WO2008125075A1 - Verfahren zur herstellung von chlordioxid - Google Patents
Verfahren zur herstellung von chlordioxid Download PDFInfo
- Publication number
- WO2008125075A1 WO2008125075A1 PCT/DE2008/000420 DE2008000420W WO2008125075A1 WO 2008125075 A1 WO2008125075 A1 WO 2008125075A1 DE 2008000420 W DE2008000420 W DE 2008000420W WO 2008125075 A1 WO2008125075 A1 WO 2008125075A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solution
- chlorine
- chlorine dioxide
- process step
- reactor
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B11/00—Oxides or oxyacids of halogens; Salts thereof
- C01B11/02—Oxides of chlorine
- C01B11/022—Chlorine dioxide (ClO2)
- C01B11/023—Preparation from chlorites or chlorates
- C01B11/024—Preparation from chlorites or chlorates from chlorites
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/34—Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
- C25B1/46—Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
Definitions
- the invention relates to a process for the preparation of chlorine dioxide by the reaction of chlorine and chlorite.
- chlorine dioxide additives are used, for example in the field of industrial companies, beverage manufacturers, restaurants and hospitals, but also in homes to achieve a reliable disinfection and sterilization of drinking and industrial water.
- biofilms will form over time without effective disinfection on the water-wetted surfaces. Microorganisms colonize these surfaces and cause by their metabolic products called a biofilm slime formation.
- the gelatinous film of extracellular polymeric substances provides ideal conditions - namely food and protection - for pathogenic microorganisms, which leads to permanent contamination of the drinking and process water.
- Chlorine dioxide is used for water disinfection in addition to chlorine because of its very good disinfecting, oxidizing and deodorizing properties. It has a much higher oxidation effect than chlorine and can therefore also affect substances, bacteria, spores and viruses that are no longer attacked by chlorine. The sporicidal and virucidal action of chlorine dioxide at the same concentration is better than that of chlorine. In addition, the formation of organic chlorine compounds is practically negligible.
- the addition of chlorine dioxide as a disinfectant serves in particular to eliminate biofilm, the disinfection of drinking water and of pipe network and water tank systems as well as the fight against Legionella or the remediation of legionella-infested systems. Chlorine dioxide is currently obtained chemically by oxidation of chlorite or by reduction of chlorate.
- the preparation of a chlorine dioxide solution of two components, which are dissolved in a container for this purpose in water, so as to produce the desired concentration, requires only a small effort in the operation of the system.
- the chlorine dioxide solution is prepared by dissolving tablets or powder components in water or by mixing the liquid component concentrate. After addition of the two components in water and a reaction time of about two hours, the chlorine dioxide solution is ready for use.
- the dosage of the chlorine dioxide solution into the drinking and service water network is proportional to the amount of water flowing through.
- a water meter delivers pulses corresponding to the flow rate to the metering pump, so as to introduce a volume of the chlorine dioxide solution proportional to the water flow rate into the pipeline network.
- the metering is interrupted if no water flow in the pipe network is detected.
- the various chlorate-acid reductant methods are useful for the preparation of large quantities of chlorine dioxide, such as those used in the paper industry. Their use requires the use of reactors due to the high risk of explosion.
- the product concentration to be achieved depends on the desired application concentration of the chlorine dioxide. According to the German Drinking Water Ordinance, the standard value for the concentration of chlorine dioxide in the water is 0.2 ppm. For safety reasons, the product concentration should be below 4 g / l chlorine dioxide. The concentration should preferably be chosen in the range of 2 to 3 g / l of chlorine dioxide for the experimental procedures.
- the determination of the chlorine and chlorine dioxide content is carried out according to two different measuring methods, the so-called DPD method and the iodometry.
- hypochlorite solution such as low shelf life and handling and storage in canisters are avoided with the production of chlorine in the electrolysis plant.
- US 2005/0034997 A1 discloses an electrochemical process for the production of chlorine dioxide.
- the chlorine dioxide reactor forms a structural unit together with the anode compartment and the cathode compartment.
- the assembly contains a filling material, the spaces being separated by ion exchange membranes.
- GB 1 426 111 A and DE 2 412 394 A each disclose a process for the preparation of CIO 2 , in which a mixture of sodium chloride and sodium chlorite is fed to an electrolysis cell.
- the chlorine formed directly converts with sodium chlorite to chlorine dioxide.
- the production of chlorine dioxide takes place in the anode compartment.
- chlorine dioxide production takes place during electrolysis under current flow.
- a chlorine solution of specific concentration is prepared in the upper part of the reactor by dissolving the chlorine in the water.
- the lower part of the reactor consists of three zones. In one zone is the sodium chlorite solution in which the reaction between the chlorine solution from the top of the reactor and the sodium chlorite solution to chlorine dioxide occurs. An electrochemical chlorine production is not described.
- a process for the production of chlorine dioxide by reaction of chlorine and chlorite, in which in a first process step [1] chlorine is produced electrochemically from a saturated sodium chloride solution, sodium hydroxide solution and hydrogen gas and chlorine being produced in an anode compartment in a cathode compartment, and in a second process step [2] the resulting chlorine reacts in a reactor with sodium chlorite to chlorine dioxide.
- a first process step [1] chlorine is produced electrochemically from a saturated sodium chloride solution, sodium hydroxide solution and hydrogen gas and chlorine being produced in an anode compartment in a cathode compartment
- a second process step [2] the resulting chlorine reacts in a reactor with sodium chlorite to chlorine dioxide.
- the hydrogen formed in the first process step can be easily disposed of or used for further use, while the sodium hydroxide solution serves various applications of this method.
