WO2008092485A1 - Vorrichtung und verfahren zum beschichten von plattenförmigen oder bandförmigen metallischen substraten - Google Patents

Vorrichtung und verfahren zum beschichten von plattenförmigen oder bandförmigen metallischen substraten Download PDF

Info

Publication number
WO2008092485A1
WO2008092485A1 PCT/EP2007/009481 EP2007009481W WO2008092485A1 WO 2008092485 A1 WO2008092485 A1 WO 2008092485A1 EP 2007009481 W EP2007009481 W EP 2007009481W WO 2008092485 A1 WO2008092485 A1 WO 2008092485A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
vacuum chamber
anode
magnetron
coated
Prior art date
Application number
PCT/EP2007/009481
Other languages
English (en)
French (fr)
Inventor
Bert Scheffel
Christoph Metzner
Matthias Tenbusch
Lars Klose
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2008092485A1 publication Critical patent/WO2008092485A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/562Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32633Baffles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating
    • H01J2237/3321CVD [Chemical Vapor Deposition]

Definitions

  • the invention relates to an apparatus and a method for coating metal plates or strips under vacuum conditions in which the deposition of a layer takes place primarily by chemical vapor deposition processes.
  • Devices and methods in the field of physical vapor deposition as well as in the field of chemical vapor deposition are well known.
  • a precursor gas is often introduced into a vacuum chamber, wherein chemical reaction products of the precursor gas deposit on a substrate to be coated.
  • Such devices and methods are particularly suitable for coating large-area substrates or to achieve high coating rates. Negative effects of CVD processes are that these are non-observable processes in which the reaction products, in addition to a substrate to be coated, also precipitate on all other unprotected internal components of a vacuum chamber.
  • PVD physical vapor deposition
  • a material to be coated is transferred into the vapor phase either by heat supply (vaporization) or by sputtering (sputtering) and then deposited on a substrate to be coated.
  • sputtering a magnetron discharge burns on a target, which is connected as the cathode of the discharge and stores the coating material.
  • Magnetron sputtering processes are also suitable for coating plates and tapes, especially if thin layers with consistent layer properties are to be deposited. It is also advantageous that the sputtering is a directed process.
  • the atomized particles can be accelerated primarily in the direction of the substrate, whereby parasitic coatings can be reduced to parts of the vacuum ⁇ chamber device.
  • the properties of the layers growing during magnetron sputtering are also influenced by the plasma produced during the discharge. Often, intense plasma is desired on the substrate to obtain good layer properties. However, the highest intensity of the plasma is in the vicinity of the target and not on the substrate, so that the effect of the plasma for the layers growing on the substrate remains limited.
  • the deposition process may also be reactive, i. H. the layer is formed as a product of the material of the target and the reactive gas.
  • the target is also coated with reaction products, which can influence parameters of the discharge and the properties of the layers growing on the substrate.
  • the deposition process must be stabilized by complex control processes.
  • a precursor can also be introduced into a vacuum chamber.
  • a chemical vapor deposition by splitting the molecules of the precursor in the plasma of the magnetron discharge and a condensation of the cleavage products on the substrate as well as a physical vapor deposition by sputtering and deposition of the target material is achieved.
  • WO 03/048406 devices and methods which combine both features of CVD and PVD processes.
  • target material disposed on a cathode is atomized by physical means.
  • a precursor can also be introduced into the vacuum chamber, as a result of which reaction products of the sputtered target material and the precursor are deposited on a plate-shaped substrate arranged at least close to the anode.
  • a magnetron is located on the non-coated side of the substrate such that its magnetic field is formed primarily over the surface of the side of the substrate to be coated. In this way, the intensity of the plasma near the substrate can be increased slightly.
  • the disadvantage here is still that due to the Precursorgases all components are coated in the interior of the vacuum chamber and here in particular the target surfaces, since in their environment the highest plasma density is present.
  • the discharge can be completed in a short time completely.
  • the invention is therefore the technical problem of providing a device and a method by which the disadvantages of the prior art can be overcome.
  • the device and method should make it possible to deposit layers on plate-shaped or strip-shaped metallic substrates by means of CVD processes, in which also electrically insulating layers can be deposited over a long time and with homogeneous properties.
  • a device according to the invention and a method according to the invention for coating at least one plate-shaped or strip-shaped metallic substrate are characterized by a vacuum chamber in which a magnetron permanent magnet is arranged on the side of the substrate which is not to be coated such that its magnetic field is above the surface is formed to be coated side of the substrate, wherein by means of a feed precursor is einlassbar in the vacuum chamber and the substrate is at least temporarily connected as a cathode of a magnetron discharge. Because the closed track of the magnetron discharge (also called racetrack) burns directly over the side of the substrate to be coated, a plasma with a very high intensity is generated there, which contributes to increasing the coating rate. Another advantage here is that it is a cathode-side plasma.
  • the ionized material particles in the plasma which predominantly have a positive electrical charge, are attracted by the cathodically connected substrate of this and thus accelerated once again.
  • a device according to the invention and a method according to the invention are therefore particularly suitable for depositing dense and optionally hard layers.
  • the electrical voltage between the cathode and the anode is 100 V to 500 V.
  • the discharge current is supplied pulsed to the substrate. This is advantageous, for example, during the deposition of electrically insulating layers.
  • the application of an AC voltage is possible.
