WO2008125485A1 - Echangeur de chaleur pour gaz, et son procede de fabrication correspondant - Google Patents

Echangeur de chaleur pour gaz, et son procede de fabrication correspondant Download PDF

Info

Publication number
WO2008125485A1
WO2008125485A1 PCT/EP2008/053893 EP2008053893W WO2008125485A1 WO 2008125485 A1 WO2008125485 A1 WO 2008125485A1 EP 2008053893 W EP2008053893 W EP 2008053893W WO 2008125485 A1 WO2008125485 A1 WO 2008125485A1
Authority
WO
WIPO (PCT)
Prior art keywords
carcass
exchanger
gas
core
heat exchanger
Prior art date
Application number
PCT/EP2008/053893
Other languages
English (en)
Inventor
Benjamin Gracia
Jesus Jimenez Palacios
Original Assignee
Valeo Termico S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES200700987A external-priority patent/ES2325348B1/es
Priority claimed from ES200703136A external-priority patent/ES2332253B1/es
Priority claimed from ES200703278A external-priority patent/ES2333191B1/es
Priority claimed from ES200703279A external-priority patent/ES2334480B1/es
Application filed by Valeo Termico S.A. filed Critical Valeo Termico S.A.
Priority to EP08735663.0A priority Critical patent/EP2137477B1/fr
Publication of WO2008125485A1 publication Critical patent/WO2008125485A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • F28D7/1692Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0083Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0082Charged air coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/067Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding
    • F28F2275/067Fastening; Joining by welding by laser welding

