WO2008119216A1 - Procédé de suppression d'interférence de fréquence commune dans un système de communication sans fil - Google Patents

Procédé de suppression d'interférence de fréquence commune dans un système de communication sans fil Download PDF

Info

Publication number
WO2008119216A1
WO2008119216A1 PCT/CN2007/003570 CN2007003570W WO2008119216A1 WO 2008119216 A1 WO2008119216 A1 WO 2008119216A1 CN 2007003570 W CN2007003570 W CN 2007003570W WO 2008119216 A1 WO2008119216 A1 WO 2008119216A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
cell
terminal
main control
control module
Prior art date
Application number
PCT/CN2007/003570
Other languages
English (en)
French (fr)
Inventor
Sean Cai
Ying Liu
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to JP2010501352A priority Critical patent/JP5189160B2/ja
Publication of WO2008119216A1 publication Critical patent/WO2008119216A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method for suppressing co-channel interference in a wireless communication system.
  • the interferences of wireless and mobile communication systems mainly include co-channel interference, adjacent-frequency interference, out-of-band interference, and intermodulation interference.
  • the co-channel interference of the system means that some or all cells in the network use the same frequency point for data transmission, and there is mutual signal interference between the cells.
  • Co-channel interference can be generally classified into small-area interference, small-area interference, interference between different communication systems, interference between different operators, and interference caused by system equipment.
  • the interference in the small area mainly includes multipath interference, far and near effects and multiple access interference.
  • the generation of these disturbances is determined by the time-varying nature of the wireless channel and the delay and fading during electromagnetic wave propagation. It can be alleviated by modulation and demodulation technology, power control technology, and the like.
  • Inter-Cell Interference is an inherent problem in cellular mobile communication systems.
  • the traditional solution is to use frequency reuse.
  • Common multiplexing coefficients are 1, 3, 7, and so on.
  • a multiplexing factor of 1 means that neighboring cells use the same frequency resource, and the interference at the cell edge is very serious.
  • a higher multiplexing factor (3 or 7) can effectively suppress ICI, but the spectral efficiency will be reduced to 1/3 or 1/7.
  • Wireless mobile communication systems are increasingly demanding spectrum efficiency, and it is expected that intra-frequency networking can be performed to improve system efficiency.
  • intra-frequency networking if the co-channel interference problem between cells cannot be effectively solved, the spectrum efficiency of the system will be reduced, the system coverage will be reduced, and the system traffic will be lost.
  • Interference randomization can not reduce the energy of interference, but can randomize the interference into "white noise,” and thus suppress the harm of ICI, so it is also called “interference whitening”.
  • the methods of randomization of interference include: scrambling, interweaving Address (IDMA) and frequency hopping.
  • IDMA interweaving Address
  • Interference coordination is also known as "soft frequency reuse, or” partial frequency reuse, IEEE802.20 MBFDD / MBTDD has adopted this technology, and LTE is also considering this method.
  • This method divides the frequency resources into several multiplexed sets. Users in the cell center can use lower power transmission and reception. Even if they occupy the same frequency, they will not cause strong ICI, so they are allocated at the reuse coefficient.
  • the interference cancellation technique is derived from a multi-user detection technique, which can demodulate and decode the signal of the interfering cell, and then copy and subtract the ICI from the cell.
  • IDMA cancellation technology based on IDMA means that different interleaving patterns are generated by a pseudo-random interleaver and allocated to different cells.
  • the receiver uses different interleaving patterns to deinterleave, and the target signal and the interference signal can be respectively solved, and then ICI elimination.
  • This combination of technology and iterative receiver technology yields significant performance gains.
  • the advantage of ICI cancellation compared with ICI coordination is that there is no limit to the frequency resources at the cell edge, and the cell edge spectral efficiency is 1 and the total spectral efficiency is 1. However, the computational complexity is high, increasing the processing power requirements of the receiver.
  • the technical problem to be solved by the present invention is to provide a co-channel interference suppression method in a wireless communication system, which solves the problem of system performance degradation caused by inter-cell interference in a radio communication system in a wireless communication system.
  • the present invention provides a co-channel interference suppression method in a wireless communication system, which is applied to a system including a main control module and at least two cell base stations, and includes the following steps:
  • the main control module interacts with each cell base station to perform interference suppression information, and acquires interference terminal information of each cell;
  • the main control module aggregates the interference terminal information of each cell, determines an interference suppression scheduling method, and sends the interference terminal information and the interference suppression scheduling method to the corresponding cell base station;
  • the main control module is located in the master base station, or a separate server, or a higher level access gateway AGW.
  • the method further includes:
  • Each cell base station transmits downlink and uplink control information including scheduling information; each cell base station receives uplink data of a corresponding terminal in the own cell.
