WO2008120147A1 - Textile pour connextion de dispositifs électroniques et procédé de fabrication associé - Google Patents
Textile pour connextion de dispositifs électroniques et procédé de fabrication associé Download PDFInfo
- Publication number
- WO2008120147A1 WO2008120147A1 PCT/IB2008/051144 IB2008051144W WO2008120147A1 WO 2008120147 A1 WO2008120147 A1 WO 2008120147A1 IB 2008051144 W IB2008051144 W IB 2008051144W WO 2008120147 A1 WO2008120147 A1 WO 2008120147A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- textile
- conductor pattern
- continuous electrode
- textile substrate
- conductor
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/02—Electroplating of selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D1/00—Woven fabrics designed to make specified articles
- D03D1/0088—Fabrics having an electronic function
-
- D—TEXTILES; PAPER
- D03—WEAVING
- D03D—WOVEN FABRICS; METHODS OF WEAVING; LOOMS
- D03D15/00—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
- D03D15/20—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
- D03D15/242—Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads inorganic, e.g. basalt
- D03D15/25—Metal
- D03D15/258—Noble metal
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/038—Textiles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/24—Reinforcing the conductive pattern
- H05K3/241—Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus
- H05K3/242—Reinforcing the conductive pattern characterised by the electroplating method; means therefor, e.g. baths or apparatus characterised by using temporary conductors on the printed circuit for electrically connecting areas which are to be electroplated
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2101/00—Inorganic fibres
- D10B2101/20—Metallic fibres
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2401/00—Physical properties
- D10B2401/16—Physical properties antistatic; conductive
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0275—Fibers and reinforcement materials
- H05K2201/0281—Conductive fibers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/02—Fillers; Particles; Fibers; Reinforcement materials
- H05K2201/0275—Fibers and reinforcement materials
- H05K2201/029—Woven fibrous reinforcement or textile
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/01—Tools for processing; Objects used during processing
- H05K2203/0104—Tools for processing; Objects used during processing for patterning or coating
- H05K2203/013—Inkjet printing, e.g. for printing insulating material or resist
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/17—Post-manufacturing processes
- H05K2203/175—Configurations of connections suitable for easy deletion, e.g. modifiable circuits or temporary conductors for electroplating; Processes for deleting connections
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0011—Working of insulating substrates or insulating layers
- H05K3/0044—Mechanical working of the substrate, e.g. drilling or punching
- H05K3/0052—Depaneling, i.e. dividing a panel into circuit boards; Working of the edges of circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/10—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
- H05K3/12—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
- H05K3/1241—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
- H05K3/125—Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/22—Secondary treatment of printed circuits
- H05K3/24—Reinforcing the conductive pattern
- H05K3/245—Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
Definitions
- the present invention relates to a textile having a conductor pattern for connection of electronic components thereto, and to a method for manufacturing such a textile.
- a developer of an advanced electronic textile has to provide the textile with a conductor pattern for feeding and interconnecting electronic components to be comprised in the electronic textile.
- a known method for providing a textile with a conductor pattern is disclosed in US 2003/0211797.
- the conductor pattern is formed by using electrically-conductive fibers in the warp and weft direction during manufacturing of the textile, wherein the electrically-conductive fibers are metal-coated polymer strands.
- a problem of the known method is the poor conductivity of the metal-coated polymer strands.
- metal threads can also be used as electrically-conductive fibers.
- such metal threads are fragile and break easily during the weaving process.
- a general object of the present invention is to provide an improved method for manufacturing a textile having a conductor pattern for connection of electronic components thereto.
- a method for manufacturing a textile having a conductor pattern for connection of electronic components thereto comprising the steps of providing a textile substrate with a continuous electrode which is divisible to form the conductor pattern by cutting the textile, applying a metal layer to the continuous electrode by means of electroplating, and cutting the textile to form the conductor pattern.
- textile should, in the context of the present application, be understood a material or product manufactured by textile fibers.
- the textile may, for example, be manufactured by means of weaving, braiding, knitting, or felting.
- a textile may be woven or non- woven.
- the "continuous electrode” may have any physical shape, given that it forms a single electrically conductive structure.
- the textile substrate may be provided with the continuous electrode in any suitable manner.