Definitions

  • the present invention relates to a heat exchanger for gas, and its corresponding manufacturing method.
  • the invention finds particular application in the exhaust gas recirculation exchangers (EGRC) of an engine.
  • EGRC exhaust gas recirculation exchangers
  • the two heat exchange media are separated by a wall.
  • the heat exchanger itself can have several different configurations: for example, it can be composed of a carcass inside which are arranged a series of parallel ducts for the passage of gases, the refrigerant flowing in the carcass outside the ducts; in another embodiment, the exchanger has a series of parallel plates forming the heat exchange surfaces, the exhaust gas and the refrigerant then flowing between two plates in alternating layers.
  • the junction between the ducts and the casing may be of different types.
  • the ducts are fixed at their ends between two support plates coupled to each end of the carcass, the two support plates having a plurality of orifices for the introduction of the respective ducts. Said support plates are themselves attached to connection means at the recirculation line,
  • Said connecting means may consist of a V-shaped connection or of a peripheral flange of connection or flange, depending on the configuration of the recirculation line to which the exchanger is connected.
  • peripheral flange When using a peripheral flange or flange, two different designs are possible.
  • the peripheral rim may be "connected to a gas reservoir, so that the gas reservoir is an intermediate piece between the carcass and the rim.
  • the flange can also be directly connected to the carcass. This latter design is common when the exchanger is directly joined to an EGR valve.
  • the most common design comprises a bypass duct which conducts the refrigerant fluid, which flows in the EGR exchanger, to or from the EGR valve. If the EGR exchanger is connected to the EGR circuit by means of a peripheral flange, the refrigerant by-pass duct must be manufactured through said peripheral flange.
  • the conduit by ⁇ pass is external and connects the carcass to the valve.
  • the gas circuit may be of linear type in which the inlet and the outlet of the gases are arranged at opposite ends; or may be in the form of a "U" in which the gas inlet and outlet occupy adjacent positions at the same open end, the opposite end being closed, and defining a forward passage and a return passage.
  • the closed end for the return of gases is generally composed of a closed gas tank.
  • EGR heat exchangers are metal and usually made of stainless steel. All the components of the ductwork heat exchangers, like those of the stacked plate heat exchangers, are metallic, so that the exchangers are assembled by mechanical means and then welded in the oven to ensure an adequate level of sealing for this application.
  • One action to reduce the cost of the EGR heat exchanger is to replace the stainless steel casing with another material, whether this material has a low cost or that it allows to integrate other functions, such as the integration of the refrigerant conduits or fixing brackets to a surface to which the exchanger will be fixed.
  • EGR duct heat exchangers whose carcass is made of aluminum rather than stainless steel. In this case, since the exchanger as a whole can not be immediately welded to the oven, a mechanical connection is provided between the carcass and other components, such as a gas tank, support plates or support edges.
  • Patent WO 2005/052346 relates to a heat exchanger comprising a plastic carcass inside which is housed a metal core formed of a bundle of parallel conduits joined at their ends to two support plates, said plates being joined to connections with the gas recirculation line. A plastic seal is further provided between the corresponding end of the carcass and the support plate to provide the required level of sealing.
  • Plastic carcasses have the advantage of reducing the cost of production insofar as they allow the integration of the ducts of the circuit refrigerant and mounting brackets. In general, the junction between the metal support plate and the plastic casing is made by a mechanical assembly.
  • US 2003/0079869 relate to type heat exchangers which comprise a bundle of conduits, the support plates of which incorporate an outwardly oriented peripheral wall which extends beyond the ends of the conduits, so that each peripheral wall is joined to the inner surface of a metal carcass and adjacent to a diffuser by arc welding.
  • the junction between the conduits and the support plates is performed by laser welding.
  • JP 2004177058, JP 2004028469 and JP 2004263616 relate to heat exchangers of the type which comprise a bundle of conduits, the metal carcass of which is formed of two parts joined together by laser welding, and which use an oven weld for junctions between the ducts and the support plates.
  • US Patent 6,311,678 relates to a heat exchanger of the type which comprises a core having a bundle of parallel conduits joined at their ends to two support plates, said plates being joined to connections with the gas recirculation line. Once mounted, the heart is inserted into a cast aluminum block to form a metal carcass.
  • the manufacturing process of the various heat exchangers mentioned is generally complex, insofar as, in the case where it uses an oven weld, it requires the use of support elements used to immobilize the different components when the exchanger is inside the oven. This greatly complicates the manufacturing process of the exchanger, and also increases the time and cost of production. It should be emphasized that the manufacturing process is also complex when it combines different types of welding, such as arc welding, laser or oven, to join the various components of the exchanger. In addition, in most cases, these components are structurally complex because they require additional surfaces or flanges to ensure proper junction.
  • the open-side junction generally comprises a seal to prevent any leakage of the coolant to the outside, while the junction of the closed side does not require any sealing function, because on this side, the only need is to support the metal body in the plastic carcass.
  • WO 2007/048603 discloses a heat exchanger of this type, wherein the junction means of the closed side comprise a support integral with the plastic carcass, said support being provided with a slot for receiving a projection integral with the reservoir closed gas.
  • the contact zone The working temperatures of the carcass in plastic and the body of the exchanger are different.
  • the metal body can reach high temperatures insofar as it is in contact with the gas, whose temperature varies from 750 2 C input to 500 2 C output; while the plastic frame supports relatively low temperatures because it is immersed in the coolant whose temperature is between 70 to 90 C and 3 C.
  • the contact zone between the body of the exchanger and the plastic casing must be very well cooled by the refrigerant.
  • the flow of refrigerant in this zone must be sufficiently large, the coolant passage being therefore preferential; and, on the other hand, the contact zone must be very small to maintain the temperature in the contact zone of the plastic material at values close to the temperature of the refrigerant. Similarly, the contact area • must be large enough to support the metal body.
  • the thermal expansion of the two components will be different, and will also depend on the coefficient of thermal expansion.
  • the contact zone between the plastic carcass and the metal body generally the gas tank, must be cooled well by the coolant, which means that the refrigerant in this area must be preferred.
  • the design requirements are very important.
  • the distance between the metal body and the plastic carcass it is very important to define the distance between the metal body and the plastic carcass.
  • the choice of this value depends on the minimum cross section of the coolant in the heat exchanger. For example, if the gas tubes of a tubular heat exchanger are separated by a distance of 1.3 mm, it is advisable to have a distance of 2.6 mm, on both opposite sides, between the tank of gas and plastic carcass.
  • This type of exchanger generally comprises a metal flange attached to the support plate and in direct contact with the plastic carcass, the EGR or bypass valve being connectable to this rim directly or by means of a connecting body. intermediate.
  • the elevated temperature can be transferred from the walls of the valve or intermediate coupling body to the flange and, therefore, to the plastic.
  • a seal is inserted between the metal flange and the valve or the intermediate coupling body.
  • This seal is generally metallic, for example steel, for EGRC applications.
  • Said metal seal also has a high heat conductivity, so that the heat transferred from the material in contact with the gas does not decrease.
  • EGR circuits corresponding to high pressure (HP) configurations in which the EGR exchanger is located in the recirculation line EGR gas, mounted directly on the engine In another aspect, generally, the applications that EGR circuits corresponding to high pressure (HP) configurations in which the EGR exchanger is located in the recirculation line EGR gas, mounted directly on the engine.
  • WCAC exchangers are generally air-cooled and located at the front of the vehicle.
  • the plastic carcasses have the advantage of reducing the weight and cost of production insofar as they allow the integration of the refrigerant circuit conduits and the attachment brackets to a surface of the engine environment.
  • the low pressure (LP) EGRs have a configuration in which the EGR is located outside the engine block, and therefore this component could be integrated with other nearby components.
  • the integration would be more profitable if the EGR exchanger could be integrated with another exchanger also cooled by the refrigerant or a similar technology exchanger.
  • the heat exchange means for example, a bundle of parallel pipes
  • the outer carcass may also be similar; concretely, there are known applications WCAC exchangers with plastic casing, and new developments have been launched for the use of a plastic casing for EGR exchangers.
  • the present invention relates to a heat exchanger for gas to overcome the disadvantages of exchangers known in the art, ensuring a reduction in the number of components and a reduction in manufacturing costs.
  • the gas heat exchanger object of the present invention is of the type which comprises a metal core having a set of parallel conduits for the circulation of gases with heat exchange with a refrigerant, at least one support plate joined by welding laser to at least one end of said set of parallel conduits, and at least one gas reservoir or connecting member, and is characterized in that said gas reservoir or connecting member is joined directly to said support plate by laser welding or arc welding.
  • the simplicity of use of the laser or arc welding makes it possible to give the gas circuit to cool any configuration or orientation.
  • the core can be put in place in a carcass connected to the refrigerant circuit.
  • the laser-welded or arc-welded components which form the core remain stationary upon their introduction into the carcass and their connection thereto, whether by welding in the oven or by any other type junction.
  • the configuration of the core is independent of the material of manufacture of the carcass, be it plastic, metal or a composite material.
  • the heat exchanger which is of the "U" -shaped type in which the inlet and outlet of the fluid to be cooled occupy adjacent positions at the same level.
  • open end of the set of parallel conduits, the opposite end being closed, and 0 defining a forward passage and a return passage, is characterized in that the core comprises a first support plate disposed at the open end and provided with a flange for joining a carcass, and a second support plate disposed at the closed end and joined to a closed gas reservoir.
  • the manufacturing method applied to the heat exchanger of the invention is characterized in that it implements the following steps consisting in: a) obtaining a core comprising a set of ducts parallel, at least one metal support plate, and at least one gas reservoir or connecting element; b) attaching said support plate by laser welding to at least one end of said set of parallel conduits; c) joining said gas reservoir or connecting member directly to said support plate by laser welding or arc welding; d) introducing the core into a carcass connected to the refrigerant circuit; and e) joining the core to said carcass to complete the exchanger.
  • the junction of the core to the carcass according to step e) is performed by welding, bonding or mechanical assembly.
  • FIG. 1 is a perspective view of a laser welded metal core of the present invention, according to a first embodiment of the invention
  • Figure 2 is a perspective view of a U-shaped heat exchanger illustrating the core of Figure 1 attached to a plastic carcass by welding
  • Figure 3 is a partial view of a longitudinal section of the exchanger of Figure 2, illustrating the junction zone between the heart and the carcass;
  • FIG. 1 is a perspective view of a laser welded metal core of the present invention, according to a first embodiment of the invention
  • Figure 2 is a perspective view of a U-shaped heat exchanger illustrating the core of Figure 1 attached to a plastic carcass by welding
  • Figure 3 is a partial view of a longitudinal section of the exchanger of Figure 2, illustrating the junction zone between the heart and the carcass
  • FIG. 1 is a perspective view of a laser welded metal core of the present invention, according to a first embodiment of the invention
  • Figure 2 is a perspective view of a U-shaped heat exchanger illustrating the core of Figure 1
  • FIG. 4 is an exploded perspective view of a U-shaped heat exchanger, illustrating a laser-welded metal core before being joined to a plastic carcass by mechanical assembly, according to a second embodiment embodiment of the invention
  • Figure 5 is an exploded perspective view of a heat exchanger for gas, according to a third embodiment of the invention
