WO2008087115A2 - Verfahren zur herstellung einer das element eisen in oxidischer form enthaltenden multielementoxidmasse - Google Patents

Verfahren zur herstellung einer das element eisen in oxidischer form enthaltenden multielementoxidmasse Download PDF

Info

Publication number
WO2008087115A2
WO2008087115A2 PCT/EP2008/050341 EP2008050341W WO2008087115A2 WO 2008087115 A2 WO2008087115 A2 WO 2008087115A2 EP 2008050341 W EP2008050341 W EP 2008050341W WO 2008087115 A2 WO2008087115 A2 WO 2008087115A2
Authority
WO
WIPO (PCT)
Prior art keywords
iron
iron nitrate
aqueous
temperature
hydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2008/050341
Other languages
German (de)
English (en)
French (fr)
Other versions
WO2008087115A3 (de
Inventor
Andreas Raichle
Holger Borchert
Klaus Joachim MÜLLER-ENGEL
Ulrich Cremer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to BRPI0806241-2A priority Critical patent/BRPI0806241A2/pt
Priority to EP08701461.9A priority patent/EP2104646B1/de
Priority to JP2009545195A priority patent/JP5562038B2/ja
Priority to KR1020097016979A priority patent/KR101465279B1/ko
Priority to CN200880002381XA priority patent/CN101583569B/zh
Publication of WO2008087115A2 publication Critical patent/WO2008087115A2/de
Publication of WO2008087115A3 publication Critical patent/WO2008087115A3/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing iron, with or without oxygen or hydrogen, and containing two or more other elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron

Definitions

  • the present invention relates to a process for the preparation of a element iron and at least one other elemental constituent different from oxygen in oxidic form containing multielement oxide composition, wherein the sources of the elemental constituents of the Multielementoxidmasse a elementary constituents containing dry mixture containing as precursor material and the Former mass as such or molded into a shaped body thermally treated at elevated temperature, wherein as a source of the elemental constituent iron, an aqueous solution of iron nitrate is also used.
  • Multielement oxide compositions containing the element iron and at least one other elemental constituent other than oxygen in oxidic form are known (see, for example, US 2005/0131253 A1, US-A 3,825,600, EP-A 1080781 and DE-A 102005035978). Among others, they are used as active material for catalysts capable of catalyzing heterogeneously catalyzed gas-phase partial oxidations of a wide variety of organic starting compounds (eg from propylene to acolein, from isobutene to methacrolein, from n-butane to maleic anhydride, from propylene to acrylonitrile, or from iso-butene to methacrylonitrile).
  • organic starting compounds eg from propylene to acolein, from isobutene to methacrolein, from n-butane to maleic anhydride, from propylene to acrylonitrile, or from iso-butene to methacrylonitrile.
  • a complete oxidation of an organic compound with molecular oxygen is understood here to mean that the organic compound is reacted under the reactive action of molecular oxygen in such a way that the carbon contained in the organic compound as a whole is contained in oxides of carbon and in the total amount of hydrogen contained in the organic compound is converted into oxides of hydrogen. All of these differing reactions of an organic compound under the reactive action of molecular oxygen are summarized here as partial oxidations of an organic compound.
  • partial reactions are to be understood here as meaning those reactions of organic compounds under the reactive action of molecular oxygen, in which the partially oxidized organic compound contains at least one oxygen atom more chemically bound after completion of the reaction than before the partial oxidation (the term partial oxidation is in this document also the partial ammoxidation, ie, a partial oxidation in the presence of ammonia, include).
  • the catalyst bed has the task of causing the desired gas phase partial oxidation to take place. on preferential over the complete oxidation expires.
  • the chemical reaction takes place when the reaction gas mixture flows through the catalyst bed during the residence time of the reaction gas mixture in selbigem.
  • the reactants in the reaction gas mixture are diluted by a substantially inert diluent gas whose constituents under the conditions of the heterogeneously catalyzed gas phase partial oxidation - each constituent per se - more than 95 mol%, preferably more than 99 mol% chemically unchanged remain.
  • the catalytically active oxide composition may contain only one other element or more than another element (multielement oxide masses). Particularly frequently used as catalytically active oxide materials are those which, in addition to iron, comprise at least one other metallic, in particular transitional, metallic element. In this case one speaks of Multimetalloxidmas- sen.
  • the multielement oxide compositions are not simple physical mixtures of oxides of the elemental constituents, but heterogeneous and / or homogeneous mixtures of complex polyoxo compounds of these elements.
  • Multielementoxidmassen is usually carried out so that with appropriate sources of their elemental constituents (preferably intimately and application technically functional finely divided) of their stoichiometry correspondingly assembled dry mix and this formed as such or to a shaped body at elevated temperature (often 150 to 650 0 C) thermally treated.
  • Suitable sources for the elemental constituents of the desired multielement oxide active substance are in principle those compounds which are already oxides and / or compounds which can be converted into oxides by heating (thermal treatment) (at least in the presence of gaseous molecular oxygen).
  • the oxygen source may also be e.g. be part of the precursor mixture in the form of a peroxide.
  • such sources are, in particular, halides, nitrates, formates, oxalates, citrates, acetates, carbonates, amine complexes, ammonium salts and / or hydroxides.
  • Compounds such as NH 4 OH, (NH 4 ) 2 CO 3 , NH 4 NO 3 , NH 4 CHO 2 , CH 3 COOH, NH 4 CH 3 CO 2 and / or ammonium oxalate, which, like the abovementioned constituents, in the thermal treatment to essenli - gaseous escaping compounds can disintegrate and / or decomposed, can be incorporated in the precursor mixture additionally.
  • the precursor dry mixture may additionally contain finely divided reinforcing aids such as glass microfibers, asbestos, silicon carbide and / or potassium titanate.
  • reinforcing aids such as glass microfibers, asbestos, silicon carbide and / or potassium titanate.
