonification or heating, can be implemented.
  • the support material is defined as follows: it has a median particle size greater than about 0.2 ⁇ m; it does not have the same chemical nature as the pigment; it is not silica; it can be easily removed, for example by a chemical reaction, acid attack type of a base.
  • Calcium carbonate (CaCO 3 ) is an ideal candidate as a substrate since it is available as particles of about 1 ⁇ m and can be removed by acid etching.
  • the various materials that may be used as supports are notably listed in the document WO 97/40106.
  • the next step is the initiation of agglomeration between the different species of particles, also called heterocoagulation in the case where only two species of particles are present.
  • agglomeration can be promoted by various factors such as heating, the addition of salts such as sodium chloride (NaCl) or a change in the pH of the reaction medium.
  • this step takes place in the presence of an electrolyte salt of the alkali metal group, such as NaCl.
  • an electrolyte salt of the alkali metal group such as NaCl.
  • this deposition is in the presence of an electrolyte salt of the alkali metal group, such as NaCl.
  • the reaction medium is removed and one or more washings (for example with water) are carried out.
  • the composite filler is therefore in an aqueous medium. Its recovery is done by conventional techniques of solid / liquid separation (filtration, ). Different washes and dryings can also be implemented. In the final product, the space released by the substrate is occupied by air.
  • the powder thus obtained can be dispersed again in water, possibly using well-known dispersing agents to obtain an aqueous suspension ready to be mixed with the paper suspension.
  • FIGS. 1 and 2 illustrate the morphology of a composite filler according to the invention, in the form of an agglomerate integrating TiO 2 particles and hollow silica particles, taken by electron microscopy after dispersion in the Demineralized Water.
  • the mixture is stirred for approximately 10 minutes using a 5 cm diameter blade rotating at 500 rpm.
  • Solution C consists of dilute sulfuric acid of approximate concentration 2 mol / L, prepared according to the usual methods. Preparation of solution D (solution for acid attack):
  • Solution D consists of dilute hydrochloric acid of approximate concentration 2 mol / L, prepared according to the usual methods.
  • the suspension A is placed in a glass reactor with an inner diameter of 10 cm, with a hemispherical bottom, comprising: a jacket in which circulates water at 95 ° C. obtained using a circulating circulating thermostatic bath ; a mechanical stirrer driving a blade 5 cm in diameter in the form of a "Rushton" turbine, located 5cm from the bottom of the tank; - counter blades; - a stainless steel rod for the introduction of solution B, opening into the discharge zone of the turbine; a stainless steel rod for the introduction of the solution C, opening into the discharge zone of the turbine and diametrically opposed to the rod introduction of the solution B; a pH probe; a Pt-100 temperature probe.
  • the pH sensor and the temperature sensor are connected to a pH regulator which controls a peristaltic pump fed with solution C.
  • the pH value of the controller is set to 9.
  • the suspension is placed in the reactor, the temperature is adjusted to 80 ° C.
  • the solution B is then introduced into the reactor, using a peristaltic pump, at a rate of 2.7 ml / min.
  • the pH regulator provides ad-hoc flow of solution C.
  • the product obtained is returned to the synthesis reactor.
  • the peristaltic pump of the pH regulator is now supplied with solution D.
  • the pH set point is set at 5, which results in the addition of hydrochloric acid.
  • the contents of the reactor are drained and filtered on Buchner.
  • the product obtained is returned to the synthesis reactor. It is resuspended in IL demineralized water for about 18 hours, then drained and filtered again.
  • the product obtained is dried in an oven at 120 ° C. for 5 hours.
  • the mixture is stirred for about 10 minutes using a 5 cm diameter blade rotating at 500 rpm, then sonification using a Bransonci # device set at 50% of its maximum power for 3 minutes.
  • a suspension of 7.64 g of pigment based on titanium oxide (Dupont R-794) is prepared in 50 ml of demineralized water, firstly by stirring with a spatula and then by sonification using a Bransonci # device set at 30% of its maximum power for 1.5 minutes.
  • the titanium dioxide slurry is then added to the calcium carbonate slurry at a rate of 3 mL / min. At the end of the introduction, stirring is maintained under the previously described conditions for about 10 minutes.
  • Solution C consists of dilute sulfuric acid of approximate concentration 2 mol / L, prepared according to the usual methods.
  • Solution D consists of dilute hydrochloric acid of approximate concentration 2 mol / L, prepared according to the usual methods.
  • the suspension A is placed in a 10 cm inner diameter glass reactor with a hemispherical bottom, comprising:
  • the pH sensor and the temperature sensor are connected to a pH regulator which controls a peristaltic pump fed with solution C.
  • the pH value of the controller is set to 8.5.
  • the suspension is placed in the reactor, the temperature is adjusted to 80 ° C.
  • the solution B is then introduced into the reactor, using a peristaltic pump, at a rate of 2.7 ml / min.
  • the pH regulator provides ad-hoc flow of solution C.
  • the contents of the reactor are drained and filtered on Buchner. It is resuspended in IL demineralized water for about 10 minutes and then filtered again. This operation is repeated twice.
  • the product obtained is returned to the synthesis reactor.
  • the peristaltic pump of the pH regulator is now supplied with solution D.
  • the pH set point is set at 5, which results in the addition of hydrochloric acid.
  • the contents of the reactor are drained and filtered on Buchner.
  • the product obtained is returned to the synthesis reactor. It is resuspended in IL demineralized water for about 18 hours, then drained and filtered again.
  • the product obtained is dried in an oven at 120 ° C. for 5 hours.
  • EXAMPLE 3 Wetting in paper without retention agent A paper suspension is prepared by resuspending a mixture of 60% hardwood fibers and 40% softwood fibers in a standard laboratory disintegrator (Lhomargy®) at room temperature. for a period of 10 minutes and at a speed of 1200 rpm. The inorganic fillers prepared according to Example 1 are then added to the suspension which is diluted to a concentration of 3 g / l and maintained at a constant temperature (40-45 °).
  • Leaves are then made on the retentate (FRET, TechPap, St. Martin d'H Guatemala, France): a fixed volume of fibrous suspension is introduced into the bowl provided with variable agitation. The dough is agitated. At the end of the stirring cycle, the fibrous suspension is distributed over the fabric in order to form the sheet following the drip caused by a sudden depression (adjustable from 0 to 700 mm Hg). The wet sheet is collected on a blotter, pressed, dried and weighed to determine the amount of total material (cellulosic and mineral) retained in the sheet. This value, relative to the initial mass introduced into the bowl, represents the total retention.
  • FRET retentate
  • the sheets are calcined at 450 ° C and the residue weighed to determine the charge retention.
  • composite fillers exhibit an improvement in whiteness: 91.1% ISO against 85.6% ISO for a constant amount of TiO 2 (0.013 g / g), introduced respectively in the form of composite filler according to the invention, or as TiO 2 commercial product for paper application.
  • a paper suspension is prepared by resuspending a mixture of 60% hardwood fibers and 40% softwood fibers in a standard laboratory disintegrator (Lhomargy®) at room temperature for a period of 10 minutes at a speed of 1200 rpm. .
  • the inorganic fillers prepared according to Example 1 are then added to the suspension which is diluted to a concentration of 3 g / l and maintained at a constant temperature (40-45 °).
  • the sheets are calcined at 450 ° C and the residue weighed to determine the charge retention.
  • the composite fillers also induce an improvement in whiteness: 91.1% ISO against 85.6% ISO for a constant amount of TiO 2 (0.013 g / g), introduced respectively in the form of composite filler according to the invention, or as TiO 2 commercial product for paper application.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Paper (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Charge composite se présentant sous la forme d un agglomérat comprenant: un pigment d oxyde de titane (TiO<SUB>2</SUB>)sous forme de particules; au moins une espèce de particules creuses remplies d'air, ayant une taille médiane supérieure à 0,2 µm.