  • a frequency in the range from 10 kHz to 500 kHz is selected.
  • anode for the discharge another electrode is needed, which is connected as an anode.
  • an anode for example, a metallic vacuum chamber wall can be used.
  • a substrate to be coated has the same electrical potential as the vacuum chamber. Therefore, it is necessary to introduce a separate anode in the vacuum chamber.
  • the anode is preferably arranged such that it lies opposite the side of the substrate to be coated.
  • the anode is cup-shaped, wherein the opening faces the substrate. Anode and substrate limit in this way at least partially a volume in which the inlet nozzle of the precursor ends.
  • the base of the "anode pot" can have any round, oval or even angular shape.
  • an electrical shield which encloses the anode in a dome-shaped manner is advantageous.
  • the opening of the dome-shaped shield (also called the dark field shield) directed towards the substrate is used close to the substrate.
  • a partial overpressure of the inflowing precursor in the anode and substrate limited volume is generated.
  • the gap between the substrate and the metallic shield is designed so small that the plasma remains concentrated in the anode and substrate limited volume.
  • the gap between substrate and shield should not exceed a range of 1 mm to 10 mm.
  • this gap can be made larger, for example, if between substrate and shield a metallic sheet or a stack of spaced metallic sheets, which are substantially parallel to the substrate surface, is / are arranged.
  • the distance between the shield and adjacent plate, between the individual adjacent plates and between the substrate and adjacent plate should not be greater than 1 mm to 10 mm. In this way, on the one hand, the cross-section through which the gas can flow from the volume defined by the anode and substrate into the outer region of the vacuum chamber can be increased, on the other hand, the discharge from the volume bounded by the shield and the substrate is prevented from burning out.
  • a magnetron is arranged within the vacuum chamber, by means of which a portion of the material required for the layer deposition is provided by sputtering a target on the magnetron.
  • an electrode of the magnetron is temporarily connected as an anode with respect to the substrate cathode.
  • Substrate and electrode are periodically switched alternately as cathode or anode.
  • a sputtering gas is admitted into the vacuum chamber.
  • a further embodiment results when the anode required for the magnetron discharge on the substrate is formed by a hot evaporating material.
  • the evaporation material is stored in a crucible and connected as the anode of the magnetron discharge.
  • an energy source for the evaporation preferably an electron beam is used, which is generated by an electron gun.
  • the energy source for the evaporation may also be different, such as a radiant heater or induction evaporator.
  • FIG. 1 a schematic representation of a device according to the invention
  • Fig. 2 is a schematic representation of an alternative device according to the invention.
  • FIG. 1 schematically shows a device 101 by means of which a transparent and hard layer is to be deposited on a 100 m long, 50 cm wide and 0.5 mm thick strip-shaped steel substrate 103 within a vacuum chamber 102.
  • the precursor HMDSO is introduced into the vacuum chamber 102 via an inlet 104.
  • a magnetron permanent magnet 105 is arranged such that its magnetic field is formed over the surface of the substrate 103 to be coated.
  • a pot-shaped anode 106 which consists of copper and is formed water-cooled.
  • an electrical voltage of about 200 V is applied between the connected via a sliding contact as a cathode substrate 103 and the anode 106, whereby a discharge between the cathode 103 and anode 106 ignited and a plasma 107 is formed.
  • the plasma 107 has the highest intensities in the regions in which the magnetic field of the magnetron permanent magnet 105 is formed above the substrate surface.
  • a dome-shaped shield 108 whose opening is aligned with the substrate surrounds the anode 105.
  • the shield 108 is made of sheet steel and is formed as a so-called dark-field shield. Between the edge of the shield 108 and the substrate 103, a stack of 2 mm thick copper sheets 109 is arranged, each spaced 3 mm apart and aligned substantially parallel to the substrate surface.
  • the dark-field shielding is maintained by the copper sheets and, on the other hand, the cross-section through which the precursor gas or its cleavage products escape from the region bounded by the shield and the substrate and can be pumped out of the vacuum chamber by pumping devices.
  • a transparent layer which comprises primarily the elements Si, C and O, which has a hardness of 18 GPa and in which the ratio of oxygen and silicon is one to three with respect to their atomic percent.
  • An alternative embodiment of a device 201 according to the invention is shown schematically in FIG.
  • a Ti: C: H layer is to be deposited on a 200 m long, 30 cm wide and 1 mm thick strip-shaped aluminum substrate 203.
  • a magnetron permanent magnet 205 is arranged, which forms a magnetic field over the surface of the substrate 203 to be coated.
  • the chemical elements required for the layer deposition are provided, on the one hand, via an inlet 204, through which the precursor acetylene enters the vacuum chamber 202 and, on the other hand, in an evaporator crucible 210, in which titanium material 21 1 is stored.
  • An electron gun 212 generates an electron beam 213, by means of which the surface of the titanium material 21 1 is periodically scanned, thereby heated and finally converted into the vapor phase.
  • the application of a voltage of 300 V between the substrate 203 connected as cathode and the evaporator crucible 210 including titanium material 21 1 leads to a magnetron discharge between the cathode and the anode and to the formation of a plasma 207 with a high plasma density directly above the surface to be coated Substrate 203.
  • the reaction particles of the vaporized titanium and the precursor constituents are deposited on the substrate surface.
  • the deposition process is thereby reinforced by the fact that the substrate is connected as a cathode, since the majority of the ionized material particles in the plasma are provided with a positive electrical charge.
  • the anode (vaporizer crucible 210 and titanium material 21 1) is provided with an electrical shield 208 surrounding the anode and open on the substrate side, between the edge of the shield and the substrate 203 as well again a stack of spaced apart sheets 209 of copper is arranged.

