WO2008084971A1 - Procédé d'installation d'un générateur d'énergie éolienne en mer au moyen d'un rail de guidage - Google Patents

Procédé d'installation d'un générateur d'énergie éolienne en mer au moyen d'un rail de guidage Download PDF

Info

Publication number
WO2008084971A1
WO2008084971A1 PCT/KR2008/000118 KR2008000118W WO2008084971A1 WO 2008084971 A1 WO2008084971 A1 WO 2008084971A1 KR 2008000118 W KR2008000118 W KR 2008000118W WO 2008084971 A1 WO2008084971 A1 WO 2008084971A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
nacelle
barges
crane
locating
Prior art date
Application number
PCT/KR2008/000118
Other languages
English (en)
Inventor
Dong Taek Suh
Original Assignee
Dong Taek Suh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dong Taek Suh filed Critical Dong Taek Suh
Publication of WO2008084971A1 publication Critical patent/WO2008084971A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C23/00Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
    • B66C23/18Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/12Slings comprising chains, wires, ropes, or bands; Nets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • E02D27/425Foundations for poles, masts or chimneys specially adapted for wind motors masts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/60Assembly methods
    • F05B2230/61Assembly methods using auxiliary equipment for lifting or holding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • F05B2240/932Mounting on supporting structures or systems on a structure floating on a liquid surface which is a catamaran-like structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for installing a sea wind power generator, and more particularly, to a method for installing a sea wind power generator that is capable of installing an upper support to a substantially high position by using the lead rails and an overhead crane in rapid, accurate, and safe manners, providing a working area by fixedly connecting barges at the both sides of a lower support, thereby enhancing the working safety, and rapidly and accurately installing the upper support on the top end of an intermediate support by using the overhead crane and the lead rails are installed on a deck of the barges and the intermediate support.
  • wind power is considered as a pollution-free energy source in a natural state that is most economical in the alternative energy sources developed currently.
  • a wind power technology the electric power that is generated by converting a wind force into a rotary force is directly supplied to power systems or demanders. If the wind power is actively adopted, areas such as a mountain area, a coast and back area, a sea wall and the like can be developed to enhance national territorial utilization efficiencies.
  • the wind power is considered to be a most powerful alternative energy source, and the wind power systems having a capacity of about 32,154MW(which is calculated at the end of 2002) have been already installed over the world.
  • the capacity of the wind power systems installed for only 2002 is 7,227MW, which is higher than that of the nuclear power generators installed in the same year.
  • No.l0-2002-7005923 (filed on May 8, 2002 by an applicant Linta-Jophie, Urjeo) entitled 'A method and system for installing and transporting an off-shore wind power station at sea', which is proposed to solve the difficulty in the installing operation at sea due to waves.
  • the conventional wind power station is manufactured on the land, it is transported by using a crane line and is then installed at sea, such that the wind power station is limited to given weight and size and is not firmly fixed at the sea, thereby causing a degree of stability to be low.
  • Korean Patent Application No.10-2003-7001174 filed on January 27, 2003 by an applicant Hanebic Christopher, et al. entitled 'A floating structure for mounting a wind turbine onto off-shore', wherein the structure is floated to support the wind turbine by means of connecting lines, such that it is difficult to stably install the connection lines, and the structure is moved due to the waves on the sea, thereby causing a degree of stability to be substantially low. Disclosure of Invention Technical Problem
  • the present invention has been made to solve these problems, and it is an object of the present invention to provide a method for installing a sea wind power generator by using lead rails such that a stable work area is provided on sea to install an upper support for the sea wind power generator by using the lead rails and a tower crane, thereby having relatively low installation costs and more effective installation processes when compared with conventional installing methods.
  • a method for installing a sea wind power generator by using lead rails including the steps of: locating a large- sized lower support on sea and close-contacting barges with the both sides of the lower support and fixedly erecting a plurality of fixing posts located at the corners of a deck of each barge on the sea surface, thereby fixing the barges on the sea surface to provide a working area thereon; locating a pair of posts of a tower crane and a cage for each post at the both sides of the lower support, ascending a nacelle assembly and overhead crane, and fixedly coupling an intermediate support to the lower support; and locating the lead rails along the deck of the barges and the front surface of the intermediate support and ascending an upper support along the lead rails by means of the overhead crane.