  • the interference terminal information is calculated by the main control module by the base station reporting the interference time slot information and the scheduling information, or the base station directly reports the interference terminal information to the main control module.
  • step (1) further comprises the following steps:
  • the base station of each cell measures the interference of the uplink time slots, and reports the strong interference time slot information to the main control module;
  • the base station reports the scheduled terminal sequence number mapping table of all the terminals to the main control module;
  • the main control module counts the interference terminals of the neighboring cells corresponding to the base stations according to certain algorithms according to the information reported in steps ( la ) and ( lb );
  • the strong interference time slot is a time slot corresponding to the maximum N interference power of each cell, or a time slot exceeding a certain interference power threshold in each cell, or a combination of two time slots;
  • the algorithm for counting interference terminals in step (lc) is that the neighboring cell terminal scheduled in the strong interference time slot is an interference terminal, or is scheduled to be N times in a strong interference time slot within a certain duration.
  • the terminal is an interference terminal.
  • step (1) further comprises the following steps:
  • the main control module broadcasts the strong interference time slot information to each base station
  • each base station reports the sequence number of the scheduling terminal corresponding to the strong interference time slot to the main control module;
  • the main control module statistically determines the interference terminals of the adjacent small cells corresponding to the base stations according to the information reported by the base station;
  • the strong interference time slot is a time slot corresponding to the largest N interference powers of each cell, or a time slot exceeding a certain interference power threshold in each cell, or a combination of two time slots; wherein, the algorithm for counting interference terminals in step (1D) is that the neighboring cell terminal scheduled in the strong interference time slot is an interference terminal Or, for a certain duration, the terminal that has been scheduled N times in the strong interference slot is the interference terminal.
  • the base station when each base station reports the information about the time slot to the main control module, the base station performs the time-frequency domain resource on the available bandwidth according to the time slot number.
  • the terminal that exceeds a certain transmit power is defined as an interference terminal, and is reported to the main control module.
  • the base station also reports the respective load information to the main control module
  • the main control module summarizes the interference terminal information of each cell, and adds load information to determine an interference suppression scheduling method.
  • step (2) further includes the following steps:
  • the main control module summarizes the reporting information of each cell, including the interference slot information, or the scheduling information, or the interference terminal information, or the load information, or a combination thereof.
  • the following scheduling method is adopted. One or a combination of them:
  • the main control module formulates a scheduling policy according to the interference terminal condition of each cell, and the principle is to schedule interference terminals of different cells in different time/frequency domains;
  • the main control module formulates a scheduling policy according to the interference terminal condition of each cell, and the principle is to schedule the interference terminal and the non-interfering terminal of different cells in the same time domain/frequency domain;
  • Method 3 The main control module sets a cell with a smaller load that the interfering terminal may perform handover to a higher handover priority based on the load condition of each cell, and switches the interfering terminal to a cell with a smaller load to make it more Optional time-frequency domain bandwidth;
  • Method 4 Each cell performs power reduction and rate reduction power control and link adaptation processing on an interfering terminal with a lower Qos requirement.
  • the invention provides a co-channel interference suppression method in a wireless communication system, which may have Effectively overcome inter-cell co-channel interference, improve the reception performance of edge users, increase cell coverage, improve system traffic and spectrum efficiency.
  • 1 is a network configuration diagram in a typical wireless mobile communication system
  • FIG. 2 is a schematic diagram of scheduling of an OFDMA (Orthogonal Frequency Division Multiplexing) system of a base station BS1 at a certain time;
  • OFDMA Orthogonal Frequency Division Multiplexing
  • FIG. 3 is a schematic diagram of frame scheduling of an OFDMA system at a certain time by the base station BS2;
  • FIG. 5 is a schematic diagram of a connection relationship between a base station of each cell and a main control module
  • FIG. 6 is a schematic diagram of another connection relationship between each cell base station and a main control module
  • FIG. 7 is a schematic diagram of information interaction mode 1 that may be adopted between the main control module and the base station;
  • FIG. 8 is a schematic diagram of information interaction mode 2 that may be adopted between the main control module and the base station;
  • FIG. 9 is a report of cell interference and scheduling information. schematic diagram. Preferred embodiment of the invention
  • a wireless communication system typically a wireless communication system, can include the following components:
  • At least two base stations each of which transmits control information (including scheduling information) within its corresponding cell range;
