WO2008083989A1 - Procédé de régulation d'une quantité injectée au niveau d'une buse d'injection - Google Patents

Procédé de régulation d'une quantité injectée au niveau d'une buse d'injection Download PDF

Info

Publication number
WO2008083989A1
WO2008083989A1 PCT/EP2008/000195 EP2008000195W WO2008083989A1 WO 2008083989 A1 WO2008083989 A1 WO 2008083989A1 EP 2008000195 W EP2008000195 W EP 2008000195W WO 2008083989 A1 WO2008083989 A1 WO 2008083989A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
correction function
injection quantity
exhaust gas
ballistic
Prior art date
Application number
PCT/EP2008/000195
Other languages
German (de)
English (en)
Inventor
Gregor Renner
Hermann Breitbach
Michael Marbach
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2008083989A1 publication Critical patent/WO2008083989A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method for controlling an injection quantity at an injection nozzle of a force injection device according to the preamble of claim 1.
  • DE 39 14 264 C1 discloses a method for regulating the injection quantity at a magnetically controlled fuel injection device for air-compressing, self-igniting and multi-cylinder internal combustion engines consisting of a pump and nozzle, in which values of rotational speed, load and exhaust gas temperature determined by sensors are obtained and stored in an electronic control unit are processed to output signals for the control of a standing with the injector in operative connection solenoid valve.
  • the exhaust gas temperature of each cylinder of the internal combustion engine is measured, the respective actual value of this exhaust gas temperature compared with the stored in a map memory setpoint of the previously determined exhaust gas temperature and readjusted in deviation, the injection quantity by changing the driving time of the solenoid valve to the desired value.
  • the invention is concerned with the problem of further developing a generic method such that an injection quantity at an injection nozzle can be set particularly precisely and, moreover, a degree of coking at the injection nozzles can be easily determined.
  • the invention is based on the general idea of determining a correction function in a non-ballistic region of a fuel injection, which proceeds linearly and thereby enables an interpolation of intermediate values without problems.
  • the linear correction function is used to control the injection quantity at the at least one injection nozzle in the non-ballistic region, wherein the correction function is formed from a straight line defined by two points.
  • a first point of the linear correction function is characterized by a predefined transition of a ballistic nozzle needle movement into a non-ballistic stroke stop, while a measurement of the exhaust gas temperature is used to determine the second point.
  • the measured exhaust gas temperature can be determined with the aid of a fuel injection quantity function, which is combined with the
  • Exhaust gas temperature function correlated a deviation of an actual injection amount of a desired injection quantity can be determined. For the correction of the injection quantity must therefore by the difference value determined from this be readjusted.
  • Associated exhaust gas temperature values are assigned to the individual functional values of the desired injection quantity function, which also applies to the correction function. From the differences between target exhaust gas temperatures and actual exhaust gas temperatures can thus be easily associated
  • the measured difference between the injection quantity and the actual injection quantity can be used a defined exhaust gas temperature to a degree of coking of the injection nozzle are closed, since with increasing coking a cross section of the injection nozzle is reduced and less fuel can be transported through the injection nozzle.
  • the cross section of the injection nozzle is the only variable value in this equation, it can be directly deduced from the reduced injection quantity on a change in the cross section of the injection nozzle and thus indirectly on a degree of coking thereof.
  • Fig. 1 shows a graph with different gradients of an injection quantity as a function of a drive time.
  • FIG. 1 a total of three courses 1, 2 and 3 are shown, whereby the course 1 arises at a control pressure of 2000 bar, while the course 2 occurs at 800 bar and the course 3 at 250 bar injection pressure.
  • the injection quantity is plotted in cubic millimeters, while the abscissa represents a drive duration in milliseconds.
  • the courses 1, 2 and 3 so for example from a control period of> 0.5 ms results in a substantially linear course of the different curves 1, 2 and 3, which substantially according to the context
  • the injection quantity is thus proportionally dependent on a cross-section A of an injection nozzle, not shown, wherein the cross-sectional area A of the injection nozzle due to of so-called coking processes can decrease over time and thereby decreases the injection quantity under otherwise identical conditions.
  • the curves 1, 2 and 3 correlate with respect to their course with an exhaust gas temperature, so that each exhaust gas temperature can be assigned a specific injection quantity directly.
  • at least one sensor is now provided, which determines an exhaust gas temperature and transmits it to an electronic control unit, not shown, in which the obtained sensor signal is processed into at least one output signal for controlling the fuel injection device.
  • a linear correction function 4 is used, the function values of the correction function being compared with the function values of a fuel injection quantity function for the purpose of correcting the injection quantity.
  • the correction function 4 is formed by at least two points 5 and 6, wherein the first point 5 of the linear correction function 4 is characterized by a predefined transition of a ballistic nozzle needle movement in a non-ballistic stroke stop, while for the determination of the second point 6, a measurement of the exhaust gas temperature is used. Since the exhaust gas temperature correlates with a respectively associated injection quantity, the correction function 4 can also be used to determine an actual injection quantity.
  • this actual injection quantity is smaller than the setpoint injection quantity, this may merely be due to a reduction in cross-section due to the linear relationship according to the equation shown above, with otherwise unchanged parameters.
  • Such Cross-sectional reduction can be present, for example, due to coking of a spray hole of the injection nozzle, with increasing coking the spray hole diameter steadily decreases.
  • the first point 5 of the linear correction function 4 is firmly defined for a respective injector design.
  • the point 6 or the change in quantity at this point is determined by measuring the exhaust gas temperature at this point by measuring a temperature sensor, in particular a T3 sensor.
  • the straight line spanned between the two points 5 and 6 thus permits injection quantity correction at arbitrary intermediate points, wherein the correction function 4 can be carried out for different rail pressures by means of corresponding exhaust-gas temperature measurements along a full-load characteristic curve.
  • a measurement of the exhaust gas temperature under full load is used for the determination of the second point 6 of the correction function 4.
  • the determination of the correction function 4 takes place during normal operation of the internal combustion engine or in a separate learning mode.
  • both a main injection quantity and a pilot injection quantity or a post-injection quantity or any desired combinations can be regulated.
  • further support points 7 can be provided between the two points 5 and 6, by means of which the correction function 4 can be represented in even greater detail.
  • a correction function 4 is set up, which runs substantially linearly and which is spanned between two points 5 and 6.
  • the point 5 is the transition between the ballistic and the non-ballistic area, while the point 6 is determined by means of a temperature sensor which measures an exhaust gas temperature of the internal combustion engine.
  • the hatched in FIG. 1 area in the course 1 shows, for example, the decrease of an injection amount .DELTA.E, which is based on otherwise reducing the cross-section A of the injector with otherwise identical parameters.
  • An initial injection quantity with the injector cross section fully open is approximately 66 mm 3 for a control period of 1 ms.
  • the injection quantity Due to the reduction in the cross-section A of the injection nozzle, the injection quantity is reduced by ⁇ E ⁇ 2.5, so that with the same drive duration due to the reduced injector cross-section A only an injection quantity of 63.5 mm 3 is injected.
  • the activation duration must therefore be extended by 0.05 ms. This extended activation time is calculated by the control unit and converted into a corresponding control signal.
  • the coefficient ⁇ E can also be used to determine a degree of coking of the injection nozzle, which is expressed in the cross-sectional reduction of the injection nozzle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

L'invention concerne un procédé servant à réguler une quantité injectée au niveau d'une buse d'injection d'un dispositif d'injection de carburant pour un moteur à combustion interne. Selon ce procédé, au moins une température de gaz d'échappement déterminée par un capteur est acquise et traitée dans un appareil de commande électronique pour donner au moins un signal de sortie servant à commander le dispositif d'injection de carburant. L'invention est caractérisée en ce qu'on utilise une fonction de correction linéaire (4) dans une zone non balistique pour réguler la quantité injectée au niveau de la buse d'injection, des valeurs de la fonction de correction (4) étant comparées à des valeurs d'une fonction de quantités injectées de consigne en vue de corriger la quantité injectée. La fonction de correction linéaire (4) est définie par au moins deux points (5, 6) dont le premier (5) est caractérisé par une transition prédéfinie d'un mouvement balistique de l'aiguille d'injection à une butée de course non balistique alors qu'une mesure de la température des gaz d'échappement sert à déterminer le deuxième (6).
PCT/EP2008/000195 2007-01-13 2008-01-11 Procédé de régulation d'une quantité injectée au niveau d'une buse d'injection WO2008083989A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007002028A DE102007002028A1 (de) 2007-01-13 2007-01-13 Verfahren zur Regelung einer Einspritzmenge an einer Einspritzdüse
DE102007002028.9 2007-01-13

Publications (1)

Publication Number Publication Date
WO2008083989A1 true WO2008083989A1 (fr) 2008-07-17

Family

ID=38663902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/000195 WO2008083989A1 (fr) 2007-01-13 2008-01-11 Procédé de régulation d'une quantité injectée au niveau d'une buse d'injection

Country Status (2)

Country Link
DE (1) DE102007002028A1 (fr)
WO (1) WO2008083989A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008001412B4 (de) * 2008-04-28 2016-12-15 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Einspritzventils
DE102009009796B3 (de) * 2009-02-20 2010-10-07 L'orange Gmbh Verfahren zur Diagnose und/oder Steuerung von Brennkraftmaschinen, insbesondere Diesel-Brennkraftmaschinen
DE102011085926A1 (de) * 2011-11-08 2013-05-08 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine
JP6115513B2 (ja) * 2014-04-23 2017-04-19 株式会社デンソー デポジット検出装置及び燃料噴射制御装置
AT518584B1 (de) 2016-05-11 2018-02-15 Ge Jenbacher Gmbh & Co Og Verfahren zum Erkennen der Gasmenge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003366A1 (fr) * 2002-06-28 2004-01-08 Robert Bosch Gmbh Procede pour commander un systeme doseur de carburant sur un moteur a combustion interne
DE10306458A1 (de) * 2003-02-17 2004-08-26 Robert Bosch Gmbh Verfahren zur Bestimmung der Ansteuerspannung eines piezoelektrischen Aktors eines Einspritzventils
DE102004007799A1 (de) * 2004-02-18 2005-09-08 Robert Bosch Gmbh Verfahren und Vorrichtung zum injektor-individuellen Mengenabgleich in einem Kraftstoffeinspritzsystem einer Brennkraftmaschine
EP1574694A1 (fr) * 2004-02-24 2005-09-14 Renault s.a.s. Dispositif et procédé de régulation du débit de carburant injecté dans un moteur diesel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003366A1 (fr) * 2002-06-28 2004-01-08 Robert Bosch Gmbh Procede pour commander un systeme doseur de carburant sur un moteur a combustion interne
DE10306458A1 (de) * 2003-02-17 2004-08-26 Robert Bosch Gmbh Verfahren zur Bestimmung der Ansteuerspannung eines piezoelektrischen Aktors eines Einspritzventils
DE102004007799A1 (de) * 2004-02-18 2005-09-08 Robert Bosch Gmbh Verfahren und Vorrichtung zum injektor-individuellen Mengenabgleich in einem Kraftstoffeinspritzsystem einer Brennkraftmaschine
EP1574694A1 (fr) * 2004-02-24 2005-09-14 Renault s.a.s. Dispositif et procédé de régulation du débit de carburant injecté dans un moteur diesel

Also Published As

Publication number Publication date
DE102007002028A1 (de) 2007-12-13

Similar Documents

Publication Publication Date Title
DE102004006294B3 (de) Verfahren zur Gleichstellung der Einspritzmengenunterschiede zwischen den Zylindern einer Brennkraftmaschine
DE102005001498B4 (de) Verfahren und Vorrichtung zum Steuern eines Injektors
EP2633173B1 (fr) Procédé et dispositif pour commander un injecteur dans un système d'injection de carburant d'un moteur à combustion interne
DE102005016809A1 (de) Verfahren und Vorrichtung zur Steuerung der Kraftstoffzumessung in wenigstens einen Brennraum einer Brennkraftmaschine
DE102009002793A1 (de) Einzelspeicher, Hochdruckkomponente und Common-Rail-Kraftstoffeinspritzsystem sowie Brennkraftmaschine, Elektronische Einrichtung und Verfahren zur Steuerung und/oder Regelung einer Brennkraftmaschine
DE102010041273B4 (de) Verfahren zum Betreiben eines Verbrennungsmotors
WO2013092190A1 (fr) Procédé et dispositif de calibrage d'une quantité nulle d'une soupape d'injection de carburant
DE10305523A1 (de) Verfahren und Vorrichtung zur Nullmengenkalibrierung eines Kraftstoffeinspritzsystems eines Kraftfahrzeuges im Fahrbetrieb
EP1979599A1 (fr) Procede et dispositif de commande d'un moteur a combustion interne
WO2013068173A1 (fr) Procédé et dispositif pour faire fonctionner un moteur à combustion interne
DE102009045563B4 (de) Verfahren zum Bestimmen wenigstens eines Raildruck-Schließstrom-Wertepaares für ein Druckregelventil eines Common-Rail-Einspritzsystems
WO2008083989A1 (fr) Procédé de régulation d'une quantité injectée au niveau d'une buse d'injection
DE102006001374B4 (de) Verfahren und Vorrichtung zur Steuerung und/oder Regelung einer Brennkraftmaschine
WO2012016763A2 (fr) Procédé servant à faire fonctionner un moteur à combustion interne comprenant plusieurs chambres de combustion et moteur à combustion interne comprenant plusieurs chambres de combustion
DE10359675B3 (de) Verfahren und Vorrichtung zum Steuern eines Ventils und Verfahren und Vorrichtung zum Steuern einer Pumpe-Düse-Vorrichtung mit dem Ventil
DE10123035A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP2633175A1 (fr) Procédé pour surveiller une adaptation d'un temps d'injection d'une soupape d'injection d'un moteur à combustion interne
DE102005010028A1 (de) Reglervorrichtung zur Kompensation von Streuungen von Injektoren
EP1567758B1 (fr) Procede et dispositif pour faire fonctionner un systeme d'injection d'un moteur a combustion interne
DE102007057142A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP2032824A1 (fr) Procede et dispositif de commande du dosage de carburant dans au moins une chambre de combustion d'un moteur a combustion interne
EP1306537B1 (fr) Méthode et dispositif de commande d'un moteur à combustion interne
DE102011100108B4 (de) Bestimmung einer Einspritzventilkennlinie und Verringerung eines Einspritzmengenunterschieds bei einem Verbrennungsmotor
EP2520788A2 (fr) Procédé de commander d'un système d'injection de carburant d'un moteur à combustion interne
DE102011121099B4 (de) Verfahren zum Betreiben einer Abgasreinigungseinrichtung sowie entsprechende Abgasreinigunseinrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08707007

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08707007

Country of ref document: EP

Kind code of ref document: A1