- a matrix of rows and columns is provided in the textile substrate by using conductive yarn in the warp and weft direction during manufacturing of the textile substrate. The rows and columns of the matrix can subsequently be short-circuited to form the continuous electrode.
- the continuous electrode is applied on the textile substrate by a printing technique, such as screen printing, ink-jet printing, tampon printing, pad printing, stamp printing, and offset printing.
- electro -plating a method of applying a metal by means of electrolysis.
- the present invention is based upon the realization that a textile substrate can be provided with a conductor pattern having desirable electrical and/or mechanical properties by applying a metal layer to a preformed conductor pattern.
- the inventors have further realized that this can be accomplished by providing the textile substrate with a continuous electrode comprising the desired conductor pattern, coating this continuous electrode by means of electrodeposition of a metal layer and, finally, cutting the textile to disconnect the individual connectors from each other, whereby the desired conductor pattern is achieved.
- the geometry of a conductor pattern can be achieved with a technique which is suitable for defining a geometry, the only restriction being that the geometry formed should be capable of conducting electric current to a sufficient degree.
- the desired electrical and/or physical properties of the conductor pattern can be achieved by electro-plating the previously defined geometry with one or several metal layers.
- the choice of metals and the applied thickness of individual layers thereof may be determined by requirements on properties such as electric conductivity, thermal conductivity, mechanical strength, resistance to corrosion etc.
- the continuous electrode may advantageously comprise the conductor pattern, and a connecting portion connecting electrically separated portions of the conductor pattern.
- the continuous electrode may include one or several connecting portions. In the case of several connecting portions, each connecting portion typically serves to electrically connect a group of conductors in the conductor pattern which are to be electrically separated in a subsequent step.
- the connecting portion may preferably be positioned outside the conductor pattern.
- the cutting step can be further simplified.
- the connecting portion may be separable from the conductor pattern through a cut along a continuous line, whereby the cutting process is further facilitated.
- An additional advantage of the method according to the invention is that it can decrease the sensitivty towards corrosion in air of the conductor pattern, a problem that particularly occurs when the conductor pattern comprises silver-coated polymer strands as electrically-conductive fibers.
- a drawback of this method is that it requires the formation of a pattern by means of a solution including colloid particles, such as Palladium nanoparticles, having special properties. This limits the available application methods, and may also lead to a cost disadvantage, especially for large area conductor patterns.
- the textile substrate is provided with the continuous electrode by using electrically-conductive fibers in the warp and weft direction during manufacturing of the textile substrate.
- a conductor pattern with a desired conductivity is obtained by using electrically-conductive fibers having an initial conductivity (i.e. a conductivity prior to electro -plating) that is sufficient to allow electro-plating of the fibers in order to adjust their conductivity to the desired level.
- This embodiment therefore poses only moderate requirements on the type of electrically-conductive fibers that can be used.
- an additional advantage of this embodiment is that the electro -plating process fuses together an electrically-conductive connection that exists at a crossing between two electrically- conductive fibers in a warp and weft direction, respectively, thereby increasing the mechanical robustness of such a connection, and of the conductor pattern as a whole.
- the continuous electrode is applied by means of printing droplets of a conductive substance.
- the textile substrate should preferably be mainly non-conductive, at least on a top surface thereof to avoid short-circuiting the conductor pattern formed thereon.
- Conductive inks currently available for various types of so-called ink-jet printers have suitable properties for forming the continuous electrode, but not for directly forming a conductor pattern suitable for mounting of electronic components in a number of applications.
- the relatively low cost of ink-jet printers, their wide-spread availability and their ability to print small and exact features make droplet-based marking a favorable method for applying the continuous electrode.
- the continuous electrode could be applied by other types of printing methods, such as electrophotography or direct powder printing.
- a textile for enabling connection of electronic components comprising a textile substrate, and a multi-layer conductor pattern including a plurality of electrically-separated conductors, each of the conductors leading to a cut edge of the textile.
- the textile may be a multi-layer woven textile with at least a lower and an upper warp layer and interwoven conductive and non-conductive weft yarns, in which a particular conductive weft yarn may traverse between bottom and top surfaces of the textile substrate to form loops around warp yarns in the lower and upper warp layers.
- a first substance and/or application technology especially suitable therefore can be used for defining the pattern in the first layer, and a second substance and/or application technology providing desired electrical and/or mechanical properties to the resultant multi-layer conductor pattern can be applied to cover the first substance.