  • Forming aids such as boron nitride, graphite, carbon black, polyethylene glycol, stearic acid, starch, polyacrylic acid, mineral or vegetable oil, water, boron trifluoride, glycerol and cellulose ethers can also be added (cf., for example, German specification with the file reference 102005037678.9).
  • The, preferably intimate, mixing of the starting compounds (sources) for the preparation of the dry precursor composition takes place suitably from an application point of view in wet form.
  • the starting compounds are at least partially mixed together in the form of an aqueous solution and / or suspension.
  • solvent and / or suspending medium but also liquids other than water such. Methanol, ethanol, iso-butanol, benzene, diethyl ether and other organic solvents into consideration.
  • the wet preparation is converted by drying and, if appropriate, subsequent comminution into a dry mixture from which, as such or after shaping into a shaped body, the multilayer oxide active composition is produced by thermal treatment.
  • Iron (II) and / or iron (III) nitrate is normally used as the source of the elemental constituent iron in the process of the prior art in the context of the production of multielement oxide compositions of the invention (the Roman numeral indicates the oxidation state of the iron). and, for reasons of intimate wet mixing of the various sources to be used for the preparation of the precursor composition, this is preferably from an application point of view as an aqueous solution (eg US Pat. No. 3,825,600, US-2005/0131253 A1 and EP-A 1080781).
  • the preparation of the aqueous solution of iron nitrate takes place in that iron (II) nitrate (Fe (NOs) 2), or iron (III) nitrate (Fe (NOs) 3), or at a temperature of 25 ° C and a pressure of 1 bar solid hydrate of the foregoing iron nitrates (eg Fe (NOs) 2 ⁇ 6H 2 O, or Fe (NOs) 3 ⁇ 6H 2 O, or Fe (NOs) 3 ⁇ 9H 2 O, or Fe (NOs) 2 ⁇ 9H 2 O or a mixture of various aforementioned salts in water, or in an aqueous solution (this may already contain other chemical components dissolved)) is dissolved.
  • the object of the present invention was therefore to provide a form of iron nitrate which is more suitable for the industrial production of aqueous iron nitrate solutions, which on the one hand is comparatively easily accessible and on the other hand both easy to convey and precisely metered.
  • a process for producing a multielement oxide composition containing the element iron and at least one other elemental constituent other than oxygen in oxidic form comprising producing a constituent element-containing dry mixture precursor composition and sources of the elemental constituents of the multielement oxide composition thermally treated as such or formed into a shaped body at elevated temperature, wherein an aqueous solution of iron nitrate is used as the source of the elemental constituent iron, characterized in that the preparation of the aqueous iron nitrate solution comprises melting one at a temperature of 25 ° C and a pressure of 1 bar in the solid state hydrate of iron nitrate.
  • Basis of the procedure according to the invention is the fact that the melting point of located at 25 ° C and a pressure of 1 bar in the solid state hydrates of iron nitrate at atmospheric pressure (1 bar) is comparatively low.
  • aqueous solutions of iron nitrate can thus be obtained in a particularly simple manner.
  • aqueous solutions are easy to convey and can be metered with pinpoint accuracy.
  • they may be directly as such a source of iron nitrate to be used in the present invention.
  • water or a water-miscible organic solvent and / or the source of one or more other constituents of the multielement oxide composition (optionally in solution) may also be added at any time prior to use as an iron nitrate source in the process of the invention.
  • the water is connected to a hot water circuit.
  • the temperature of the circulating water is usually above the melting temperature of the iron nitrate hydrate (preferably> 10 0 C above the melting temperature of the iron nitrate), but normally at a value ⁇ 98 0 C.
  • the container containing the melt (aqueous iron nitrate solution) is located on a balance.
  • the desired amount of the melt (the aqueous solution) for use in the method according to the invention can be sent out at any time in terms of application technology.
  • solid iron nitrate hydrate is added to the remaining melt and melted, so as to replenish the aqueous iron nitrate solution.
  • the container containing the iron nitrate melt is substantially closed.
  • the pressure in the exhaust air system is preferably> 950 mbar abs., Particularly preferably> 980 mbar abs. and most preferably> 995 mbar abs ..
  • this pressure will not be more than 1100 mbar absolute (abs.). Slight negative pressure relative to the atmosphere is preferred.
  • inert gases for example, ISb, CO2 and / or noble gases can be used.
  • the remelting of solid iron nitrate hydrate in iron-nitrate melt remaining in the double-walled container is effected with stirring.
  • the exact Fe content of the solid iron nitrate hydrate is determined by analytical Determine mood on a first melted sample amount. This analytical determination can be carried out, for example, titrimetrically (ie by dimensional analysis).