  • FIG. 1 it is a network configuration diagram in a typical wireless mobile communication system in which two cells controlled by the base stations BS1 and BS2 are adjacent.
  • terminals SS1 and SS2 are located in BS1.
  • terminals SS3 and SS4 are located within the coverage of BS2.
  • SS1 and SS3 are located at the edge of the cell, and data transmission is generally performed with a relatively large uplink transmission power. In the same frequency networking, more serious inter-cell interference will occur.
  • FIG. 2 and 3 are schematic diagrams of frame scheduling of an OFDMA Orthogonal Frequency Division Multiple Access (OFDMA) system at a certain time, respectively, of a base station BS1 and a base station BS2.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • FIG. 1, 2, and 3 it is assumed that the base stations BS1 and BS2 are co-frequency networking, and when the terminals SS1 and SS3 are respectively allocated on the uplink burst 1 (UL Burstl) of the base stations BS1 and BS2 for data transmission,
  • the time-frequency regions of the uplink bursts of the two base stations have coincident portions, and the uplink signals of the two terminals SS1 and SS2 received by the two base stations BS at the location interfere with each other, resulting in a decrease in the received signal-to-noise ratio, thereby increasing Large bit error rate, reduced transmission efficiency, and even dropped calls. This ultimately reduces the coverage and flow of the entire system.
  • the basic implementation steps are as follows:
  • Step 401 Each cell base station sends downlink and uplink control information (including scheduling information); and uplink and downlink control information refers to information transmitted between the base station and the terminal.
  • the control information related to interference suppression is mainly (1) downlink scheduling information sent by the base station; (2) uplink scheduling information sent by the base station; (3) request information sent by the base station to request the terminal to report relevant measurement information.
  • Step 402 Each cell base station receives uplink data of a corresponding terminal in the local cell.
  • the corresponding terminal refers to all terminals in the cell, and does not need to be configured; the uplink transmit power is information directly reported by the terminal; the uplink interference is calculated by the base station according to the uplink data; and the scheduling is performed by the base station.
  • Step 403 The cell base station and the main control module exchange information about interference suppression, such as interference slot information, interference terminal information, scheduling information, and load information.
  • the main control module counts each base station according to a certain algorithm according to the reported information.
  • the interference slot information is calculated by the base station according to the uplink data; the interference terminal information can be obtained according to the transmission power report reported by the terminal; the scheduling information and the load information are information of the base station side itself.
  • the base station in the range may request all or part of the reporting.
  • Step 404 The main control module summarizes the reporting information of each cell, such as interference slot information, scheduling information, interference terminal information, and load information, and determines a recommended scheduling implementation principle according to a certain algorithm, so as to mitigate the interference situation as much as possible;
  • Step 405 The main control module sends the interference terminal information and the scheduling method to the corresponding cell base station;
  • the interference terminal information may be at least two types:
  • (1) is the strong interference slot information in the following embodiments.
  • interference terminals based on other information: such as terminal location, signal-to-noise ratio of the terminal, and power.
  • Step 406 The base station base station performs actual scheduling according to the interference terminal information and the interference suppression scheduling method recommended by the main control module, and combines the scheduling requirements of the current cell to achieve the purpose of suppressing or eliminating the same frequency interference.
  • FIG. 5 and FIG. 6 are respectively schematic diagrams of the connection relationship between the base station and the main control module of each cell, and each small cell base station can perform uplink and downlink message interaction with the main control module.
  • the master module can be located in the master base station (shown in Figure 6), in a separate server (shown in Figure 5), or in a higher level control system such as the access gateway AGW.
  • the information about the interference suppression performed by each cell base station and the main control module includes: a) interference slot information. ; b) scheduling information; c) interference terminal information; d) load information.
  • a combination of a) and b) or c) may be used to determine an interference terminal; further, a scheduling method for determining interference suppression based on the interference terminal information, or based on the interference terminal information and d). That is, the interference terminal is determined according to the interference time slot information and the scheduling information, or only based on the interference terminal information. The former is calculated and obtained by the main control module, and the latter is reported by the base station to the main control module.
  • Process 1 The information exchange between the base station and the main control module can be implemented through the following processes: Process 1, as shown in Figure 7:
  • the base station of each cell measures the interference of the uplink time slots, and reports the strong interference time slot information to the main control module.
  • the strong interference time slot can be defined as follows:
  • Definition 1 A time slot corresponding to the maximum N interference powers of each cell