  • Figure 6 is a longitudinal sectional view of the mounted exchanger of Figure 5
  • Figures 7, 8 and 9 are cross-sectional views of the exchanger along the line VII-VII of Figure 6, illustrating the junction means with six, four and two ribs respectively, according to different variants
  • Figure 10 is a partial view of a longitudinal section, illustrating the longitudinal ribs
  • Figures 11 and 12 are cross-sectional views of the exchanger, illustrating the connecting means with two branched ribs comprising two and three branches respectively, according to different variants
  • Figures 13 and 14 are cross-sectional views of the exchanger, illustrating the means of junction with six ribs with two branches with different angles respectively, according to different variant
  • FIG. 15 is a cross-sectional view of the exchanger, illustrating an enlarged view of a longitudinal rib provided with a plurality of protuberances;
  • Figure 16 is an exploded perspective view of a gas heat exchanger according to a fourth embodiment of the invention;
  • Figure 17 is a top view of the seal of heat-insulating material of the exchanger of Figure 16;
  • Figure 18 is a perspective view of a gas heat exchanger according to a fifth embodiment of the invention;
  • FIG. 19 is a view in cross-section and in perspective of the exchanger of FIG. 18.
  • Figures 1 to 3 illustrate a first embodiment of the invention.
  • the heat exchanger 1 for gas comprises a metal core 2 comprising a set of parallel ducts 3, which, in this example, are planar and of rectangular section, intended for the circulation of gases with heat exchange with a refrigerant.
  • the exchanger is of the "U" -shaped type, namely the inlet 4 and the outlet 5 of the gases to be cooled occupy adjacent positions at the same open end 6 of the assembly.
  • parallel ducts 3 the opposite end 7 being closed, and defining a go and a return passage, as illustrated by the arrows of Figure 1.
  • the two ends 6 and 7 of the bundle of ducts 3 are fixed to two support plates 8 and 9, which have a plurality of orifices 10 in which the respective ducts 3 are inserted.
  • the support plate 8 fixed at the free end 6 has a peripheral flange 11 intended to be coupled to a carcass, as will be explained later, while the support plate 9 fixed at the level the closed end 7 is joined to a gas reservoir 12.
  • the junction between the plate 9 and the gas reservoir 12 is preferably made without using a peripheral flange so as to obtain a stronger junction and reduced cross section.
  • junction between the ends of the duct assembly 3 and the support plates 8, 9 is made by laser welding, whereas the junction between the plate 9 and the gas reservoir 12 may be made by laser welding or by arc welding.
  • the core 2 can be housed inside a plastic casing 13 incorporating the inlet ducts 14 and the outlet ducts 15 of the refrigerant fluid.
  • the carcass 13 comprises at its free end a peripheral flange 13a facing outwardly of said carcass 13, and substantially perpendicular to its axis. Said peripheral flange 13a is intended to be joined to the connecting means corresponding to the gas recirculation duct (not shown).
  • the junction of the core 2 with the plastic carcass 13 is effected by means of a metal insert 16 overmolded at the open end of the carcass.
  • plastic 13 concretely on the peripheral rim 13a of said carcass 13.
  • the metal core 2 is then introduced inside the carcass until the peripheral rim 11 of the Support plate 8 partially bears on the metal insert 16.
  • said junction is preferably laser welded, although it can also be arc welded or glued with a suitable adhesive.
  • Figure 4 illustrates a second embodiment of the invention.
  • the heat exchanger comprises the same elements bearing the references 2 to 15 of the first embodiment.
  • the difference lies in the fact that the junction between the support plate 8a and the plastic casing 13 is made by mechanical assembly.
  • the support plate 8a comprises a peripheral rim 11a provided with tabs intended to be folded and fixed against the contour of the plastic casing 13. It further comprises a plastic seal 17 to ensure also the compressive force.
  • the metal core components are joined by laser or arc welding, it is possible to obtain a simpler manufacturing process. as well as a reduction in the volume and manufacturing costs of the heat exchanger.
  • the gas circuit described in this second embodiment is in the form of a "U" (the inlet and the outlet of the gases are arranged at the same end), it can also be of the linear type (the inlet and the gas outlet are disposed at opposite ends).
  • the carcass may be plastic, as described, aluminum or other metallic material, or a composite material.
  • the core instead of being introduced into a carcass, the core can be housed in a chamber forming part of the refrigerant circuit of the engine.
  • Figures 5 to 15 illustrate a third embodiment of the invention.
  • the heat exchanger Ib comprises the same elements bearing the references 2 to 15 and 17 of the first and second embodiments.
  • the inlet 4 of the gases should be arranged close to the passage of the cooling fluid, whether at the inlet or at the outlet.
  • the inlet 4 of the gases is located near the inlet 14 of the refrigerant fluid.
  • the duct bundle 3 is fixed at its free end to the metal support plate 8b, and at its closed end to the gas tank 12.
  • said support plate 8b is fixed at the open end of the plastic casing 13 by means of screws.
  • a plastic seal 17 is further provided between the open end of the carcass 13 and the support plate 8b to provide the required level of sealing.
  • the plastic casing 13 is fixed at the level from its closed end to said metal gas reservoir 12 by connecting means which comprise a plurality of longitudinal ribs 18 with a small contact surface, integral with the plastic casing 13 and capable of being nested in corresponding orifices 19 formed in the gas tank 12, as shown for example in FIGS. 7 to 9,
  • the orifices 19 are formed in said gas tank by stamping.
  • the longitudinal ribs 18 make it possible to solve the problem of having both an area sufficiently small to maintain the temperature in the contact zone of the plastic material at values close to the temperature of the coolant, and a sufficiently large contact zone. to be able to support the metal body.
  • this solution makes it possible to obtain an abundant flow of the coolant to cool the contact zone which is at an elevated temperature. Furthermore, the establishment of the body of the heat exchanger inside the plastic carcass during the mounting operation is facilitated.
  • the connecting means comprise six longitudinal ribs 18 distributed symmetrically, so that each long side of said rectangular cross section comprises two ribs and each small side comprises a rib.
  • the joining means comprise four longitudinal ribs 18 distributed symmetrically, so that each long side of said rectangular cross section comprises two ribs.
  • the connecting means comprise two longitudinal ribs 18 distributed symmetrically, so that each long side of said rectangular cross section comprises a rib.
  • the longitudinal ribs 18 have a minimum longitudinal dimension to allow the displacements due to the different thermal expansion between the metal gas tank 12 and the plastic casing 13, thus ensuring proper operation of the exchanger.
  • the arrow with two points illustrated in FIG. 10 indicates the direction of these longitudinal displacements,
  • a minimum distance between the gas tank 12 and the plastic casing 13 is also provided, depending on the minimum cross section of the flow of the refrigerant in the exchanger Ib. This ensures a plentiful flow of refrigerant.
  • This minimum distance between the gas tank 12 and the plastic casing 13, measured on each opposite side of the gas tank 12, is twice the distance between the gas ducts 3.
  • a safety distance is also provided, equal to 1.5 to 2.5 times the minimum cross section of the refrigerant flow.
  • the outlet connection 15 of the refrigerant fluid is located near the contact zone of the junction between the carcass 13 and the gas reservoir 12, as shown in FIGS. 6 and 10. minimal refrigerant flow.
  • the exchanger Ib comprises mounting brackets 20 to a surface of the engine environment, which are located near said contact zone of the junction between the carcass 13 and the gas reservoir 12, as shown in FIG. In this way, a better resistance of the metal body to the vibrations due to the motor is obtained.
  • the longitudinal ribs 18 comprise a suitable configuration to absorb the clearance due to the tolerances of the gas reservoir 12 and the plastic casing 13.
  • the longitudinal ribs 18 will admit a minor deformation of the plastic material if the interference of assembly between the two components exceeds the allowable interference, that is to say if the gas tank has the greatest permissible tolerance and that the distance between the longitudinal ribs is as small as possible.
  • the longitudinal ribs 18 may comprise a branched configuration, as shown in FIGS. 11 to 14.
  • the longitudinal ribs 18 comprise two diverging branches which form an appropriate angle chosen according to the plastic used.
  • Figures 13 and 14, respectively, show different values of the angle formed by the branches of the longitudinal ribs 18. The greater the angle defined between the legs, the lower the mounting force is.
  • the longitudinal ribs 18 comprise three divergent branches.
  • the addition of an additional central branch makes it possible to improve the stability.
  • the longitudinal ribs 18 can comprise a plurality of small protrusions 21 on their outer surface, as shown in Figure 15. The volume of plastic to be deformed is thus less, in case of interference mounting, and, therefore, the mounting procedure is found facilitated.
  • the invention can also be applied to stacked plate heat exchangers.
  • the gas circuit can be of the type in the form of "U"
  • the inlet and the outlet of the gases are arranged at the same end
  • the linear type the inlet and the outlet of the gases are arranged at opposite ends
  • Figures 16 and 17 illustrate a fourth embodiment of the invention.
  • the heat exchanger Ic comprises the same elements bearing the references 2 to 15 and 17 of the previous embodiments.
  • the support plate 8c is joined to a metal flange 22, which is coupled in direct contact with the open end of the plastic casing 13 by means of screws and a plastic seal 17 to secure the sealing of refrigerant, setting up an EGR valve or bypass
  • a seal 23 is provided between the metal flange 22 and the valve.
  • Said seal 23 is made of a thermo-insulating material, preferably mica, thus reducing the heat transfer from the valve to the plastic casing 13. Furthermore, said seal 23 has a shape that coincides with the shape of the flange 22, as shown in Figure 16.
  • the seal 23 is capable of withstanding high temperatures up to 950 C. 2, which reduces the temperature in contact with the plastic frame 13 to about 50 to C.
  • the seal 23 reduces the temperature level, thus ensuring the durability of the EGR exchanger, and, more importantly, it increases the range of plastics that can be used with the carcass . In addition, the cost of production is reduced.
  • the invention can also be applied to stacked plate heat exchangers.
  • the gas circuit may be of the "U" -shaped type (the gas inlet and outlet are arranged at the same end) or of the linear type (the inlet and the outlet gases are arranged at opposite ends).
  • Figures 18 and 19 illustrate a fifth embodiment of the invention.
  • the heat exchanger Id comprises the same elements bearing the references 2 to 15 of the previous embodiments.
  • the heat exchanger Id consists of a plastic casing 13 which comprises, inside, a first EGR-type circuit 3 provided with a bundle of ducts intended to cool the exhaust gases. the engine, and a second circuit 3a of WCAC type (Water Charge Air Coolers) provided with a bundle of conduits for cooling the intake air of the engine, the two circuits 3, 3a being arranged adjacent.
  • Each circuit 3, 3a is identified in FIG. 19 by means of a circle.
  • the plastic casing 13 may have a free shape adapted to the environment, and the two circuits EGR 3 and WCAC 3a may be arranged relative to each other in different arrangements, for example in parallel, as shown in FIG. Figure Id, or series, "L" shaped, "T” shaped, etc.
  • the exchanger Id is of linear type, that is to say that the inlet and the outlet of the gases are disposed at opposite ends.
  • the inputs 4, 4a of each EGR circuit 3 and WCAC 3a are disposed at the same end of the carcass 13, while the outputs 5, 5a are disposed at the opposite end.
  • the exchanger Id comprises two support plates 8d, each of which is coupled to one end of the two circuits EGR 3 and WCAC 3a.
  • the exchanger Id also comprises two gas tanks 12, each of them being coupled to one end of the plastic casing 13.
  • each gas tank 12 is manufactured in one piece integrating the inputs or outputs of each EGR circuit 3 and WCAC 3a.
  • one of the gas tanks 12 comprises the respective inputs 4, 4a for each EGR circuit 3 and WCAC 3a; while the other gas tank 12 comprises the respective outlets 5, 5a for each EGR circuit 3 and WCAC 3a.
  • the direction of movement of the gases at the inlet and the outlet of the two circuits EGR 3 and WCAC 3a is indicated by arrows in FIG.
  • gas tank 12 can be divided into two parts, each of them being associated with an inlet or an outlet of each EGR circuit 3 and WCAC 3a.
  • each EGR circuit 3 and WCAC 3a may be similar, and may also have different dimensions to better meet the requirements in terms of heat efficiency.
  • the two beams EGR ducts 3 and WCAC 3a can be attached together to the carcass 13 or with the aid of independent means to obtain a certain durability, for example to meet the requirements for thermal shock.
  • a parallel duct bundle exchanger has been described in this fifth embodiment, the invention can also be applied to stacked plate heat exchangers.
  • the gas circuit may be of the linear type, as previously described, or of the "U" shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