- a particularly advantageous embodiment of the method according to the invention is thereby realized in that the sodium hydroxide solution produced in the cathode compartment in the first method step is in particular introduced continuously into sodium chlorite solution and from this chlorine dioxide solution is produced.
- the resulting chlorine dioxide solution is available for continuous use, so that a particularly economical production of the desired chlorine dioxide solution can be ensured with little effort.
- both the dissolved chlorine and the gaseous chlorine in the second process step can be used in a particularly meaningful way for the production of chlorine dioxide, so that a loss of chlorine can be avoided and the conversion to chlorine dioxide can be carried out in an optimal manner.
- Another, particularly particularly profitable embodiment is created by the fact that in the first process step chlorine from saturated sodium chloride solution is generated electrochemically in the membrane process. Due to the impermeability of the membrane for chlorine ions optimal separation of the sodium hydroxide solution and the hydrogen on the one hand from the chlorine on the other hand ensured.
- a concentrated mixture is produced as so-called fatty acid directly on site from saturated NaCl solution (brine) and direct current.
- the cathode space and the anode space on the one hand and the reactor on the other hand form separate units. This ensures that chlorine dioxide production does not occur in the electrolysis cell, but rather independently in the reactor.
- a pH of the chlorine dioxide produced in the second step is adjusted between pH 4 and pH 10, in particular substantially pH 7, by means of the sodium hydroxide solution produced in the cathode compartment, so that by means of the sodium hydroxide solution, the chlorine dioxide solution in a Set neutral range too can.
- the bactericidal performance of the chlorine dioxide solution is approximately constant at pH's between pH 4 and pH 10.
- a proportion of chlorine dioxide in its gaseous phase is formed in the reactor.
- a particularly economical production of the chlorine dioxide is achieved according to a further promising modification if the chlorine dioxide (CIO 2 ) in the gaseous phase prepared in the second process step with the sodium hydroxide solution (NaOH) produced in the cathode space is converted to sodium chlorite (NaCIO 2 ) and used as starting material for the second process step [2], so as to ensure an optimal quality of the chlorine dioxide produced.
- an embodiment has been found to be particularly advantageous in which the concentrations of the reactants, the pH and / or the temperature are optimized to maximize the yield and / or speed of the reaction to produce a needs-based and the respective circumstances almost arbitrarily adaptable chlorine dioxide.
- the formation of chlorine dioxide can be influenced by adjusting process parameters, such as, in particular, the volume flow, the temperature, the pressure, the electrical power, the current intensity and / or the voltage, so that a substantial extent Automatability and easy controllability of the process to achieve.
- the measured in the first step in the electrochemical treatment current serves as a controlled variable for a conveyor unit for the supply of sodium chlorite.
- the amount of chlorine produced over time depends on the current intensity and the volume flow of the medium to be electrolyzed.
- Important influencing parameters on the chlorine dioxide concentration starting from a constant chlorine production, are the variation of the chlorine concentration by dilution with water or the change of the volume flow and the concentration of the sodium chloride solution, the change in the reaction form of the chlorine - either exclusively in its gaseous phase or as a mixture in the form of chlorine gas and fatty acids from the anode compartment - as well as the change in the pH of the reactants.
- the invention allows for various embodiments. To further clarify its basic principle, one of them is shown in the drawing and will be described below.
- a sodium chloride solution is first produced by soft water supply from a decalcifying plant (1), which is then fed by means of a pump (4a) to an electrolysis unit (5).
- the electrolysis unit (5) can also be supplied with soft water by means of a throttle valve (12a) and a solenoid valve (2) from the decalcification system (1).
- sodium hydroxide solution and hydrogen gas are formed from the saturated sodium chloride solution in a cathode space (K) and chlorine is separated in an anode space (A) separate from the cathode space (K).
- Chlorine gas and fatty acids consisting of sodium chloride and chlorine dissolved in the water, pass from the anode chamber (A) into a collecting container (6), to which soft water from the descaling unit (1) can be fed by means of a throttle valve (12b) and the solenoid valve (2).
- the collecting container (6) From a container (7) by means of a pump (4b) the collecting container (6) further an acid, in particular hydrochloric acid, sodium hydrogen sulfate, sulfuric acid or phosphoric acid, can be fed.
- the fatty acid is introduced into a reactor (70) with the addition of sodium chlorite solution, which is supplied from a container (8) by means of a further pump (4c) to an injection point (9), in which the chlorine is added with the sodium chlorite Chlorine dioxide reacts and in which the pH is set to less than 3.
- the chlorine dioxide is then collected in a container (11) and can be removed from there for further use by means of a drain valve as needed. Gaseous chlorine dioxide displaced from this container (11) must not escape into the environment and is therefore directed into the container (8). There, the chlorine dioxide is converted to chlorite.
- the sodium hydroxide solution separated from the hydrogen in the tank (73) is used inter alia to adjust the pH of the chlorine dioxide in a neutral range.
- the sodium hydroxide solution also serves as the basis for the production of sodium chlorite solution by the desired pH value can be adjusted by the supply of sodium chlorite.
- the sodium hydroxide solution can preferably also be converted into sodium chloride by means of cation exchanger (14) and hydrochloric acid, which is fed to the brine tank (3) as starting material for the first process step.
- the sodium hydroxide solution may be used in conjunction with phosphoric acid to prepare a corrosion inhibiting agent, preferably trisodium phosphate or disodium monohydrogenphosphate, by metering phosphoric acid from the container (7) by means of a pump (4d) of the sodium hydroxide solution present in the container (75).
