WO2008077367A2 - Verspannungssystem zum axialen verspannen von maschinenelementen auf einer welle oder in einem gehäuse - Google Patents

Verspannungssystem zum axialen verspannen von maschinenelementen auf einer welle oder in einem gehäuse Download PDF

Info

Publication number
WO2008077367A2
WO2008077367A2 PCT/DE2007/002207 DE2007002207W WO2008077367A2 WO 2008077367 A2 WO2008077367 A2 WO 2008077367A2 DE 2007002207 W DE2007002207 W DE 2007002207W WO 2008077367 A2 WO2008077367 A2 WO 2008077367A2
Authority
WO
WIPO (PCT)
Prior art keywords
biasing spring
retaining groove
bracing system
shaft
webs
Prior art date
Application number
PCT/DE2007/002207
Other languages
English (en)
French (fr)
Other versions
WO2008077367A3 (de
Inventor
Gerhard Mittendorf
Original Assignee
Schaeffler Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Kg filed Critical Schaeffler Kg
Publication of WO2008077367A2 publication Critical patent/WO2008077367A2/de
Publication of WO2008077367A3 publication Critical patent/WO2008077367A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • F16C25/083Ball or roller bearings self-adjusting with resilient means acting axially on a race ring to preload the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B21/00Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings
    • F16B21/10Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts
    • F16B21/16Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft
    • F16B21/18Means for preventing relative axial movement of a pin, spigot, shaft or the like and a member surrounding it; Stud-and-socket releasable fastenings by separate parts with grooves or notches in the pin or shaft with circlips or like resilient retaining devices, i.e. resilient in the plane of the ring or the like; Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/04Rigid support of bearing units; Housings, e.g. caps, covers in the case of ball or roller bearings
    • F16C35/06Mounting or dismounting of ball or roller bearings; Fixing them onto shaft or in housing
    • F16C35/063Fixing them on the shaft