L'invention concerne un échangeur de chaleur pour gaz, comprenant un c ur métallique (2) comprenant un ensemble de conduits parallèles (3) destiné à la circulation des gaz avec échange de chaleur avec un fluide réfrigérant, au moins une plaque de support (8, 9) jointe par soudure au laser à au moins l'une des extrémités dudit ensemble de conduits parallèles (3), et au moins un réservoir de gaz (12) ou élément de raccord, caractérisé en ce que ledit réservoir de gaz (12) ou élément de raccord est joint directement à ladite plaque de support (8, 9) par soudure au laser ou soudure à l'arc. Elle se rapporte également à un procédé de fabrication de cet échangeur de chaleur.

Description

ÉCHANGEUR DE CHALEUR POUR GAZ, ET SON PROCÉDÉ DE FABRICATION CORRESPONDANT
La présente invention concerne un échangeur de chaleur pour gaz, et son procédé de fabrication correspondant .
L'invention trouve une application particulière dans les échangeurs de recirculation de gaz d'échappement (EGRC) d'un moteur.
ARRIÈRE-PLAN DE L'INVENTION
Dans certains échangeurs de chaleur utilisés pour refroidir des gaz, par exemple ceux utilisés dans des systèmes de recirculation des gaz d'échappement vers l'admission d'un moteur à explosion, les deux milieux d'échange de chaleur sont séparés par une paroi.
L'échangeur de chaleur proprement dit peut présenter plusieurs configurations différentes : à titre d'exemple, il peut être composé d'une carcasse à l'intérieur de laquelle sont disposés une série de conduits parallèles pour le passage des gaz, le réfrigérant circulant dans la carcasse à l'extérieur des conduits ; dans un autre mode de réalisation, l' échangeur compte une série de plaques parallèles formant les surfaces d'échange de chaleur, les gaz d'échappement et le réfrigérant circulant alors entre deux plaques, en couches alternées.
Dans le cas d' échangeurs de chaleur à faisceau de conduits, la jonction entre les conduits et la carcasse peut être de différents types. D'une façon générale, les conduits sont fixés par leurs extrémités entre deux plaques de support couplées à chaque extrémité de la carcasse, les deux plaques de- support présentant une pluralité d'orifices pour la mise en place des conduits respectifs. Lesdites plaques de support sont elles-mêmes fixées à des moyens de raccord à la ligne de recirculation ,
Lesdits moyens de raccord peuvent consister en un raccord en V ou bien en un rebord périphérique de raccord ou bride, en fonction de la configuration de la ligne de recirculation à laquelle l'échangeur est raccordé .
En cas d'utilisation d'un rebord périphérique de raccord ou bride, deux conceptions différentes sont possibles. Le rebord périphérique peut être «raccordé à un réservoir de gaz, si bien que le réservoir de gaz est une pièce intermédiaire entre la carcasse et le rebord. En outre, le rebord peut aussi être directement raccord à la carcasse. Cette dernière conception est courante lorsque l'échangeur est directement joint à une soupape EGR.
Dans certaines applications de circuits EGR, il s'avère nécessaire de refroidir la soupape EGR. Dans ce cas, la conception la plus courante comprend un conduit by-pass qui conduit le fluide réfrigérant, qui circule dans l'échangeur EGR, vers ou depuis la soupape EGR. Si l'échangeur EGR est raccordé au circuit EGR au moyen d'un rebord périphérique, le conduit by-pass du fluide réfrigérant doit être fabriqué à travers ledit rebord périphérique. Selon un autre mode de réalisation, le conduit by~pass est externe et relie la carcasse à la soupape .
De même, le circuit des gaz peut être de type linéaire dans lequel l'entrée et la sortie des gaz sont disposées à des extrémités opposées ; ou bien peut être en forme de "U" dans lequel l'entrée et la sortie des gaz occupent des positions adjacentes au niveau d'une même extrémité ouverte, l'extrémité opposée étant fermée, et définissant un passage aller et un passage retour. Dans ce dernier cas, l'extrémité fermée pour le retour des gaz est en général constituée d'un réservoir de gaz fermé. Dans la pratique, les échangeurs de chaleur EGR sont métalliques et généralement fabriqués en acier inoxydable. Tous les composants des échangeurs à faisceau de conduits comme ceux des échangeurs à plaques empilées sont métalliques, de sorte que les échangeurs sont assemblés par des moyens mécaniques puis soudés au four pour assurer un niveau d'étanchéité adéquat pour cette application.
Une action pour réduire le coût de l'échangeur de chaleur EGR consiste à remplacer la carcasse en acier inoxydable par un autre matériau, que ce matériau présente un faible coût ou qu'il permette d'intégrer d'autres fonctions, telles que l'intégration des conduits du fluide réfrigérant ou des supports de fixation à une surface à laquelle sera fixé l'échangeur.
Il existe des échangeurs de chaleur EGR à faisceau de conduits dont la carcasse est fabriquée en aluminium plutôt qu'en acier inoxydable. Dans ce cas, étant donné que l'échangeur dans son ensemble ne peut pas être immédiatement soudé au four, un assemblage mécanique est prévu entre la carcasse et d'autres composants, tels qu'un réservoir de gaz, des plaques de support ou des rebords de support .
Le brevet WO 2005/052346 concerne un échangeur de chaleur comprenant une carcasse en plastique à l'intérieur de laquelle est logé un cœur métallique formé d'un faisceau de conduits parallèles joints par leurs extrémités à deux plaques de support, lesdites plaques étant jointes à des raccords avec la ligne de recirculation des gaz. Un joint en plastique est en outre mis en place entre l'extrémité correspondante de la carcasse et la plaque de support pour assurer le niveau d'étanchéité requis. Les carcasses en plastique ont l'avantage de réduire le coût de production dans la mesure où elles permettent l'intégration des conduits du circuit du fluide réfrigérant et des supports de fixation. D'une façon générale, la jonction entre la plaque de support métallique et la carcasse en plastique s'effectue par un assemblage mécanique. Les brevets US 6 269 870, WO 2004/001203 et
US 2003/0079869 concernent des échangeurs de chaleur de type qui comprennent un faisceau de conduits, dont les plaques de support incorporent une paroi périphérique orientée vers l'extérieur qui s'étend au-delà des extrémités des conduits, de sorte que chaque paroi périphérique est jointe sur la surface interne d'une carcasse métallique et en position adjacente à un diffuseur, par soudure à l'arc. La jonction entre les conduits et les plaques de support est réalisée par soudure au laser.
Les brevets JP 2004177058, JP 2004028469 et JP 2004263616 concernent des échangeurs de chaleur du type qui comprennent un faisceau de conduits, dont la carcasse métallique est formée de deux parties jointes entre elles par soudure au laser, et qui utilisent une soudure au four pour les jonctions entre les conduits et les plaques de support .
Le brevet US 6 311 678 concerne un échangeur de chaleur du type qui comprend un cœur comportant un faisceau de conduits parallèles joints par leurs extrémités à deux plaques de support, lesdites plaques étant jointes à des raccords avec la ligne de recirculation des gaz. Une fois monté, le cœur est inséré dans un bloc en fonte d'aluminium pour former une carcasse métallique.
Toutefois, le processus de fabrication des différents échangeurs de chaleur mentionnés est généralement complexe, dans la mesure où, dans les cas où il fait appel à une soudure au four, il nécessite l'utilisation d'éléments de support servant à immobiliser les différents composants lorsque l'échangeur se trouve à l'intérieur du four. Ceci complique considérablement le procédé de fabrication de l'échangeur, et accroît également le temps et le coût de production. II convient de souligner que le procédé de fabrication s'avère également complexe lorsqu'il associe différents types de soudure, tels que la soudure à l'arc, au laser ou au four, pour joindre les divers composants de l'échangeur. De plus, dans la majorité des cas, ces composants sont structurellement complexes du fait qu'ils nécessitent des surfaces supplémentaires ou des rebords pour garantir une jonction adéquate.
Selon un autre aspect, dans les échangeurs avec une configuration en forme de "U", la jonction du côté ouvert comprend généralement un joint d'étanchéité pour éviter toute fuite éventuelle du fluide réfrigérant vers l'extérieur, tandis que la jonction du côté fermé ne requiert aucune fonction d'étanchéité, car de ce côté, la seule nécessite est de supporter le corps métallique dans la carcasse en plastique. Le brevet WO 2007/048603 décrit un échangeur de chaleur de ce type, dans lequel les moyens de jonction du côté fermé comprennent un support solidaire de la carcasse en plastique, ledit support étant doté d'une fente destinée à recevoir une saillie solidaire du réservoir de gaz fermé .
Toutefois, les échangeurs connus de ce type présentent une série d'inconvénients dans la mesure où la fixation du corps métallique de l'échangeur à la carcasse en plastique est très conflictuelle et nécessite de prendre en compte les considérations suivantes en termes de conception :
1) La zone de contact : Les températures de travail de la carcasse en plastique et du corps de l'échangeur sont différentes. Le corps métallique peut atteindre des températures élevées dans la mesure où il est en contact avec le gaz, dont la température varie de 750 2C en entrée à 500 2C en sortie ; tandis que la carcasse en plastique supporte des températures relativement basses du fait qu'elle baigne dans le fluide réfrigérant dont la température est comprise entre 70 aC et 90 3C.
La zone de contact entre le corps de l'échangeur et la carcasse en plastique doit être très bien refroidie par le fluide réfrigérant .
En d'autres termes, d'une part, l'écoulement du fluide réfrigérant dans cette zone doit être suffisamment important, le passage de fluide réfrigérant étant par conséquent préférentiel ; et, d'autre part, la zone de contact doit être très petite pour maintenir la température dans la zone de contact du matériau plastique à des valeurs proches de la température du fluide réfrigérant. De même, la zone de contact doit être suffisamment grande pour pouvoir supporter le corps métallique.
2) Dilatation thermique :
Du fait de la différence de température entre le corps métallique et la carcasse en plastique, la dilatation thermique des deux composants sera différente, et dépendra également du coefficient de dilatation thermique.
Cela a pour inconvénient la production de mouvements indésirables entre les composants, de préférence dans le sens longitudinal, du fait de leur propre dilatation.
3) Distance entre le corps métallique et la carcasse :
Tel que mentionné précédemment, la zone de contact entre la carcasse en plastique et le corps métallique, généralement le réservoir de gaz, doit être bien refroidi par le fluide réfrigérant, ce qui signifie que le fluide réfrigérant dans cette zone doit être préférentiel. Pour améliorer l'écoulement du fluide réfrigérant dans cette zone, les exigences en termes de conception sont très importantes .
En ce sens, il est très important de définir la distance entre le corps métallique et la carcasse en plastique. Le choix de cette valeur dépend de la section transversale minimale du fluide réfrigérant dans l'échangeur de chaleur. Par exemple, si les tubes de gaz d'un échangeur de chaleur tubulaire sont séparés d'une distance de 1,3 mm, il est conseillé d'avoir une distance de 2,6 mm, des deux côtés opposés, entre le réservoir de gaz et la carcasse en plastique.
4) Position du raccord d'entrée du fluide réfrigérant :
II est très important de positionner le raccord d'entrée du fluide réfrigérant à proximité de ladite zone de contact, afin de garantir un écoulement minimal du fluide réfrigérant.
5) Position des supports de fixation à une surface de l'environnement moteur :
II est conseillé d'avoir au moins un support de fixation au moteur dans la zone d'appui du faisceau de conduits au niveau de la carcasse de l'échangeur, afin d'obtenir une meilleure résistance du corps métallique aux vibrations du moteur.
6) Conception des moyens de jonction du corps métallique à la carcasse :
Une bonne conception de la jonction du corps métallique à la carcasse en plastique est nécessaire pour pouvoir absorber le jeu dû aux tolérances des composants. Selon un autre aspect, dans les échangetirs avec une carcasse en plastique, l'un des principaux points de ce développement est la température maximale que le plastique doit supporter. Ce type d'échangeur comprend en général un rebord métallique joint à la plaque de support et en contact direct avec la carcasse en plastique, la soupape EGR ou by-pass pouvant être raccordée à ce rebord directement ou au moyen d'un corps de raccord intermédiaire. En conséquence, la température élevée peut être transférée des parois de la soupape ou du corps de raccord intermédiaire au rebord et, par conséquent, au plastique. Cela implique d'utiliser un matériau plastique pour la carcasse qui résiste à une haute température, ce qui limite la gamme de plastiques pouvant être utilisés et suppose une augmentation considérable du coût.
Pour garantir l'étançhéité de l'écoulement gazeux entre la soupape et l'échangeur, un joint d'étanchéité est inséré entre le rebord métallique et la soupape ou le corps de raccord intermédiaire. Ce joint est généralement métallique, par exemple en acier, pour les applications EGRC. Ledit joint métallique présente également une haute conductivité de la chaleur, si bien que la chaleur transférée du matériau en contact avec le gaz ne diminue pas .