- the phosphate solution can be removed from the container (15) for further use by means of a drain valve.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Die Erfindung betrifft ein Verfahren zur Herstellung von Chlordioxid durch Reaktion von Chlor und Chlorit, bei dem in einem ersten Verfahrensschritt Chlor aus gesättigter Natriumchloridlösung elektrochemisch erzeugt wird, wobei in einem Kathodenraum Natriumhydroxidlösung und Wasserstoffgas und in einem Anodenraum Chlor entstehen und in einem zweiten Verfahrensschritt das erzeugte Chlor in einem Reaktor mit Natriumchlorit unter Zugabe einer Säure zu Chlordioxid reagiert. Hierdurch wird ein wirtschaftliches und vergleichsweise mit geringem Aufwand realisierbares Verfahren zur Herstellung von Chlordioxid mittels Elektrolyse von gesättigter Kochsalzlösung realisiert. Nach der Trennung des Wasserstoffs von Natriumhydroxidlösung wird diese zur Herstellung von Natriumchloritlösung zur pH-Wert-Einstellung der Chlordioxidlösung und zur Herstellung korrosionshemmender Phosphatlösungen umgesetzt. Nichtverwendbare Natriumhydroxidlösung kann über Ionenaustauscher wieder in Natriumchloridlösung umgewandelt werden und dem Chlordioxid-Herstellungsprozess wieder zugeführt werden.
Description
Verfahren zur Herstellung von Chlordioxid
Die Erfindung betrifft ein Verfahren zur Herstellung von Chlordioxid durch Reaktion von Chlor und Chlorit.
Zur Desinfektion von Trink- und Brauchwasser werden Chlordioxid-Zusätze beispielsweise im Bereich von Industriebetrieben, Getränkeherstellern, Gastronomie und Krankenhäusern, aber auch in Wohnhäusern eingesetzt, um eine zuverlässige Desinfektion und Entkeimung des Trink- und Brauchwassers zu erreichen. In Wassersystemen bilden sich ohne eine wirkungsvolle Desinfektion an den wasserberührten Oberflächen mit der Zeit Biofilme. Mikroorganismen besiedeln diese Oberflächen und bewirken durch ihre Stoffwechselprodukte eine als Biofilm bezeichnete Schleimbildung. Der gallertartige Film aus extrazellulären polymeren Substanzen bietet ideale Bedingungen - nämlich Nahrung und Schutz - für krankheitserregende Mikroorganismen, wodurch es zu permanenter Kontamination des Trink- und Prozesswassers kommt.
Für die Wasserdesinfektion wird neben Chlor aufgrund der sehr guten Desinfektions-, Oxida- tions- und Desodorierungseigenschaften auch Chlordioxid eingesetzt. Es hat eine wesentlich höhere Oxidationswirkung als Chlor und kann somit auch auf Substanzen, Bakterien, Sporen und Viren einwirken, die von Chlor nicht mehr angegriffen werden. Die sporizide und viruzide Wirkung von Chlordioxid ist bei gleicher Konzentration besser als die von Chlor. Zusätzlich ist die Bildung von organischen Chlorverbindungen praktisch vernachlässigbar. Die Zudosie- rung von Chlordioxid als Desinfektionsmittel dient dabei insbesondere der Beseitigung von Biofilm, der Desinfektion von Trinkwasser und von Rohrnetz- und Wasserbehälter-Systemen sowie der Legionellenbekämpfung bzw. der Sanierung legionellenbefallener Systeme.
Chlordioxid wird derzeit chemisch durch Oxidation von Chlorit oder durch Reduktion von Chlorat gewonnen. Die Herstellung der Chlordioxidlösung kann dabei auf verschiedenen Wegen erfolgen. Die auf dem Reaktionsprinzip basierenden Erzeugeranlagen arbeiten hauptsächlich nach dem Chlorit-/Chlor-Verfahren aus Natriumchioritlösung und Chlorgas oder dem ChloriWSäure-Verfahren mit Salzsäure und Natriumchioritlösung. Auf diese Weise wird kontinuierlich die Chlordioxidlösung in der gewünschten Konzentration erzeugt. Nachteil dieses Prinzips ist der hohe Anlagen- und Bedienungsaufwand, der neben den Voraussetzungen einer großtechnischen Anlage auch Fachkenntnisse bei der Bedienung erfordert.
Demgegenüber erfordert die Herstellung einer Chlordioxidlösung aus zwei Komponenten, die hierzu in einem Behälter in Wasser gelöst werden, um so die gewünschte Konzentration zu erzeugen, nur einen geringen Aufwand bei der Bedienung der Anlage. Die Chlordioxidlösung wird durch Lösen von Tabletten oder Pulver-Komponenten in Wasser oder durch Mischen des flüssigen Komponenten-Konzentrats hergestellt. Nach Zugabe der beiden Komponenten in Wasser und einer Reaktionszeit von ca. zwei Stunden ist die Chlordioxidlösung einsatzbereit.
Dieses Verfahren wird in den oben genannten Einsatzbereichen aufgrund der einfachen Anwendung annähernd ausschließlich eingesetzt. Weiterhin sind die Komponenten praktisch unbegrenzt haltbar.
Die Dosierung der Chlordioxidlösung in das Trink- und Brauchwasserleitungsnetz erfolgt mengenproportional zur durchfließenden Wassermenge. Hierzu liefert ein Wasserzähler Impulse entsprechend der Durchflussmenge an die Dosierpumpe, um so ein der Wasserdurchflussmenge proportionales Volumen der Chlordioxidlösung in das Leitungsnetz einzuleiten. Die Dosierung wird unterbrochen, wenn kein Wasserdurchfluss in dem Leitungsnetz erfasst wird.
Die verschiedenen Chlorat-Säure-Reduktionsmittel-Verfahren sind für die Darstellung großer Mengen Chlordioxid geeignet, wie sie beispielsweise in der Papierindustrie Verwendung finden. Ihr Einsatz bedingt aufgrund der hohen Explosionsgefahr zwingend den Einsatz von Reaktoren.