  • the other starting compounds of the various elemental constituents of the desired multielement oxide composition for example in the form of an aqueous solution and / or suspension, are mixed together. Particularly intimate dry mixtures are obtained when it is assumed that only in dissolved form sources of elemental constituents.
  • the solvent (or dispersant) is preferably water.
  • the obtained, for example, aqueous mass is dried, wherein the drying process is industrially advantageous by spray drying of eg aqueous mixture with eg outlet temperatures of 100 to 150 0 C. In principle, however, the drying can also be carried out by freeze-drying, by conventional evaporation or by filtration and subsequent heating of the filter cake, for example in a rotary kiln.
  • the stoichiometry of the desired multielement oxide composition may be e.g. those of the general formula I, as described in EP-A 1080781, e.g. as an active composition for a heterogeneously catalyzed partial gas phase oxidation of propylene to acrolein,
  • X 2 K, Na, Rb, Cs and / or Tl
  • X 3 P, Nb, Mn, Ce, Te, W, Sb and / or Pb
  • X 4 Si, Al, Zr and / or Ti
  • b 0.1 to 10
  • c 0.1 to 10
  • d 2 to 20
  • e 0.001 to 5
  • f 0 to 5
  • g 0 to 30, and
  • n a number which is determined by the valence and frequency of the elements other than oxygen in I.
  • the stoichiometry of the desired multielement oxide composition may also be that of the general formula II, as described generally in US 2005/0131253.
  • tive mass for the heterogeneously catalyzed partial oxidation of an olefin to an unsaturated aldehyde recommends:
  • X 1 K, Na, Rb, Cs and / or Tl
  • X 2 P, B, As and / or W
  • X 3 Mg, Ca, Zn, Ce and / or Sm
  • X 4 F, Cl, Br and / or J
  • b 0.5 to 7
  • c 0 to 10
  • d 0 to 10
  • e 0.05 to 3
  • f 0.0005 to 3
  • g 0 to 3
  • h 0 to 1
  • i 0 to 0.5
  • j 0 to 40
  • n a number which is determined by the valency and frequency of the elements other than oxygen in II.
  • the process according to the invention also encompasses the preparation of all multielement oxide compositions described in the document with the file reference 102005037678.9 and in Research Disclosure 2005, 09, 497 (RD 2005-497012, 20050820), which contain the element iron.
  • These include, in particular, all multielement oxide materials of general stoichiometry III,
  • X 1 Ni and / or Co
  • X 2 thallium, an alkali metal and / or an alkaline earth metal
  • X 3 Zn, P, As, B, Sb, Sn, Ce, Pb and / or W,
  • the process according to the invention is suitable for the preparation of multielement oxide compositions which, in addition to oxygen and iron, in particular also contain the elements Bi and Mo.
  • multielement oxide compositions which, in addition to oxygen and iron, in particular also contain the elements Bi and Mo.
  • These also include in particular the multimetal oxide active compositions which are described in DE-A 100 46 957, DE-A 44 07 020, EP-A 835, EP-A 575 897 and DE-C 33 38 380.
  • the process according to the invention is suitable for the preparation of multimetal oxide compositions which, in addition to oxygen and iron, in particular also contain the elements V and P and are suitable as an active composition for the heterogeneously catalyzed partial oxidation of n-butane to maleic anhydride.
  • the stoichiometry of the multielement oxide mass may then be e.g. be one of the general formula IV,
  • X 1 Mo, Bi, Co, Ni, Si, Zn, Hf, Zr, Ti, Cr, Mn, Cu, B, Sn and / or Nb,
  • X 2 K, Na, Rb, Cs and / or Tl
  • b 0.9 to 1.5
  • c 0.005 to 0.1
  • d 0 to 0.1
  • e 0 to 0.1
  • n a number determined by the valence and frequency of the elements other than oxygen in IV.
  • thermal treatment of the dry precursor composition and the drying of the wet mixture of the elemental constituents of the desired multielement oxide composition can blend seamlessly into one another.
  • the dried precursor composition Prior to the thermal treatment, the dried precursor composition can be comminuted if necessary or formed into a shaped body.
  • the thermal treatment (calcination), within which the desired mutant oxide active mass is formed from the precursor composition, can in principle be carried out under an inert gas atmosphere (eg H2O, N2, CO2, noble gas or mixtures thereof) or under an oxidizing atmosphere (eg under a pure molecular weight) Oxygen, or under a mixture of molecular oxygen and inert gases (eg air), as well as under a reducing atmosphere (eg mixture of inert gas, NH3, CO and / or H2).
  • an inert gas atmosphere eg H2O, N2, CO2, noble gas or mixtures thereof
  • an oxidizing atmosphere eg under a pure molecular weight
  • Oxygen eg under a pure molecular weight
  • a mixture of molecular oxygen and inert gases eg air
  • a reducing atmosphere eg mixture of inert gas, NH3, CO and / or H2
  • the multielement oxide active masses resulting in the calcination can be shaped both in powder form and in shaped bodies of any desired geometry (cf., for example, WO 02/062737) as catalysts for gas phase partial oxidations (for example propylene to acrolein, isobutene to methacrolein, propylene to acrylonitrile, isobutene to methacrylonitrile, n-butane to maleic anhydride, butadiene to maleic anhydride, propane to acrolein and / or acrylic acid, isobutane to methacrolein and / or methacrylic acid).