Description

CHARGES COMPOSITES INTÉGRANT DES PARTICULES DE PIGMENT ET DES PARTICULES CREUSES, ET LEUR PROCEDE DE FABRICATION
DOMAINE TECHNIQUE
L'invention concerne une charge composite intégrant des particules de pigment, notamment d'oxyde de titane, et des particules creuses remplies d'air, ainsi qu'un procédé permettant leur fabrication.
Ces charges composites présentent d'excellentes propriétés optiques, recherchées notamment dans le domaine du papier et des peintures. En outre, en raison de leur taille et de leur agencement, elles constituent une solution au problème de rétention rencontré dans le papier et au problème de « crowding » caractéristique des peintures.
ETATANTÉRIEURDE LATECHNIQUE
Dans le papier comme dans la peinture, des qualités optiques telles que l'opacité ou la blancheur sont généralement conférées grâce à l'ajout de particules de pigment.
Dans la suite de la demande, on entend par « pigment » toute substance, généralement en poudre fine, pratiquement insoluble dans les milieux de suspension usuels, utilisée en raison de certaines de ses propriétés optiques, protectrices ou décoratives.
Dans le cas particulier du papier, les pigments peuvent être introduits dans la masse ou sous forme de couche ajoutée après fabrication du papier. Dans le cas de l'utilisation en masse, on utilise le terme de « charge » de manière équivalente au terme de « pigment ».
Parmi ces pigments, l'oxyde de titane (TiO2) est particulièrement avantageux, car il possède un indice de réfraction de la lumière très élevé. Dans certaines applications moins contraignantes, des particules de silice (SiO2), de kaolin ou de carbonate de calcium
(CaCO3), moins opacifiantes mais moins coûteuses, peuvent également être utilisées.
Classiquement, on utilise l'oxyde de titane sous la forme cristalline anatase ou rutile, avec une taille médiane de particule élémentaire proche de 0,2 μm. L'oxyde de titane pigmentaire est fabriqué par des procédés bien connus.
En pratique, les pigments habituellement utilisés dans le papier et la peinture contiennent une quantité comprise entre 90% et 100% (en masse) d'oxyde de titane, le reste étant constitué d'additifs, par exemple des traitements de surface destinés à améliorer leurs propriétés de compatibilité avec les milieux d'application. Il s'agit donc en fait d'un pigment à base d'oxyde de titane, appelé dans la suite de la demande, « pigment d'oxyde de titane ».
Dans la fabrication du papier, l'oxyde de titane est acheté par les papetiers sous forme d'une poudre ou d'une suspension aqueuse et ajouté dans la suspension de fibres. Cette suspension est ensuite filtrée sur une toile pour donner un matelas fibreux. L'essorage puis le séchage transforment ce matelas en papier proprement dit.
Les particules d'oxyde de titane peuvent soit s'intégrer au matelas fibreux, soit être emportées avec le filtrat ("eaux blanches"). Ce partage est caractérisé par la fraction de particules incorporées au matelas, relativement à la quantité totale de particules mises en œuvre, appelée "rétention". Une forte rétention est recherchée par les papetiers.
Les caractéristiques recherchées in fine sont : la blancheur et l'opacité du papier, qui augmentent avec le taux d'oxyde de titane contenu dans le papier et sa meilleure dispersion.
L'oxyde de titane étant un produit plus coûteux que la fibre cellulosique, les papetiers cherchent donc à obtenir l'objectif de blancheur et d'opacité en ajoutant le moins possible d'oxyde de titane (efficacité du pigment), et ils cherchent à ce que cet ajout se fasse avec le meilleur rendement possible (rétention).
II existe donc aujourd'hui le besoin d'atteindre un compromis rétention/propriétés optiques dans le papier. En effet, les particules brutes de TiO2 sont perdues dans les eaux blanches ou nécessitent un recyclage coûteux. Réciproquement, lorsque ces particules sont agglomérées, leur efficacité diminue puisqu'une bonne diffusion de la lumière par ces particules nécessite qu'elles soient individualisées. Par conséquent, il est nécessaire d'employer plus de particules d'oxyde de titane, ce qui augmente le coût de revient du produit fini. Des problèmes d'agglomération des particules de TiO2, connus sous la terminologie
« crowding », sont également rencontrés dans le domaine des peintures et nécessitent l'ajout d'agents dispersants.
L'utilisation des différents types de charges minérales (TiO2, SiO2, CaCO3), voire leurs mélanges, a été testée dans ces applications, mais sans donner de résultats concluants.
Il existe donc le besoin de développer de nouvelles solutions techniques offrant de bonnes propriétés optiques en termes d'opacification notamment, de coût raisonnable et compatibles avec les applications visées, en particulier papetières.
EXPOSE DE L'INVENTION
Dans le cadre de l'invention, le Demandeur a obtenu un produit qui satisfait à l'ensemble de ces exigences.
Plus précisément, la présente invention concerne une charge composite comprenant :
- au moins un pigment sous forme de particules ;
- au moins une espèce de particules creuses remplies d'air, ayant une taille médiane supérieure à 0,2 μm.
Le pigment, qui constitue le premier élément essentiel de la charge composite selon l'invention, présente un indice de réfraction élevé. De manière avantageuse, il s'agit de l'oxyde de titane (TiO2). Comme déjà dit, en pratique, il peut s'agir d'un pigment à base de TiO2, c'est-à-dire contenant au moins 90% en masse de TiO2.
Toutefois, il peut être envisagé dans le cadre de l'invention de mettre en œuvre d'autres types de pigments, en particulier des pigments colorés minéraux tels que : le Chromate de Zinc (Pigment Index Code : Pigment Yellow 36), le Sulfure de Cerium (Pigment Indes Code : Pigment Orange 78, commercialisé par la société Rhodia sous la marque Neolor), l'oxyde de fer (Pigment Index Code : Pigment Yellow 101). De tels pigments se présentent également sous forme de particules de taille compatible et présentent des indices de réfraction élevés.