Die zu erzielende Produktkonzentration richtet sich nach der gewünschten Anwendungskonzentration des Chlordioxids. Nach der Deutschen Trinkwasserverordnung ist der Richtwert für die Konzentration an Chlordioxid im Wasser 0,2 ppm.
Die Produktkonzentration sollte aus Sicherheitsgründen unter 4 g/l Chlordioxid liegen. Die Konzentration ist für die Versuchsdurchführungen vorzugsweise im Bereich von 2 bis 3 g/l Chlordioxid zu wählen. Die Bestimmung des Chlor- und des Chlordioxidgehaltes erfolgt nach zwei unterschiedlichen Messmethoden, der sogenannten DPD-Methode und der Jodometrie.
Bei dem elektrochemischen Verfahren zur Herstellung von Chlor mittels NaCI-Elektrolyse entsteht neben Chlor in geringen Mengen Chlordioxid.
Die beim Einsatz von handelsüblicher Hypochloritlösung auftretenden Probleme wie geringe Lagerfähigkeit sowie Handhabung und Bevorratung in Kanistern werden mit der Herstellung des Chlors in der Elektrolyse-Anlage vermieden.
Durch die US 2005/0034997 A1 ist ein elektrochemisches Verfahren zur Herstellung von Chlordioxid bekannt. Der Chlordioxidreaktor bildet dabei gemeinsam mit dem Anodenraum und dem Kathodenraum eine Baueinheit. In der Baueinheit ist ein Füllmaterial enthalten, wobei die Räume durch lonenaustauschermembranen getrennt sind.
Die US 6869517 A1 offenbart ferner ein Elektrolyseverfahren und eine Elektrolysevorrichtung zur Oxidation organischer und anorganischer Substanzen.
Aus der GB 1 426 111 A sowie der DE 2 412 394 A ist jeweils ein Verfahren zur Herstellung von CIO2 bekannt, bei dem ein Gemisch aus Natriumchlorid und Natriumchlorit einer Elektrolysezelle zugeführt wird. Im Anodenraum setzt sich das gebildete Chlor direkt mit Natriumchlorit zu Chlordioxid um. Hierbei erfolgt die Herstellung von Chlordioxid im Anodenraum. Demzufolge findet die Chlordioxid-Herstellung während der Elektrolyse unter Stromfluss statt.
Gemäß der FR 2 086 624 A wird im Oberteil des Reaktors eine Chlorlösung bestimmter Konzentration durch Lösen des Chlors im Wasser hergestellt. Das Unterteil des Reaktors besteht aus drei Zonen. In einer Zone befindet sich die Natriumchloritlösung, in der die Reaktion zwischen der Chlorlösung aus dem Oberteil des Reaktors mit der Natriumchloritlösung zu Chlordioxid erfolgt. Eine elektrochemische Chlorherstellung wird nicht beschrieben.
Ferner offenbart die DE 31 18 795 C2 die Elektrolyse von Chloritlösung zur Herstellung von Chlordioxid.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von Chlordioxid zu entwickeln, durch das Chlordioxid wirtschaftlich und mit einem vergleichsweise geringen Aufwand hergestellt werden kann.
Diese Aufgabe wird erfindungsgemäß mit einem Verfahren gemäß den Merkmalen des Anspruchs 1 gelöst. Die weitere Ausgestaltung der Erfindung ist den Unteransprüchen zu entnehmen.
Erfindungsgemäß ist also ein Verfahren zur Herstellung von Chlordioxid durch Reaktion von Chlor und Chlorit vorgesehen, bei dem in einem ersten Verfahrensschritt [1] Chlor aus einer gesättigten Natriumchloridlösung elektrochemisch erzeugt wird, wobei in einem Kathodenraum Natriumhydroxidlösung und Wasserstoffgas und in einem Anodenraum Chlor entsteht, und in einem zweiten Verfahrensschritt [2] das entstandene Chlor in einem Reaktor mit Nat- riumchlorit zu Chlordioxid reagiert. Das wirtschaftlich mit einem vergleichsweise geringen Aufwand realisierbare Verfahren zur Herstellung von Chlordioxid mittels Elektrolyse aus gesättigter Kochsalzlösung arbeitet entsprechend den Reaktionsgleichungen
2 NaCI + 2 H2O → 2 NaOH + H2 + Cl2 ^j
und
2 NaCIO2 + Cl2 → 2 CIO2 + 2 NaCI [2].
Dabei kann der in dem ersten Verfahrensschritt entstehende Wasserstoff problemlos entsorgt oder einer weiteren Verwendung zugeführt werden, während die Natriumhydroxidlösung verschiedenen Anwendungen dieses Verfahrens dient.
Eine besonders vorteilhafte Ausgestaltung des erfindungsgemäßen Verfahrens wird dabei dadurch realisiert, dass die im ersten Verfahrensschritt im Kathodenraum erzeugte Natriumhydroxidlösung insbesondere kontinuierlich in Natriumchloritlösung eingeleitet wird und daraus Chlordioxidlösung hergestellt wird. Hierdurch steht die dabei entstehende Chlordioxidlösung für einen kontinuierlichen Einsatz zur Verfügung, sodass eine besonders wirtschaftliche Herstellung der gewünschten Chlordioxidlösung mit geringem Aufwand sichergestellt werden kann.
Besonders erfolgversprechend ist zudem eine Abwandlung des erfindungsgemäßen Verfahrens, bei welchem zur Herstellung der Chlordioxidlösung gasförmiges Chlor in die Natrium-
chloritlösung eingeleitet wird, um so einen weiter verbesserten Verlauf im zweiten Verfahrensschritt bei der Reaktion des Chlors mit der Natriumchloritlösung zu Chlordioxid (CIO2) zu erreichen.