Abstract

Vorrichtung und Verfahren zum Beschichten von plattenförmigen oder bandförmigen metallischen Substraten Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Beschichten von mindestens einem plattenförmigen oder bandförmigen metallischen Substrat, umfassend eine Vakuumkammer, in welcher ein Magnetron-Permanentmagnet derart auf der nicht zu beschichtenden Seite des Substrates angeordnet ist, dass dessen Magnetfeld über der Oberfläche der zu beschichtenden Seite des Substrates ausgebildet ist, wobei mittels einer Zuführung ein Precursor in die Vakuumkammer einlassbar ist und das Substrat zumindest zeitweise als Kathode einer Magnetronentladung geschaltet ist.

Description

Vorrichtung und Verfahren zum Beschichten von plattenförmigen oder bandförmigen metallischen Substraten
Beschreibung
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Beschichten von Platten oder Bändern aus Metall unter Vakuumbedingungen, bei denen das Abscheiden einer Schicht vorrangig durch Prozesse der chemischen Dampfabscheidung erfolgt.
Stand der Technik
Vorrichtungen und Verfahren auf dem Gebiet der physikalischen Dampfabscheidung als auch auf dem Gebiet der chemischen Dampfabscheidung sind hinlänglich bekannt. Bei Vorrichtungen und Verfahren der chemischen Dampfabscheidung (auch unter dem Kürzel CVD bekannt) wird oftmals ein Precursorgas in eine Vakuumkammer eingelassen, wobei sich chemische Reaktionsprodukte des Precursorgases auf einem zu beschichtenden Substrat abscheiden. Derartige Vorrichtungen und Verfahren sind insbesondere geeignet, um großflächige Substrate zu beschichten bzw. um hohe Beschichtungsraten zu erzielen. Negativ wirkt sich bei CVD-Prozessen aus, dass es sich bei diesen um ungehchtete Prozesse handelt, bei denen sich die Reaktionsprodukte neben einem zu beschichtenden Substrat auch auf allen anderen ungeschützten inneren Bestandteilen einer Vakuumkammer niederschlagen.
Bei der physikalischen Dampfabscheidung (auch unter dem Kürzel PVD bekannt) wird ein zu beschichtendes Material entweder durch Wärmezufuhr (Verdampfen) oder durch Zerstäuben (Sputtern) in die Dampfphase überführt und anschließend auf einem zu beschichtenden Substrat abgeschieden. Beim so genannten Magnetronsputtern brennt eine Magnetronentladung auf einem Target, welches als Kathode der Entladung geschaltet ist und das Beschichtungsmaterial bevorratet. Magnetronsputterprozesse sind ebenfalls zum Beschichten von Platten und Bändern geeignet, insbesondere auch dann, wenn dünne Schichten mit gleich bleibenden Schichteigenschaften abgeschieden werden sollen. Vorteilhaft ist ebenfalls, dass es sich beim Zerstäuben um einen gerichteten Prozess handelt. Durch geeignete Maßnahmen können die zerstäubten Partikel vorrangig in Richtung Substrat beschleunigt werden, wodurch Parasitärbeschichtungen an Teilen der Vakuum¬ kammereinrichtung verringert werden können. Die Eigenschaften der beim Magnetronsputtern aufwachsenden Schichten werden auch durch das bei der Entladung entstehende Plasma beeinflusst. Oft ist ein intensives Plasma am Substrat erwünscht, um gute Schichteigenschaften zu erlangen. Die höchste Intensität des Plasmas befindet sich jedoch in der Nähe des Targets und nicht am Substrat, so dass die Wirkung des Plasmas für die am Substrat aufwachsenden Schichten begrenzt bleibt.
Durch Einlass eines Reaktivgases in eine Vakuumkammer kann der Abscheideprozess auch reaktiv erfolgen, d. h. dass die Schicht als ein Produkt aus dem Material des Targets und dem Reaktivgas gebildet wird. Beim reaktiven Magnetronsputtern wird allerdings das Target ebenfalls mit Reaktionsprodukten belegt, wodurch Parameter der Entladung und die Eigenschaften der am Substrat aufwachsenden Schichten beeinflusst werden können. Bei vielen Schichtsystemen muss der Abscheideprozess durch aufwändige Regelprozesse stabilisiert werden.
Als Reaktivgas beim Magnetronsputtern kann auch ein Precursor in eine Vakuumkammer eingelassen werden. Damit wird sowohl eine chemische Dampfabscheidung durch Aufspalten der Moleküle des Precursors im Plasma der Magnetronentladung und eine Kondensation der Spaltprodukte auf dem Substrat als auch ein physikalische Dampf- abscheidung durch Zerstäuben und Abscheiden des Targetmaterials erreicht.