On peut également envisager des mélanges de pigments, dans la mesure où ces pigments en mélange sont stables. Comme déjà dit, le pigment se trouve sous forme de particules. La taille médiane des particules influant sur les performances optiques du pigment, le TiO2 se présente avantageusement sous forme de particules de taille médiane inférieure ou égale à 1 μm. De l'oxyde de titane sous forme de particules d'environ 0,2 μm est préféré et disponible commercialement, par exemple sous la référence R-794 (DuPont).
Dans la suite de la description et de manière classique, on entend par « taille médiane » de particules, la taille telle que 50% en poids des particules présentent une taille inférieure à celle-ci et 50% en poids une taille supérieure à celle-ci.
La deuxième composante de la charge composite est constituée de particules creuses remplies d'air, ayant une taille médiane supérieure à environ 0,2 μm.
Des particules creuses remplies d'air sont définies comme des particules dont le cœur est constitué d'air et dont l'écorce est faite en tout autre matériau formant une coque rigide, de sorte que la forme des particules soit maintenue.
Le fait qu'il s'agisse de particules remplies d'air est primordial car c'est l'air qui présente l'indice de réfraction le plus faible et c'est donc la combinaison d'au moins ces 2 types de particules qui va assurer le meilleur contraste.
Le matériau constituant l'écorce peut être choisi parmi les matériaux inorganiques amorphes ou micro-cristallins, de préférence parmi les matériaux suivants : silicates, par exemple des alumino-silicates ou des oxydes mixtes de silice et de titane, ou des silicates modifiés organiquement (Ormosils) ;
- phosphates, par exemple les phosphates d'aluminium ou de titane ; oxydes et hydroxydes, par exemple la silice, l'hydroxyde d'aluminium amorphe, la pseudo-boehmite ; hydroxy-carbonates, par exemple l'hydroxy-carbonate de magnésium et l'hydroxy- carbonate de magnésium et d'aluminium.
En pratique, les particules creuses remplies d'air sont avantageusement constituées d'une écorce de silice (SiO2), dont la fabrication est connue de l'homme du métier, notamment au vu des enseignements de US 2,885,366 et WO 97/40106.
Alternativement, les particules creuses remplies d'air ont une écorce constituée de polymères, et donc de nature organique. De manière privilégiée, cette deuxième population de particules présente une taille médiane supérieure à la moitié de la longueur moyenne de la lumière visible, soit environ 0,2 μm.
En pratique, lorsqu'il s'agit de particules creuses de silice obtenues après enrobage et élimination de particules de carbonate de calcium, leur taille médiane est environ comprise entre 0,3 μm et 3 μm.
De manière remarquable selon l'invention et grâce notamment au procédé décrit ci- dessous, les particules de pigment et les particules creuses forment des agglomérats. Ainsi et pour la première fois, la présente invention offre une charge composite de nature et d'agencement contrôlés et figés, dont les propriétés tant optiques que physiques, ainsi que le coût, sont déterminées.
Cette charge composite, constituée d'un agglomérat d'au moins ces deux types particulaires, est avantageusement fournie sous la forme d'une poudre. Alternativement, ces agglomérats sont dispersés dans une solution aqueuse, donnant ainsi une suspension aqueuse également visée par l'invention. A noter que, comme il sera détaillé ci-dessous au sujet du procédé, c'est notamment sous cette forme que se trouve la charge avant l'étape de séchage qui assure le remplacement de l'eau, initialement contenue dans les particules creuses, par de l'air.
Selon l'invention, la taille finale de la charge composite est avantageusement contrôlée et dépend de l'application recherchée. Dans l'application papier, elle présente une taille suffisante pour être retenue sur la toile. En pratique, la taille de la charge composite est avantageusement supérieure à 1 μm et inférieure à 100 μm, voire inférieure ou égale à 20 μm. De manière encore plus avantageuse, elle est comprise entre 5 et 10 μm.
Dans le contexte des agglomérats selon l'invention contenant des particules de pigment et des particules creuses de manière rigide et structurée, un agencement particulier des 2 espèces particulaires est privilégié.
Ainsi et dans un mode de réalisation avantageux, les particules de pigment et les particules creuses remplies d'air sont intercalées ou dispersées. Plus exactement, cela signifie que les particules de pigment sont, au moins en partie, séparées les unes des autres par des particules creuses de manière à obtenir une alternance de ces deux types de particules. De manière encore préférée, les particules de pigment se trouvent sous forme individualisée, non agglomérée. C'est dans cette configuration que la charge minimale de pigment doit être apportée et que les propriétés optiques du pigment sont optimisées.
Bien entendu, la présente invention vise également tous les produits « dérivés » intégrant la charge composite selon l'invention, notamment les papiers, les peintures ou les plastiques. Avantageusement, les papiers intègrent, outre la charge composite, au moins un agent de rétention, tel qu'un polyacrylamide cationique.
Selon un second aspect, la présente invention propose également un procédé pour fabriquer des charges composites comprenant des particules de pigment et des particules creuses de silice.