  • gas phase partial oxidations for example propylene to acrolein, isobutene to methacrolein, propylene to acrylonitrile, isobutene to methacrylonitrile, n-butane to maleic anhydride, butadiene to maleic anhydride, propane to acrolein
  • spherical, solid cylindrical or annular unsupported catalysts may be prepared by compacting to the desired catalyst geometry (e.g., by extrusion or tableting), optionally with adjuvants such as e.g. Graphite or stearic acid as lubricants and / or molding aids and reinforcing agents such as microfibers of glass, asbestos, silicon carbide or potassium titanate can be added.
  • adjuvants such as e.g. Graphite or stearic acid as lubricants and / or molding aids and reinforcing agents such as microfibers of glass, asbestos, silicon carbide or potassium titanate can be added.
  • the shaping can also be carried out by applying the powder form of the multimetal oxide active composition or its uncalcined and / or partially calcined finely divided precursor composition to an inert carrier (eg spherical, cylindrical or annular), the application suitably in terms of application with the concomitant use of a liquid binder (eg water , or a mixture of water and glycerol) takes place.
  • a liquid binder eg water , or a mixture of water and glycerol
  • the longest extent (longest direct connecting line of two points located on the surface of the shaped catalyst body) of the resulting shaped catalyst bodies is generally 1 to 12 mm, often 2 to 10 mm.
  • Typical calcination temperatures are from 150 to 650 ° C., frequently from 250 to 550 ° C.
  • the calcination temperature will vary over the duration of the calcination.
  • the melting of iron (III) nitrate hydrates are preferred according to comprise (in particular (of Fe NO3) 3 ⁇ 6H2O and Fe (NOs) 3 ⁇ 9HbO; the latter is particularly preferred due to its less pronounced hygroscopicity).
  • a melting point depression can be effected by melting a mixture of different iron nitrate hydrates.
  • exclusively an aqueous solution of iron nitrate is used as the source of the elemental constituent iron, the preparation of which comprises melting a hydrate of iron nitrate (at 25 ° C., 1 bar) in the solid state.
  • the melt of the iron nitrate hydrate was easy to keep liquid and could be precisely metered in the context of the large-scale production of Fe-containing multielement oxide masses by discharging precalculated amounts by weight (the double-walled vessel was on a mass scale). Significant decomposition of Fe (NO 3 ) 3 ⁇ 9H 2 O during the melting process was not observed.
  • a second aqueous solution Il was prepared by adding, with stirring, to 500.6 kg of an aqueous cobalt (II) nitrate solution (12.4 wt .-% Co) at 6O 0 C 179.4 kg of a 60.5 ° C (NO 3) (13.8 wt .-% Fe) were aqueous having Fe 3 ⁇ 9H2 ⁇ melt. After complete addition, the mixture was stirred for 30 min at 6O 0 C again. Thereafter, at 6O 0 C 168.5 kg of a 20 0 C-containing aqueous bismuth nitrate solution (11 wt .-% Bi 2) is stirred to obtain the aqueous solution Il.
  • II aqueous cobalt
  • the resulting slurry was spray dried in a countercurrent process (gas inlet temperature: 400 ⁇ 10 0 C, gas outlet temperature: C 140 ⁇ 5 °) with a spray-dried powder was obtained as a dry precursor material, the loss on ignition (3 h at 600 ° C under air) for 30% of its weight amounted to.
  • the grain size of the spray powder was substantially uniformly 30 ⁇ m.
  • TIMREX T44 graphite from Timcal AG (CH-Bodio)
  • the precursor material became annular unsupported catalyst precursor bodies of the annular geometry 5 mm ⁇ 3 mm ⁇ 2 mm (outer diameter ⁇ height ⁇ inner diameter ) shaped. These were then calcined in air at 500 ° C. (9 h) to give the desired multimetal oxide catalyst.
  • This is suitable as a catalyst for the heterogeneously catalyzed gas phase partial oxidation of propylene to acrolein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Compounds Of Iron (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
PCT/EP2008/050341 2007-01-16 2008-01-14 Verfahren zur herstellung einer das element eisen in oxidischer form enthaltenden multielementoxidmasse Ceased WO2008087115A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0806241-2A BRPI0806241A2 (pt) 2007-01-16 2008-01-14 processos para preparação de um material de óxido de múltiplos elementos, e para a oxidação em fase gasosa parcial heterogeneamente catalisada de um composto orgánico, e, uso da massa fundida de um hidrato de nitrato de ferro
EP08701461.9A EP2104646B1 (de) 2007-01-16 2008-01-14 Verfahren zur herstellung einer das element eisen in oxidischer form enthaltenden multielementoxidmasse
JP2009545195A JP5562038B2 (ja) 2007-01-16 2008-01-14 鉄元素を酸化された形で含む、多元素酸化物材料の製造方法
KR1020097016979A KR101465279B1 (ko) 2007-01-16 2008-01-14 원소 철을 산화물 형태로 함유하는 다중원소 산화물 물질의 제조 방법
CN200880002381XA CN101583569B (zh) 2007-01-16 2008-01-14 生产含有氧化形式的铁元素的多元素氧化物材料的方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US88503707P 2007-01-16 2007-01-16
DE102007003076A DE102007003076A1 (de) 2007-01-16 2007-01-16 Verfahren zur Herstellung einer das Element Eisen in oxidischer Form enthaltenden Multielementoxidmasse
US60/885,037 2007-01-16
DE102007003076.4 2007-01-16