- both the first and the second layers are conductive, and the conductive property of the first layer is used to enable application of the second layer.
- Any subsequent layers may be conductive or non-conductive depending on the requirements of the specific application.
- Each of the plurality of conductors in the conductor pattern may, furthermore, include a pre-formed conductive structure having a metal layer formed thereon.
- the metal layer may entirely cover a portion of a conductor cross-section boundary not facing the textile substrate.
- the textile according to the present invention may advantageously be included in an electronic textile, further comprising a at least one electronic device connected to the conductor pattern on the textile.
- Fig. 1 is a circuit diagram for an exemplary electronic textile
- Figs. 2a-c schematically shows an embodiment of a textile according to the present invention having a multi-layer conductor pattern corresponding to the circuit diagram in Fig. 1;
- Fig. 3 is a flow chart schematically illustrating a method for forming the multilayer conductor pattern in Fig. 2;
- Figs. 4a-c schematically illustrate the multi-layer conductor pattern formed according to the method of Fig. 3 in states following the corresponding method steps;
- FIGs. 5a-b schematically illustrate exemplary ways of performing the corresponding steps of the method according to Fig. 3.
- Fig. 1 is a schematic circuit diagram for an exemplary electronic textile
- a circuit pattern 100 is shown for connecting an electronic component 101 having eight terminals 102a-h with proper terminals 103a-g of a connector 104.
- the terminals 102f and 102h of the electronic component 101 are connected to each other, leading to a circuit pattern 100 having crossing conductors.
- Fig. 2a is a front view from the top schematically showing a textile according to an embodiment of the present invention having a multi-layer conductor pattern 200 provided on a textile substrate 220, corresponding to the exemplary circuit diagram in Fig. 1.
- the multi-layer conductor pattern 200 includes, as shown in Fig. 2a, connecting pads 201a-h corresponding to the terminals 101a-h of the electronic component 102 in Fig. 1, and connecting pads 202a-g corresponding to the terminals 103a-g of the connector 104 in Fig. 1. Furthermore, the conductor pattern 200 comprises a metal heat sink 203 for dissipating heat generated by the electronic component 102 when in operation.
- each of the mutually electrically separated structures in the conductor pattern 200 leads to an edge 204 of the textile. The reason for this will be evident from the description provided in connection to the flow chart in Fig. 3.
- the interconnection between the pads 20 If and 20 Ih for enabling short- circuiting of the corresponding terminals 101 f and 10 Ih of the electronic component 102 in Fig. 1 is, in the present exemplary embodiment, achieved by a conductive weft yarn 205 which interconnects the conductors 206f and 206h leading to the pads 20 If and 20 Ih, respectively.
- Fig. 2b which is a schematic cross-section view of a section taken along the line A-A' in Fig. 2a
- the conductive weft yarn 205 is shown to, at a location corresponding to the first conductor 206f, form a first loop 207 from a bottom side 208 to a top side 209 of the textile and back again enclosing a non-conductive warp yarn in each of the two warp layers 210 and 211 of the exemplary woven textile substrate 220, and then a second loop 212, at a location corresponding to the conductor 206h to be interconnected with the first conductor 206f.
- the conductive weft yarn 205 passes on the bottom side 208 of the textile substrate 220 so that it crosses the conductor 206g on the top side 209 of the textile substrate 220.
- the conductor pattern in Fig. 2a is provided in several layers.
- the conductor 206h (as well as the other conductors in the conductor pattern 200) are comprised of a conductor structure 230 which is preformed on the textile substrate 220 as will be described in further detail below, and a metal layer 231 covering all sides of the conductor structure 230 except the one facing the textile substrate 220.
- the conductor structure 230 can be formed by an application method and substance which is particularly suitable for forming a conductive pattern on a textile substrate. Other physical properties, such as thermal conductivity, corrosion resistance etc, are typically not important for this conductor structure. Subsequently, the fact that the conductor structure 230 is electrically conductive can be used to apply the metal layer 231 coating the conductor structure. Since this metal layer 231 is applied by using the previously applied conductor structure 230 as a guiding structure, the metal layer 231 need not be applied using an application method and/or substance which can by itself form a pattern on the textile substrate 230. Instead, the other requirements on the conductor pattern 200, such as electric and thermal conductivity, and/or corrosion resistance can be focused on.