Selon un autre aspect, généralement, les applications ce circuits EGR correspondant à des configurations à haute pression (HP) dans lesquelles l'échangeur EGR est situé dans la ligne de recîrculation des gaz EGR, monté directement sur le moteur. Par ailleurs, les échangeurs WCAC sont généralement refroidis à l'air et situés à l'avant du véhicule.
Il existe à l'heure actuelle divers développements de ce type d' échangeurs comme indiqué ci- après : - Les échangeurs WCAC sont refroidis par le liquide réfrigérant, et il existe déjà des applications en série du fait de leur bonne intégration et compacité. - Les circuits LP EGR sont développés par les principaux fabricants de moteurs, et leur usage peut être étendu aux générations suivantes d' échangeurs .
- Il existe de nouvelles conceptions d' échangeurs EGR avec carcasse en plastique. Les carcasses en plastique ont l'avantage de réduire le poids et le coût de production dans la mesure où elles permettent l'intégration des conduits du circuit du fluide réfrigérant et des supports de fixation à une surface de l'environnement moteur.
Dans ce contexte, il est important de développement la technologie de l'échangeur EGR pour pouvoir l'assembler dans les nouveaux environnements moteurs. En outre, les possibilités d'intégration dans ce nouvel environnement doivent être évaluées. Généralement, les circuits EGR à basse pression (LP) présentent une configuration dans laquelle l'échangeur EGR est situé hors du bloc moteur, et, par conséquent, ce composant pourrait être intégré à d'autres composants situés à proximité. L'intégration s'avérerait plus rentable si l'échangeur EGR pouvait être intégré à un autre échangeur également refroidi par le fluide réfrigérant ou à un échangeur de technologie similaire. Les moyens d'échange de chaleur (par exemple, un faisceau de conduits parallèles) des échangeurs EGRC et WCAC peuvent être similaires, dans la mesure où la fonction de ces deux échangeurs est de refroidir un gaz. La carcasse externe peut également être similaire ; concrètement, il existe des applications connues d'échangeurs WCAC avec carcasse en plastique, et de nouveaux développements ont été lancés pour l'emploi d'une carcasse en plastique pour des échangeurs EGR.
Toutefois, on ne connaît à l'heure actuelle aucun échangeur intégrant dans une même carcasse en plastique un échangeur EGR et un échangeur WCAC.
DESCRIPTION DE L'INVENTION
La présente invention a pour objet un échangeur de chaleur pour gaz permettant de remédier aux inconvénients des échangeurs connus dans la technique, en assurant une réduction du nombre de composants ainsi qu'une réduction des coûts de fabrication. L 'échangeur de chaleur pour gaz objet de la présente invention est du type qui comprend un cœur métallique comportant un ensemble de conduits parallèles destinés à la circulation des gaz avec échange de chaleur avec un fluide réfrigérant, au moins une plaque de support jointe par soudure au laser à au moins l'une des extrémités dudit ensemble de conduits parallèles, et au moins un réservoir de gaz ou élément de raccord, et est caractérisé en ce ledit réservoir de gaz ou élément de raccord est joint directement à ladite plaque de support par soudure au laser ou soudure à l'arc.
De cette manière, il est possible d'obtenir un cœur plus simple du point de vue structurel, sans besoin d'utiliser de carcasse, dans la mesure où le réservoir de gaz ou l'élément de raccord est joint directement à la plaque de support au lieu d'être joint à une carcasse, comme cela était le cas dans l'état de la technique.
Par ailleurs, les processus de jonction entre les composants du cœur s'effectuent de manière rapide et efficace, sans faire appel à la soudure au four et sans nécessiter de surfaces supplémentaires ou de rebords pour garantir une jonction adéquate, comme cela était le cas dans l'état de la technique. Il est en outre possible d'obtenir une réduction du volume et du coût dudit échangeur de chaleur ,
5 Par ailleurs, la simplicité d'utilisation de la soudure au laser ou à l'arc permet de donner au circuit des gaz à refroidir une configuration ou une orientation quelconque.
Il est également possible de fabriquer une unité
10. unique, sans stocks intermédiaires, ce qui permet de réduire les défauts de qualité.
Avantageusement, le cœur peut être mis en place dans une carcasse raccordée au circuit du fluide réfrigérant .
15 De cette manière, les composants soudés au laser ou à l'arc qui forment le cœur restent immobiles lors de leur introduction dans la carcasse et de leur jonction à celle-ci, que ce soit par soudure au four ou par un autre type quelconque de jonction. 0 De plus, la configuration du cœur est indépendante du matériau de fabrication de la carcasse, qu'il s'agisse de plastique, de métal ou d'un matériau composite .
Selon un mode de réalisation préféré de 5 l'invention, l' échangeur de chaleur, qui est du type en forme de "U" dans lequel l'entrée et la sortie du fluide à refroidir occupent des positions adjacentes au niveau d'une même extrémité ouverte de l'ensemble de conduits parallèles, l'extrémité opposée étant fermée, et 0 définissant un passage aller et un passage retour, est caractérisé en ce que le cœur comprend une première plaque de support disposée au niveau de l'extrémité ouverte et dotée d'un rebord destiné à se joindre à une carcasse, et une deuxième plaque de support disposée au niveau de 5 l'extrémité fermée et jointe à un réservoir de gaz fermé. Selon un autre aspect de l'invention, le procédé de fabrication appliqué à l ' échangeur de chaleur de l'invention est caractérisé en ce qu'il met en œuvre les étapes suivantes consistant à : a) obtenir un cœur comprenant un ensemble de conduits parallèles, au moins une plaque de support métallique, et au moins un réservoir de gaz ou élément de raccord ; b) joindre ladite plaque de support par soudure au laser à au moins l'une des extrémités dudit ensemble de conduits parallèles ; c) joindre ledit réservoir de gaz ou élément de raccord directement à ladite plaque de support par soudure au laser ou soudure à l'arc ; d) introduire le cœur dans une carcasse raccordée au circuit du fluide réfrigérant ; et e) joindre le cœur à ladite carcasse pour _ compléter l' échangeur.
Il est ainsi possible d'obtenir un procédé de fabrication plus simple ainsi qu'une réduction du volume et des coûts de fabrication de l' échangeur de chaleur. Avantageusement, la jonction du cœur à la carcasse selon l'étape e) est réalisée par soudure, collage ou assemblage mécanique.
BRÈVE DESCRIPTION DES DESSINS
Dans le but de faciliter la description de ce qui a été exposé précédemment, on joint des dessins qui représentent, sous forme schématique et uniquement à titre d'exemple non limitatif, cinq cas pratiques de modes de réalisation de l' échangeur de chaleur pour gaz de l'invention. Dans ces dessins :
La figure 1 est une vue en perspective d'un cœur métallique soudé au laser de la présente invention, selon un premier mode de réalisation de l'invention ; la figure 2 est une vue en perspective d'un échangeur de chaleur du type en forme de "U", illustrant le cœur de la figure 1 joint à une carcasse en plastique par soudure ; la figure 3 est une vue partielle d'une coupe longitudinale de l' échangeur de la figure 2, illustrant la zone de jonction entre le cœur et la carcasse ; la figure 4 est une vue en perspective et éclatée d'un échangeur de chaleur du type en forme de "U", illustrant un cœur métallique soudé au laser avant d'être joint à une carcasse en plastique par assemblage mécanique, selon un deuxième mode de réalisation de l'invention ; la figure 5 est une vue en perspective et éclatée d'un échangeur de chaleur pour gaz, selon un troisième mode de réalisation de l'invention ; la figure 6 est une vue en coupe longitudinale de l ' échangeur monté de la figure 5 ; les figures 7, 8 et 9 sont des vues en coupe transversale de l' échangeur, selon la ligne VII-VII de la figure 6, illustrant les moyens de jonction avec six, quatre et deux nervures respectivement, selon différentes variantes ; la figure 10 est une vue partielle d'une section longitudinale, illustrant les nervures longitudinales ; les figures 11 et 12 sont des vues en coupe transversale de l' échangeur, illustrant les moyens de jonction avec deux nervures ramifiées comprenant deux et trois branches respectivement, selon différentes variantes ; les figures 13 et 14 sont des vues en coupe transversale de l' échangeur, illustrant les moyens de jonction avec six nervures à deux branches avec différents angles respectivement, selon différentes variantes ; la figure 15 est une vue en coupe transversale de l'échangeur, illustrant une vue agrandie d'une nervure longitudinale pourvue d'une pluralité de protubérances ; la figure 16 est une vue en perspective et éclatée d'un échangeur de chaleur pour gaz, selon un quatrième mode de réalisation de l'invention ; la figure 17 est une vue de dessus du joint d'étanchéité en matériau thermo-isolant de l'échangeur de la figure 16 ; la figure 18 est une vue en perspective d'un échangeur de chaleur pour gaz, selon un cinquième mode de réalisation de l'invention ; et la figure 19 est une vue en coupe transversale et en perspective de l'échangeur de la figure 18.
DESCRIPTION DES MODES DE RÉALISATION PRÉFÉRÉS
Les figures 1 à 3 illustrent un premier mode de réalisation de l'invention.
L'échangeur de chaleur 1 pour gaz comprend un cœur métallique 2 comportant un ensemble de conduits parallèles 3, qui, dans cet exemple, sont plans et de section rectangulaire, destinés à la circulation des gaz avec échange de chaleur avec un fluide réfrigérant.
Dans ce mode de réalisation, l'échangeur est du type en forme de "U", à savoir l'entrée 4 et la sortie 5 des gaz à refroidir occupent des positions adjacentes au niveau d'une même extrémité ouverte 6 de l'ensemble de conduits parallèles 3, l'extrémité opposée 7 étant fermée, et définissant un passage aller et un passage retour, comme l'illustrent les flèches de la figure 1.
Les deux extrémités 6 et 7 du faisceau de conduits 3 sont fixées à deux plaques de support 8 et 9, lesquelles présentent une pluralité d'orifices 10 dans lesquels s'insèrent les conduits respectifs 3.
Dans cet exemple, la plaque de support 8 fixée au niveau de l'extrémité libre 6 présente un rebord périphérique 11 destiné à être accouplé à une carcasse, comme on l'expliquera par la suite, alors que la plaque de support 9 fixée au niveau de l'extrémité fermée 7 est jointe à un réservoir de gaz 12. La jonction entre la plaque 9 et le réservoir de gaz 12 est de préférence réalisée sans utiliser de rebord périphérique de manière à obtenir une jonction plus résistante et à section transversale réduite.
La jonction entre les extrémités de l'ensemble de conduits 3 et les plaques de support 8, 9 est réalisée par soudure au laser, alors que la jonction entre la plaque 9 et le réservoir de gaz 12 peut être réalisée par soudure au laser ou par soudure à l'arc.
En référence à la figure 2, le cœur 2 peut être logé à l'intérieur d'une carcasse 13 en matière plastique incorporant les conduits d'entrée 14 et de sortie 15 du fluide réfrigérant. La carcasse 13 comprend au niveau de son extrémité libre un rebord périphérique 13a orienté vers l'extérieur de ladite carcasse 13, et sensiblement perpendiculaire à son axe. Ledit rebord périphérique 13a est destiné à être joint aux moyens de raccord correspondants au conduit de recirculation des gaz {non représentés) .
Dans ce mode de réalisation, comme l'illustre la figure 3, la jonction du cœur 2 à la carcasse en plastique 13 s'effectue à l'aide d'un insert métallique 16 surmoulé au niveau de l'extrémité ouverte de la carcasse en plastique 13, concrètement sur le rebord périphérique 13a de ladite carcasse 13. Le cœur métallique 2 est ensuite introduit à l'intérieur de la carcasse jusqu'à ce que le rebord périphérique 11 de la plaque de support 8 prenne partiellement appui sur l' insert métallique 16. Par la suite, ladite jonction est de préférence soudée au laser, bien qu'elle puisse également être soudée à l'arc, voire collée avec un adhésif approprié .
Le choix approprié de la géométrie et des distances entre les composants métalliques, à savoir entre l' insert métallique 16 et la plaque de support métallique 8 correspondante, permet d'effectuer la soudure au laser entre ces deux composants sans risque d'endommager la carcasse en plastique. Ceci est possible grâce à la technologie laser, dans laquelle l'élévation de température associée à la soudure est beaucoup plus localisée.
De même, étant donné que les joints d'étanchéité en plastique utilisés dans l'état de la technique sont supprimés, on assure la fiabilité du produit dans la mesure où les joints en plastique compliquent l'assemblage et présentent également des problèmes de durabilité.
La figure 4 illustre un deuxième mode de réalisation de l'invention.
L'échangeur de chaleur la comprend les mêmes éléments portant les références 2 à 15 du premier mode de réalisation. La différence réside dans le fait que la jonction entre la plaque de support 8a et la carcasse en plastique 13 est réalisée par assemblage mécanique. À cette fin, la plaque de support 8a comporte un rebord périphérique lia doté de pattes destinées à être repliées et fixées contre le contour de la carcasse en plastique 13. Elle comporte en outre un joint d'étanchéité en plastique 17 permettant d'assurer également la force de compression.
Du fait que les composants du cœur métallique sont joints par soudure au laser ou à l'arc, il est ainsi possible d'obtenir un procédé de fabrication plus simple ainsi qu'une réduction du volume et des coûts de fabrication de l ' échangeur de chaleur.