Pour l'essentiel, ce procédé comprend les étapes suivantes : - dispersion d'au moins des particules de pigment et des particules d'un matériau support pour former des suspensions aqueuses, ledit matériau support ayant une taille médiane de particules supérieure à 0,2 μm et n'étant pas de la silice ni de même nature que le pigment ; agglomération des particules ; - pelliculage des particules à l'aide d'une couche de silice (SiO2) ; élimination du substrat ; récupération de la charge composite.
Dans un mode de réalisation privilégié de ce procédé, le pigment est du pigment d'oxyde de titane (TiO2), se présentant avantageusement sous forme de particules de taille médiane inférieure ou égale à 1 μm, encore plus avantageusement environ égale à 0,2 μm.
Dans une première étape, les particules sont dispersées pour former des suspensions aqueuses. Les particules peuvent être ajoutées simultanément ou en décalé dans la même dispersion. Alternativement et de manière avantageuse, chaque espèce de particules fait l'objet d'une dispersion séparée puis les dispersions sont mélangées pour amener en contact les particules de différente nature. Des moyens classiques favorisant la dispersion, tels que l'agitation, le broyage, la sonification ou le chauffage, peuvent être mis en œuvre.
De manière privilégiée, le matériau support est défini comme suit : il présente une taille médiane de particules supérieure à environ 0,2 μm ; il n'a pas la même nature chimique que le pigment ; ce n'est pas de la silice ; il peut être éliminé facilement, par exemple par une réaction chimique, de type attaque acide d'une base. Le carbonate de calcium (CaCO3) est un candidat idéal en tant que substrat puisqu'il est disponible sous forme de particules d'environ 1 μm et qu'il peut être éliminé par attaque acide. Les différents matériaux susceptibles d'être utilisés comme supports sont notamment listés dans le document WO 97/40106.
L'étape suivante est le déclenchement de l'agglomération entre les différentes espèces particulaires, également appelée hétérocoagulation dans le cas où seulement deux espèces de particules sont présentes. A nouveau, l'agglomération peut être favorisée par différents facteurs tels que le chauffage, l'ajout de sels tels que le chlorure de sodium (NaCl) ou une variation dans le pH du milieu réactionnel. Avantageusement, cette étape se déroule en présence d'un sel électrolyte du groupe des métaux alcalins, tel que NaCl. Sur ces particules agglomérées est alors déposée une pellicule de silice. Les protocoles pour réaliser ce dépôt sont décrits dans US 2,885,366 et WO 97/40106. Avantageusement, ce dépôt se fait en présence d'un sel électrolyte du groupe des métaux alcalins, tel que NaCl.
Avantageusement et à ce stade, le milieu réactionnel est éliminé et un lavage, voire plusieurs (par exemple à l'eau), sont réalisés.
II s'agit ensuite d'éliminer spécifiquement le substrat enrobé par la couche de silice. En pratique, lorsqu'il s'agit de carbonate de calcium, cette élimination est réalisée par attaque acide.
A ce stade, la charge composite est donc dans un milieu aqueux. Sa récupération se fait par les techniques classiques de séparation solide/liquide (filtration,...). Différents lavages et des séchages peuvent également être mis en œuvre. Dans le produit final, l'espace libéré par le substrat est occupé par de l'air.
La poudre ainsi obtenue peut être à nouveau dispersée dans de l'eau, éventuellement à l'aide d'agents dispersants bien connus pour obtenir une suspension aqueuse prête à être mélangée à la suspension papetière.
Ce protocole élaboré par le Demandeur permet de fabriquer avec succès les charges composites selon l'invention. EXEMPLES DE RÉALISATION
L'invention et les avantages qui en découlent ressortiront mieux des exemples de réalisation suivants, à l'appui des figures annexées. Ceux-ci ne sont cependant en aucun cas limitatifs.
Les figures 1 et 2 illustrent la morphologie d'une charge composite selon l'invention, se présentant sous la forme d'un agglomérat intégrant des particules de TiO2 et des particules creuses de silice, prise par microscopie électronique après dispersion dans de l'eau déminéralisée.
EXEMPLE 1 : Préparation de la charge composite
Préparation de la suspension A (dispersion du pigment et du matériau support) :
On ajoute 115 g de carbonate de calcium broyé (OMYA Hydrocarb 90 OG) dans 400 mL d'eau déminéralisée, puis 0,23 g d'hexamétaphosphate de sodium (Aldrich).
On agite pendant environ 10 minutes à l'aide d'une pale de diamètre 5 cm tournant à 500 rpm.
On ajoute ensuite 7,64 g de pigment à base d'oxyde de titane (Dupont R-794) et on maintient l'agitation dans les conditions précédemment décrites pendant environ 10 min.
On ajoute ensuite environ 30 g de chlorure de sodium.
On maintient l'agitation pendant environ 5 min.
On obtient environ 550 g de la suspension A.
Préparation de la solution B (précurseur de silice pour pelliculage) :
On mélange 286 g d'une solution aqueuse de silicate de sodium (Riedel de Haën ref 13729) et 286 g d'eau déminéralisée pour obtenir 572 g de solution B.
Préparation de la solution C (solution acide pour pelliculage) :
La solution C est constituée d'acide sulfurique dilué de concentration approximative 2 mol/L, préparée selon les méthodes usuelles. Préparation de la solution D (solution pour attaque acide) :
La solution D est constituée d'acide chlorhydrique dilué de concentration approximative 2 mol/L, préparée selon les méthodes usuelles.
Synthèse de l 'écorce :