  • Definition 2 or a time slot in which each cell exceeds a certain interference power threshold
  • time slot here refers to the bandwidth resource of the scheduling.
  • the base station reports the scheduled terminal sequence number mapping table of all the terminals to the main control module
  • the main control module counts the interference terminals of the neighboring cells corresponding to the base stations according to the reported algorithms according to the reported information, wherein the determination of the interference terminals can be based on the following methods:
  • Method 1 The neighboring cell terminal scheduled to be in the strong interference time slot is the interference terminal.
  • Method 2 The terminal that has been scheduled N times in the strong interference time slot is the interference terminal within a certain duration.
  • the base station reports the scheduled strong interference time slot information to the main control module
  • the strong interference time slot can be defined as follows:
  • Definition 1 A time slot corresponding to the maximum N interference powers of each cell
  • Definition 2 or a time slot in which each cell exceeds a certain interference power threshold
  • time slot here refers to the bandwidth resource of the scheduling.
  • the main control module broadcasts information of a strong interference time slot (ie, the application time slot in FIG. 8) to each base station;
  • Each base station reports the sequence number of the scheduling terminal corresponding to the strong interference time slot to the main control module; d) the main control module counts the neighboring cells corresponding to each base station according to the reported information Disturbance terminal,
  • the determination of the interference terminal can be based on the following methods:
  • Method 1 The terminal of the neighboring cell scheduled in the stronger trunk is the interfering terminal;
  • Method 2 The terminal that has been scheduled in the stronger interference slot is the interfering terminal within a certain duration.
  • the base station can also define a terminal that exceeds a certain transmit power as an interference terminal, and the upper terminal is given to the main control module.
  • the base station can also report the load status to the main control module.
  • each base station needs to report the information about the time slot to the main control module, and the base station can allocate the time-frequency domain resources on the available bandwidth according to the time slot, as shown in FIG.
  • the base station BS When receiving the uplink data, the base station BS can simultaneously estimate the interference power in each time slot or burst. In this way, each base station can maintain a mapping table of slot resources and interference power.
  • the base station can also obtain a mapping table of the slot resource and the terminal ID.
  • the main control module summarizes the reporting information of each cell, such as interference slot information, scheduling information, interference terminal information, and load information, and determines a recommended scheduling implementation principle according to a certain algorithm to mitigate the interference situation as much as possible.
  • the possible principles are as follows or a combination of these methods: Method 1: The main control module formulates a scheduling policy according to the interference terminal conditions of each cell. The principle is to schedule interference terminals of different cells in different time domains/frequency domains as much as possible to ensure the interference. In particular, the terminals do not interfere with each other.
  • Method 2 The main control module formulates a scheduling strategy according to the interference terminal situation of each cell, and the principle is The interference between the interfering terminal and the non-interfering terminal of different cells is scheduled in the same time domain/frequency domain to avoid the power increase caused by the simultaneous scheduling of neighboring cells to interfere with the terminal, and the influence of co-channel interference is reduced.
  • Method 3 The main control module sets a cell with a smaller load that the interfering terminal may perform handover to a higher handover priority based on the load condition of each cell, and switches the interfering terminal to a cell with a smaller load, so that the main control module can have more Multiple optional time-frequency domain bandwidths are more likely to avoid interference with other cell users through scheduling.
  • Method 4 Each cell performs power reduction and rate reduction power control and link adaptation processing on the interfering terminal with lower Qos requirements, and reduces the interference impact on other cells.
  • the present invention is directed to a method for suppressing co-channel interference in a wireless communication system due to a problem of system performance degradation caused by inter-cell interference in a wireless communication system, and proposes a solution for interference suppression.
  • effective interference suppression technology reduce inter-cell interference, increase coverage and traffic, and improve the spectrum efficiency of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种无线通信系统中的同频干扰抑制方法
技术领域
本发明涉及一种无线通信领域,特别涉及一种无线通信系统中的同频干 扰抑制方法。
背景技术
无线和移动通信系统的干扰主要有同频干扰、 邻频干扰、 带外干扰、 互 调干扰等。其中系统的同频干扰是指网络中部分或者全部小区由于使用相同 的频点进行数据传输, 小区之间会有相互的信号干扰。 同频干扰一般可分为 小区内干扰、 小区间干扰、 不同通信制式之间的干扰、 不同运营商之间的干 扰、 系统设备造成的干扰等。
小区内的干扰主要有多径千扰、远近效应和多址干扰等。这些干扰的产 生是由无线信道的时变性和电磁波传播过程中的时延与衰落等特点决定的。 通过调制解调技术、 功控技术等可以緩解。
小区间干扰(Inter-Cell Interference, ICI )是蜂窝移动通信系统的一个 固有问题,传统的解决办法是采用频率复用, 常见的复用系数为 1、 3、 7等。 复用系数为 1即表示相邻小区都使用相同的频率资源,这时在小区边缘干扰 很严重。 较高的复用系数( 3或 7 )可以有效地抑制 ICI, 但频谱效率将降低 到 1/3或 1/7。
无线移动通信系统对频谱效率的要求越来越高,期望可以进行同频组网 来提高系统效率。但是在同频组网时, 如果不能有效解决小区间的同频干扰 问题, 将会降低系统的频谱效率、 减小系统覆盖、 损失系统流量。
目前常用的干扰抑制技术包括干扰随机化、 干扰协调、 干扰消除等。 干扰随机化不能降低干扰的能量, 但能将干扰随机化为 "白噪声,, , 从 而抑制 ICI的危害, 因此又称为 "干扰白化" 。 千扰随机化的方法包括: 加 扰、 交织多址(IDMA )和跳频等。
干扰协调又称为 "软频率复用,,或 "部分频率复用,,, IEEE802.20 MBFDD / MBTDD就采用了这种技术, LTE也正在考虑这种方法。 这种方法将频率 资源分为若干个复用集, 小区中心的用户可以采用较低的功率发射和接收, 即使占用相同的频率也不会造成较强的 ICI, 因此被分配在复用系数为 1的 复用集; 小区边缘的用户需要采用较高的功率发送和接收,有可能造成较强 的 ICI, 因此被分配在频率复用系数为 N的复用集。