Darüber hinaus kann in besonders sinnvoller Weise sowohl das gelöste Chlor als auch das gasförmige Chlor in dem zweiten Verfahrensschritt zur Herstellung von Chlordioxid genutzt werden, sodass ein Chlorverlust vermieden werden kann und die Umsetzung zu Chlordioxid in optimaler Weise erfolgen kann.
Dabei erweist es sich als besonders gewinnbringend, wenn zur Herstellung der Chlordioxidlösung das gasförmige Chlor in Wasser eingeleitet und der Natriumchloritlösung (NaCIO2) zugeführt wird, um so durch das in dem Wasser gelöste Chlor eine verfahrenstechnisch zuverlässige und mit geringem Aufwand realisierbare Anlage zu ermöglichen.
Insbesondere erweist es sich dabei als besonders praxisnah, wenn zur Herstellung der Chlordioxidlösung das in dem Anodenraum elektrochemisch behandelte, in Wasser gelöste Natriumchlorid und das darin gelöste Chlor in Säurelösung eingeleitet und Natriumchloritlösung (NaCIO2) zudosiert wird, was eine einfache Beherrschbarkeit des Verfahrens mit einer wirtschaftlichen Herstellung des Chlordioxids vereint.
Eine andere, ebenfalls besonders gewinnbringende Ausführungsform wird dadurch geschaffen, dass im ersten Verfahrensschritt Chlor aus gesättigter Natriumchloridlösung elektrochemisch im Membranverfahren erzeugt wird. Aufgrund der Undurchlässigkeit der Membran für Chlor-Ionen wird eine optimale Trennung der Natriumhydroxidlösung und des Wasserstoffs einerseits von dem Chlor andererseits sichergestellt. Durch das elektrochemische Verfahren wird direkt am Einsatzort aus gesättigter NaCI-Lösung (Sole) und Gleichstrom ein konzentriertes Gemisch als sogenannte Fettsole produziert. Dabei bilden der Kathodenraum und der Anodenraum einerseits sowie der Reaktor andererseits getrennte Einheiten. Hierdurch wird sichergestellt, dass die Chlordioxidherstellung nicht in der Elektrolysezelle, sondern hiervon unabhängig in dem Reaktor erfolgt.
Weiterhin erweist es sich als besonders praxisnah, wenn mittels der im Kathodenraum erzeugten Natriumhydroxidlösung ein pH-Wert des im zweiten Verfahrensschritt hergestellten Chlordioxids zwischen pH 4 und pH 10, insbesondere im Wesentlichen pH 7, eingestellt wird, um so mittels der Natronlauge die Chlordioxidlösung in einem Neutralbereich einstellen zu
können. Die bakterizide Leistungsfähigkeit der Chlordioxidlösung ist bei pH-Werten zwischen pH 4 und pH 10 annährend konstant.
In dem Reaktor entsteht neben der Chlordioxidlösung auch ein Anteil von Chlordioxid in seiner gasförmigen Phase. Eine besonders wirtschaftliche Herstellung des Chlordioxids wird gemäß einer weiteren erfolgversprechenden Abwandlung dann erreicht, wenn das in dem zweiten Verfahrensschritt hergestellte, in der gasförmigen Phase befindliche Chlordioxid (CIO2) mit der in dem Kathodenraum erzeugten Natriumhydroxidlösung (NaOH) zu Natrium- chlorit (NaCIO2) reagiert und als Ausgangsstoff für den zweiten Verfahrensschritt [2] genutzt wird, um so eine optimale Qualität des erzeugten Chlordioxids sicherzustellen.
Ein bedeutender Vorteil des Verfahrens ist dessen Eignung für einen sehr weiten Anwendungsbereich von kleinen bis hin zu großtechnischen Anlagen. Ein weiterer Vorteil ist die bedarfsweise Herstellung von Chlordioxid sowohl kontinuierlich oder auch diskontinuierlich.
Weiterhin hat sich eine Ausführungsform als besonders gewinnbringend erwiesen, bei welcher zur Maximierung der Ausbeute und/oder Geschwindigkeit der Reaktion die Konzentrationen der Reaktionspartner, der pH-Wert und/oder die Temperatur optimiert werden zur Herstellung einer bedarfsgerechten und an die jeweiligen Umstände nahezu beliebig anpassbaren Chlordioxidlösung.
In ähnlicher Weise kann dabei gemäß einer weiteren zweckmäßigen Gestaltung des Verfahrens die Bildung von Chlordioxid durch Einstellung verfahrenstechnischer Parameter, wie insbesondere des Volumenstroms, der Temperatur, des Drucks, der elektrischen Leistung, der Stromstärke und/oder der Spannung beeinflusst werden, um so eine weitgehende Auto- matisierbarkeit und einfache Steuerbarkeit des Verfahrensverlaufes zu erreichen.
Dabei ist es besonders gewinnbringend, wenn die im ersten Verfahrensschritt bei der elektrochemischen Behandlung gemessene Stromstärke als Regelgröße für eine Fördereinheit für die Zufuhr des Natriumchlorits dient. Insbesondere ist die zeitlich produzierte Menge an Chlor von der Stromstärke und dem Volumenstrom des zu elektrolysierenden Mediums abhängig.
Wichtige Einflussparameter auf die Chlordioxidkonzentration, ausgehend von einer konstanten Chlorproduktion, sind die Variation der Chlorkonzentration durch Verdünnung mit Wasser oder die Änderung des Volumenstromes und der Konzentration der Natriumchloridlösung,
die Änderung der Reaktionsform des Chlors - entweder ausschließlich in seiner gasförmigen Phase oder als Gemisch in Form von Chlorgas und Fettsole aus dem Anodenraum - sowie die Änderung des pH-Wertes der Reaktionspartner.
Die Erfindung lässt verschiedene Ausführungsformen zu. Zur weiteren Verdeutlichung ihres Grundprinzips ist eine davon in der Zeichnung dargestellt und wird nachfolgend beschrieben. Diese zeigt in einer Prinzipdarstellung den Aufbau einer Anlage zur Durchführung des erfindungsgemäßen Verfahrens zur Herstellung von Chlordioxid. Dabei wird zunächst in einem Solebehälter (3) eine Natriumchloridlösung durch Weichwasserzufuhr aus einer Entkal- kungsanlage (1) erzeugt, welche dann mittels einer Pumpe (4a) einer Elektrolyseeinheit (5) zugeführt wird. Der Elektrolyseeinheit (5) ist bedarfsweise auch Weichwasser mittels eines Drosselventils (12a) sowie eines Magnetventils (2) aus der Entkalkungsanlage (1) zuführbar.
In der Elektrolyseeinheit (5) entstehen in einem ersten Verfahrensschritt aus der gesättigten Natriumchloridlösung in einem Kathodenraum (K) Natriumhydroxidlösung und Wasserstoffgas und in einem von dem Kathodenraum (K) getrennten Anodenraum (A) Chlor. Aus dem Anodenraum (A) gelangen Chlorgas und Fettsole, bestehend aus im Wasser gelösten Natriumchlorid und Chlor, in einen Sammelbehälter (6), dem mittels eines Drosselventils (12b) sowie des Magnetventils (2) Weichwasser aus der Entkalkungsanlage (1) zuführbar ist. Aus einem Behälter (7) ist mittels einer Pumpe (4b) dem Sammelbehälter (6) weiterhin eine Säure, insbesondere Salzsäure, Natriumhydrogensulfat, Schwefelsäure oder Phosphorsäure, zuführbar.
In einem zweiten Verfahrensschritt wird die Fettsole unter Zufuhr von Natriumchloritlösung, welche aus einem Behälter (8) mittels einer weiteren Pumpe (4c) einer Impfstelle (9) zugeführt wird, in einen Reaktor (70) eingeleitet, in dem das Chlor mit dem Natriumchlorit zu Chlordioxid reagiert und in dem der pH-Wert kleiner als 3 eingestellt wird. Das Chlordioxid wird anschließend in einem Behälter (11) aufgefangen und kann von dort zur weiteren Verwendung mittels eines Ablassventils bedarfsweise entnommen werden. Aus diesem Behälter (11) verdrängtes gasförmiges Chlordioxid darf nicht in die Umgebung gelangen und wird deshalb in den Behälter (8) geleitet. Dort wird das Chlordioxid in Chlorit umgewandelt. Die vom Wasserstoff im Behälter (73) abgetrennte Natriumhydroxidlösung wird unter anderem verwendet, um den pH-Wert des Chlordioxids in einem neutralen Bereich einzustellen. Außerdem dient die Natriumhydroxidlösung auch als Basis für die Herstellung von Natriumchloritlösung, indem sich durch die Zufuhr des Natriumchlorits der gewünschte pH-Wert einstellen lässt.
Die Natriumhydroxidlösung kann vorzugsweise auch mittels Kationenaustauscher (14) und Salzsäure in Natriumchlorid umgewandelt werden, welches als Ausgangsstoff für den ersten Verfahrensschritt dem Solebehälter (3) zugeführt wird. Ferner kann die Natriumhydroxidlösung in Verbindung mit Phosphorsäure zur Herstellung eine korrosionshemmenden Mittels, vorzugsweise Trinatriumphosphat bzw. Dinatriummonohydrogenphosphat, verwendet werden, indem Phosphorsäure aus dem Behälter (7) mittels einer Pumpe (4d) der in dem Behälter (75) vorhandenen Natriumhydroxidlösung zudosiert wird. Die Phosphatlösung kann aus dem Behälter (15) zwecks einer weiteren Verwendung mittels eines Ablassventils entnommen werden.
I: H2
II: NaOH + H2
IM: CL2(g) + Fettsole
IV: Weichwasser
V: NaCIO2
Claims
1. Verfahren zur Hersteilung von Chlordioxid durch Reaktion von Anolytlösung mit Chlorit, bei dem in einem ersten Verfahrensschritt Chlor aus gesättigter Natriumchloridlösung elektrochemisch erzeugt wird, wobei in einem Kathodenraum (K) Natriumhydroxidlösung und Wasserstoffgas und in einem Anodenraum (A) Chlor entsteht, und in einem zweiten Verfahrensschritt das entstandene Chlor in einem Reaktor (10) mit Natriumchlorit zu Chlordioxid reagiert, wobei der Kathodenraum (K) und der Anodenraum (A) einerseits sowie der Reaktor (10) andererseits getrennte Einheiten bilden, sodass das Chlordioxid außerhalb der Elektrolysezelle in dem Reaktor (70) hergestellt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die im ersten Verfahrensschritt erzeugte Anolytlösung mit Wasser versetzt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die im ersten Verfahrensschritt erzeugte Anolytlösung mit Wasser und Säure versetzt wird.
4. Verfahren nach den Ansprüchen 1 , 2 oder 3, dadurch gekennzeichnet, dass zur Herstellung der Chlordioxidlösung die Lösung aus einem Behälter (6) zusammen mit Natrium- chloritlösung aus einem Behälter (8) in den Reaktor (10) zugeführt wird.
5. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren kontinuierlich oder diskontinuierlich betrieben wird.
6. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mittels der im Kathodenraum (K) erzeugten Natriumhydroxidlösung ein pH- Wert des im zweiten Verfahrensschritt hergestellten Chlordioxids zwischen pH 4 und pH 10, insbesondere im Wesentlichen pH 7, eingestellt wird.
7. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das in dem zweiten Verfahrensschritt hergestellte, in der gasförmigen Phase befindliche Chlordioxid mit der Natriumchloritösung (Behälter 8) in den Reaktor (10) eingeleitet und als Ausgangsstoff für den zweiten Verfahrensschritt genutzt wird.
8. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die im ersten Verfahrensschritt bei der elektrochemischen Behandlung gemessene Stromstärke als Regelgröße für eine Fördereinheit für die Zufuhr des Natriumchlo- rits verwendet wird.
9. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die vom Wasserstoff abgetrennte Natriumhydroxidlösung (73) zur Herstellung von Natriumchloritlösung (Behälter 8) sowie von Phosphatlösungen (75) und von Natriumchloridlösungen (3) mittels Ionenaustauscher (14) eingesetzt wird.
10. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Verfahren in einem Reaktionsreaktor (10) durchgeführt wird, in dem eine Reynolds-Zahl größer als 2.320 eingestellt wird.
11. Verfahren nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in dem Reaktionsreaktor (10) turbulenzerzeugende Elemente angeordnet sind.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE502008002559T DE502008002559D1 (de) | 2007-04-12 | 2008-03-11 | Verfahren zur herstellung von chlordioxid |
AT08734361T ATE497928T1 (de) | 2007-04-12 | 2008-03-11 | Verfahren zur herstellung von chlordioxid |
EP08734361A EP2142471B1 (de) | 2007-04-12 | 2008-03-11 | Verfahren zur herstellung von chlordioxid |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007017625A DE102007017625A1 (de) | 2007-04-12 | 2007-04-12 | Verfahren zur Herstellung von Chlordioxid |
DE102007017625.4 | 2007-04-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008125075A1 true WO2008125075A1 (de) | 2008-10-23 |
Family
ID=39538066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2008/000420 WO2008125075A1 (de) | 2007-04-12 | 2008-03-11 | Verfahren zur herstellung von chlordioxid |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2142471B1 (de) |
AT (1) | ATE497928T1 (de) |
DE (2) | DE102007017625A1 (de) |
WO (1) | WO2008125075A1 (de) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160029639A1 (en) * | 2014-07-30 | 2016-02-04 | Ecolab Usa Inc. | Dual biocide generator |
US10501345B2 (en) | 2017-08-17 | 2019-12-10 | Ecolab Usa Inc. | Low risk chlorine dioxide onsite generation system |
US11130677B2 (en) | 2017-03-24 | 2021-09-28 | Ecolab Usa Inc. | Low risk chlorine dioxide onsite generation system |
US11535541B2 (en) | 2017-02-27 | 2022-12-27 | Ecolab Usa Inc. | Method for onsite production of chlorine dioxide |
US11970393B2 (en) | 2018-07-05 | 2024-04-30 | Ecolab Usa Inc. | Decomposition mediation in chlorine dioxide generation systems through sound detection and control |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102013010950B4 (de) | 2012-06-28 | 2016-09-01 | Hochschule Anhalt | Elektrolysezelle und Verfahren zur elektrolytischen Erzeugung von Chlordioxid |
DE102014014188A1 (de) | 2014-09-24 | 2016-03-24 | Hochschule Anhalt (Fh) | Verfahren zur chemischen Erzeugung von Chlordioxid aus Chloritionen und Ozon |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3975284A (en) * | 1971-06-07 | 1976-08-17 | Compagnie Industrielle De Filtration Et D'equipement Chimique | Process for the manufacture of solutions of halogens |
EP0328818A2 (de) * | 1988-02-16 | 1989-08-23 | Sterling Canada, Inc. | Herstellung von Chlordioxyd in einer elektrolytischen Zelle |
US5324497A (en) * | 1992-02-26 | 1994-06-28 | Westerlund G Oscar | Integrated procedure for high yield production of chlorine dioxide and apparatus used therefor |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2086624A5 (en) * | 1970-04-03 | 1971-12-31 | Ugine Kuhlmann | Aq chlorine dioxide prodn - from chlorine ataq sodium chlorite |
IT992419B (it) * | 1973-05-21 | 1975-09-10 | Conforto Gaetano | Apparecchiatura e procedimento elettrolitico per la produzione di soluzioni contenenti biossido di cloro |
JPS596915B2 (ja) * | 1980-05-13 | 1984-02-15 | 日本カ−リツト株式会社 | 二酸化塩素の電解製造方法 |
EP1438445A2 (de) | 2001-10-22 | 2004-07-21 | Halox Technologies Corporation | Elektrolyseverfahren und -vorrichtung |
US7179363B2 (en) | 2003-08-12 | 2007-02-20 | Halox Technologies, Inc. | Electrolytic process for generating chlorine dioxide |
-
2007
- 2007-04-12 DE DE102007017625A patent/DE102007017625A1/de not_active Withdrawn
-
2008
- 2008-03-11 WO PCT/DE2008/000420 patent/WO2008125075A1/de active Application Filing
- 2008-03-11 DE DE502008002559T patent/DE502008002559D1/de active Active
- 2008-03-11 EP EP08734361A patent/EP2142471B1/de not_active Not-in-force
- 2008-03-11 AT AT08734361T patent/ATE497928T1/de active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3975284A (en) * | 1971-06-07 | 1976-08-17 | Compagnie Industrielle De Filtration Et D'equipement Chimique | Process for the manufacture of solutions of halogens |
EP0328818A2 (de) * | 1988-02-16 | 1989-08-23 | Sterling Canada, Inc. | Herstellung von Chlordioxyd in einer elektrolytischen Zelle |
US5324497A (en) * | 1992-02-26 | 1994-06-28 | Westerlund G Oscar | Integrated procedure for high yield production of chlorine dioxide and apparatus used therefor |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160029639A1 (en) * | 2014-07-30 | 2016-02-04 | Ecolab Usa Inc. | Dual biocide generator |
US9695073B2 (en) * | 2014-07-30 | 2017-07-04 | Ecolab Usa Inc. | Dual biocide generator |
AU2015296576B2 (en) * | 2014-07-30 | 2017-11-02 | Ecolab Usa Inc. | Dual biocide generator |
US11535541B2 (en) | 2017-02-27 | 2022-12-27 | Ecolab Usa Inc. | Method for onsite production of chlorine dioxide |
US11130677B2 (en) | 2017-03-24 | 2021-09-28 | Ecolab Usa Inc. | Low risk chlorine dioxide onsite generation system |
US10501345B2 (en) | 2017-08-17 | 2019-12-10 | Ecolab Usa Inc. | Low risk chlorine dioxide onsite generation system |
US11225421B2 (en) | 2017-08-17 | 2022-01-18 | Ecolab Usa Inc. | Low risk chlorine dioxide onsite generation system |
US11970393B2 (en) | 2018-07-05 | 2024-04-30 | Ecolab Usa Inc. | Decomposition mediation in chlorine dioxide generation systems through sound detection and control |
Also Published As
Publication number | Publication date |
---|---|
EP2142471B1 (de) | 2011-02-09 |
ATE497928T1 (de) | 2011-02-15 |
DE102007017625A1 (de) | 2008-10-16 |
EP2142471A1 (de) | 2010-01-13 |
DE502008002559D1 (de) | 2011-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2142471B1 (de) | Verfahren zur herstellung von chlordioxid | |
EP1986959B1 (de) | Verfahren zur herstellung eines desinfektionsmittels durch elektrochemische aktivierung (eca) von wasser | |
DE602004009136T2 (de) | Elektrochemische Sterilisation und bakteriostatisches Verfahren | |
EP2219684B1 (de) | Vorrichtung zur reinigung von boden-oberflächen mit elektrolysiertem wasser mittels oxidativer radikale, erzeugt durch diamant-elektroden | |
WO2013053789A1 (de) | Verbessertes verfahren zur behandlung von wasser mit chlordioxid | |
EP2582619B1 (de) | Verfahren zur erzeugung von chlorwasserstoff oder einer wässerigen lösung derselben unter verwendung eines salzhaltigen rohwassers und elektrodialyse-system | |
WO2010063433A1 (de) | Desinfektionsmittel auf basis hypochloriger säure und deren salze sowie verfahren zu seiner herstellung mittels elektrochemischer aktivierung | |
DE102006007931A1 (de) | Verfahren zur Herstellung eines Desinfektionsmittels durch elektrochemische Aktivierung (ECA) von Wasser und Verfahren zur Desinfektion von Wasser mittels eines solchen Desinfektionsmittels | |
WO2012041357A1 (de) | Verfahren zur herstellung eines desinfektionsmittels auf der basis von hypochloriger säure oder hypochlorit durch elektrochemische aktivierung einer chloridlösung | |
DE102006058454B4 (de) | Verfahren zur elektrolytischen Herstellung einer schwachen Natriumhypochloritlösung mit differenzdruckgesteuerter pH- und Redoxregelung mittels Elektrolysemembranzellen aus Wasser (H2O) und Kochsalz (NaCl) | |
WO2009115577A1 (de) | Elektrodiaphragmalyse | |
DE102006043267A1 (de) | Verfahren zur Herstellung eines Desinfektionsmittels durch elektrochemische Aktivierung (ECA) von Wasser und Verfahren zur Desinfektion von Wasser mittels eines solchen Desinfektionsmittels | |
EP3867422B1 (de) | Elektrochemisches system zur synthese von wässriger oxidationsmittel-lösung | |
EP3673098B1 (de) | Vorrichtung zur gewinnung von produkten der elektrolyse von alkalimetallchloridlösung | |
DE102015006706A1 (de) | Kontinuierliches Verfahren zur Entfernung von Mikro-Verunreinigungen aus biologisch geklärtem, kommunalen Abwasser | |
DE102014010901A1 (de) | ECA Reaktor zur Erzeugung eines aktivierten hypochlorithaltigen Desinfektionsmittels | |
WO2009046931A1 (de) | VERFAHREN ZUR HERSTELLUNG EINES DESINFEKTIONSMITTELS AUF DER BASIS EINER WÄSSRIGEN HClO-LÖSUNG | |
DE10217885A1 (de) | Verfahren und Vorrichtung zur elektrochemischen Konditionierung eines Mediums wie Meerwasser o. dgl. für dessen Entsalzung | |
AT512231B1 (de) | Badewasser und verfahren zur herstellung | |
DE102008026546B4 (de) | Verfahren zur Herstellung eines hypohalogenithaltigen Biozids, mit diesem Verfahren erhältliches Biozid und dessen Verwendung | |
EP1804971B1 (de) | Verfahren zum hygienischen betrieb eines ionenaustauschers und ionenaustauscheranlage | |
WO2015001423A2 (en) | Method, apparatus, and system for electro-chemical activation of water | |
DE60006847T2 (de) | Einrichtung für die elektrolyse | |
EP3114087B1 (de) | Verfahren und vorrichtung zur herstellung wässriger chlordioxidlösungen | |
DE10031018B4 (de) | Chloralkalielektrolyse-Verfahren in Membranzellen unter Elektrolyse von ungereinigtem Siedesalz |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08734361 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008734361 Country of ref document: EP |