La suspension A est placée dans un réacteur en verre de diamètre intérieur 10 cm, à fond hémisphérique, comportant : - une double enveloppe dans laquelle circule de l'eau à 95°C obtenue à l'aide d'un bain thermostatique chauffant à circulation ; un agitateur mécanique entraînant une pale de 5 cm de diamètre en forme de turbine « Rushton », située à 5cm du fond de cuve ; - des contre-pales ; - une canne en inox pour l'introduction de la solution B, débouchant dans la zone de décharge de la turbine ; une canne en inox pour l'introduction de la solution C, débouchant dans la zone de décharge de la turbine et diamétralement opposée à la canne d'introduction de la solution B ; - une sonde de pH ; une sonde de température Pt-IOO.
La sonde de pH et la sonde de température sont reliées à un régulateur de pH qui commande une pompe péristaltique alimentée par la solution C. La consigne de pH du régulateur est réglée à la valeur de 9.
La suspension est placée dans le réacteur, la température est ajustée à 800C.
On introduit alors dans le réacteur, à l'aide d'une pompe péristaltique, la solution B au débit de 2,7 mL/min.
Le régulateur de pH assure le débit ad-hoc de solution C.
Lorsque la solution B est épuisée, on laisse la réaction se poursuivre sans ajout de réactif pendant environ 10 minutes. Le contenu du réacteur est vidangé et filtré sur Buchner. Il est remis en suspension dans IL d'eau déminéralisée pendant 10 minutes environ, puis filtré de nouveau. Cette opération est répétée deux fois.
Dissolution du cœur :
Le produit obtenu est reversé dans le réacteur de synthèse.
La pompe péristaltique du régulateur de pH est maintenant alimentée par la solution D. La consigne de pH est fixée à 5, ce qui entraîne un ajout d'acide chlorhydrique.
Lorsque le pH devient stable à 5, sans que la régulation n'ait ajouté d'acide pendant un intervalle de 10 minutes, la synthèse est considérée comme terminée.
Le contenu du réacteur est vidangé et filtré sur Buchner.
Le produit obtenu est reversé dans le réacteur de synthèse. Il est remis en suspension dans IL d'eau déminéralisée pendant 18 heures environ, puis vidangé et filtré à nouveau.
Le produit obtenu est séché en étuve à 1200C pendant 5 heures.
On obtient environ 100 g de charge composite selon l'invention.
Cette charge composite a été observée par microscopie électronique. On constate sur les figures 1 et 2 qu'on obtient effectivement des agglomérats de taille inférieure à 20 μm, généralement comprise entre 5 et 15 μm, comprenant un mélange de particules de TiO2, qui apparaissent foncées, et de particules creuses de silice intercalées entre elles.
EXEMPLE 2 : Protocole modifié pour la préparation de la charge composite
Préparation de la suspension A (dispersion du pigment et du matériau support) :
On ajoute 115 g de carbonate de calcium broyé (OMYA Hydrocarb 90 OG) dans 350 mL d'eau déminéralisée, puis 0,23 g d'hexamétaphosphate de sodium (Aldrich).
On agite pendant environ 10 minutes à l'aide d'une pale de diamètre 5 cm tournant à 500 rpm, puis par sonification à l'aide d'un appareil Bransonci # réglé à 50% de sa puissance maximale pendant 3 minutes. On prépare une suspension de 7,64 g de pigment à base d'oxyde de titane (Dupont R-794) dans 50 mL d'eau déminéralisée, d'abord par agitation avec une spatule puis par sonification à l'aide d'un appareil Bransonci # réglé à 30% de sa puissance maximale pendant 1,5 minute. On ajoute ensuite la suspension de dioxyde de titane dans la suspension de carbonate de calcium, au débit de 3 mL/min. A la fin de l'introductionn, on maintient l'agitation dans les conditions précédemment décrites pendant environ 10 min.
On ajoute ensuite environ 30 g de chlorure de sodium.
On maintient l'agitation pendant environ 5 min.
On obtient environ 550 g de la suspension A.
Préparation de la solution B (précurseur de silice pour pelliculage) :
On mélange 286 g d'une solution aqueuse de silicate de sodium (Riedel de Haën ref 13729) et 286 g d'eau déminéralisée pour obtenir 572 g de solution B.
Préparation de la solution C (solution acide pour pelliculage) :
La solution C est constituée d'acide sulfurique dilué de concentration approximative 2 mol/L, préparée selon les méthodes usuelles.
Préparation de la solution D (solution pour attaque acide) :
La solution D est constituée d'acide chlorhydrique dilué de concentration approximative 2 mol/L, préparée selon les méthodes usuelles.
Synthèse de l 'écorce :
La suspension A est placée dans un réacteur en verre de diamètre intérieur 10 cm, à fond hémisphérique, comportant :
- une double enveloppe dans laquelle circule de l'eau à 95°C obtenue à l'aide d'un bain thermostatique chauffant à circulation ; un agitateur mécanique entraînant une pale de 5 cm de diamètre en forme de turbine « Rushton », située à 5cm du fond de cuve ;
- des contre-pales ; une canne en inox pour l'introduction de la solution B, débouchant dans la zone de décharge de la turbine ; une canne en inox pour l'introduction de la solution C, débouchant dans la zone de décharge de la turbine et diamétralement opposée à la canne d'introduction de la solution B ;
- une sonde de pH ; une sonde de température Pt-IOO.
La sonde de pH et la sonde de température sont reliées à un régulateur de pH qui commande une pompe péristaltique alimentée par la solution C. La consigne de pH du régulateur est réglée à la valeur de 8.5.
La suspension est placée dans le réacteur, la température est ajustée à 800C.
On introduit alors dans le réacteur, à l'aide d'une pompe péristaltique, la solution B au débit de 2,7 mL/min.
Le régulateur de pH assure le débit ad-hoc de solution C.
Lorsque la solution B est épuisée, on laisse la réaction se poursuivre sans ajout de réactif pendant environ 1 heure.
Le contenu du réacteur est vidangé et filtré sur Buchner. Il est remis en suspension dans IL d'eau déminéralisée pendant 10 minutes environ, puis filtré de nouveau. Cette opération est répétée deux fois.
Dissolution du cœur :
Le produit obtenu est reversé dans le réacteur de synthèse.