干扰消除技术来源于多用户检测技术, 可以将干扰小区的信号解调、 解 码, 然后将来自该小区的 ICI复制、 减去。 基于 IDMA的 ICI消除技术, 是 指通过伪随机交织器产生不同的交织图案并分配给不同的小区,接收机采用 不同的交织图案解交织, 就可以将目标信号和干扰信号分别解出, 然后进行 ICI消除。 这种技术和迭代接收机技术相结合, 可以获得显著的性能增益。 ICI消除与 ICI协调相比优势在于, 对小区边缘的频率资源没有限制, 可以 实现小区边缘频谱效率为 1和总频谱效率为 1。 但是计算复杂度较高, 增 加了对接收机处理能力的要求。
其他的技术, 例如 MIMO、 智能天线、 部分功控等, 也可以用于 ICI抑 制, 但仍存在各种问题。 因此, 如何进一步提高无线移动通信系统的频谱效 率、 更好地解决同频组网存在的干扰问题, 成为需要解决的问题。
发明内容
本发明所解决的技术问题是提供一种无线通信系统中的同频干扰抑制 方法, 解决在无线通信系统中, 由于同频组网时小区间干扰造成的系统性能 下降问题。
为了解决上述问题,本发明提供了一种无线通信系统中的同频干扰抑制 方法, 应用于包括主控模块和至少两个小区基站的系统, 包括如下步骤:
( 1 )主控模块与各小区基站进行干扰抑制信息交互, 获取各小区干扰 终端信息;
( 2 )主控模块汇总各小区的干扰终端信息, 确定干扰抑制调度方法, 并将干扰终端信息和所述干扰抑制调度方法发送给对应的小区基站;
( 3 )各小区基站根据主控模块发送的干扰抑制调度方法, 结合本小区 的调度需求, 进行调度。
进一步地, 所述主控模块位于主控的基站、或单独的服务器、或者更上 一级的接入网关 AGW中。
进一步地, 在步骤(1 )执行之前, 进一步包括:
各小区基站发送包括调度信息的下行和上行链路的控制信息; 各小区基站接收本小区内对应终端的上行数据。
进一步地, 步骤(1 ) 中, 干扰终端信息通过基站上报干扰时隙信息和 调度信息由主控模块计算获得,或者直接由基站向主控模块汇报干扰终端信 息。
进一步地, 步骤( 1 )进一步包括如下步骤:
( la )各小区的基站测量上行各时隙的干扰, 将其中较强的干扰时隙信 息上报给主控模块;
( lb )基站将调度的所有终端序号时隙映射表上报给主控模块;
( lc )主控模块根据步驟( la ) 、 ( lb ) 中上报的信息, 依据一定的 算法统计各基站对应的相邻小区的干扰终端;
其中, 较强干扰时隙是各小区最大的 N个干扰功率对应的时隙、 或是 各小区中超过一定干扰功率阈值的时隙、 或是两种时隙的组合;
其中, 步骤(lc )中统计干扰终端的算法是在较强干扰时隙被调度的相 邻小区终端为干扰终端,或者是在一定持续时间内,在较强干扰时隙被调度 过 N次的终端为干扰终端。
进一步地, 步骤(1 )进一步包括如下步骤:
( IA )基站将调度的较强干扰时隙信息上报给主控模块;
( IB )主控模块将较强干扰时隙信息广播给各基站;
( IC )各基站将较强干扰时隙对应的调度终端序号上报给主控模块; ( 1D )主控模块根据基站上报的信息, 统计判定各基站对应的相邻小 区的干扰终端;
其中, 较强干扰时隙是各小区最大的 N个干扰功率对应的时隙、 或是 各小区中超过一定干扰功率阈值的时隙、 或是两种时隙的组合; 其中, 步 ( 1D ) 中统计干扰终端的算法是在较强干扰时隙被调度的 相邻小区终端为干扰终端,或者是在一定持续时间内, 在较强干扰时隙被调 度过 N次的终端为干扰终端。
进一步地, 在各基站向主控模块上报与时隙有关的信息时, 基站将可用 带宽上的时频域资源按照时隙编号, 进行上 4艮;
进一步地, 在所述步骤(1 ) 中, 基站与主控模块交互时, 将超过一定 发射功率的终端定义为干扰终端, 并且上报给主控模块。
进一步地, 在所述步骤(1 ) , 基站还将各自的负载信息上报给主控模 块;
所述步骤(2 ) 中, 主控模块汇总各小区的干扰终端信息, 还加上负载 信息, 确定干扰抑制调度方法。
进一步地, 所述步驟(2 )进一步包括如下步骤:
主控模块汇总各小区的上报信息, 包括千扰时隙信息、 或调度信息、 或 干扰终端信息、 或负载信息、 或它们的组合, 在确定各个基站的调度实现原 则时, 采用如下调度方法之一或它们的组合:
方法 1、 主控模块根据各小区的干扰终端情况制定调度策略, 原则为在 不同的时域 /频域调度不同小区的干扰终端;
方法 2、 主控模块根据各小区的干扰终端情况制定调度策略, 原则为在 相同的时域 /频域调度不同小区的干扰终端与非干扰终端;
方法 3、 主控模块基于各小区的负载情况, 将干扰终端可能实施切换的 负载较小的小区设置为更高的切换优先级,将干扰终端切换到负载较小的小 区, 使其有更多可选时频域带宽;
方法 4、 各小区对于 Qos要求较低的干扰终端进行功率降低、 速率降低 的功控和链路自适应处理。
本发明提供了一种无线通信系统中的同频干扰抑制方法,该方法可以有 效的克服小区间同频干扰, 提高边缘用户的接收性能、 增加小区覆盖、提高 系统流量和频谱效率。 附图概迷
图 1是典型的无线移动通信系统中的网络配置图;
图 2 是基站 BS1 在某时刻的 OFDMA (正交频分复用, Orthogonal Frequency Division Multiplexing ) 系统桢调度示意图;
图 3是基站 BS2在某时刻的 OFDMA系统帧调度示意图;
图 4是本发明实施例中进行干扰抑制方法的流程图;
图 5是各小区基站与主控模块之间的一种连接关系示意图;
图 6是各小区基站与主控模块之间的另一种连接关系示意图;
图 7是主控模块与基站之间可能采用的信息交互方式一的示意图; 图 8是主控模块与基站之间可能采用的信息交互方式二的示意图; 图 9是小区干扰和调度信息的上报示意图。 本发明的较佳实施方式
下面结合附图和具体实施例进一步对本发明进行详细说明。
为了提高无线移动通信系统的频谱效率、 解决同频组网存在的干扰问 题, 本实施例中提出了一种在无线通信系统中抑制同频千扰的方法, 所述的 干尤抑制方法应用于一个无线通信系统,典型的一个无线通信系统可以包括 以下几个部分:
( 1 )至少两个基站, 每个基站发送其对应小区范围内的控制信息 (包 括调度信息) ;
( 2 )每个小区中至少存在一个与该小区基站通信的终端;
( 3 ) 两个相邻基站的频率部署相同, 相邻小区间存在同频干扰。
如图 1所示, 是典型的无线移动通信系统中的网络配置图, 其中, 基站 BS1和 BS2控制的两个小区相邻。 在小区 1中, 终端 SS1和 SS2位于 BS1 的覆盖范围内; 在小区 2中, 终端 SS3和 SS4位于 BS2的覆盖范围内。 SS1 和 SS3 处在小区的边缘位置, 一般会以比较大的上行发射功率进行数据传 输。 在同频组网时, 会产生比较严重的小区间干扰。
图 2和图 3分别是基站 BS1、基站 BS2在某时刻的 OFDMA Orthogonal Frequency Division Multiple Access,正交频分多址接入 )系统帧调度示意图。 如图 1、 2、 3所示, 假设基站 BS1和 BS2为同频组网, 当终端 SS1和 SS3 分别被分配在基站 BS1和 BS2的上行突发 1 ( UL Burstl )上进行数据传输 时, 由于这两个基站的上行突发的时频区域有重合部分, 则两个基站 BS在 该位置接收到的两个终端 SS1、 SS2的上行信号会互为干扰, 导致接收信噪 比降低, 从而增大误码率、 降低传输效率, 甚至引起掉话。 最终减小了整个 系统的覆盖和流量。
下面以 OFDMA系统为例, 如图 4所示, 显示了本实施例的一种在无 线通信系统中抑制同频干扰的方法, 基本实现步骤如下:
步骤 401:各小区基站发送下行和上行链路的控制信息(包括调度信息); 上下行控制信息是指基站和终端之间传递的信息。这里与干扰抑制有关 的控制信息主要是( 1 )基站发送的下行调度信息; ( 2 )基站发送的上行调 度信息; ( 3 )基站发送的要求终端上报相关测量信息的请求信息。
步骤 402: 各小区基站接收本小区内对应终端的上行数据;
所述对应终端是指该小区内所有终端, 不需要配置; 上行发射功率是终 端直接上报的信息; 上行干扰是基站根据上行数据计算得到的; 调度由基站 进行。
步骤 403: 各小区基站与主控模块交互干扰抑制的相关信息, 如干扰时 隙信息、 干扰终端信息、 调度信息、 负载信息等, 主控模块根据这些上报的 信息, 依据一定的算法统计各基站对应的相邻小区的干扰终端;
干扰时隙信息是基站根据上行数据计算得到的;干扰终端信息可以根据 终端上报的发射功率判决得到; 调度信息和负载信息都是基站侧本身的信 息。
若扩展为多个相邻小区, 可以考虑设定主控模块所控制基站的范围。对 范围内的基站可以要求全部或者部分上报。
步骤 404: 主控模块汇总各小区的上报信息, 如干扰时隙信息、 调度信 息、干扰终端信息、负载信息等,并依据一定算法确定推荐的调度实现原则, 以尽可能的减轻干扰情况;
步骤 405: 主控模块将干扰终端信息、 调度方法发送给对应小区基站; 所述干扰终端信息至少可以为两种:
( 1 ) 为下面实施例中的较强干扰时隙信息;
( 2 ) 为根据终端发射功率确定的干扰终端 (可以认为当上行发射功率 大于一定闹值, 即为干扰终端) 。
另外, 还可以 >据其他信息来确定干扰终端: 比如终端位置、 终端的信 噪比及功率等。
步骤 406: 各小区基站根据干扰终端信息和主控模块推荐的干扰抑制调 度方法, 结合本小区的调度需求, 进行实际的调度, 达到抑制或者消除同频 干扰的目的。
图 5、 图 6分别是各小区基站与主控模块之间的连接关系示意图, 各小 区基站都可以与主控模块进行上行和下行的消息交互。主控模块可以位于主 控的基站(图 6所示)、 单独的服务器(图 5所示)、 或者更上一级的控制 系统比如接入网关 AGW中。
基于上述的连接关系,图 4所示的步骤 403中各小区基站与主控模块之 间的信息交互时, 各小区基站与主控模块交互干扰抑制的相关信息, 包括: a )干扰时隙信息; b )调度信息; c )干扰终端信息; d ) 负载信息等。 其中, a )和 b )的组合或者 c )可以用于确定干扰终端; 进一步地, 根 据干扰终端信息、 或者根据干扰终端信息及 d )可以用于确定干扰抑制的调 度方法。 即: 根据干扰时隙信息和调度信息, 或者只根据干扰终端信息来确 定干扰终端, 前者为由主控模块计算获得, 后者为基站向主控模块上报。
各小区基站与主控模块之间的信息交互, 可以通过以下几种流程实现: 流程一, 如图 7所示:
a )各小区的基站测量上行各时隙的干扰, 将其中的较强干扰时隙信息 上报给主控模块,
其中, 较强干扰时隙可以为下列定义:
定义一: 各小区最大的 N个干扰功率对应的时隙;
定义二: 或者各小区超过一定干扰功率阈值的时隙;
此外也可以采用该两个定义的组合, 需要强调一下, 这里的时隙泛指调 度的带宽资源。
b )基站将调度的所有终端序号时隙映射表上报给主控模块;
c )主控模块根据这些上报的信息, 依据一定的算法统计各基站对应的 相邻小区的干扰终端, 其中, 干扰终端的判定可以基于以下方法:
方法一: 在较强干扰时隙被调度的相邻小区终端为干扰终端 方法二: 在一定持续时间内, 在较强干扰时隙被调度过 N次的终端 为干扰终端。
流程二, 如图 8所示:
a)基站将调度的较强干扰时隙信息上报给主控模块,
其中, 较强干扰时隙可以为下列定义:
定义一: 各小区最大的 N个干扰功率对应的时隙;
定义二: 或者各小区超过一定干扰功率阈值的时隙;
此外也可以采用该两个定义的组合, 需要强调一下, 这里的时隙泛指调 度的带宽资源。
b)主控模块将较强干扰时隙 (即图 8 中的申请时隙)信息广播给各 基站;
c)各基站将较强干扰时隙对应的调度终端序号上报给主控模块; d)主控模块根据这些上报的信息, 统计各基站对应的相邻小区的干 扰终端,
其中, 干扰终端的判定可以基于以下方法:
方法一: 在较强干 ^尤时隙被调度的相邻小区终端为干扰终端; 方法二: 在一定持续时间内, 在较强干扰时隙被调度过 Ν次的终端 为干扰终端。
流程三:
基站还可以将超过一定发射功率的终端定义为干扰终端,并且上 4艮给主 控模块。
流程四:
在流程一、 流程二或者流程三的基础上,基站还可以将各自的负载情况 上报给主控模块。
在上述的步骤 403中, 各基站需要向主控模块上报与时隙有关的信息, 基站可以将可用带宽上的时频域资源按照时隙编号, 如图 9所示。
基站 BS端在接收上行数据时, 可以同时估计每个时隙或者突发上的干 扰功率。 这样, 每个基站都可以维护一张时隙资源与干扰功率的映射表。
另外, 根据调度信息, 基站还可以获得时隙资源与终端 ID的映射表。
在步骤 404中, 主控模块汇总各小区的上报信息, 如干扰时隙信息、 调 度信息、 干扰终端信息、 负载信息等, 并依据一定算法确定推荐的调度实现 原则,以尽可能的减轻干扰情况。可能的原则为如下方法或这些方法的组合: 方法一: 主控模块根据各小区的干扰终端情况制定调度策略, 原则为尽 量在不同的时域 /频域调度不同小区的干扰终端, 保证干 4尤终端之间不会相 互干扰。
方法二: 主控模块根据各小区的千扰终端情况制定调度策略, 原则为尽 量在相同的时域 /频域调度不同小区的干扰终端与非干扰终端, 避免同时调 度相邻小区干扰终端时造成的功率攀升, 减小同频干扰的影响。
方法三: 主控模块基于各小区的负载情况, 将干扰终端可能实施切换的 负载较小的小区设置为更高的切换优先级,将干扰终端切换到负载较小的小 区,使其可以有更多可选时频域带宽, 更有可能通过调度避免与其他小区用 户的干扰。
方法四:各小区对于 Qos要求较低的干扰终端进行功率降低、速率降低 的功控和链路自适应处理, 降低其对其他小区的干扰影响。
尽管本发明结合特定实施例进行了描述,但是对于本领域的技术人员来 说, 可以在不背离本发明的精神或范围的情况下进行修改和变化。这样的修 改和变化被视作在本发明的范围和附加的权利要求书范围之内。
工业实用生 本发明针对在无线通信系统中,由于同频组网时小区间干扰造成的系统 性能下降问题,提供一种无线通信系统中的同频干扰抑制方法,提出干扰抑 制的相关解决方案, 通过有效的干扰抑制技术, 减小小区间干扰、 增加覆盖 和流量、 提高系统的频谱效率。