- a textile substrate 401 is provided with a continuous electrode 400 in a first step 301.
- the main requirements on the application method and/or substance for the continuous electrode 400 are that it/they should be suitable for application on a textile substrate and that the resultant continuous electrode should have a sufficiently high electric conductivity to enable the subsequent electro-plating process.
- An example of a suitable application method is schematically illustrated in Fig. 5a, showing a schematic ink-jet print head 500 by means of which the continuous electrode 400 is printed on the textile substrate 401.
- Any conductive ink capable of forming a continuous electrode having a sufficiently high electric conductivity may be used together with a correspondingly configured ink-jet print head 500.
- the ink may be based on a metal which can be printed at low temperatures, such as silver.
- the continuous electrode 400 may, for example, be formed by interweaving electrically-conductive fibers during manufacturing, or by means of screen printing, tampon printing, or any other suitable method known to the skilled person (the only requirements being the above mentioned).
- the continuous electrode 400 comprises a conductor pattern 402 and a connecting portion 403, connecting the electrically separated portions of the conductor pattern 402.
- the connecting portion 403 is positioned outside the conductor pattern 402 and is arranged in such a way that it can be separated from the conductor pattern 402 by a single cut through the textile along the dashed line indicated by the numeral 404 in Fig. 4a.
- the continuous electrode 400 is electro-plated to form a metal layer covering the continuous electrode 400.
- the first formed conductor structure 400 is covered by a metal layer 405 on all exposed sides thereof.
- the textile substrate 401 having the continuous electrode 400 formed thereon, is shown immersed in a solution 509 containing ions of the desired metal to be electroplated.
- the negative terminal 510 of a voltage source 511 is connected to a cathode constituted by the continuous electrode 400, and the positive terminal 512 is connected to an anode 513.
- metal ions are attracted thereto, accept the sufficient number of electrons and transcend to their metal state, whereby a metal layer is formed on the surface of the continuous electrode 400.
- the anode 513 may be made of the metal to be applied to the continuous electrode 400, or may be a so- called non-consumable anode, in which case the metal ions may need to be replenished in the solution 509 during deposition.
- the continuous electrode 400 and the textile substrate 401 are cut along the line 404 to separate the conductor pattern 402 from the connecting portion 403 of the continuous electrode 400.
- the continuous electrode may have several connecting portions which may be positioned embedded in, as well as outside the conductor pattern.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Textile Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
L'invention concerne un procédé permettant de fabriquer un textile présentant un motif conducteur (200, 402) destiné à lui connecter un composant électronique. Le procédé consiste à présenter un substrat textile (220, 401) doté d'une électrode continue (400) divisible de façon à former le motif conducteur (200, 402) par coupe du textile; à appliquer (302) une couche métallique (405) sur l'électrode continue (400) par électrodéposition; et à couper (303) le textile de manière à former le motif conducteur (200, 402). On peut donc réaliser la géométrie d'un motif conducteur selon une technique appropriée pour définir une géométrie. On peut par la suite obtenir les propriétés électriques et/ou physiques recherchées du motif conducteur par électrodéposition de la géométrie définie antérieurement à une ou plusieurs couches métalliques.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP07105187 | 2007-03-29 | ||
EP07105187.4 | 2007-03-29 | ||
EP07120169 | 2007-11-07 | ||
EP07120169.3 | 2007-11-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008120147A1 true WO2008120147A1 (fr) | 2008-10-09 |
Family
ID=39587051