Aus WO 03/048406 sind Vorrichtungen und Verfahren bekannt, die sowohl Merkmale von CVD- als auch von PVD-Prozessen vereinen. Innerhalb einer Vakuumkammer wird auf einer Kathode angeordnetes Targetmaterial auf physikalischem Wege zerstäubt. Gleichzeitig kann auch ein Precursor in die Vakuumkammer eingelassen werden, wodurch sich Reaktionsprodukte aus dem zerstäubten Targetmaterial und dem Precursor auf einem zumindest in Anodennähe angeordneten plattenförmigen Substrat abscheiden. Dabei befindet sich auf der nicht zu beschichtenden Seite des Substrates ein Magnetron derart, dass dessen Magnetfeld vorrangig über der Oberfläche der zu beschichtenden Seite des Substrates ausgebildet wird. Auf diese Weise kann die Intensität des Plasmas in Substrat- nähe etwas erhöht werden. Nachteilig wirkt sich hierbei aber immer noch aus, dass aufgrund des Precursorgases alle Bestandteile im Inneren der Vakuumkammer beschichtet werden und hier insbesondere die Targetoberflächen, da in deren Umgebung die höchste Plasmadichte vorliegt. Insbesondere beim Abscheiden von elektrisch isolierenden Schichten wird der Prozess des Zerstäubens dadurch erheblich gestört, wobei die Entladung in kurzer Zeit auch vollständig ausfallen kann. Des Weiteren wird eine Erhöhung der Plasmaintensität in Substratnähe aufgrund des zusätzlichen Magnetfeldes nur in einem geringen Maße erzielt.
Aufgabenstellung
Der Erfindung liegt daher das technische Problem zugrunde eine Vorrichtung und ein Verfahren zu schaffen, mittels denen die Nachteile aus dem Stand der Technik überwunden werden können. Insbesondere sollen es Vorrichtung und Verfahren ermöglichen, Schichten auf plattenförmigen oder bandförmigen metallischen Substraten mittels CVD-Prozessen abzuscheiden, bei denen auch elektrisch isolierende Schichten langzeitstabil und mit homogenen Eigenschaften abgeschieden werden können.
Die Lösung des technischen Problems ergibt sich durch die Gegenstände mit den Merkmalen der Patentansprüche 1 und 16. Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Patentansprüchen.
Eine erfindungsgemäße Vorrichtung und ein erfindungsgemäßes Verfahren zum Beschichten von mindestens einem plattenförmigen oder bandförmigen metallischen Substrat zeichnen sich aus durch eine Vakuumkammer, in welcher ein Magnetron-Permanent- magnet derart auf der nicht zu beschichtenden Seite des Substrates angeordnet ist, dass dessen Magnetfeld über der Oberfläche der zu beschichtenden Seite des Substrates ausgebildet wird, wobei mittels einer Zuführung ein Precursor in die Vakuumkammer einlassbar ist und das Substrat zumindest zeitweise als Kathode einer Magnetronentladung geschaltet ist. Dadurch, dass die geschlossene Spur der Magnetronentladung (auch Rennbahn ge- nannt) direkt über der zu beschichtenden Seite des Substrates brennt, wird dort ein Plasma mit einer sehr hohen Intensität erzeugt, was zum Erhöhen der Beschichtungsrate beiträgt. Vorteilhaft wirkt sich hierbei ebenfalls aus, dass es sich um ein kathodenseitiges Plasma handelt. Die ionisierten Materialpartikel im Plasma, welche überwiegend eine positive elektrische Ladung aufweisen, werden aufgrund des kathodisch geschalteten Substrats von diesem angezogen und somit noch einmal beschleunigt. Eine erfindungsgemäße Vorrichtung und ein erfindungsgemäßes Verfahren sind daher besonders geeignet, dichte und gegebenenfalls harte Schichten abzuscheiden. Die elektrische Spannung zwischen Kathode und Anode beträgt erfindungsgemäß 100 V bis 500 V. Beim Einspritzen des Precursors ist es vorteilhaft, wenn dieser mittels mehrerer gleichmäßig verteilter Düsen direkt in die Plasmazone über der zu beschichtenden Substratoberfläche eingelassen wird. Eine gleichmäßige Bewegung des Substrates in Beschichtungsrichtung mit konstanter Geschwindigkeit führt zu einer homogenen Schicht auf der Substratoberfläche.
Bei einer Ausführungsform wird dem Substrat der Entladungsstrom gepulst zugeführt. Dies ist beispielsweise vorteilhaft beim Abscheiden von elektrisch isolierenden Schichten. Auch das Anlegen einer Wechselspannung ist möglich. Je nach Anforderung bezüglich der elektrischen Eigenschaften der abzuscheidenden Schichten und der Schichtdicke wird eine Frequenz im Bereich von 10 kHz bis 500 kHz gewählt.
Für die Entladung wird eine weitere Elektrode benötigt, die als Anode geschaltet wird. Als Anode kann beispielsweise eine metallische Vakuumkammerwand verwendet werden.