Bien que le circuit de gaz décrit dans ce deuxième mode de réalisation soit en forme de "U" (l'entrée et la sortie des gaz sont disposées à une même extrémité) , il peut également être du type linéaire (l'entrée et la sortie des gaz sont disposées à des extrémités opposées) .
La carcasse peut être en plastique, comme celle décrite, en aluminium ou une autre matière métallique, ou bien en un matériau composite. En outre, il convient de souligner qu'au lieu d'être introduit dans une carcasse, le cœur peut être logé dans une chambre faisant partie du circuit du fluide réfrigérant du moteur.
Les figures 5 à 15 illustrent un troisième mode de réalisation de l'invention.
L ' échangeur de chaleur Ib comprend les mêmes éléments portant les références 2 à 15 et 17 des premier et deuxième modes de réalisation. Dans ce cas, il convient que l'entrée 4 des gaz soit disposée à proximité du passage du fluide réfrigérant, que ce soit en entrée ou en sortie. Dans le mode de réalisation illustré sur la figure 5, l'entrée 4 des gaz est située à proximité de l'entrée 14 du fluide réfrigérant. Le faisceau de conduits 3 est fixé au niveau de son extrémité libre à la plaque de support métallique 8b, et au niveau de son extrémité fermée au réservoir de gaz 12.
Dans ce cas, ladite plaque de support 8b est fixée au niveau de l'extrémité ouverte de la carcasse en plastique 13 au moyen de vis. Un joint en plastique 17 est en outre mis en place entre l'extrémité ouverte de la carcasse 13 et la plaque de support 8b pour assurer le niveau d'étanchéité requis. La carcasse en plastique 13 est fixée au niveau de son extrémité fermée audit réservoir de gaz métallique 12 par des moyens de jonction qui comprennent une pluralité de nervures longitudinales 18 à faible surface de contact, solidaires de la carcasse en plastique 13 et susceptibles d'être emboîtées dans des orifices 19 correspondants aménagés dans le réservoir de gaz 12, comme le montrent par exemple les figures 7 à 9,
Dans cet exemple, les orifices 19 sont formés dans ledit réservoir de gaz par estampage. Les nervures longitudinales 18 permettent de résoudre le compromis d'avoir à la fois une zone suffisamment petite pour maintenir la température dans la zone de contact de la matière plastique à des valeurs proches de la température du fluide réfrigérant, et une zone de contact suffisamment grande pour pouvoir supporter le corps métallique.
En outre, cette solution permet d'obtenir un écoulement abondant du fluide réfrigérant pour refroidir la zone de contact qui se trouve à une température élevée. Par ailleurs, la mise en place du corps de l'échangeur de chaleur à l'intérieur de la carcasse en plastique pendant l'opération de montage s'en trouve facilitée.
Généralement, entre deux et huit nervures longitudinales 18 réparties de façon relativement équidistantes sont utilisées pour obtenir une distribution correcte du poids du corps métallique sur la carcasse en plastique, garantissant ainsi une bonne stabilité de l'ensemble. Selon une variante illustrée sur la figure 7, les moyens de jonction comprennent six nervures longitudinales 18 distribuées symétriquement, si bien que chaque grand côté de ladite section transversale rectangulaire comprend deux nervures et que chaque petit côté comprend une nervure. Selon une autre variante illustrée sur la figure 8, les moyens de jonction comprennent quatre nervures longitudinales 18 distribuées symétriquement, si bien que chaque grand côté de ladite section transversale rectangulaire comprend deux nervures .
Selon une autre variante illustrée sur la figure 9, les moyens de jonction comprennent deux nervures longitudinales 18 distribuées symétriquement, si bien que chaque grand côté de ladite section transversale rectangulaire comprend une nervure.
De même, les nervures longitudinales 18 comportent une cote longitudinale minimale pour permettre les déplacements dus à la dilatation thermique différente entre le réservoir de gaz métallique 12 et la carcasse en plastique 13, garantissant ainsi un bon fonctionnement de l'échangeur. La flèche à deux pointes illustrée sur la figure 10 indique la direction de ces déplacements longitudinaux,
Une distance minimale entre le réservoir de gaz 12 et la carcasse en plastique 13 est également prévue, en fonction de la section transversale minimale de l'écoulement du fluide réfrigérant dans l'échangeur Ib. On garantit ainsi un écoulement abondant de fluide réfrigérant . Cette distance minimale entre le réservoir de gaz 12 et la carcasse en plastique 13, mesurée de chaque côté opposé du réservoir de gaz 12, est égale à deux fois la distance entre les conduits de gaz 3. Une distance de sécurité est aussi prévue, égale à entre 1,5 et 2,5 fois la section transversale minimale de l'écoulement du fluide réfrigérant.
Le raccord de sortie 15 du fluide réfrigérant est situé à proximité de la zone de contact de la jonction entre la carcasse 13 et le réservoir de gaz 12, comme le montrent les figures 6 et 10. On garantit ainsi un écoulement de fluide réfrigérant minimal.
L ' échangeur Ib comprend des supports de fixation 20 à une surface de l'environnement moteur, lesquels sont situés à proximité de ladite zone de contact de la jonction entre la carcasse 13 et le réservoir de gaz 12, comme le montre la figure 5. De cette façon, on obtient une meilleure résistance du corps métallique aux vibrations dues au moteur.
Les nervures longitudinales 18 comprennent une configuration adéquate pour absorber le jeu dû aux tolérances du réservoir de gaz 12 et à la carcasse en plastique 13.
La forme des nervures longitudinales 18 admettra une déformation mineure de la matière plastique si l'interférence de montage entre les deux composants dépasse l'interférence admissible, c'est-à-dire si le réservoir de gaz a la plus grande tolérance admissible et que la distance entre les nervures longitudinales est la plus petite possible. Dans ce cas, les nervures longitudinales 18 peuvent comprendre une configuration ramifiée, comme le montrent les figures 11 à 14.
Selon une variante illustrée sur la figure 11, les nervures longitudinales 18 comprennent deux branches divergentes qui forment un angle approprié choisi en fonction de la matière plastique utilisée.
On peut observer sur les figures 13 et 14, respectivement, différentes valeurs de l'angle formé par les branches des nervures longitudinales 18. Plus l'angle défini entre les branches est grand, plus l'effort de montage est faible.
Selon une autre variante illustrée sur la figure 12, les nervures longitudinales 18 comportent trois branches divergentes. Dans ce cas, l'ajout d'une branche centrale supplémentaire permet d'améliorer la stabilité. Les nervures longitudinales 18 peuvent comprendre une pluralité de petites protubérances 21 sur leur surface externe, comme le montre la figure 15. Le volume de plastique à déformer est ainsi moindre, en cas d'interférence de montage, et, par conséquent, la procédure de montage s'en trouve facilitée.
Bien qu'un échangeur à faisceau de tubes parallèles ait été décrit dans ce troisième mode de réalisation, l'invention peut également s'appliquer à des échangeurs à plaques empilées. De même, dans les deux cas, le circuit des gaz peut être du type en forme de "U"
(l'entrée et la sortie des gaz sont disposées à une même extrémité) ou bien du type linéaire (l'entrée et la sortie des gaz sont disposées à des extrémités opposées) .
Les figures 16 et 17 illustrent un quatrième mode de réalisation de l'invention.
L'échangeur de chaleur Ic comprend les mêmes éléments portant les références 2 à 15 et 17 des modes de réalisation précédents. Dans ce cas, la plaque de support 8c est jointe à un rebord métallique 22, lequel est accouplé en contact direct à l'extrémité ouverte de la carcasse en plastique 13 au moyen de vis et d'un joint en plastique 17 pour garantir l'étanchéité du fluide réfrigérant , La mise en place d'une soupape EGR ou by-pass
(non illustrée) raccordée audit rebord métallique 22 est également prévue.
En outre, pour garantir l'étanchéité de l'écoulement gazeux entre la soupape et l'échangeur Ic, un joint d'étanchéité 23 est prévu entre le rebord métallique 22 et la soupape.
Ledit joint d'étanchéité 23 est fabriqué en un matériau thermo-isolant, de préférence en mica, diminuant ainsi le transfert de chaleur de la soupape à la carcasse en plastique 13, Par ailleurs, ledit joint d'étanchéité 23 présente une forme qui coïncide avec la forme du rebord 22, comme le montre la figure 16.
Le joint d'étanchéité 23 est susceptible de résister à une haute température jusqu'à 950 2C environ, ce qui permet de réduire la température en contact avec la carcasse en plastique 13 à environ 50 aC.
De cette façon, le joint d'étanchéité 23 permet de réduire le niveau de température, garantissant ainsi la durabilité de l'échangeur EGR, et, encore plus important, il permet d'augmenter la gamme de matières plastiques pouvant être utilisés avec la carcasse. Par ailleurs, le coût de production s'en trouve réduit.
Bien qu'un échangeur à faisceau de tubes parallèles ait été décrit dans ce quatrième mode de réalisation, l'invention peut également s'appliquer à des échangeurs à plaques empilées. De même, dans les deux cas, le circuit des gaz peut être du type en forme de "U" (l'entrée et la sortie des gaz sont disposées à une même extrémité) ou bien du type linéaire (l'entrée et la sortie des gaz sont disposées à des extrémités opposées) .
Les figures 18 et 19 illustrent un cinquième mode de réalisation de l'invention.
L'échangeur de chaleur Id comprend les mêmes éléments portant les références 2 à 15 des modes de réalisation précédents. En référence aux figures 18 et 19, l'échangeur de chaleur Id est constitué d'une carcasse en plastique 13 qui comprend en son intérieur un premier circuit 3 de type EGR pourvu d'un faisceau de conduits destiné à refroidir les gaz d'échappement du moteur, et un deuxième circuit 3a de type WCAC (Water Charge Air Coolers) pourvu d'un faisceau de conduits destiné à refroidir l'air d'admission du moteur, les deux circuits 3, 3a étant disposés de façon adjacente. Chaque circuit 3, 3a est repéré sur la figure 19 au moyen d'un cercle .
La carcasse en plastique 13 peut avoir une forme libre adaptée à l'environnement, et les deux circuits EGR 3 et WCAC 3a peuvent être disposés l'un par rapport à l'autre selon différentes dispositions, par exemple en parallèle, comme le montre la figure Id, ou bien en série, en forme de "L", en forme de "T", etc.
À l'intérieur de la carcasse en plastique 13, extérieurement aux circuits EGR 3 et WCAC 3a, circule un fluide réfrigérant, depuis une unique entrée 14 vers une unique sortie 15, partageant ainsi le même circuit de refroidissement pour les deux circuits EGR 3 et WCAC 3a.
Il convient de souligner que d'autres configurations peuvent exister ; il peut par exemple y avoir deux entrées et deux sorties du fluide réfrigérant respectivement pour chaque circuit EGR 3 et WCAC 3a, en partageant le même circuit de refroidissement ou avec deux circuits de refroidissement indépendants.
Comme le montre la figure 18, l'échangeur Id est de type linéaire, c'est-à-dire que l'entrée et la sortie des gaz sont disposées à des extrémités opposées.
Dans ce mode de réalisation, les entrées 4, 4a de chaque circuit EGR 3 et WCAC 3a sont disposées au niveau d'une même extrémité de la carcasse 13, alors que les sorties 5, 5a sont disposées au niveau de l'extrémité opposée .
Il peut également y avoir d'autres dispositions ; par exemple l'entrée d'un circuit EGR 3 ou WCAC 3a et la sortie de l'autre circuit peuvent être disposées au niveau d'une même extrémité de la carcasse 13.
L'échangeur Id comprend deux plaques de support 8d, chacune d'elle étant accouplée à une extrémité des deux circuits EGR 3 et WCAC 3a.
De la même façon, l'échangeur Id comprend également deux réservoirs de gaz 12, chacun d'eux étant accouplé à une extrémité de la carcasse en plastique 13.
Dans cet exemple, chaque réservoir de gaz 12 est fabriqué en une seule pièce intégrant les entrées ou les sorties de chaque circuit EGR 3 et WCAC 3a. Concrètement, l'un des réservoirs de gaz 12 comprend les entrées respectives 4, 4a pour chaque circuit EGR 3 et WCAC 3a ; alors que l'autre réservoir de gaz 12 comprend les sorties respectives 5, 5a pour chaque circuit EGR 3 et WCAC 3a. Le sens de déplacement des gaz à l'entrée et à la sortie des deux circuits EGR 3 et WCAC 3a est indiqué par des flèches sur la figure 19.
De cette façon, il est possible d'intégrer un échangeur EGR et un échangeur WCAC dans une même carcasse en plastique, ce qui permet d'obtenir une intégration et une compacité appropriées.
Il convient de souligner que d'autres dispositions peuvent exister ; par exemple le réservoir de gaz 12 peut être divisé en deux pièces, chacune d'elles étant associée à une entrée ou une sortie de chaque circuit EGR 3 et WCAC 3a.
Les conduits de chaque circuit EGR 3 et WCAC 3a peuvent être similaires, et peuvent également avoir des dimensions différentes pour mieux satisfaire les exigences en termes de rendement calorifique. Les deux faisceaux de conduits EGR 3 et WCAC 3a peuvent être fixés ensemble à la carcasse 13 ou à l'aide de moyens indépendants en vue d'obtenir une certaine durabilité, par exemple pour satisfaire les exigences en matière de choc thermique. Bien qu'un échangeur à faisceau de conduits parallèles ait été décrit dans ce cinquième mode de réalisation, l'invention peut également s'appliquer à des échangeurs à plaques empilées. De même, dans les deux cas, le circuit des gaz peut être du type linéaire, comme décrit précédemment, ou bien en forme de "U".