Publications (2)

Publication Number Publication Date
WO2008087115A2 true WO2008087115A2 (de) 2008-07-24
WO2008087115A3 WO2008087115A3 (de) 2009-04-09

Family

ID=39509952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/050341 Ceased WO2008087115A2 (de) 2007-01-16 2008-01-14 Verfahren zur herstellung einer das element eisen in oxidischer form enthaltenden multielementoxidmasse

Country Status (8)

Country Link
US (1) US8128904B2 (enExample)
EP (1) EP2104646B1 (enExample)
JP (1) JP5562038B2 (enExample)
KR (1) KR101465279B1 (enExample)
CN (1) CN101583569B (enExample)
BR (1) BRPI0806241A2 (enExample)
DE (1) DE102007003076A1 (enExample)
WO (1) WO2008087115A2 (enExample)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008040093A1 (de) 2008-07-02 2008-12-18 Basf Se Verfahren zur Herstellung eines ringähnlichen oxidischen Formkörpers
DE102008040094A1 (de) 2008-07-02 2009-01-29 Basf Se Verfahren zur Herstellung eines oxidischen geometrischen Formkörpers
DE102009047291A1 (de) 2009-11-30 2010-09-23 Basf Se Verfahren zur Herstellung von (Meth)acrolein durch heterogen katalysierte Gasphasen-Partialoxidation
DE102010048405A1 (de) 2010-10-15 2011-05-19 Basf Se Verfahren zum Langzeitbetrieb einer heterogen katalysierten partiellen Gasphasenoxidation von Proben zu Acrolein
KR20110098949A (ko) * 2008-12-12 2011-09-02 바스프 에스이 기하학적 촉매 성형체 k의 연속적 제조 방법

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011079035A1 (de) 2011-07-12 2013-01-17 Basf Se Mo, Bi und Fe enthaltende Multimetalloxidmassen
CN109225246A (zh) * 2011-07-12 2019-01-18 巴斯夫欧洲公司 含Mo、Bi和Fe的多金属氧化物物质
DE102011084040A1 (de) 2011-10-05 2012-01-05 Basf Se Mo, Bi und Fe enthaltende Multimetalloxidmasse
WO2015067659A1 (de) 2013-11-11 2015-05-14 Basf Se Mechanisch stabiler hohlzylindrischer katalysatorformkörper zur gasphasenoxidation eines alkens zu einem ungesättigten aldehyd und/oder einer ungesättigten carbonsäure
CN105899481A (zh) 2013-11-11 2016-08-24 巴斯夫欧洲公司 制备不饱和醛和/或不饱和羧酸的方法
KR102011252B1 (ko) * 2017-07-13 2019-08-16 부산대학교 산학협력단 이산화탄소의 전기환원반응용 촉매 및 이를 포함하는 전해셀
DE102018200841A1 (de) 2018-01-19 2019-07-25 Basf Se Mo, Bi, Fe und Cu enthaltende Multimetalloxidmassen
JP7105395B1 (ja) * 2020-09-24 2022-07-22 日本化薬株式会社 触媒前駆体、それを用いた触媒、化合物の製造方法及び触媒の製造方法
CN119730958A (zh) 2022-08-16 2025-03-28 巴斯夫欧洲公司 用于制备用于将烯烃和/或醇气相氧化成α,β-不饱和醛和/或α,β-不饱和羧酸的固体催化剂模制体的方法
WO2025172145A1 (de) 2024-02-16 2025-08-21 Basf Se Anorganische faser-haltiger multi-element-vollkatalysatorformkörper zur herstellung von ungesättigten aldehyden und ungesättigten carbonsäuren; dessen herstellungsverfahren sowie verwendung in der gasphasenoxidation
WO2025176520A1 (de) 2024-02-23 2025-08-28 Basf Se Verfahren zur herstellung eines ethylenisch ungesättigten aldehyds und/oder einer ethylenisch ungesättigten carbonsäure an einem katalysatorfestbett eines rohrbündelreaktors