La pompe péristaltique du régulateur de pH est maintenant alimentée par la solution D. La consigne de pH est fixée à 5, ce qui entraîne un ajout d'acide chlorhydrique.
Lorsque le pH devient stable à 5, sans que la régulation n'ait ajouté d'acide pendant un intervalle de 10 minutes, la synthèse est considérée comme terminée.
Le contenu du réacteur est vidangé et filtré sur Buchner. Le produit obtenu est reversé dans le réacteur de synthèse. Il est remis en suspension dans IL d'eau déminéralisée pendant 18 heures environ, puis vidangé et filtré à nouveau.
Le produit obtenu est séché en étuve à 1200C pendant 5 heures.
On obtient environ 100 g de charge composite selon l'invention.
EXEMPLE 3 : Mise en œuyre dans le papier sans agent de rétention Une suspension papetière est préparée en remettant en suspension un mélange de 60% fibres de feuillus et 40% fibres de résineux dans un désintégrateur de laboratoire normalisé (Lhomargy®) à température ambiante, pendant une durée de 10 minutes et à une vitesse de 1200 rpm. Les charges minérales préparées selon l'exemple 1 sont ajoutées ensuite à la suspension qui est diluée à une concentration de 3 g/1 et maintenue à température constante (40-45°).
Ensuite des feuilles sont fabriquées sur la formette de rétention (FRET, TechPap, St. Martin d'Hères, France) : un volume fixe de suspension fibreuse est introduit dans le bol muni d'une agitation variable. La pâte est agitée. A la fin du cycle d'agitation, la suspension fibreuse est répartie sur la toile afin de former la feuille suite à l'égouttage provoqué par une dépression brutale (réglable de 0 à 700 mm Hg). La feuille humide est récupérée sur un buvard, pressée, séchée et pesée pour déterminer la quantité de matière totale (cellulosique et minérale) retenue dans la feuille. Cette valeur, rapportée à la masse initiale introduite dans le bol, représente la rétention totale.
Ensuite, les feuilles sont calcinées à 450°C et le résidu pesé pour déterminer la rétention de charges.
Afin de vérifier l'impact sur les propriétés optiques, les formettes ont été utilisées pour des mesures de blancheur et d'opacité respectivement selon les normes ISO/NP 2470-1 et
ISO/CD 2471. Les coefficients de diffusion et d'absorption de la lumière ont été déterminés en utilisant de la théorie de Kubelka-Munk, selon la norme ISO/CD 9416.
Lors de ces essais, il a été montré que la rétention des charges composites est meilleure que celle des charges conventionnelles : 32,4% pour la charge composite selon l'invention contre 20,9% pour un pigment standard, pour un taux d'addition de 40% dans la masse. Les charges composites induisent aussi une amélioration de la blancheur : 91,1% ISO contre 85,6% ISO pour une quantité de TiO2 constante (0,013g/g), introduite respectivement sous la forme de charge composite selon l'invention ou en tant que TiO2 produit commercial pour application papetière.
De plus, il a été évalué aussi que l'utilisation des charges composites n'affecte pas les propriétés mécaniques. Les mesures d'éclatement réalisées (ISO 2758) n'ont montré aucune différence significative par rapport à l'utilisation des charges traditionnelles.
EXEMPLE 4 : Mise en œuyre dans le papier avec agent de rétention
Une suspension papetière est préparée en remettant en suspension un mélange de 60% fibres de feuillus et 40% fibres de résineux dans un désintégrateur de laboratoire normalisé (Lhomargy®) à température ambiante, pendant une durée de 10 minutes et à une vitesse de 1200 rpm. Les charges minérales préparées selon l'exemple 1 sont ajoutées ensuite à la suspension qui est diluée à une concentration de 3 g/1 et maintenue à température constante (40-45°).
Ensuite des feuilles sont fabriquées sur la formette de rétention (FRET, TechPap, St. Martin d'Hères, France) : un volume fixe de suspension fibreuse est introduit dans le bol muni d'une agitation variable. La pâte est agitée en présence de 0,7 kg / ton d'un polyacrylamide cationique. A la fin du cycle d'agitation, la suspension fibreuse est répartie sur la toile afin de former la feuille suite à l'égouttage provoqué par une dépression brutale (réglable de 0 à 700 mm Hg). La feuille humide est récupérée sur un buvard, pressée, séchée et pesée pour déterminer la quantité de matière totale
(cellulosique et minérale) retenue dans la feuille. Cette valeur, rapportée à la masse initiale introduite dans le bol, représente la rétention totale.
Ensuite, les feuilles sont calcinées à 450°C et le résidu pesé pour déterminer la rétention de charges.
Afin de vérifier l'impact sur les propriétés optiques, les formettes ont été utilisées pour des mesures de blancheur et d'opacité respectivement selon les normes ISO/NP 2470-1 et ISO/CD 2471. Les coefficients de diffusion et d'absorption de la lumière ont été déterminés en utilisant de la théorie de Kubelka-Munk, selon la norme ISO/CD 9416. Lors de ces essais, il a été montré que la rétention des charges composites est meilleure que celle des charges conventionnelles : 46,3 % pour la charge composite selon l'invention contre 33,1% pour un pigment d'oxyde de titane standard, pour un taux d'addition de 40% dans la masse.
Les charges composites induisent aussi une amélioration de la blancheur : 91,1% ISO contre 85,6% ISO pour une quantité de TiO2 constante (0,013g/g), introduite respectivement sous la forme de charge composite selon l'invention ou en tant que TiO2 produit commercial pour application papetière.
De plus, il a été évalué aussi que l'utilisation des charges composites n'affecte pas les propriétés mécaniques. Les mesures d'éclatement réalisées (ISO 2758) n'ont montré aucune différence significative par rapport à l'utilisation des charges traditionnelles.