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2008/051144 WO2008120147A1 (fr) | 2007-03-29 | 2008-03-27 | Textile pour connextion de dispositifs électroniques et procédé de fabrication associé |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008120147A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010052627A1 (fr) * | 2008-11-06 | 2010-05-14 | Koninklijke Philips Electronics N.V. | Textile électronique |
EP4274390A1 (fr) * | 2022-04-25 | 2023-11-08 | Seiren Co., Ltd. | Tissu de circuit conducteur |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3053929A (en) * | 1957-05-13 | 1962-09-11 | Friedman Abraham | Printed circuit |
US4670351A (en) * | 1986-02-12 | 1987-06-02 | General Electric Company | Flexible printed circuits, prepared by augmentation replacement process |
WO2004068389A2 (fr) * | 2003-01-28 | 2004-08-12 | Conductive Inkjet Technology Limited | Procede pour former une region metallique conductrice sur un substrat |
EP1545172A1 (fr) * | 2003-12-19 | 2005-06-22 | Brother Kogyo Kabushiki Kaisha | Procédé de fabrication d'un panneau à circuit imprimé avec un dispositif de circuit intégré monté sur celui-ci, et le panneau à circuit imprimé |
US20070149001A1 (en) * | 2005-12-22 | 2007-06-28 | Uka Harshad K | Flexible circuit |
EP1939324A1 (fr) * | 2006-12-29 | 2008-07-02 | Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO | Bande fibreuse conductrice et son procédé de fabrication |
-
2008
- 2008-03-27 WO PCT/IB2008/051144 patent/WO2008120147A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3053929A (en) * | 1957-05-13 | 1962-09-11 | Friedman Abraham | Printed circuit |
US4670351A (en) * | 1986-02-12 | 1987-06-02 | General Electric Company | Flexible printed circuits, prepared by augmentation replacement process |
WO2004068389A2 (fr) * | 2003-01-28 | 2004-08-12 | Conductive Inkjet Technology Limited | Procede pour former une region metallique conductrice sur un substrat |
EP1545172A1 (fr) * | 2003-12-19 | 2005-06-22 | Brother Kogyo Kabushiki Kaisha | Procédé de fabrication d'un panneau à circuit imprimé avec un dispositif de circuit intégré monté sur celui-ci, et le panneau à circuit imprimé |
US20070149001A1 (en) * | 2005-12-22 | 2007-06-28 | Uka Harshad K | Flexible circuit |
EP1939324A1 (fr) * | 2006-12-29 | 2008-07-02 | Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO | Bande fibreuse conductrice et son procédé de fabrication |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010052627A1 (fr) * | 2008-11-06 | 2010-05-14 | Koninklijke Philips Electronics N.V. | Textile électronique |
EP4274390A1 (fr) * | 2022-04-25 | 2023-11-08 | Seiren Co., Ltd. | Tissu de circuit conducteur |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060254811A1 (en) | Circuit board and method for its production | |
CN101540311B (zh) | 多层配线基板以及制造多层配线基板的方法 | |
JP6268769B2 (ja) | 導電性細線の形成方法並びにこれに用いられる線及び基材 | |
US20160353568A1 (en) | Package substrate and method of manufacturing the same | |
CZ20013829A3 (cs) | Porézní napájecí a uzemňovací plochy pro snížení delaminace desek plošných spojů a lepší spolehlivost | |
CN102245827A (zh) | 织物,含织物的设备和织物制造方法 | |
CN100563407C (zh) | 电路基板及其制造方法 | |
JP2016500487A (ja) | 裏面にコンタクトを有する太陽電池を相互接続するためのデバイス、およびかかるデバイスを含むモジュール | |
CN104582240A (zh) | 电路板及电路板制作方法 | |
WO2011117413A1 (fr) | Détection d'un occupant et textile chauffant | |
US3053929A (en) | Printed circuit | |
CN103404244A (zh) | 印刷电路板及其制造方法 | |
CN106304662A (zh) | 电路板及其制作方法 | |
CN101534607B (zh) | 打线基板及其制作方法 | |
WO2008120147A1 (fr) | Textile pour connextion de dispositifs électroniques et procédé de fabrication associé | |
CN105657965A (zh) | 具有定形导电层的印刷电路板及其制造方法 | |
CN105592620A (zh) | 电路板及其制法 | |
KR102697422B1 (ko) | 회로기판 | |
CN103781292B (zh) | 电路板及其制作方法 | |
JPH05134615A (ja) | マトリツクス回路基板及び表示板 | |
US10123415B2 (en) | Wiring substrate and production method therefor | |
EP3337302B1 (fr) | Structure de support pour dispositifs d'éclairage, dispositif et procédé d'éclairage correspondants | |
CN103716994B (zh) | 一种印制电路板的制作方法及其印制电路板 | |
JPH10233563A (ja) | プリント配線基板及びその製造方法 | |
US20230343492A1 (en) | Chip resistor and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 08737632 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 08737632 Country of ref document: EP Kind code of ref document: A1 |