Claims

权 利 要 求 书
1、 一种无线通信系统中的同频干扰抑制方法, 应用于包括主控模块和 至少两个小区基站的系统, 包括如下步骤:
( 1 )主控模块与各小区基站进行干扰抑制信息交互, 获取各小区干扰 终端信息;
( 2 )主控模块汇总各小区的干扰终端信息, 确定干扰抑制调度方法, 并将干扰终端信息和所述干扰抑制调度方法发送给对应的小区基站;
( 3 )各小区基站根据主控模块发送的干扰抑制调度方法, 结合本小区 的调度需求, 进行调度。
2、 如权利要求 1所述方法, 其特征在于, 所述主控模块位于主控的基 站、 或单独的服务器、 或者更上一级的接入网关 AGW中。
3、 如权利要求 1所迷方法, 其特征在于, 在步骤( 1 )执行之前, 进一 步包括:
各小区基站发送包括调度信息的下行和上行链路的控制信息; 各小区基站接收本小区内对应终端的上行数据。
4、 如权利要求 1所述方法, 其特征在于, 步骤(1 ) 中, 干扰终端信息 通过基站上报干扰时隙信息和调度信息由主控模块计算获得,或者直接由基 站向主控模块汇报干扰终端信息。
5、 如权利要求 1所述方法, 其特征在于, 步骤( 1 )进一步包括如下步 骤:
( la )各小区的基站测量上行各时隙的干扰, 将其中较强的千扰时隙信 息上 4艮给主控模块;
( lb )基站将调度的所有终端序号时隙映射表上报给主控模块;
( lc )主控模块根据步骤(la ) 、 ( lb ) 中上拫的信息, 依据一定的 算法统计各基站对应的相邻小区的干扰终端;
其中, 较强干扰时隙是各小区最大的 N个干扰功率对应的时隙、 或是 各小区中超过一定干扰功率阈值的时隙、 或是两种时隙的组合; 其中, 步骤(lc )中统计干扰终端的算法是在较强干扰时隙被调度的相 邻小区终端为干扰终端,或者是在一定持续时间内,在较强干扰时隙被调度 过 N次的终端为干扰终端。
6、 如权利要求 1所述方法, 其特征在于, 步骤(1 )进一步包括如下步 骤:
( IA )基站将调度的较强干扰时隙信息上报给主控模块;
( IB )主控模块将较强干扰时隙信息广播给各基站;
( IC )各基站将较强干扰时隙对应的调度终端序号上报给主控模块;
( ID )主控模块根据基站上报的信息, 统计判定各基站对应的相邻小 区的干 4尤终端;
其中, 较强干扰时隙是各小区最大的. N个干扰功率对应的时隙、 或是 各小区中超过一定干扰功率阈值的时隙、 或是两种时隙的组合;
其中, 步驟(1D ) 中统计干扰终端的算法是在较强干扰时隙被调度的 相邻小区终端为干扰终端,或者是在一定持续时间内,在较强干扰时隙被调 度过 N次的终端为干扰终端。
7、 如权利要求 4或 5或 6所述方法, 其特征在于, 在各基站向主控模 块上报与时隙有关的信息时, 基站将可用带宽上的时频域资源按照时隙编 号, 进行上报;
8、 如权利要求 1所述方法, 其特征在于, 在所述步骤(1 )中, 基站与 主控模块交互时,将超过一定发射功率的终端定义为干扰终端,并且上报给 主控模块。
9、 如权利要求 1所述方法, 其特征在于, 在所述步骤( 1 ) , 基站还将 各自的负载信息上报给主控模块;
所述步骤(2 ) 中, 主控模块汇总各小区的干扰终端信息, 还加上负载 信息, 确定干扰抑制调度方法。
10、 如权利要求 1所述方法, 其特征在于, 所述步骤(2 )进一步包括 如下步骤: 主控模块汇总各小区的上报信息, 包括干扰时隙信息、或调度信息、 或 千扰终端信息、 或负载信息、 或它们的组合, 在确定各个基站的调度实现原 则时, 采用如下调度方法之一或它们的组合:
方法 1、 主控模块根据各小区的干扰终端情况制定调度策略, 原则为在 不同的时域 /频域调度不同小区的干扰终端;
方法 2、 主控模块根据各小区的干扰终端情况制定调度策略, 原则为在 相同的时域 /频域调度不同小区的干扰终端与非干扰终端;
方法 3、 主控模块基于各小区的负载情况, 将干扰终端可能实施切换的 负载较小的小区设置为更高的切换优先级,将干扰终端切换到负载较小的小 区, 使其有更多可选时频域带宽;
方法 4、 各小区对于 Qos要求较低的干扰终端进行功率降低、 速率降低 的功控和链路自适应处理。
PCT/CN2007/003570 2007-04-03 2007-12-12 Procédé de suppression d'interférence de fréquence commune dans un système de communication sans fil WO2008119216A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010501352A JP5189160B2 (ja) 2007-04-03 2007-12-12 無線通信システムにおける同一周波数干渉抑制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2007100738010A CN101282566B (zh) 2007-04-03 2007-04-03 一种干扰抑制方法
CN200710073801.0 2007-04-03