  • a nacelle base, a support frame, the lead rails, and the tower crane are disassembled from the located positions, a plurality of propellers connected to rollers located inside a rotary part of the nacelle assembly are lifted by means of a winch and are inserted into a plurality of coupling grooves of the rotary part, and then, the barges are separated from the lower post and moved by using a motor ship.
  • FIG.l is a perspective view showing an assembling process of a lower support with barges in a method for installing a sea wind power generator by using lead rails according to the present invention.
  • FIG.2 is a perspective view showing the assembled state of the lower support with the barges in the method for installing a sea wind power generator by using lead rails according to the present invention.
  • FIG.3 is a front view showing a process for installing a nacelle assembly and an intermediate support in the method for installing a sea wind power generator by using lead rails according to the present invention.
  • FIG.4 is a side view showing a process for ascending and locating an upper support by using the lead rails and an overhead crane.
  • FIG.5 is a side view showing an assembled state wherein the nacelle assembly of
  • FIG.4 is descended and assembled with the upper support.
  • FIG.6 is a side view showing a process for lifting and assembling propellers with a rotary part.
  • FIG.7 is a front view showing the appearance of the sea wind power generator after the assembling has been finished.
  • FIG.8 is a front view showing another example of an outside crane adopted in
  • FIG.3. Best Mode for Carrying Out the Invention
  • FIG.l is a perspective view showing an assembling process of a lower support with barges in a method for installing a sea wind power generator by using lead rails according to the present invention
  • FIG.2 is a perspective view showing the assembled state of the lower support with the barges in the method for installing a sea wind power generator by using lead rails according to the present invention
  • FIG.3 is a front view showing a process for installing a nacelle assembly and an intermediate support in the method for installing a sea wind power generator by using lead rails according to the present invention
  • FIG.4 is a side view showing a process for ascending and locating an upper support by using the lead rails and an overhead crane
  • FIG.5 is a side view showing an assembled state wherein the nacelle assembly of FIG.4 is descended and assembled with the upper support
  • FIG.6 is a side view showing a process for lifting and
  • a method for installing a sea wind power generator by using lead rails including: a step (SlO) of locating under a sea surface a lower support 10 having an insertion protrusion 11 formed at the top end thereof so as to be inserted into an intermediate support 20, a horizontal stepped surface 12 extended horizontally from the lower portion of the insertion protrusion 11, and a contacting surface 13 extended vertically and downwardly from the horizontal stepped surface 12 in such a manner as to come into contact with semi-circular contacting grooves 51 formed at one sides of barges 50; a step (S20) of close-contacting the barges 50 each having the semi-circular contacting groove 51 with the contacting surface 13 of the lower support 10 to fixedly erect a plurality of fixing posts 52 located at the corners of a deck of each barge 50 on the sea surface, thereby fixing the barges 50 to the lower support; a step (S30) of locating a pair of posts 61 of a tower crane 60 and
  • the lower support 10 has the insertion protrusion
  • the horizontal stepped surface 12 extended horizontally from the lower portion of the insertion protrusion 11 so as to allow the pair of posts 61 of the tower crane 60 and the cages 62 for the posts 61 to be stably supported thereat, and the contacting surface 13 extended vertically and downwardly from the horizontal stepped surface 12 so as to come into contact with the semi-circular contacting grooves 51 formed at one sides of the barges 50 pulled by the motor ships, such that when the contacting surface 13 tightly abuts against the semi-circular grooves 51 of the barges 50, a horizontal working area is provided.
  • each of the barges 50 has the plurality of fixing posts 52 erectly and fixedly located at the corners of the deck so as to fix each barge 50 under the sea surface, and each of the plurality of fixing posts 52 is supported by means of the post-supporting frame 53.
  • the nacelle assembly 40 is ascended by means of general jack-up by using the pair of posts 61 of the tower crane 60 and the cage 62 for each post at the both sides of the horizontal stepped surface 12 of the lower support 10, and after the intermediate support 20 is insertedly fixed to the insertion protrusion 11 of the lower support 10 by using the outside crane 70, it is supported by a pair of horizontal support stands 21 disposed at the both sides thereof. Then, the lead rails 80 are mounted along the deck of the barges 50 and the front surface of the intermediate support 20.