Claims

R E V E N D I C A T I O N S
1. Échangeur de chaleur (1-ld) pour gaz, comprenant un cœur métallique (2) comprenant un ensemble de conduits parallèles (3, 3a) destiné à la circulation des gaz avec échange de chaleur avec un fluide réfrigérant, au moins une plaque de support (8-8d, 9) jointe par soudure au laser à au moins l'une des extrémités dudit ensemble de conduits parallèles (3, 3a), et au moins un réservoir de gaz (12) ou élément de raccord, caractérisé en ce que ledit réservoir de gaz (12) ou élément de raccord est joint directement à ladite plaque de support (8™8d, 9) par soudure au laser ou soudure à l'arc.
2. Échangeur (1-ld) selon la revendication 1, caractérisé en ce que le cœur (2) peut être logé dans une carcasse (13) raccordée au circuit du fluide réfrigérant.
3. Échangeur (1-lc) selon l'une quelconque des revendications précédentes, du type en forme de "U" dans lequel l'entrée (4) et la sortie (5) du fluide à refroidir occupent des positions adjacentes au niveau d'une même extrémité ouverte (6) de l'ensemble de conduits parallèles (3), l'extrémité opposée (7) étant fermée, et définissant un passage aller et un passage retour, caractérisé en ce que le cœur (2) comprend une première plaque de support (8-8c) disposée au niveau de l'extrémité ouverte (6) et dotée d'un rebord (11-llb, 22) destiné à se joindre à une carcasse (13), et une deuxième plaque de support (9) disposée au niveau de l'extrémité fermée (7) et jointe à un réservoir de gaz (12) fermé.
4. Procédé de fabrication appliqué à l' échangeur de chaleur (1-ld) de l'invention selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend les étapes suivantes consistant à : a) obtenir un cœur (2) comprenant un ensemble de conduits parallèles (3, 3a), au moins une plaque de support métallique (8-8d, 9) , et au moins un réservoir de gaz (12) ou élément de raccord ; b) joindre au moins l'un desdites plaques de support (8-8d, 9) par soudure au laser à au moins l'une des extrémités dudit ensemble de conduits parallèles (3, 3a) ; c) joindre ledit réservoir de gaz (12) ou élément de raccord directement à au moins l'une desdites plaques de support (8-8d, 9) par soudure au laser ou soudure à l'arc ; d) introduire le cœur (2) dans une carcasse (13) raccordée au circuit (14, 15) du fluide réfrigérant ; et e) joindre le cœur (2) à ladite carcasse (13) pour compléter l'échangeur (1-ld) .
5. Procédé selon la revendication 4, caractérisé en ce que la jonction du cœur (2) à la carcasse (13) selon l'étape e) est réalisée par soudure, collage ou assemblage mécanique.
PCT/EP2008/053893 2007-04-13 2008-04-01 Echangeur de chaleur pour gaz, et son procede de fabrication correspondant WO2008125485A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08735663.0A EP2137477B1 (fr) 2007-04-13 2008-04-01 Échangeur de chaleur pour gaz

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
ES200700987A ES2325348B1 (es) 2007-04-13 2007-04-13 Intercambiador de calor para gases, y su correspondiente procedimiento de fabricacion.
ESP200700987 2007-04-13
ESP200703136 2007-11-27
ES200703136A ES2332253B1 (es) 2007-11-27 2007-11-27 Intercambiador de calor para gases, en especial de los gases de escape de un motor.
ESP200703279 2007-12-12
ES200703278A ES2333191B1 (es) 2007-12-12 2007-12-12 Intercambiador de calor para gases, en especial de los gases de escape de un motor.
ESP200703278 2007-12-12
ES200703279A ES2334480B1 (es) 2007-12-12 2007-12-12 Intercambiador de calor para gases.

Publications (1)

Publication Number Publication Date
WO2008125485A1 true WO2008125485A1 (fr) 2008-10-23

Family

ID=39709014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/053893 WO2008125485A1 (fr) 2007-04-13 2008-04-01 Echangeur de chaleur pour gaz, et son procede de fabrication correspondant

Country Status (3)

Country Link
EP (1) EP2137477B1 (fr)
KR (1) KR101554048B1 (fr)
WO (1) WO2008125485A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112201A (ja) * 2008-11-04 2010-05-20 Tokyo Radiator Mfg Co Ltd Uターン型egrクーラ
JP2010127171A (ja) * 2008-11-27 2010-06-10 Tokyo Radiator Mfg Co Ltd Uターン型egrクーラ
WO2012052465A1 (fr) * 2010-10-19 2012-04-26 Dsm Ip Assets B.V. Réservoir d'extrémité de collecteur d'échangeur de chaleur
US20120305220A1 (en) * 2009-10-27 2012-12-06 Frank Sauter Exhaust gas heat exchanger
DE102011113788A1 (de) * 2011-09-20 2013-03-21 Friedrich Boysen Gmbh & Co. Kg Wärmeübertragungsanordnung
DE102012208771A1 (de) * 2012-05-24 2013-11-28 Behr Gmbh & Co. Kg Wärmetauscher zum Temperieren eines ersten Fluids unter Verwendung eines zweiten Fluids
DE102013213031A1 (de) * 2012-07-03 2014-05-22 Behr Gmbh & Co. Kg Stutzen
CN103890524A (zh) * 2011-06-30 2014-06-25 法雷奥热系统公司 特别用于机动车辆的热交换器
DE102013006956A1 (de) * 2013-04-23 2014-10-23 Modine Manufacturing Co. Luftführendes Bauteil mit einem Ladeluftkühler
US20150075750A1 (en) * 2012-03-15 2015-03-19 Mahle International Gmbh Charge-air cooling device
EP2469210A3 (fr) * 2010-12-22 2015-04-15 Valeo Termico S.A. Échangeur de chaleur à plaques empilées
EP2863157A1 (fr) * 2013-10-17 2015-04-22 MAHLE Behr GmbH & Co. KG Échangeur de chaleur
DE102014209323A1 (de) * 2014-05-16 2015-11-19 Mahle International Gmbh Kunststoffbauteil
US11428473B2 (en) * 2019-02-01 2022-08-30 Modine Manufacturing Company Heat exchanger
EP4425083A1 (fr) * 2023-02-28 2024-09-04 Hamilton Sundstrand Corporation Section de retournement d'échangeur de chaleur