Bei einer alternativen Ausführungsform weist ein zu beschichtendes Substrat das gleiche elektrische Potential auf wie die Vakuumkammer. Daher ist es erforderlich eine separate Anode in der Vakuumkammer einzubringen. Die Anode wird dabei vorzugsweise derart angeordnet, dass diese der zu beschichtenden Seite des Substrates gegenüber liegt. Bei einer bevorzugten Ausführungsform ist die Anode topfförmig ausgebildet, wobei die Öffnung dem Substrat zugewandt ist. Anode und Substrat begrenzen auf diese Weise zumindest teilweise ein Volumen, in welchem der Einlassstutzen des Precursors endet. Die Grundfläche des „Anodentopfes" kann dabei jegliche runde, ovale oder auch eckige Form aufweisen.
Um zu verhindern, dass die Magnetronentladung in unerwünschter Weise auf andere Bestandteile innerhalb der Vakuumkammer überspringt, ist eine elektrische Abschirmung vorteilhaft, welche haubenförmig ausgebildet die Anode umschließt. Die zum Substrat hin gerichtete Öffnung der haubenförmigen Abschirmung (auch Dunkelfeldabschirmung genannt) wird nahe an das Substrat herangezogen. Hierdurch wird auch ein partieller Überdruck des einströmenden Precursors im von Anode und Substrat begrenzten Volumen erzeugt. Der Spalt zwischen dem Substrat und der metallischen Abschirmung wird dabei so klein ausgelegt, dass das Plasma im von Anode und Substrat begrenzten Volumen konzentriert bleibt. Für eine wirksame Dunkelfeldabschirmung sollte der Spalt zwischen Substrat und Abschirmung einen Bereich von 1 mm bis 10 mm nicht überschreiten. Dieser Spalt kann jedoch beispielsweise dann größer ausgebildet werden, wenn zwischen Substrat und Abschirmung ein metallisches Blech oder ein Stapel voneinander beabstandeter metallischer Bleche, welche im Wesentlichen parallel zur Substratoberfläche verlaufen, angeordnet wird/werden. Dabei sollte jedoch auch der Abstand zwischen Abschirmung und benachbartem Blech, zwischen den einzelnen benachbarten Blechen und zwischen Substrat und benachbartem Blech nicht größer als jeweils 1 mm bis 10 mm sein. Auf diese Weise kann einerseits der Querschnitt vergrößert werden, durch den das Gas aus dem von Anode und Substrat begrenzten Volumen in den äußeren Bereich der Vakuumkammer strömen kann, andererseits wird verhindert, dass die Entladung aus dem von Abschirmung und Substrat begrenzten Volumen heraus brennt.
Bei einer weiteren Ausführungsform ist ein Magnetron innerhalb der Vakuumkammer an- geordnet, mittels dem ein Anteil des für die Schichtabscheidung benötigten Materials durch Zerstäuben eines Targets auf dem Magnetron bereitgestellt wird. Dabei ist eine Elektrode des Magnetrons zeitweise als Anode bezüglich der Substrat-Kathode geschaltet. Substrat und Elektrode werden periodisch abwechselnd als Kathode bzw. Anode geschaltet. Für das Zerstäuben des Targets ist es vorteilhaft, wenn zusätzlich zum Precursor noch ein Sputtergas in die Vakuumkammer eingelassen wird.
Eine weitere Ausführungsform ergibt sich, wenn die für die Magnetronentladung auf dem Substrat erforderliche Anode durch ein heißes verdampfendes Material gebildet wird. Das Verdampfungsmaterial wird hierbei in einem Tiegel gelagert und als Anode der Magnetron- entladung geschaltet. Als Energiequelle für das Verdampfen wird vorzugsweise ein Elektronenstrahl verwendet, der von einer Elektronenkanone generiert wird. Je nach Verdampfungsmaterial kann die Energiequelle für die Verdampfung auch eine andere sein, wie beispielsweise ein Strahlungsheizer oder Induktionsverdampfer. Der Vorteil dieser Ausführungsform ist, dass die Anode durch die Verdampfung stets von Ablagerungen des CVD-Prozesses freigehalten wird und dem Prozess über eine lange Zeit eine metallische
Oberfläche mit gutem Kontakt zum Plasma anbietet. Auf diese Art und Weise wird Material vom Verdampfungsgut zusätzlich in die abzuscheidende Schicht eingebaut. Diese Ausführungsform eignet sich daher auch besonders zum Abscheiden von elektrisch isolierenden Schichten.
Ausführungsbeispiel
Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsbeispiele näher erläutert. Die Fig. zeigen: Fig. 1 eine schematische Darstellung einer erfindungsgemäßen Vorrichtung; Fig. 2 eine schematische Darstellung einer alternativen erfindungsgemäßen Vorrichtung.
In Fig. 1 ist schematisch eine Vorrichtung 101 dargestellt, mittels der innerhalb einer Vakuumkammer 102 auf einem 100 m langen, 50 cm breiten und 0,5 mm dicken band- förmigen Stahl-Substrat 103 eine transparente und harte Schicht abgeschieden werden soll. Hierzu wird über einen Einlass 104 der Precursor HMDSO in die Vakuumkammer 102 eingelassen. Auf der nicht zu beschichtenden Seite des Substrates 103 ist ein Magnetron- Permanentmagnet 105 derart angeordnet, dass dessen Magnetfeld über der Oberfläche der zu beschichtenden Seite des Substrates 103 ausgebildet wird. Auf der zu beschichtenden Seite des Substrates 103 befindet sich innerhalb der Vakuumkammer 102 eine topfförmige Anode 106, welche aus Kupfer besteht und wassergekühlt ausgebildet ist. Mittels einer nicht dargestellten Stromversorgungseinrichtung wird zwischen dem über einen Schleifkontakt als Kathode geschalteten Substrat 103 und der Anode 106 eine elektrische Spannung von etwa 200 V angelegt, wodurch eine Entladung zwischen Kathode 103 und Anode 106 gezündet und ein Plasma 107 ausgebildet wird. Dabei weist das Plasma 107 die höchsten Intensitäten in den Bereichen auf, in denen das Magnetfeld des Magnetron- Permanentmagneten 105 über der Substratoberfläche ausgebildet wird.
Damit sich das Plasma hauptsächlich in dem von Anode 105 und Substrat 103 begrenzten Bereich ausbildet, umschließt eine haubenförmige Abschirmung 108, deren Öffnung zum Substrat hin ausgerichtet ist, die Anode 105. Die Abschirmung 108 besteht aus Stahlblech und ist als so genannte Dunkelfeldabschirmung ausgebildet. Zwischen dem Rand der Abschirmung 108 und dem Substrat 103 ist ein Stapel von 2 mm dicken Kupferblechen 109 angeordnet, die jeweils 3 mm voneinander beabstandet und weitgehend parallel zur Substratoberfläche ausgerichtet sind. Durch die Kupferbleche wird einerseits die Dunkelfeldabschirmung aufrechterhalten und andererseits der Querschnitt vergrößert, durch den das Precursorgas bzw. dessen Spaltprodukte aus dem von Abschirmung und Substrat begrenzten Bereich entweichen und von Pumpeinrichtungen der Vakuumkammer abgepumpt werden können.
Mittels der beschriebenen Einrichtung konnte eine transparente Schicht abgeschieden werden, welche vorrangig die Elemente Si, C und O umfasst, die eine Härte von 18 GPa aufweist und bei der das Verhältnis von Sauerstoff und Silizium eins zu drei bezüglich derer Atomprozente beträgt. Eine alternative Ausführungsform einer erfindungsgemäßen Vorrichtung 201 ist in Fig. 2 schematisch dargestellt. Innerhalb einer Vakuumkammer 202 soll auf einem 200 m langen, 30 cm breiten und 1 mm dicken bandförmigen Aluminium-Substrat 203 eine Ti:C:H-Schicht abgeschieden werden. Hinter dem Substrat 203 ist wiederum ein Magnetron-Permanent- magnet 205 angeordnet, welcher über der zu beschichtenden Oberfläche des Substrates 203 ein Magnetfeld ausbildet. Die für die Schichtabscheidung erforderlichen chemischen Elemente werden einerseits über einen Zufluss 204, durch den der Precursor Azetylen in die Vakuumkammer 202 gelangt und andererseits in einem Verdampfertiegel 210, in welchem Titanmaterial 21 1 gelagert ist, bereitgestellt. Eine Elektronenkanone 212 erzeugt einen Elektronenstrahl 213, mittels dem die Oberfläche des Titanmaterials 21 1 periodisch abgerastert, dadurch erhitzt und letztendlich in die Dampfphase überführt wird. Das Anlegen einer Spannung von 300 V zwischen dem als Kathode geschalteten Substrat 203 und dem als Anode geschalteten Verdampfertiegel 210 samt Titanmaterial 21 1 führt zu einer Magnetronentladung zwischen Kathode und Anode sowie zum Ausbilden eines Plasmas 207 mit einer hohen Plasmadichte direkt über der zu beschichtenden Oberfläche des Substrates 203. Die Reaktionspartikel aus dem verdampften Titan und den Precursorbestandteilen werden an der Substratoberfläche abgeschieden. Der Abscheidevorgang wird dabei noch durch den Sachverhalt, dass das Substrat als Kathode geschaltet ist, verstärkt, da der überwiegende Anteil der ionisierten Materialpartikel im Plasma mit einer positiven elektrischen Ladung versehen sind.
Auch hier ist, wie bereits zu Fig. 1 beschrieben, die Anode (Verdampfertiegel 210 und Titanmaterial 21 1) mit einer elektrischen Abschirmung 208 versehen, welche die Anode umschließt und substratseitig offen ausgebildet ist, wobei zwischen dem Rand der Abschirmung und dem Substrat 203 ebenfalls wieder ein Stapel voneinander beabstandeter Bleche 209 aus Kupfer angeordnet ist.