  • the nacelle assembly 40 includes the supporting frame 44, the nacelle base 43, the rotary part 42, and the nacelle 41.
  • the supporting frame 44 that is located at the lowermost portion of the nacelle assembly 40 has the overhead crane 44- 1 having high power mounted thereon, and the nacelle base 43 located above the supporting frame 44 is connected at the both sides thereof to the posts 61 of the tower crane 60, thereby supporting the nacelle 41 located on the top surface thereof as well as the supporting frame 44 and the overhead crane 44-1.
  • the rotary part 42 is located at the center portion of the front surface of the nacelle 41 and has three coupling grooves 42-1 for inserting the propellers 45 thereinto.
  • the nacelle 41 and the rotary part 42 have a space formed at the inside thereof so as to mount rollers (not shown) for lifting the propellers 45 therein.
  • the upper support 30 is mounted at the top portion of the intermediate support 20 by using the lead rails 80 and the high power of overhead crane 44-1.
  • the nacelle assembly 40 is first ascended, and the upper support 30 is vertically ascended along the lead rails 80 formed along the deck of the barges 50 and the front surface of the intermediate support 20.
  • the overhead crane 44- 1 is moved backwardly to fix the upper support 30 at the top portion of the intermediate support 20, and next, the upper support 30 is fixed by means of the horizontal support stands 31 formed at the both sides thereof.
  • Each of the lead rails 80 has a rail support bar 81 formed between the lower end of the intermediate support 20 and the deck such that the lead rails 80 are reinforced. Further, if a support for extending the upper support 30 is needed, the lead rails 80 can be extended longer, and if the upper support 30 or the extension support on the deck is moved, the outside crane or the winch can be adopted. So as to firmly support the intermediate support 20 and the upper support 30, the horizontal support stands 21 and 31 are adapted to compress and support the intermediate support 20 and the upper support 30 mechanically, hydraulically, or in an electrically driven manner.
  • FIG.5 is a side view showing an assembled state wherein the nacelle assembly 40 of FIG.4 is descended and assembled with the upper support 30, wherein if the lower support 10, the intermediate support 20, and the upper support 30 are completely located, the nacelle assembly 40 connected to the tower crane 60 is descended to allow the upper support 30 to be inserted into a support groove (not shown) formed on the central lower portion thereof, thereby fixing the nacelle 41.
  • FIG.6 is a side view showing a process for lifting and assembling the propellers 45 with the rotary part 42, wherein if the nacelle 41 is completely located, the nacelle 41 and the nacelle base 43 are separated from each other, and thus, the nacelle base 43 and the support frame 44 are descended.
  • the horizontal support stands 21 and 31, the lead rails 80, the nacelle base 43, the support frame 44, and the tower crane 60 are disassembled such that the rollers (not shown) mounted inside the nacelle 41 and the rotary part 42 are mounted to lift the propellers 45 connected to the lifting line by means of the winch 72 mounted on the rear side of the deck, thereby allowing the propellers 45 to be inserted into the plurality of coupling grooves 42-1.
  • the respective propellers 45 are insertedly coupled to the coupling grooves 42-1.
  • Each of the propellers 45 is supported by means of the front support roller stand 45-1 detachably mounted on the deck and a rear support roller stand 45-2, such that when the propellers 45 are lifted to the coupling grooves 42-1, the front support roller stand 45-1 is removed from each of the propellers 45.
  • the propellers 45 are supported by only the rear support roller stand 45-2 and lifted to the coupling grooves 42-1.
  • the rear support roller stand 45-2 is removed from each of the propellers 45.
  • FIG.7 is a front view showing the appearance of the sea wind power generator after the assembling has been finished, wherein if the propellers 45 are all mounted, the barges 50 are disassembled.
  • the fixing posts 52 adapted to fix the barges 50 are ascended to separate the barges 50 from the lower post 10.
  • the separated barges 50 are moved by using the motor ships, thereby finishing the installation of the sea wind power generator by using the lead rails according to the present invention.
  • FIG.8 is a front view showing another example of the outside crane 70 adopted in
  • FIG.3 wherein the intermediate support 20 is lifted by using a large-sized crane 71 mounted at a crane ship. If necessary, the crane 71 delivers and mounts the parts of the nacelle assembly 40 and the tower crane 60.
  • a method for installing a sea wind power generator by using lead rails that is capable of locating the upper support by using the overhead crane and the lead rails at a stable working area on sea, thereby having relatively low installation costs when compared with conventional installing methods and providing more effective and rapid installation processes to advantageously reduce the construction period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Wind Motors (AREA)