Claims

REVENDICATIONS
1. Charge composite se présentant sous la forme d'un agglomérat comprenant :
- un pigment d'oxyde de titane (TiO2) sous forme de particules, présentant avantageusement une taille médiane inférieure ou égale à 1 μm, encore plus avantageusement environ égale à 0,2 μm. ;
- au moins une espèce de particules creuses remplies d'air, ayant une taille médiane supérieure à 0,2 μm.
2. Charge composite selon la revendication 1, caractérisée en ce qu'elle se présente sous forme de poudre.
3. Charge composite selon l'une des revendications 1 et 2, caractérisée en ce que les particules creuses remplies d'air sont constituées d'une écorce de silice (SiO2).
4. Charge composite selon l'une des revendications précédentes, caractérisée en ce que la charge présente une taille supérieure à 1 μm et inférieure à 100 μm, avantageusement supérieure à 1 μm et inférieure ou égale à 20 μm, et encore plus avantageusement comprise entre 5 et 10 μm.
5. Charge composite selon l'une des revendications précédentes, caractérisée en ce que dans l'agglomérat, les particules de pigment sont, au moins en partie, séparées par les particules creuses.
6. Charge composite selon la revendication 5, caractérisée en ce que dans l'agglomérat, les particules de pigment sont individualisées.
7. Procédé de fabrication d'une charge composite comprenant des particules de pigment et des particules creuses de silice, comprenant les étapes suivantes : - dispersion des particules de pigment et des particules d'un matériau support pour former des suspensions aqueuses, ledit matériau support ayant une taille médiane de particules supérieure à 0,2 μm et n'étant pas de la silice ni de même nature que le pigment ;
- agglomération des particules ; - pelliculage des particules à l'aide d'une couche de silice (SiO2) ;
- élimination du matériau support ;
- récupération de la charge composite.
8. Procédé de fabrication d'une charge composite selon la revendication 7, caractérisé en ce que le pigment est du pigment d'oxyde de titane (TiO2), se présentant avantageusement sous forme de particules de taille médiane inférieure ou égale à 1 μm, encore plus avantageusement environ égale à 0,2 μm.
9. Procédé de fabrication d'une charge composite selon la revendication 7 ou 8, caractérisé en ce que le matériau support est du carbonate de calcium, se présentant avantageusement sous forme de particules de taille médiane environ égale à 1 μm.
10. Procédé de fabrication d'une charge composite selon la revendication 9, caractérisé en ce que l'élimination du carbonate de calcium est réalisée par dissolution acide.
11. Procédé de fabrication d'une charge composite selon l'une des revendications 7 à
10, caractérisé en ce que l'étape d'agglomération et/ou de pelliculage est réalisé en présence de sels électrolytes du groupe des métaux alcalins, tel que le chlorure de sodium (NaCl).
12. Procédé de fabrication d'une charge composite selon l'une des revendications 7 à
11, caractérisé en ce qu'au moins un lavage est réalisé entre l'étape de pelliculage et d'élimination du matériau support.
13. Suspension aqueuse comprenant une charge composite selon l'une des revendications 1 à 6.
14. Papier comprenant une charge composite selon l'une des revendications 1 à 6, et éventuellement un agent de rétention.
15. Peinture comprenant une charge composite selon l'une des revendications 1 à 6.
PCT/FR2008/050417 2007-03-13 2008-03-12 Charges composites integrant des particules de pigment et des particules creuses, et leur procede de fabrication WO2008129197A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0753797A FR2913690B1 (fr) 2007-03-13 2007-03-13 Charges composites integrant des particules de pigment et des particules creuses, et leur procede de fabrication
FR0753797 2007-03-13