Claims

Patentansprüche
1. Vorrichtung zum Beschichten von mindestens einem plattenförmigen oder bandförmigen metallischen Substrat, umfassend eine Vakuumkammer, in welcher ein Magnetron-Permanentmagnet derart auf der nicht zu beschichtenden Seite des
Substrates angeordnet ist, dass dessen Magnetfeld über der Oberfläche der zu beschichtenden Seite des Substrates ausgebildet ist, wobei mittels einer Zuführung ein Precursor in die Vakuumkammer einlassbar ist, dadurch gekennzeichnet, dass das Substrat zumindest zeitweise als Kathode einer Magnetronentladung geschaltet ist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Vakuumkammer als Anode der Magnetronentladung ausgebildet ist.
3. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass eine separate Anode für die Magnetronentladung innerhalb der Vakuumkammer auf der zu beschichtenden Seite des Substrates angeordnet ist.
4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass das Substrat mit der elektrischen Vakuumkammermasse verbunden ist.
5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass eine zum Substrat hin offene elektrische Abschirmung die Anode umschließt.
6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, das zwischen dem Substrat und der Abschirmung ein Metallblech oder ein Stapel mehrerer voneinander be- abstandeter Metallbleche angeordnet ist, wobei das Metallblech oder die Metallbleche weitgehend parallel zur Substratoberfläche ausgerichtet sind.
7. Vorrichtung nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die an- einandergrenzenden Elemente Abschirmung, Metallblech und Substrat einen Abstand von jeweils 1 mm bis 10 mm aufweisen.
8. Vorrichtung nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, das die
Zuführung für den Precursor in das von Abschirmung und Substrat begrenzte Volumen hineingeführt ist.
9. Vorrichtung nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass eine Elektrode eines Magnetrons als Anode für die Magnetronentladung ausgebildet ist.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass das Substrat und die Elektrode abwechselnd Kathode oder Anode der Magnetronentladung sind.
1 1. Vorrichtung nach Anspruch 9 oder 10, gekennzeichnet durch einen Sputtergas- Einlass.
12. Vorrichtung nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass das Verdampf ungsmaterial einer Verdampfereinrichtung als Anode der Magnetronentladung geschaltet ist.
13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet dass die Verdampfereinrichtung als Elektronenstrahlverdampfer ausgebildet ist.
14. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem Substrat gepulste Energie zuführbar ist.
15. Vorrichtung nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass das Substrat mit Wechselspannung beaufschlagbar ist.
16. Verfahren zum Beschichten von mindestens einem plattenförmigen oder bandförmigen metallischen Substrat in einer Vakuumkammer, in welcher ein Magnetron- Permanentmagnet derart auf der nicht zu beschichtenden Seite des Substrates an- geordnet wird, dass dessen Magnetfeld über der Oberfläche der zu beschichtenden
Seite des Substrates ausgebildet wird, wobei mittels einer Zuführung ein Precursor in die Vakuumkammer einlassen wird, dadurch gekennzeichnet, dass das Substrat zumindest zeitweise als Kathode einer Magnetronentladung geschaltet wird.
17. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass die Vakuumkammer als Anode der Magnetronentladung geschaltet wird.
18. Verfahren nach Anspruch 16, dadurch gekennzeichnet, dass eine separate Anode für die Magnetronentladung innerhalb der Vakuumkammer auf der zu beschichtenden Seite des Substrates angeordnet wird.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass das Substrat mit der elektrischen Vakuumkammermasse verbunden wird.
20. Verfahren nach Anspruch 18 oder 19, dadurch gekennzeichnet, dass eine zum Substrat hin offene elektrische Abschirmung, welche die Anode umschließt, verwendet wird.
21. Verfahren nach Anspruch 20, dadurch gekennzeichnet, das zwischen dem Substrat und der Abschirmung ein Metallblech oder ein Stapel mehrerer voneinander be- abstandeter Metallbleche angeordnet wird, wobei das Metallblech oder die Metallbleche weitgehend parallel zur Substratoberfläche ausgerichtet werden.
22. Verfahren nach einem der Ansprüche 18 bis 21 , dadurch gekennzeichnet, dass
Bestandteile des abzuscheidenden Schichtmaterials durch Magnetronsputtern innerhalb der Vakuumkammer bereitgestellt werden.
23. Verfahren nach einem der Ansprüche 18 bis 21 , dadurch gekennzeichnet, dass Bestandteile des abzuscheidenden Schichtmaterials durch Verdampfen innerhalb der
Vakuumkammer bereitgestellt werden, wobei das zu verdampfende Material als Anode der Magnetronentladung geschaltet wird.
24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass das Verdampfungs- material mittels eines Elektronenstrahls verdampft wird.
25. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dem Substrat gepulste Energie zugeführt wird.
26. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Substrat mit Gleichspannung oder Wechselspannung beaufschlagt wird.
PCT/EP2007/009481 2007-01-31 2007-10-31 Vorrichtung und verfahren zum beschichten von plattenförmigen oder bandförmigen metallischen substraten WO2008092485A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710004760 DE102007004760A1 (de) 2007-01-31 2007-01-31 Vorrichtung und Verfahren zum Beschichten von plattenförmigen oder bandförmigen metallischen Substraten
DE102007004760.8 2007-01-31

Publications (1)

Publication Number Publication Date
WO2008092485A1 true WO2008092485A1 (de) 2008-08-07

Family

ID=38859035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/009481 WO2008092485A1 (de) 2007-01-31 2007-10-31 Vorrichtung und verfahren zum beschichten von plattenförmigen oder bandförmigen metallischen substraten

Country Status (2)

Country Link
DE (1) DE102007004760A1 (de)
WO (1) WO2008092485A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010003476A1 (de) * 2008-06-16 2010-01-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beschichtungsverfahren und vorrichtung mittels einer plasmagestützen chemischen reaktion