Abstract

La présente invention concerne un procédé pour installer un générateur d'énergie éolienne en mer au moyen de rails de guidage. Ce procédé comprend les étapes qui consistent : à positionner un support inférieur de grande taille dans la mer et à disposer des barges en contact étroit avec les deux côtés du support inférieur et à ériger de manière fixe une pluralité de montants de fixation situés au niveau des coins d'un pont de chaque barge sur la surface de la mer, ce qui permet de fixer la paire de barges sur la surface de la mer afin que soit formée une surface de travail sur celle-ci; à positionner une paire de montants d'une grue à tour et une cage pour chaque montant au niveau des deux côtés du support inférieur, à faire monter un ensemble nacelle et un pont roulant, et à raccorder de manière fixe un support intermédiaire au support inférieur; et à positionner les rails de guidage le long du pont des barges et de la surface avant du support intermédiaire et à faire monter un support supérieur le long des rails de guidage au moyen du pont roulant. Ensuite, après qu'une base de la nacelle, une structure de support, les rails de guidage et la grue à tour sont démontés et retirés de leurs positions, une pluralité d'hélices connectées à des rouleaux situés à l'intérieur d'une partie rotative de l'ensemble nacelle sont soulevées au moyen d'un treuil et sont insérées dans une pluralité de rainures de raccordement de la partie rotative, puis les barges sont séparées du montant inférieur et déplacées au moyen d'un navire à moteur. Le procédé de l'invention est mis en oeuvre à des coûts d'installation relativement faibles et par comparaison avec des procédés d'installation classiques et permet d'effectuer des installations plus efficaces et plus rapides de manière à réduire avantageusement la durée de construction.
PCT/KR2008/000118 2007-01-11 2008-01-09 Procédé d'installation d'un générateur d'énergie éolienne en mer au moyen d'un rail de guidage WO2008084971A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20070003454 2007-01-11
KR10-2007-0003454 2007-01-11
KR1020070087403A KR100798083B1 (ko) 2007-01-11 2007-08-30 유도레일을 이용한 해상용 풍력발전기 설치방법
KR10-2007-0087403 2007-08-30

Publications (1)

Publication Number Publication Date
WO2008084971A1 true WO2008084971A1 (fr) 2008-07-17

Family

ID=39219317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2008/000118 WO2008084971A1 (fr) 2007-01-11 2008-01-09 Procédé d'installation d'un générateur d'énergie éolienne en mer au moyen d'un rail de guidage

Country Status (2)

Country Link
KR (1) KR100798083B1 (fr)
WO (1) WO2008084971A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010145665A1 (fr) * 2009-06-15 2010-12-23 Vestas Wind Systems A/S Montage d'aerogenerateur par dirigeable
WO2010034288A3 (fr) * 2008-09-25 2011-03-10 Otto Lutz Dispositif pour le montage et le démontage d'une pale de rotor d'une éolienne
WO2011031346A1 (fr) 2009-09-10 2011-03-17 National Oilwell Varco L.P. Système d'installation d'éolienne et procédé d'utilisation de celui-ci
WO2011070194A1 (fr) * 2009-12-11 2011-06-16 Grupo De Ingenieria Oceanica, S.L. Équipement et procédé d'installation de la troisième pale d'une éolienne
EP2396537A2 (fr) * 2009-02-13 2011-12-21 Ed. Züblin Aktiengesellschaft Équipement et procédé pour la fabrication d'installations aérogénératrices en mer
WO2012089916A1 (fr) * 2010-12-28 2012-07-05 Easywind Oy Méthode et appareil de montage d'une centrale éolienne dans une structure base élevée
EP2520792A1 (fr) * 2011-05-05 2012-11-07 Siemens Aktiengesellschaft Système d'extraction et procédé de fourniture d'un système d'extraction
US8601748B2 (en) 2009-09-09 2013-12-10 National Oilwell Varco, L.P. Method and apparatus for wind turbine erection
CN103556651A (zh) * 2013-11-20 2014-02-05 天津港航工程有限公司 预制混凝土导管架式海上风机基础
EP2786953A4 (fr) * 2011-11-29 2015-08-19 Daewoo Shipbuilding & Marine Générateur d'énergie éolienne
US9650840B2 (en) 2015-04-27 2017-05-16 National Oilwell Varco, L.P. Method and apparatus for erecting a drilling rig
CN107218179A (zh) * 2017-07-26 2017-09-29 中交第三航务工程局有限公司宁波分公司 海上风力发电机分体安装的施工方法
WO2018226100A1 (fr) * 2017-06-09 2018-12-13 Delft Offshore Turbine B.V. Générateur à turbine éolienne avec pompe hydraulique

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101001701B1 (ko) 2008-08-12 2010-12-15 인하대학교 산학협력단 와이어에 의하여 지주의 수평위치를 지지하는 풍력발전기의설치방법
WO2010048560A2 (fr) * 2008-10-24 2010-04-29 Lew Holdings, Llc Turbines éoliennes en mer et procédés de déploiement correspondants
KR101013789B1 (ko) * 2008-11-17 2011-02-14 한국해양연구원 해상용 풍력발전기 설치방법 및 그 장치
KR101236832B1 (ko) 2011-08-19 2013-02-26 삼성중공업 주식회사 해상 풍력 발전기 설치 시스템 및 이를 구비한 선박
KR101411472B1 (ko) 2012-06-29 2014-06-24 삼성중공업 주식회사 해상 풍력발전기 설치용 선박
KR101375143B1 (ko) 2012-12-27 2014-03-19 한국과학기술원 해상풍력 발전장치의 설치 방법 및 설치 선박

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207948A (ja) * 2000-01-21 2001-08-03 Pc Bridge Co Ltd 海上設置型風力発電用複合基礎構造及びその構築方法
WO2002048547A1 (fr) * 2000-12-13 2002-06-20 Mammoet Marine B.V.I.O. Procede et dispositif pour la mise en place d'au moins une eolienne en mer libre
WO2003093584A1 (fr) * 2002-05-01 2003-11-13 Marine Structure Consultants (Msc) B.V. Procede et navire pour manipuler une construction offshore
JP2004001750A (ja) * 2003-06-25 2004-01-08 Penta Ocean Constr Co Ltd 特殊作業船及び洋上構造物の施工方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20010086U1 (de) 2000-06-06 2000-11-23 Kusan Andre Schwimmkran, insbesondere für den Transport und die Aufstellung von kompletten Windenergieanlagen im Meer
DK2163691T3 (en) 2005-10-21 2016-06-20 Dredging Int N V Device and method for the offshore installation of an electricity-producing turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001207948A (ja) * 2000-01-21 2001-08-03 Pc Bridge Co Ltd 海上設置型風力発電用複合基礎構造及びその構築方法
WO2002048547A1 (fr) * 2000-12-13 2002-06-20 Mammoet Marine B.V.I.O. Procede et dispositif pour la mise en place d'au moins une eolienne en mer libre
WO2003093584A1 (fr) * 2002-05-01 2003-11-13 Marine Structure Consultants (Msc) B.V. Procede et navire pour manipuler une construction offshore
JP2004001750A (ja) * 2003-06-25 2004-01-08 Penta Ocean Constr Co Ltd 特殊作業船及び洋上構造物の施工方法

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010034288A3 (fr) * 2008-09-25 2011-03-10 Otto Lutz Dispositif pour le montage et le démontage d'une pale de rotor d'une éolienne
EP2396537B1 (fr) * 2009-02-13 2015-07-29 STRABAG Offshore Wind GmbH Équipement et procédé pour la fabrication d'installations aérogénératrices en mer
EP2396537A2 (fr) * 2009-02-13 2011-12-21 Ed. Züblin Aktiengesellschaft Équipement et procédé pour la fabrication d'installations aérogénératrices en mer
CN102803070A (zh) * 2009-06-15 2012-11-28 维斯塔斯风力系统有限公司 借助于飞艇进行的风轮发电机安装
US9022315B2 (en) 2009-06-15 2015-05-05 Vestas Wind Systems A/S Wind turbine generator installation by airship
WO2010145665A1 (fr) * 2009-06-15 2010-12-23 Vestas Wind Systems A/S Montage d'aerogenerateur par dirigeable
EP2272754A1 (fr) * 2009-06-30 2011-01-12 Vestas Wind Systems A/S Installation d'éoliennes par dirigeable
US8601748B2 (en) 2009-09-09 2013-12-10 National Oilwell Varco, L.P. Method and apparatus for wind turbine erection
US8801330B2 (en) 2009-09-10 2014-08-12 National Oilwell Varco, L.P. Windmill installation system and method for using same
WO2011031346A1 (fr) 2009-09-10 2011-03-17 National Oilwell Varco L.P. Système d'installation d'éolienne et procédé d'utilisation de celui-ci
WO2011070194A1 (fr) * 2009-12-11 2011-06-16 Grupo De Ingenieria Oceanica, S.L. Équipement et procédé d'installation de la troisième pale d'une éolienne
ES2361864A1 (es) * 2009-12-11 2011-06-24 Grupo De Ingenieria Oceanica S.L. Equipo y procedimiento de instalación de la tercera pala de un aerogenerador.
EP2511520A4 (fr) * 2009-12-11 2014-06-25 Grupo De Ingenieria Oceanica Equipement et procede d'installation de la troisieme pale d'une eolienne
EP2511520A1 (fr) * 2009-12-11 2012-10-17 Grupo De Ingenieria Aceanica, S.L. Equipement et procede d'installation de la troisieme pale d'une eolienne
WO2012089916A1 (fr) * 2010-12-28 2012-07-05 Easywind Oy Méthode et appareil de montage d'une centrale éolienne dans une structure base élevée
WO2012150200A1 (fr) * 2011-05-05 2012-11-08 Siemens Aktiengesellschaft Système de levage et procédé permettant de fournir un système de levage
EP2520792A1 (fr) * 2011-05-05 2012-11-07 Siemens Aktiengesellschaft Système d'extraction et procédé de fourniture d'un système d'extraction
EP2786953A4 (fr) * 2011-11-29 2015-08-19 Daewoo Shipbuilding & Marine Générateur d'énergie éolienne
CN103556651A (zh) * 2013-11-20 2014-02-05 天津港航工程有限公司 预制混凝土导管架式海上风机基础
US9650840B2 (en) 2015-04-27 2017-05-16 National Oilwell Varco, L.P. Method and apparatus for erecting a drilling rig
WO2018226100A1 (fr) * 2017-06-09 2018-12-13 Delft Offshore Turbine B.V. Générateur à turbine éolienne avec pompe hydraulique
NL2019045B1 (en) * 2017-06-09 2018-12-17 Delft Offshore Turbine B V Wind turbine generator with hydraulic pump
KR20200016371A (ko) * 2017-06-09 2020-02-14 델프트 오프쇼어 터빈 비.브이. 유압 펌프와 풍력 터빈 발전기
CN111148898A (zh) * 2017-06-09 2020-05-12 代尔夫特海上涡轮有限公司 具有液压泵的风力涡轮发电机
KR102542308B1 (ko) 2017-06-09 2023-06-12 델프트 오프쇼어 터빈 비.브이. 유압 펌프와 풍력 터빈 발전기
CN107218179A (zh) * 2017-07-26 2017-09-29 中交第三航务工程局有限公司宁波分公司 海上风力发电机分体安装的施工方法
CN107218179B (zh) * 2017-07-26 2019-07-16 中交第三航务工程局有限公司宁波分公司 海上风力发电机分体安装的施工方法

Also Published As

Publication number Publication date
KR100798083B1 (ko) 2008-01-28

Similar Documents

Publication Publication Date Title
WO2008084971A1 (fr) Procédé d'installation d'un générateur d'énergie éolienne en mer au moyen d'un rail de guidage
US8499455B2 (en) Method of establishing wind power generator using the leading rail
KR101013789B1 (ko) 해상용 풍력발전기 설치방법 및 그 장치
US10119522B2 (en) System and method of assembling a wind turbine
JP5358690B2 (ja) 水力発電タービン支持システム
CN113428307B (zh) 一种半潜浮式风机基础和半潜浮式风机
KR101629481B1 (ko) 해양구조물의 레벨링장치
EP2461031A2 (fr) Technologie pour une éolienne offshore flottante combinée
CN103925172A (zh) 张力腿式海上浮动式风力机整体安装辅助装置及安装方法
CN114483452A (zh) 一种融合海洋能、光伏与风能的海上发电装置
CN114499358A (zh) 一种漂浮式光伏平台和海上风电机组
US8753040B2 (en) Offshore installation method of a wind power generator and its fabrication segments
CN102923261A (zh) 一种坐底式海上风机安装驳船
WO2010151145A1 (fr) Eolienne et procédé d'installation, d'intervention ou de démantèlement
WO2010120186A1 (fr) Éolienne flottante et procédé d'installation, d'intervention ou de déclassement
KR20120139931A (ko) 잭업 플랫폼의 스퍼드 캔 탈부착 방법 및 시스템
KR20120139932A (ko) 잭업 플랫폼의 스퍼드 캔 탈부착 방법 및 시스템
KR101619246B1 (ko) 타워, 나셀 및 로터 결합체의 운송 장치 및 이를 이용한 해상 풍력 발전기 설치 방법
KR20130039826A (ko) 해상 풍력 발전기의 지지구조물 및 그 설치방법
KR20130047950A (ko) 해상 풍력 발전기의 지지구조물 및 그 설치방법
CN217115953U (zh) 一种融合海洋能、光伏与风能的海上发电装置
JP2021076043A (ja) 洋上風車の据付方法
KR101299971B1 (ko) 운항안정성이 향상된 잭업바지선 및 이를 이용한 작업방법
CN202966598U (zh) 一种新型坐底式海上风机安装驳船
KR20130048854A (ko) 부유식 해상풍력 발전시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08704658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08704658

Country of ref document: EP

Kind code of ref document: A1