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3218135A (en) * 1962-01-31 1965-11-16 Du Pont Powder metal compositions containing dispersed refractory oxide
DE2125032C3 (de) 1970-05-26 1979-11-22 Nippon Catalytic Chem Ind Verfahren zur Herstellung von (Meth) Acrolein neben geringen Mengen (Meth) Acrylsäure
GB1523772A (en) * 1974-07-22 1978-09-06 Standard Oil Co Oxidation catalysts
US4148757A (en) 1977-08-10 1979-04-10 The Standard Oil Company Process for forming multi-component oxide complex catalysts
US4212766A (en) * 1978-04-21 1980-07-15 Standard Oil Company Process for forming multi-component oxide complex catalysts
US4537874A (en) 1982-10-22 1985-08-27 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for production of unsaturated aldehydes
JPS60232245A (ja) * 1984-05-01 1985-11-18 Mitsubishi Heavy Ind Ltd 一酸化炭素転化用モノリス型触媒の製造法
US4978764A (en) * 1989-09-25 1990-12-18 The Standard Oil Company Method for ammoxidation of paraffins
DE3932389A1 (de) * 1989-09-28 1991-04-11 Basf Ag Verfahren zur herstellung von feinteiligem pulverfoermigem hexagonalem ferrit und seine verwendung zur herstellung von magnetischen aufzeichnungstraegern
DE4220859A1 (de) 1992-06-25 1994-01-05 Basf Ag Multimetalloxidmassen
US5583086A (en) 1993-03-09 1996-12-10 Basf Aktiengesellschaft Cesium containing multimetal oxide catalyst compositions for the preparation of methacrolein by gas-phase-catalytic oxidation
JP3895527B2 (ja) * 1999-08-31 2007-03-22 株式会社日本触媒 接触気相酸化方法
ZA200004211B (en) 1999-08-31 2001-02-14 Nippon Catalytic Chem Ind Method for catalytic gas phase oxidation.
DE10046957A1 (de) * 2000-09-21 2002-04-11 Basf Ag Verfahren zur Herstellung eines Multimetalloxid-Katalysators, Verfahren zur Herstellung ungesättigter Aldehyde und/oder Carbonsäuren und Bandcalziniervorrichtung
DE10101695A1 (de) 2001-01-15 2002-07-18 Basf Ag Verfahren zur heterogen katalysierten Gasphasenpartialoxidation von Vorläuferverbindungen der (Meth)acrylsäure
WO2005046870A1 (ja) 2003-11-14 2005-05-26 Mitsubishi Chemical Corporation 複合酸化物触媒の製造方法
JP2005161309A (ja) * 2003-11-14 2005-06-23 Mitsubishi Chemicals Corp 複合酸化物触媒の製造方法
US20050279966A1 (en) * 2004-06-16 2005-12-22 Dejneka Matthew J Nanocrystallite glass-ceramic and method for making same
DE102005035978A1 (de) 2005-07-28 2007-02-01 Basf Ag Katalysator und Verfahren zur Herstellung von Maleinsäureanhydrid
DE102005037678A1 (de) 2005-08-05 2007-02-08 Basf Ag Verfahren zur Herstellung von Katalysatorformkörpern, deren Aktivmasse ein Multielementoxid ist
ATE428497T1 (de) * 2005-08-05 2009-05-15 Basf Se Verfahren zur herstellung von katalysatorformkörpern, deren aktivmasse ein mischoxid ist

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008040093A1 (de) 2008-07-02 2008-12-18 Basf Se Verfahren zur Herstellung eines ringähnlichen oxidischen Formkörpers
DE102008040094A1 (de) 2008-07-02 2009-01-29 Basf Se Verfahren zur Herstellung eines oxidischen geometrischen Formkörpers
KR20110098949A (ko) * 2008-12-12 2011-09-02 바스프 에스이 기하학적 촉매 성형체 k의 연속적 제조 방법
DE102009047291A1 (de) 2009-11-30 2010-09-23 Basf Se Verfahren zur Herstellung von (Meth)acrolein durch heterogen katalysierte Gasphasen-Partialoxidation
US8399711B2 (en) 2009-11-30 2013-03-19 Basf Se Process for preparing (meth)acrolein by heterogeneously catalyzed gas phase partial oxidation
DE102010048405A1 (de) 2010-10-15 2011-05-19 Basf Se Verfahren zum Langzeitbetrieb einer heterogen katalysierten partiellen Gasphasenoxidation von Proben zu Acrolein
WO2012049246A2 (de) 2010-10-15 2012-04-19 Basf Se Verfahren zum langzeitbetrieb einer heterogen katalysierten partiellen gasphasenoxidation von propen zu acrolein
US8618336B2 (en) 2010-10-15 2013-12-31 Basf Se Process for long-term operation of a heterogeneously catalyzed partial gas phase oxidation of propene to acrolein