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120164353A1 (en) * 2009-09-05 2012-06-28 John Madocks Plasma enhanced chemical vapor deposition apparatus
DE102012107630B3 (de) * 2012-08-20 2014-01-23 Von Ardenne Anlagentechnik Gmbh Magnetronsputterätzvorrichtung mit Anodengehäuse und Anlage zur Vakuumbehandlung von bandförmigen Substraten
DE102012111186B4 (de) * 2012-11-20 2017-01-26 Von Ardenne Gmbh Verfahren und Vorrichtung zum Erzeugen einer Magnetron-Entladung
CN115354289B (zh) * 2022-08-26 2023-09-05 松山湖材料实验室 一种离子源辅助沉积系统、沉积方法及真空镀膜设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981713A (en) * 1990-02-14 1991-01-01 E. I. Du Pont De Nemours And Company Low temperature plasma technology for corrosion protection of steel
JP2001192837A (ja) * 2000-01-14 2001-07-17 Tdk Corp プラズマcvd装置
WO2003048406A2 (de) * 2001-12-06 2003-06-12 Interpane Entwicklungs- Und Beratungsgesellschaft Mbh & Co. Beschichtungsverfahren und beschichtung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4981713A (en) * 1990-02-14 1991-01-01 E. I. Du Pont De Nemours And Company Low temperature plasma technology for corrosion protection of steel
JP2001192837A (ja) * 2000-01-14 2001-07-17 Tdk Corp プラズマcvd装置
WO2003048406A2 (de) * 2001-12-06 2003-06-12 Interpane Entwicklungs- Und Beratungsgesellschaft Mbh & Co. Beschichtungsverfahren und beschichtung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHR. METZNER: "PVD-Beschichtung metallischer Platten und Bänder", VAKUUM IN FORSCHUNG UND PRAXIS, vol. 1, 2000, pages 45 - 52, XP002465799 *
J. FABER, G. HÖTSSCH, CHR. METZNER: "Sputter etching of steel substrates using DC and MF pulsed magnetron discharges", VACUUM, vol. 64, 2002, pages 55 - 63, XP002465798 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010003476A1 (de) * 2008-06-16 2010-01-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Beschichtungsverfahren und vorrichtung mittels einer plasmagestützen chemischen reaktion
TWI401336B (zh) * 2008-06-16 2013-07-11 藉由一電漿支持之化學反應於一基層上鍍層之方法與裝置

Also Published As

Publication number Publication date
DE102007004760A1 (de) 2008-08-07

Similar Documents

Publication Publication Date Title
EP0755461B1 (de) Verfahren und einrichtung für die ionengestützte vakuumbeschichtung
EP0439561B1 (de) Verfahren und vorrichtung zur beschichtung von substraten
DE10018143B4 (de) DLC-Schichtsystem sowie Verfahren und Vorrichtung zur Herstellung eines derartigen Schichtsystems
WO2010057747A1 (de) Verfahren zur vorbehandlung von substraten für pvd verfahren
DE102008028542B4 (de) Verfahren und Vorrichtung zum Abscheiden einer Schicht auf einem Substrat mittels einer plasmagestützten chemischen Reaktion
WO2008092485A1 (de) Vorrichtung und verfahren zum beschichten von plattenförmigen oder bandförmigen metallischen substraten
EP0603464B1 (de) Verfahren zum Beschichten von Substraten
EP0867036B1 (de) Verfahren und einrichtung zur vorbehandlung von substraten
DE102008032256B4 (de) Vorrichtung und Verfahren zum Abscheiden aus der Dampfphase mit Sputterverstärkung
EP2286643B1 (de) Vorrichtung und verfahren zum hochleistungs-puls-gasfluss-sputtern
DE102014207454B4 (de) Vorrichtung zur Ausbildung einer Beschichtung auf einer Substratoberfläche
DE102013107659B4 (de) Plasmachemische Beschichtungsvorrichtung
DE102016116762A1 (de) Verfahren zum Abscheiden einer Schicht mittels einer Magnetronsputtereinrichtung
DD286375A5 (de) Bogenentladungsverdampfer mit mehreren verdampfertiegeln
EP2820165A1 (de) Verfahren zum abscheiden einer lipon-schicht auf einem substrat
DE69634071T2 (de) Verfahren und Vorrichtung zum Beschichten eines Substrats
DE102004015230B4 (de) Verfahren und Vorrichtung zum Intensivieren einer gepulsten Magnetronentladung
DE4202211A1 (de) Sputteranlage mit wenigstens einer magnetron-kathode
EP1473382A1 (de) Verfahren und Einrichtung zur plasmaaktivierten Schichtabscheidung durch Kathodenzerstäubung nach dem Magnetron-Prinzip
DD246571A1 (de) Einrichtung zur plasmagestuetzten abscheidung von mischschichten
DE10352516B4 (de) Verfahren und Vorrichtung zur Abscheidung dünner Schichten auf einem organischen Substrat
DE19754821A1 (de) Verfahren und Vorrichtung für eine PVD-Beschichtung
DE10318363A1 (de) Verfahren und Einrichtung zum plasmaaktivierten Hochrate-Bedampfen großflächiger Substrate
WO2012072215A1 (de) Verfahren zur herstellung eines kohlenstoffhaltigen schichtsystems sowie vorrichtung zur durchführung des verfahrens
DE3904991A1 (de) Kathodenzerstaeubungsvorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07819512

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07819512

Country of ref document: EP

Kind code of ref document: A1