Publications (1)

Publication Number Publication Date
WO2008119216A1 true WO2008119216A1 (fr) 2008-10-09

Family

ID=39807787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/003570 WO2008119216A1 (fr) 2007-04-03 2007-12-12 Procédé de suppression d'interférence de fréquence commune dans un système de communication sans fil

Country Status (3)

Country Link
JP (1) JP5189160B2 (zh)
CN (1) CN101282566B (zh)
WO (1) WO2008119216A1 (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011155588A (ja) * 2010-01-28 2011-08-11 Kddi Corp 無線基地局装置及び無線通信方法
WO2010101345A3 (en) * 2009-03-03 2012-02-23 Samsung Electronics Co., Ltd. Signal transmission method and system for transmitting signal by using interference control method and/or transmission power control method
WO2012074475A1 (en) * 2010-12-03 2012-06-07 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for load management in heterogeneous networks with interference suppression capable receivers
US8880088B2 (en) 2010-12-10 2014-11-04 Telefonaktiebolaget L M Ericsson (Publ) Signalling for interference management in HETNETs
CN104660391A (zh) * 2015-03-04 2015-05-27 中国人民解放军理工大学 正交频分多址接入网络中的分布式小区间干扰消除方法
US9320053B2 (en) 2010-12-10 2016-04-19 Telefonaktiebolaget L M Ericsson (Publ) Adaptive load prediction for interference suppression receivers
US10727907B2 (en) 2004-07-30 2020-07-28 Rearden, Llc Systems and methods to enhance spatial diversity in distributed input distributed output wireless systems
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10848225B2 (en) 2013-03-12 2020-11-24 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
TWI712280B (zh) * 2013-03-12 2020-12-01 美商李爾登公司 經由分佈式輸入分佈式輸出技術在無線蜂巢系統中應用小區間多工增益之系統及方法
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11070258B2 (en) 2004-04-02 2021-07-20 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11146313B2 (en) 2013-03-15 2021-10-12 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US11818604B2 (en) 2012-11-26 2023-11-14 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
WO2023241041A1 (zh) * 2022-06-15 2023-12-21 中兴通讯股份有限公司 小区间的干扰协调方法、设备及存储介质

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2201523A4 (en) 2007-09-11 2010-12-15 Smart Internet Technology Crc SYSTEM AND METHOD FOR COLLECTING DIGITAL IMAGES
JP5508269B2 (ja) 2007-09-11 2014-05-28 スマート・インターネット・テクノロジー・シーアールシー・プロプライエタリー・リミテッド コンピュータディスプレイ上でデジタル画像を操作するためのシステム及び方法
EP2201440A4 (en) 2007-09-11 2012-08-29 Smart Internet Technology Crc Pty Ltd INTERFACE ELEMENT FOR A COMPUTER INTERFACE
CN101741435B (zh) * 2008-11-10 2013-05-15 大唐移动通信设备有限公司 一种确定发射功率的方法、系统和装置
CN101772035B (zh) * 2008-12-30 2013-09-04 上海贝尔股份有限公司 协作小区间移动终端信息获取方法
ATE548870T1 (de) * 2009-01-08 2012-03-15 Mitsubishi Electric Corp Einstellung oder aufrechterhaltung einer bevorzugten bedingung für ein mobiles endgerät
CN102014507B (zh) * 2009-09-04 2013-03-27 普天信息技术研究院有限公司 一种hsupa系统中用户的上行资源调度方法
CN101707779B (zh) * 2009-11-23 2012-05-23 上海华为技术有限公司 资源分配方法、接入网设备及通信系统
CN102098736B (zh) * 2009-12-11 2015-06-03 中兴通讯股份有限公司 协作调度中的用户调度方法及基站
CN102131246B (zh) * 2010-01-14 2014-01-15 电信科学技术研究院 一种进行基站内部各小区动态干扰协调的方法及装置
CN102264082A (zh) * 2010-05-26 2011-11-30 鼎桥通信技术有限公司 一种干扰协调方法
CN103052075B (zh) * 2011-10-13 2018-10-12 南京中兴软件有限责任公司 一种同频干扰的协调方法和装置
CN103891174B (zh) * 2011-10-18 2017-09-29 Lg电子株式会社 在无线通信系统中减轻小区间干扰的方法
CN103095316A (zh) * 2011-10-27 2013-05-08 京信通信系统(中国)有限公司 自适应干扰抑制方法及装置
CN103369685B (zh) * 2012-04-09 2016-03-30 华为技术有限公司 用于链路自适应控制的方法和装置
US20140169234A1 (en) * 2012-12-14 2014-06-19 Futurewei Technologies, Inc. Systems and Methods for Interference Avoidance, Channel Sounding, and Other Signaling for Multi-User Full Duplex Transmission
US9277591B2 (en) 2013-06-14 2016-03-01 Netgear, Inc. Channel steering for implementing coexistence of multiple homogeneous radios
CN104244387B (zh) * 2013-06-20 2018-11-23 南京中兴新软件有限责任公司 Wcdma邻区干扰控制方法及wcdma系统
CN103402206A (zh) * 2013-07-17 2013-11-20 华为技术有限公司 干扰处理方法和基站
US10454652B2 (en) * 2015-08-04 2019-10-22 Hfi Innovation Inc. Methods of enabling multiuser superposition transmission
US11284405B2 (en) * 2019-03-26 2022-03-22 Hong Kong Applied Science and Technology Research Institute Company Limited Method of reducing uplink inter-cell interference in a cellular communications network
CN114466462A (zh) * 2020-11-09 2022-05-10 华为技术有限公司 一种调度终端的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124961A (ja) * 2000-10-16 2002-04-26 Mitsubishi Electric Corp 固定無線アクセスシステムにおける干渉回避方法
US20040214578A1 (en) * 2001-05-15 2004-10-28 Niklas Stenstrom Co-channel interference suppresssion by estimating the time of arrival (toa)
CN1722653A (zh) * 2004-07-13 2006-01-18 阿尔卡特公司 多载波移动通信系统中的终端辅助干扰控制方法
CN1816198A (zh) * 2005-01-31 2006-08-09 西门子(中国)有限公司 时分-同步码分多址接入系统中降低小区间干扰的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4662074B2 (ja) * 2004-07-27 2011-03-30 日本電気株式会社 上り回線無線リソース制御の方法、基地局装置、及び無線ネットワーク制御装置
US8848574B2 (en) * 2005-03-15 2014-09-30 Qualcomm Incorporated Interference control in a wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002124961A (ja) * 2000-10-16 2002-04-26 Mitsubishi Electric Corp 固定無線アクセスシステムにおける干渉回避方法
US20040214578A1 (en) * 2001-05-15 2004-10-28 Niklas Stenstrom Co-channel interference suppresssion by estimating the time of arrival (toa)
CN1722653A (zh) * 2004-07-13 2006-01-18 阿尔卡特公司 多载波移动通信系统中的终端辅助干扰控制方法
CN1816198A (zh) * 2005-01-31 2006-08-09 西门子(中国)有限公司 时分-同步码分多址接入系统中降低小区间干扰的方法

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11190246B2 (en) 2004-04-02 2021-11-30 Rearden, Llc System and method for distributed antenna wireless communications
US11190247B2 (en) 2004-04-02 2021-11-30 Rearden, Llc System and method for distributed antenna wireless communications
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US11196467B2 (en) 2004-04-02 2021-12-07 Rearden, Llc System and method for distributed antenna wireless communications
US11646773B2 (en) 2004-04-02 2023-05-09 Rearden, Llc System and method for distributed antenna wireless communications
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US11923931B2 (en) 2004-04-02 2024-03-05 Rearden, Llc System and method for distributed antenna wireless communications
US11070258B2 (en) 2004-04-02 2021-07-20 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10727907B2 (en) 2004-07-30 2020-07-28 Rearden, Llc Systems and methods to enhance spatial diversity in distributed input distributed output wireless systems
WO2010101345A3 (en) * 2009-03-03 2012-02-23 Samsung Electronics Co., Ltd. Signal transmission method and system for transmitting signal by using interference control method and/or transmission power control method
JP2011155588A (ja) * 2010-01-28 2011-08-11 Kddi Corp 無線基地局装置及び無線通信方法
US8761088B2 (en) 2010-01-28 2014-06-24 Kddi Corporation Wireless base station apparatus and wireless communication method
WO2012074475A1 (en) * 2010-12-03 2012-06-07 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for load management in heterogeneous networks with interference suppression capable receivers
US8717924B2 (en) 2010-12-03 2014-05-06 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for load management in heterogeneous networks with interference suppression capable receivers
US9319937B2 (en) 2010-12-03 2016-04-19 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for load management in heterogeneous networks with interference suppression capable receivers
US9320053B2 (en) 2010-12-10 2016-04-19 Telefonaktiebolaget L M Ericsson (Publ) Adaptive load prediction for interference suppression receivers
US8880088B2 (en) 2010-12-10 2014-11-04 Telefonaktiebolaget L M Ericsson (Publ) Signalling for interference management in HETNETs
US11818604B2 (en) 2012-11-26 2023-11-14 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11901992B2 (en) 2013-03-12 2024-02-13 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11451281B2 (en) 2013-03-12 2022-09-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
TWI712280B (zh) * 2013-03-12 2020-12-01 美商李爾登公司 經由分佈式輸入分佈式輸出技術在無線蜂巢系統中應用小區間多工增益之系統及方法
US10848225B2 (en) 2013-03-12 2020-11-24 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11581924B2 (en) 2013-03-15 2023-02-14 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US11146313B2 (en) 2013-03-15 2021-10-12 Rearden, Llc Systems and methods for radio frequency calibration exploiting channel reciprocity in distributed input distributed output wireless communications
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
CN104660391B (zh) * 2015-03-04 2017-11-17 中国人民解放军理工大学 正交频分多址接入网络中的分布式小区间干扰消除方法
CN104660391A (zh) * 2015-03-04 2015-05-27 中国人民解放军理工大学 正交频分多址接入网络中的分布式小区间干扰消除方法
WO2023241041A1 (zh) * 2022-06-15 2023-12-21 中兴通讯股份有限公司 小区间的干扰协调方法、设备及存储介质

Also Published As

Publication number Publication date
CN101282566B (zh) 2011-10-26
CN101282566A (zh) 2008-10-08
JP5189160B2 (ja) 2013-04-24
JP2010524306A (ja) 2010-07-15

Similar Documents

Publication Publication Date Title
WO2008119216A1 (fr) Procédé de suppression d'interférence de fréquence commune dans un système de communication sans fil
Benjebbovu et al. System-level performance of downlink NOMA for future LTE enhancements
US9078276B2 (en) Scheduling and rate control coordination accounting for interference cancellation at a mobile terminal
WO2008124983A1 (fr) Procédé de limitation de brouillage sur la même fréquence par programmation de l'organisation de réseau
Balachandran et al. NICE: A network interference cancellation engine for opportunistic uplink cooperation in wireless networks
US20110306384A1 (en) Method and device for pairing user terminals in multiuser-multiple input multiple output
WO2013107121A1 (zh) 一种消除小区间干扰的方法及系统
US10341154B2 (en) Method for multiple access transmission in a wireless communication system, and a transmitter apparatus and a base station therefor
Marcano et al. A novel method for improving the capacity in 5G mobile networks combining NOMA and OMA
Wang et al. Application of BBU+ RRU based CoMP system to LTE-Advanced
Lan et al. Efficient and dynamic fractional frequency reuse for downlink non-orthogonal multiple access
Yuan et al. LTE-Advanced coverage enhancements
Falconetti et al. Distributed uplink macro diversity for cooperating base stations
Ghimire et al. Busy bursts for trading off throughput and fairness in cellular OFDMA-TDD
Li et al. Binary power control for full-duplex networks
Mori et al. Inter-user interference reduction applying successive interference cancellation for dynamic-duplex cellular system
US20120230281A1 (en) Base station apparatus and communication method
Liu et al. Successive interference cancellation in full duplex cellular networks
Balachandran et al. Delay-tolerant autonomous transmissions for short packet communications
Marcano et al. System-level performance of C-NOMA: A cooperative scheme for capacity enhancements in 5G mobile networks
Benjebbour et al. Advanced Multiple‐access and MIMO Techniques
Seshadri et al. Asynchronous Scrambled Coded Multiple Access for 5G Non-Orthogonal Multiple Access: System Level Performance
Brueck et al. On MAC layer throughput enhancements in LTE-A by downlink macro diversity
Persson et al. Inter-sector scheduling in multi-user OFDM
Zhang et al. Interference coordination for small cell networks with full-duplex base stations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07855673

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010501352

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7031/DELNP/2009

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 07855673

Country of ref document: EP

Kind code of ref document: A1