Publications (2)

Publication Number Publication Date
WO2008129197A2 true WO2008129197A2 (fr) 2008-10-30
WO2008129197A3 WO2008129197A3 (fr) 2009-03-26

Family

ID=38669636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2008/050417 WO2008129197A2 (fr) 2007-03-13 2008-03-12 Charges composites integrant des particules de pigment et des particules creuses, et leur procede de fabrication

Country Status (2)

Country Link
FR (1) FR2913690B1 (fr)
WO (1) WO2008129197A2 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146649A (en) * 1995-07-13 2000-11-14 Societe L'oreal S.A. Photobluing/whitening-resistant cosmetic/dermatological compositions comprising TiO2 pigments and deformable hollow particulates
US6221326B1 (en) * 1996-04-22 2001-04-24 Rhodia Chimie Method for preparing hollow silica particles
WO2007017843A2 (fr) * 2005-08-10 2007-02-15 The Procter & Gamble Company Particules de silice creuses, compositions les comprenant, et methode de fabrication de celles-ci

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6146649A (en) * 1995-07-13 2000-11-14 Societe L'oreal S.A. Photobluing/whitening-resistant cosmetic/dermatological compositions comprising TiO2 pigments and deformable hollow particulates
US6221326B1 (en) * 1996-04-22 2001-04-24 Rhodia Chimie Method for preparing hollow silica particles
WO2007017843A2 (fr) * 2005-08-10 2007-02-15 The Procter & Gamble Company Particules de silice creuses, compositions les comprenant, et methode de fabrication de celles-ci

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FOWLER C E ET AL: "Facile synthesis of hollow silica microspheres" JOURNAL OF MATERIALS CHEMISTRY, THE ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, GB, vol. 11, 2001, pages 1968-1971, XP002338146 ISSN: 0959-9428 *
X. SONG, L. GAO: "Synthesis, Characterization and optical properties of well defined N-doped Hollow silica/Titania Hybrid microspheres" LANGMUIR, 10 mars 2007 (2007-03-10), XP002459415 *

Also Published As

Publication number Publication date
FR2913690A1 (fr) 2008-09-19
FR2913690B1 (fr) 2010-10-29
WO2008129197A3 (fr) 2009-03-26

Similar Documents

Publication Publication Date Title
CA2163484C (fr) Procede de traitement de pigments de dioxyde de titane, nouveau pigment de dioxyde de titane et son utilisation dans la fabrication du papier
EP1149136B1 (fr) Procédé de traitement de pigments, charges ou minéraux, contenant un carbonate naturel et procédé de fabrication d&#39; une suspension aqueuse à partir de ces pigments, charges ou minéraux traités
EP1603977B1 (fr) Nouveau pigment mineral contenant du carbonate de calcium, suspension aqueuse le contenant et ses usages
JPH0316434B2 (fr)
FR2474885A1 (fr) Procede de fabrication d&#39;un filtre pour des contaminants cationiques, filtre obtenu et son application
FR3003581A1 (fr) Support fibreux a base de fibres et de nanofibrilles de polysaccharide
EP0550295A1 (fr) Particules de dioxyde de titane, leur utilisation comme pigments opacifiants pour papiers et lamifiés de papier
EP2044159A1 (fr) Agent de dispersion et/ou d&#39;aide au broyage pour dispersion et suspension aqueuse de matieres minerales, dispersion et suspension obtenues et leurs utilisations
FR2831565A1 (fr) Nouvelle pate a papier mecanique blanchie et son procede de fabrication
EP0329509B1 (fr) Suspension aqueuse stable de silice de précipitation
WO1999035193A1 (fr) Preparation et utilisation d&#39;opacifiants mixtes a base d&#39;oxydes de titane et de silicium
WO1999035335A1 (fr) Feuille papetiere decorative comprenant une composition de dioxyde de titane et stratifie decoratif
EP0215044B1 (fr) Procede de preparation d&#39;une feuille fibreuse par voie papetiere
EP3430199A1 (fr) Procédé de fabrication de papier imprégné par un fluide à pression supercritique - papier imprégné, notamment coloré
EP2890845A1 (fr) Couche d&#39;opacification d&#39;un support papier
WO2006010853A1 (fr) Plaque de platre comportant au moins un papier de parement avec une sauce de couchage comprenant des pigments plastiques, sauce de couchage et procede de fabrication afferent
FR2819246A1 (fr) Suspensions de silice precipitee, dopee et de faible granulometrie et leur application comme charge pour papier
WO2008129197A2 (fr) Charges composites integrant des particules de pigment et des particules creuses, et leur procede de fabrication
CA2114652C (fr) Procede de preparation d&#39;une suspension aqueuse a base de sulfate de calcium
EP0344265B1 (fr) Materiau de densite diminuee contenant une charge vegetale
EP0985069A1 (fr) Procede de fabrication de papier utilisant un systeme gelifiant
CA2354647C (fr) Procede de fabrication de papier utilisant un nouveau systeme de retention comprenant une silice precipitee et un polymere cationique
CH435211A (fr) Matériau filtrant et incombustible notamment pour la filtration des gaz à très haute température
CN114846204A (zh) 纤维素纤维的分散体和生产其的方法
EP0648288B1 (fr) Procede de fabrication de papier tissue, notamment de papier tissue multistrates, avec une interaction diminuee entre les fibres

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08775714

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 08775714

Country of ref document: EP

Kind code of ref document: A2