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102206182B1 (ko) * 2016-11-09 2021-01-21 항저우 산후아 리서치 인스티튜트 컴퍼니 리미티드 차량의 유체 열교환 조립체 및 열관리 시스템
DE102017130153B4 (de) * 2017-12-15 2022-12-29 Hanon Systems Vorrichtung zur Wärmeübertragung und Verfahren zum Herstellen der Vorrichtung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1113551A (ja) * 1997-06-23 1999-01-19 Isuzu Motors Ltd Egrクーラ
EP1034824A2 (fr) * 1999-03-11 2000-09-13 Nippon Shokubai Kabushiki Kaisha Echangeur de chaleur tubulaire et procédé d inhibition de la polymérisation dans l échangeur de chaleur tubulaire
US6269870B1 (en) * 1998-04-24 2001-08-07 Behr Gmbh & Co. Exhaust heat exchanger
EP1154143A1 (fr) * 1999-01-20 2001-11-14 Hino Motors, Ltd. Refroidisseur egr
WO2004001203A2 (fr) * 2002-06-25 2003-12-31 Behr Gmbh & Co. Echangeur thermique pour gaz d'echappement et procede de fabrication associe
ES2260971A1 (es) * 2003-06-20 2006-11-01 Valeo Termico, S.A. Intercambiador de calor para gases, en especial de los gases de escape de un motor.
WO2007048603A2 (fr) * 2005-10-26 2007-05-03 Behr Gmbh & Co. Kg Echangeur de chaleur et procede de fabrication d'un echangeur de chaleur
EP1906130A2 (fr) * 2006-07-06 2008-04-02 Behr GmbH & Co. KG Echangeur thermique destiné au refroidissement des gaz, procédé destiné à la fabrication d'un échangeur thermique

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20316688U1 (de) * 2003-10-29 2004-03-11 Behr Gmbh & Co. Kg Wärmetauscher

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1113551A (ja) * 1997-06-23 1999-01-19 Isuzu Motors Ltd Egrクーラ
US6269870B1 (en) * 1998-04-24 2001-08-07 Behr Gmbh & Co. Exhaust heat exchanger
EP1154143A1 (fr) * 1999-01-20 2001-11-14 Hino Motors, Ltd. Refroidisseur egr
EP1034824A2 (fr) * 1999-03-11 2000-09-13 Nippon Shokubai Kabushiki Kaisha Echangeur de chaleur tubulaire et procédé d inhibition de la polymérisation dans l échangeur de chaleur tubulaire
WO2004001203A2 (fr) * 2002-06-25 2003-12-31 Behr Gmbh & Co. Echangeur thermique pour gaz d'echappement et procede de fabrication associe
ES2260971A1 (es) * 2003-06-20 2006-11-01 Valeo Termico, S.A. Intercambiador de calor para gases, en especial de los gases de escape de un motor.
WO2007048603A2 (fr) * 2005-10-26 2007-05-03 Behr Gmbh & Co. Kg Echangeur de chaleur et procede de fabrication d'un echangeur de chaleur
EP1906130A2 (fr) * 2006-07-06 2008-04-02 Behr GmbH & Co. KG Echangeur thermique destiné au refroidissement des gaz, procédé destiné à la fabrication d'un échangeur thermique

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010112201A (ja) * 2008-11-04 2010-05-20 Tokyo Radiator Mfg Co Ltd Uターン型egrクーラ
JP2010127171A (ja) * 2008-11-27 2010-06-10 Tokyo Radiator Mfg Co Ltd Uターン型egrクーラ
US9874404B2 (en) * 2009-10-27 2018-01-23 Mahle International Gmbh Exhaust gas heat exchanger
US20120305220A1 (en) * 2009-10-27 2012-12-06 Frank Sauter Exhaust gas heat exchanger
WO2012052465A1 (fr) * 2010-10-19 2012-04-26 Dsm Ip Assets B.V. Réservoir d'extrémité de collecteur d'échangeur de chaleur
EP2469210A3 (fr) * 2010-12-22 2015-04-15 Valeo Termico S.A. Échangeur de chaleur à plaques empilées
CN103890524A (zh) * 2011-06-30 2014-06-25 法雷奥热系统公司 特别用于机动车辆的热交换器
CN103890524B (zh) * 2011-06-30 2018-02-16 法雷奥热系统公司 特别用于机动车辆的热交换器
DE102011113788A1 (de) * 2011-09-20 2013-03-21 Friedrich Boysen Gmbh & Co. Kg Wärmeübertragungsanordnung
US9951677B2 (en) * 2012-03-15 2018-04-24 Mahle International Gmbh Charge-air cooling device
US20150075750A1 (en) * 2012-03-15 2015-03-19 Mahle International Gmbh Charge-air cooling device
DE102012208771A1 (de) * 2012-05-24 2013-11-28 Behr Gmbh & Co. Kg Wärmetauscher zum Temperieren eines ersten Fluids unter Verwendung eines zweiten Fluids
US9695733B2 (en) 2012-05-24 2017-07-04 Mahle International Gmbh Heat exchanger for controlling the temperature of a first fluid using a second fluid
DE102013213031A1 (de) * 2012-07-03 2014-05-22 Behr Gmbh & Co. Kg Stutzen
DE102013006956A1 (de) * 2013-04-23 2014-10-23 Modine Manufacturing Co. Luftführendes Bauteil mit einem Ladeluftkühler
DE102013006956B4 (de) * 2013-04-23 2020-06-04 Mann+Hummel Gmbh Luftführendes Bauteil mit einem Ladeluftkühler
US20150107807A1 (en) * 2013-10-17 2015-04-23 MAHLE Behr GmbH & Co. KG Heat exchanger
DE102013221151A1 (de) * 2013-10-17 2015-04-23 MAHLE Behr GmbH & Co. KG Wärmeübertrager
CN104567474A (zh) * 2013-10-17 2015-04-29 马勒贝洱两合公司 热交换器
EP2863157A1 (fr) * 2013-10-17 2015-04-22 MAHLE Behr GmbH & Co. KG Échangeur de chaleur
DE102014209323A1 (de) * 2014-05-16 2015-11-19 Mahle International Gmbh Kunststoffbauteil
US11428473B2 (en) * 2019-02-01 2022-08-30 Modine Manufacturing Company Heat exchanger
EP4425083A1 (fr) * 2023-02-28 2024-09-04 Hamilton Sundstrand Corporation Section de retournement d'échangeur de chaleur

Also Published As

Publication number Publication date
KR20100015470A (ko) 2010-02-12
EP2137477A1 (fr) 2009-12-30
EP2137477B1 (fr) 2018-09-12
KR101554048B1 (ko) 2015-09-17

Similar Documents

Publication Publication Date Title
EP2137477B1 (fr) Échangeur de chaleur pour gaz
EP2333472A1 (fr) Echangeur thermique interne pour circuit de climatisation de véhicule automobile et un tel circuit
EP2817503B1 (fr) Echangeur thermique pour gaz, en particulier pour les gaz d'echappement d'un moteur
WO2011061090A2 (fr) Echangeur de chaleur pour gaz, notamment pour les gaz d'echappement d'un moteur
EP2856058B1 (fr) Echangeur de chaleur a collecteur renforce
FR2962206A1 (fr) Collecteur pour echangeur de chaleur et echangeur de chaleur equipe d'un tel collecteur
WO2014140119A1 (fr) Echangeur thermique, en particulier refroidisseur d'air de suralimentation
WO2009000581A1 (fr) Module d'echange de chaleur pour deux circuits d'echange de chaleur
FR3007515A1 (fr) Echangeur de chaleur, notamment pour les boucles ou circuits de climatisation des vehicules
FR2914413A1 (fr) Refroidisseur modulaire en aluminium
EP2227667B1 (fr) Echangeur de chaleur pour gaz, notamment pour les gaz d'echappement d'un moteur
WO2008049648A1 (fr) Echangeur de chaleur pour gaz et son procede de fabrication correspondant
FR2924162A1 (fr) Bride d'assemblage d'au moins un element avant avec au moins un element arriere d'un dispositif d'echappement
EP2208010B1 (fr) Echangeur de chaleur pour fluides haute et basse température
EP2877804A1 (fr) Echangeur de chaleur pour vehicule automobile comportant une bride de fixation
EP2936033A1 (fr) Echangeur de chaleur entre un liquide caloporteur et un fluide refrigerant, notamment pour vehicule automobile
EP2901097B1 (fr) Echangeur de chaleur, notamment pour vehicule automobile, et procede d'assemblage associe
WO2016202832A1 (fr) Échangeur thermique pour gaz, en particulier pour les gaz d'échappement d'un moteur
EP2400140B1 (fr) Échangeur de chaleur pour gaz, notamment pour les gaz d'échappement d'un moteur
WO2009021826A1 (fr) Echangeur de chaleur pour gaz et procede de fabrication correspondant
WO2011064090A2 (fr) Echangeur de chaleur a plaques empilees
WO2011029940A1 (fr) Échangeur de chaleur pour gaz, particulièrement pour les gaz d'échappement d'un moteur
WO2017108615A1 (fr) Ensemble unité de conduite de gaz avec filtre à particules, procédé de fabrication de celui-ci et échangeur thermique pour gaz, en particulier pour les gaz d'échappement d'un moteur
FR2833691A1 (fr) Support de fixation pour echangeur de chaleur brase
FR2874082A1 (fr) Echangeur de chaleur a montage facilite et a transfert de chaleur ameliore

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08735663

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008735663

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20097021124

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE