WO2008113748A1 - Machine électrique avec compensation de la tension induite dans un système de tubes de refroidissement - Google Patents

Machine électrique avec compensation de la tension induite dans un système de tubes de refroidissement Download PDF

Info

Publication number
WO2008113748A1
WO2008113748A1 PCT/EP2008/053053 EP2008053053W WO2008113748A1 WO 2008113748 A1 WO2008113748 A1 WO 2008113748A1 EP 2008053053 W EP2008053053 W EP 2008053053W WO 2008113748 A1 WO2008113748 A1 WO 2008113748A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated core
cooling tube
electrical machine
cooling
cooling pipe
Prior art date
Application number
PCT/EP2008/053053
Other languages
German (de)
English (en)
Inventor
Christoph Stuckmann
Carsten Mauss
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2008113748A1 publication Critical patent/WO2008113748A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/20Stationary parts of the magnetic circuit with channels or ducts for flow of cooling medium

Definitions

  • the present invention relates to an electrical machine with a laminated core, a winding, with which in the laminated core, a magnetic flux can be generated, and at least one cooling tube extending in the laminated core.
  • each individual cooling tube could also have a separate water feed. Because of the complex connection technology, however, this solution is not desirable from a technological and economic point of view.
  • the object of the present invention is thus to counteract the high loss of entry in an electrically closed water pipe cycle system of an electric machine.
  • this object is achieved by an electric machine with a laminated core, a winding with which a magnetic flux can be generated in the laminated core, and at least one cooling tube extending in the laminated core, wherein a first part of the at least one cooling tube in the laminated core so extends that is induced by a first portion of the magnetic flux at a predetermined time, a first voltage in the first part of the cooling tube, and connected to the first part serially connected, second part of the at least one cooling tube in the laminated core so that by a second portion of the magnetic flux at the predetermined time of a first voltage opposite second voltage of substantially equal amplitude in the second part of the cooling tube is induced.
  • the circulating current induction can be prevented by the solution according to the invention.
  • the water pipe cycle system can be brought as close to the bottom of the groove with simultaneous loss reduction and thus a higher heat dissipation efficiency can be achieved. The consequence of this is that at a low cost in terms of water pipe connection technology, a significant increase in power density of the electrical machine can be achieved.
  • the first and second part of the cooling tube in the above-mentioned electric machine runs along the groove bottom in each case one groove of the laminated core. This makes highly efficient cooling possible.
  • the laminated core with the pipe interconnection according to the invention can be part of a stator of a rotary machine. Likewise, the laminated core with the pipe interconnection according to the invention may be part of a primary part of a linear motor. In general, the pipe interconnection according to the invention can be used where a laminated core is penetrated by a time-varying flow. The heat dissipation according to the invention can thus be applied to electric machines of different types without further ado.
  • the laminated core can also have evenly distributed over the circumference of the stator or the action length of the primary part a plurality of grooves on the groove base in each case the corresponding groove extends along a part of the cooling tube.
  • the laminated core is cooled in the region of all grooves by a single, one-piece cooling tube or a single cooling tube with serially connected cooling tube components.
  • a third part of the cooling tube which connects the first and second part of the cooling tube, be guided on or in a winding head of the winding, so that both are in direct thermal contact.
  • the third part of the cooling tube is shaped so that the cooling tube and the winding head can be bandaged together. In this way, effective heat dissipation of the winding head can be achieved by heat conduction and not only by convection.
  • FIG 1 is a schematic diagram of the inventive arrangement of the cooling tubes in a stator of an electric machine and
  • FIG 2 is a plan view of the stator of FIG 1 with a laid according to the invention cooling tube system.
  • an electric machine has a stator core 1 and a rotor core 2.
  • the stator core 1 has teeth 3 and also has The rotor laminations 2 teeth 4. Between the teeth 3 of the stator core 1 are grooves 5. On the presentation of windings on both the stator core 1 and the rotor laminations 2 is omitted here for clarity.
  • the magnetic flux ⁇ shown in FIG. 1 with a closed ring 6 results.
  • the magnetic flow direction is indicated by arrows.
  • the flow in a first portion 8 extends radially outward from the rotor laminations 2 to the stator core 1 by the corresponding teeth 3, 4 of the laminated cores.
  • the magnetic flux ⁇ continues through the yoke of the stator core 1.
  • the magnetic flux ⁇ extends in a further section 9 radially inwardly from
  • cooling tube sections 10, 11, 12 and 13 are arranged in the vicinity of the groove bottom of grooves 5 of the stator lamination stack 1.
  • the two cooling pipe loops 11 and 12 are located within the closed ring 6 of the flow ⁇ .
  • each voltage of different orientation is induced in both cooling tubes 11, 12.
  • this tube pair 11, 12 is now electrically connected to one another in the region of the winding head of the machine. This is ensured, for example, by virtue of the fact that the cooling tube is formed in one piece from a metal tube. Accordingly, the cooling pipe section 11 constitutes a first part and the cooling pipe section 12 forms a second part of an entire, connected cooling pipe. The connection of the two cooling pipe sections 11, 12 is effected by a third part the cooling tube, which is not shown in FIG 1, but will be explained in more detail in connection with FIG 2.
  • the entire cooling tube consists of an electrically conductive metal, and the two cooling tube sections 11 and 12 are connected in series with each other, the voltages induced alternately in the two cooling tube sections 11, 12 compensate each other. Accordingly, two pipe sections are always to be connected in series with one another, which are arranged antisymmetrically with respect to the magnetic flux body, like the two cooling pipe sections 11 and 12 in FIG.
  • FIG. 2 shows a plan view of the stator section of FIG. 1.
  • the stator core 1 is penetrated in the axial direction by the cooling pipe sections 10, 11, 12 and 13.
  • the cooling pipe sections 11 and 12 are connected by a cooling pipe section 16 extending in the circumferential direction.
  • the two cooling pipe sections 10 and 11 are connected by a cooling pipe section 17 extending in the circumferential direction and the two cooling pipe sections 12 and 13 by a cooling pipe section 18 likewise extending in the circumferential direction.
  • By the arrow 19 is shown in FIG 2, the coolant inlet and by the arrow 20 of the coolant outlet of the entire cooling tube.
  • FIG. 2 which are located in the region of the cooling tube sections 10, 11 and 12, 13. Since the cooling pipe sections 10, 11 are respectively connected in series through the connecting piece 17 and the cooling pipe sections 12, 13 by the connecting piece 18, the induced stresses in the cooling pipe sections 10 and 11 as well as 12 and 13 compensate each other to zero.
  • the individual pairs of cooling tubes, whose voltage sum is zero, can basically be connected as desired to form a complete tube. In the example of FIG 2, the cooling tube pairs 10, 11 and 12, 13, each having a voltage zero sum, coupled by the connecting piece 16 together to form an overall tube. Of course, this can be extended arbitrarily in the manner mentioned.
  • connection piece 16 extending in the circumferential direction, which connects the corresponding alternating pole-dividing regions, makes it possible to heat-dissipate the winding head in a more planar manner than a variant which connects only adjacently placed cooling pipes by means of banding on the winding head (not shown in FIG. 2) (eg, connectors 17 and 18).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Un courant de Foucault est souvent induit dans les circuits de tubes de refroidissement des machines électriques, ce qui entraîne des pertes correspondantes. Pour éviter cela, l'invention propose une machine électrique comprenant un paquet (1) de tôles, un enroulement avec lequel un flux magnétique (Φ) peut être généré dans le paquet (1) de tôles, et au moins un tube de refroidissement (10, 11, 12, 13) qui s'étend dans le paquet (1) de tôles. Une première partie (11) du ou des tubes de refroidissement (10, 11, 12, 13) s'étend dans le paquet (1) de tôles de telle sorte qu'une première section du flux magnétique (Φ) induise, à un moment prédéfini, une première tension dans la première partie (11) du tube de refroidissement. De même, une deuxième partie (12) du ou des tubes de refroidissement (10, 11, 12, 13), reliée en série avec la première partie (1), s'étend dans le paquet (1) de tôles de telle sorte qu'une deuxième section du flux magnétique (Φ) provoque, à un moment pouvant être prédéfini, un deuxième courant opposé au premier courant et sensiblement de même amplitude dans la deuxième partie (12) du tube de refroidissement. Les deux tensions se compensent ainsi.
PCT/EP2008/053053 2007-03-19 2008-03-14 Machine électrique avec compensation de la tension induite dans un système de tubes de refroidissement WO2008113748A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007013051.3 2007-03-19
DE200710013051 DE102007013051A1 (de) 2007-03-19 2007-03-19 Elektrische Maschine mit Kompensation der induzierten Spannung im Kühlrohrsystem

Publications (1)

Publication Number Publication Date
WO2008113748A1 true WO2008113748A1 (fr) 2008-09-25

Family

ID=39410370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/053053 WO2008113748A1 (fr) 2007-03-19 2008-03-14 Machine électrique avec compensation de la tension induite dans un système de tubes de refroidissement

Country Status (2)

Country Link
DE (1) DE102007013051A1 (fr)
WO (1) WO2008113748A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1392107B1 (it) * 2008-11-28 2012-02-09 Lucchi Parte statorica di macchina elettrica a flusso assiale con sistema di raffreddamento a liquido.
CN102893496A (zh) * 2010-05-21 2013-01-23 雷米技术有限公司 定子绕组组件及方法
DE102011082353B4 (de) 2011-09-08 2021-04-01 Siemens Aktiengesellschaft Stator für einen Elektromotor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB165936A (en) * 1920-04-01 1921-07-01 Giulio Schroeder Improvements in the cooling of electrical apparatus
DE2449090A1 (de) * 1973-10-17 1975-04-30 Hitachi Ltd Stator einer rotierenden elektrischen maschine
DE19749108C1 (de) * 1997-11-06 1999-04-01 Siemens Ag Elektromotor
DE10103447A1 (de) * 2001-01-25 2002-08-01 Baumueller Nuernberg Gmbh Wellschlauch-Ständerkühlung in einer elektrischen Maschine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD144484A1 (de) * 1979-08-27 1980-10-15 Hubertus Sowieja Kuehlkanal im staender-und laeuferblechpaket elektrischer maschinen
JP2006081379A (ja) * 2004-09-13 2006-03-23 Sumitomo Electric Ind Ltd 車載用モータ装置
DE102004058369B4 (de) * 2004-12-03 2008-07-17 Daimler Ag Primärteil eines Linearmotors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB165936A (en) * 1920-04-01 1921-07-01 Giulio Schroeder Improvements in the cooling of electrical apparatus
DE2449090A1 (de) * 1973-10-17 1975-04-30 Hitachi Ltd Stator einer rotierenden elektrischen maschine
DE19749108C1 (de) * 1997-11-06 1999-04-01 Siemens Ag Elektromotor
DE10103447A1 (de) * 2001-01-25 2002-08-01 Baumueller Nuernberg Gmbh Wellschlauch-Ständerkühlung in einer elektrischen Maschine

Also Published As

Publication number Publication date
DE102007013051A1 (de) 2008-09-25

Similar Documents

Publication Publication Date Title
DE2600035C3 (de) Elektrischer Stromrichtergenerator mit wenigstens einer Feldwicklung und wenigstens einer Ankerwicklung
EP2639936B1 (fr) Machine électrique à rotor excité en permanence et rotor excité en permanence correspondant
DE102016219831B4 (de) Rotierende elektrische Maschine
DE4312217A1 (de) Halbspulenkonfiguration für Statoren
DE112013006691T5 (de) Drehende elektrische Maschine
DE102015219708B4 (de) Motor
EP0687396B1 (fr) Machine synchrone sans balais
WO2021110193A1 (fr) Bobine, procédé de production d'une bobine et machine rotative électrique
WO2013023819A2 (fr) Machine électrique
DE102020115642B3 (de) Elektrischer Motor und Leiterplatte
DE102018111119A1 (de) Verfahren zum Herstellen einer Wicklung für einen Ständer einer elektrischen Maschine und elektrische Maschine
WO2008113748A1 (fr) Machine électrique avec compensation de la tension induite dans un système de tubes de refroidissement
DE19639670C2 (de) Transversalflußmaschine mit einer Mehrzahl von parallel geschalteten Ringwicklungen
DE102004005706A1 (de) Motor mit geschalteter Reluktanz mit einem verbesserten Statoraufbau
EP3183799B1 (fr) Pièce active d'une machine électrique
WO2022042792A1 (fr) Rotor refroidi d'une machine électrique
DE102017207885B4 (de) Stator für eine elektrische Maschine und elektrische Maschine
WO2009040212A1 (fr) Machine dynamoélectrique sans boîtier
EP3291412A1 (fr) Trajet electromagnetique d'un stator
DE102014200394A1 (de) Reduzierung des Rastmoments und der Drehmomentwelligkeit eines elektrisch erregten Generators durch alternative Verlängerung von Rotorpolschuhen
DE102018126320A1 (de) Rotor für eine elektrische Maschine und elektrische Maschine
DE102022212283A1 (de) Fahrzeug, elektrische Maschine, Windungsanordnung für eine elektrische Maschine und Verfahren zum Herstellen einer Windungsanordnung
WO2009083327A1 (fr) Machine électrique comprenant un stator muni d'un enroulement de stator et procédé de fabrication associé
DE102016203568A1 (de) Asynchronmaschine
EP3079242A1 (fr) Procédé de fabrication de bobine autour d`un pole salisant pour une machine synchrone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08717797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08717797

Country of ref document: EP

Kind code of ref document: A1