Also Published As

Publication number Publication date
KR101465279B1 (ko) 2014-11-26
DE102007003076A1 (de) 2008-07-17
WO2008087115A3 (de) 2009-04-09
EP2104646B1 (de) 2016-12-14
JP5562038B2 (ja) 2014-07-30
US8128904B2 (en) 2012-03-06
US20080171897A1 (en) 2008-07-17
BRPI0806241A2 (pt) 2011-09-06
EP2104646A2 (de) 2009-09-30
KR20090104104A (ko) 2009-10-05
CN101583569A (zh) 2009-11-18
CN101583569B (zh) 2013-05-01
JP2010515564A (ja) 2010-05-13

Similar Documents

Publication Publication Date Title
EP2104646B1 (de) Verfahren zur herstellung einer das element eisen in oxidischer form enthaltenden multielementoxidmasse
EP0467144B1 (de) Massen der allgemeinen Formel Mo12PaVbX1cX2dX3eSbfRegShOn
EP0609750B1 (de) Multimetalloxidmassen
EP2114562B1 (de) Verfahren zur herstellung von katalysatorformkörpern, deren aktivmasse ein multielementoxid ist
EP1912735B1 (de) Verfahren zur herstellung von katalysatorformkörpern, deren aktivmasse ein mischoxid ist
DE19910508A1 (de) Verfahren der katalytischen Gasphasenoxidation von Acrolein zu Acrylsäure
EP1025073B1 (de) Verfahren der heterogen katalysierten gasphasenoxidation von propan zu acrolein und/oder acrylsäure
DE102008042064A1 (de) Verfahren zur Herstellung von geometrischen Katalysatorformkörpern
DE2626887B2 (de) Katalysator für die Oxadation von (Methacrolein zu (Meth)Acrylsäure
EP1663488A1 (de) Verfahren zur herstellung von ringförmigen vollkatalysatoren
DE102007005606A1 (de) Verfahren zur Herstellung von Katalysatorformkörpern, deren Aktivmasse ein Multielementoxid ist
EP1750837A1 (de) Verfahren zum langzeitbetrieb einer heterogen katalysierten gasphasenpartialoxidation wenigstens einer organischen verbindung
EP1345689A2 (de) Verfahren zur herstellung einer mo, bi, fe sowie ni und/oder co enthaltenden multimetalloxidaktivmasse
DE102008042060A1 (de) Verfahren zur Herstellung von geometrischen Katalysatorformkörpern
DE102009021049A1 (de) Verfahren zur Herstellung eines Katalysators zur Verwendung bei der Herstellung von ungesättigten Aldehyden und/oder ungesättigten Carbonsäuren, und Verfahren zur Herstellung von ungesättigten Aldehyden und/oder ungesättigten Carbonsäuren
EP1656335A1 (de) Verfahren zur herstellung von (meth)acrolein und/oder (meth)acryls ure
DE102009047291A1 (de) Verfahren zur Herstellung von (Meth)acrolein durch heterogen katalysierte Gasphasen-Partialoxidation
DE102006000996A1 (de) Verfahren der heterogen katalysierten Gasphasen-Partialoxidation wenigstens einer organischen Ausgangsverbindung
DE10344149A1 (de) Verfahren zur Herstellung von ringförmigen Vollkatalysatoren
WO1999051341A1 (de) Multimetalloxidmassen mit einer zwei-phasigen struktur
DE10337788A1 (de) Verfahren zur Herstellung von (Meth)acrolein und/oder (Meth)acrylsäure
DE102005037678A1 (de) Verfahren zur Herstellung von Katalysatorformkörpern, deren Aktivmasse ein Multielementoxid ist
EP2136918B1 (de) Verfahren zur beschickung eines längsabschnitts eines kontaktrohres
DE19746210A1 (de) Verfahren der heterogen katalysierten Gasphasenoxidation von Propan zu Acrolein und/oder Acrylsäure
EP1060129B1 (de) Multimetalloxidmassen

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880002381.X

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2008701461

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008701461

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009545195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08701461

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 1020097016979

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0806241

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090625