Definitions

  • Clamping system for the axial clamping of machine elements on a shaft or in a housing
  • the invention relates to a bracing system for the axial bracing of machine elements with a biasing spring in ring form and a support member on which or in which the machine element is clamped.
  • Preloading springs are used, for example, when clamping bearing sets.
  • DE 38 08 556 A1 can be taken from a skewed roller bearing, wherein the inner ring is mounted on the outer ring with a radial projection engaging behind plastic bushing and on the larger side more rings with different functions, such as a support disk, a spring and a clamping ring are arranged ,
  • the plastic bushing has at least two diametrically opposite, axially directed holding regions, which engage around the functional rings and engage behind with a radial projection.
  • the axial holding portions cause a radial fixation of the rings, while the radial projection which engages behind the outer ring, prevents axial falling out of the camp.
  • a disadvantage of this solution can be seen in the relatively expensive design of the plastic bushing.
  • a backlash-free radial ball bearing with a two-piece bearing ring in the axial direction is known.
  • At least one of the two bearing ring parts of the two-part bearing ring is pressurized in the axial direction by a spring element designed, for example, as a corrugated spring, so that the bearing balls are held under prestress.
  • the aim is to avoid an impairment of the backlash in a misalignment of the stored wave. For example, with a tilting movement of the shaft, the spring tension can rise too much and thus cause excessive friction moments in the bearing.
  • the inner ring is made in two parts, wherein at least one of the two bearing ring parts is displaceable in the radial and in the axial direction.
  • the outer ring has a raceway whose radius is significantly larger than the radius of the bearing balls. Due to the significantly greater osculation of the outer race compared to the bearing balls, a limited tilting of the shaft is possible in conjunction with the two-part movable inner ring with simultaneous freedom from free play.
  • DE 199 46 383 A1 describes a regulator for keeping the axial bearing preload constant by forced positioning of the outer rings of axially clamped bearings by means of a linear actuator.
  • the outer rings of the bearings are arranged opposite to each other.
  • the outer rings are clamped between an actuator, preferably a hydraulic piston, and a highly prestressed spring.
  • the axial preload present depends essentially on the magnitude of the force which the actuator delivers.
  • the bias generated by the outer rings themselves and the friction between the outer rings of the bearings and the housing or between the piston and housing has only a small influence.
  • a disadvantage of the described Order is that it is quite complex in the realization and thus brings high costs.
  • the US 6,003,229 A includes a device for precisely biasing a bearing on a shaft with a base plate and a holder fixed to the base plate, which extends upwardly therefrom and receives a shaft.
  • the shaft includes a shoulder, a conical surface adjacent thereto, followed by a threaded portion.
  • the bearing is preloaded on the shaft by means of a screwed onto the threaded portion lock nut.
  • On the base plate a motor is arranged, whose output shaft is aligned axially with the bearing outer rings and is connected thereto.
  • On the motor is a force sensor for measuring the torque, which is required for rotating the outer ring at a predetermined speed. The measurement results are displayed on a display unit. In the event that the measured torques coincide with predetermined torque values, the bearing is precisely biased.
  • the device described is very expensive and requires a high installation effort, which ultimately leads to high costs.
  • DE 196 07 336 A1 includes a device for adjusting the position or the game or the bias of a bearing, which widened axially on adjustment and thus shifts parts of the bearing relative to each other or the whole camp.
  • a plurality of radially arranged lever arms or a component with integrated lever arms are moved by the adjustment of a screw against a support surface.
  • the lever arms can be formed by a disc which is slotted radially from the outside. The inner part of the disc assumes the task of a remindstellfe- the counteracts the delivery of the screw in the direction of the support surface of the delivery. In this way, an adjustment in both directions is to be made possible by the return spring carries the lever with the movement of the screw.
  • the device may, for example, on a shaft and two bearing rings of a rolling bearing in O arrangement relative to each other.
  • a spring can be used to reset the bearing rings.
  • the bearing stress realized here requires several elements and is relatively expensive in design, in particular with regard to the tension by means of a screw.
  • the object of the present invention is thus to provide a bracing system for the axial bracing of a machine element, which enables reliable bracing without additional securing elements.
  • the bracing system should be inexpensive to manufacture and install.
  • the biasing spring has in its inner periphery a plurality of radially extending slots and spaced by these slots, radially extending webs. Furthermore, the extending from the outer to the inner radius region of the biasing spring has a curved course with an increase in the axial direction.
  • a circumferential holding groove for receiving the webs of the biasing spring is introduced, wherein the radius of the retaining groove is greater than the inner radius of the biasing spring.
  • the biasing spring consists of a resilient material, which allows the radial expansion of the inner radius of the biasing spring by bending the webs.
  • the carrier element is a shaft.
  • the biasing spring can be in this embodiment due to the slots and thus achieved deformability of the webs via a wave move paragraph to the retaining groove of the shaft, wherein the webs are bent by the axial force occurring thereby and thus a tensioning of the biasing spring is effected.
  • the tension can only be reversed if, by applying a corresponding axial backpressure or with the aid of a special tool, the webs are lifted out of the retaining groove.
  • An additional backup for example via a retaining ring can thus be omitted.
  • a further expedient embodiment uses a housing area as a carrier element.
  • the biasing spring can also be moved by means of the slots in or over the housing portion to the holding groove, wherein a tensioning of the biasing spring is effected.
  • the slots are uniformly distributed over the circumference in the inclined region of the biasing spring introduced.
  • the depth of the slots corresponds approximately to half the height of the biasing spring.
  • Such trained slots allow easy sliding onto the shaft shoulder or in or over the housing area.
  • the distance between the retaining groove and the machine element is to be chosen such that when the webs of the biasing spring engage in the retaining groove, the radially outer ends of the biasing spring exert an axially acting compressive force on the machine element, thereby causing an axial tension of the machine element. In this way, a reliable clamping of the machine element can be achieved. Too large a distance, the biasing spring would exert no or insufficient pressure on the machine element, a backlash could not be guaranteed.
  • a preferred embodiment uses as a machine element a rolling bearing with at least one, preferably two inner rings.
  • the inner rings are axially clamped by means of biasing spring.
  • the rolling bearing can be designed as a double-row angular contact ball bearings.
  • the shaft is designed as a pinion shaft.
  • the tension of the two inner rings is mandatory.
  • the bracing must be designed so that a pressing apart of the inner rings due to the high forces from the teeth can be effectively avoided. At the same time, it must withstand the increased stresses when driving in reverse, where there is a risk that the entire bearing is pulled due to the high forces from the teeth of the pinion shafts. Any loosening of the connection between the inner rings and the pinion shaft would lead to the failure of the bearing or the transmission.
  • Figure 1 is a biasing spring in a perspective view from above.
  • Fig. 2 is a sectional view of the biasing spring
  • FIG. 3 is an enlarged detail view of the biasing spring. 4 shows a clamping system according to the invention in a sectional illustration;
  • Fig. 5 is a partially cut-3D view of a strained double-row angular contact ball bearing on a pinion shaft using the bracing system according to the invention.
  • Fig. 1 shows the biasing spring 01 in a perspective view from above.
  • Fig. 2 is a sectional view included.
  • Fig. 3 shows a detail of the biasing spring.
  • the biasing spring 01 is annular. In its inner circumference it has a plurality of slots 02 and formed by these slots 02, preferably uniformly spaced apart webs 03. A running from the outer to the inner radius region of the biasing spring 01 has a curved course with an increase in the axial direction. Thus, the outer annular boundary of the biasing spring 01 is spaced from the inner boundary, at which the webs 03 end, not only in the radial but also in the axial direction.
  • the slots 02 are preferably distributed uniformly over the circumference of the pre-tension spring 01 introduced. Conveniently, a slot depth of about half the height of the biasing spring has proven.
  • the slots 02 may have a rounded end portion 04 (see FIG. 3). Designs with 16 slots have proven to be particularly advantageous. With such a number of slots and the preferred slot depth, the biasing spring 01 can be particularly easily pushed, for example via a shaft shoulder.
  • the bracing system comprises the biasing spring 01 and a carrier element, which is designed here as a shaft 05.
  • the shaft 05 is provided with a retaining groove 06 for receiving the webs 03 of the biasing spring 01.
  • the radius of the retaining groove 06 is greater than the inner radius of the biasing spring 01 in the relaxed state.
  • the retaining groove 06 is located axially behind a shaft shoulder 07.
  • the prestressing spring 01 can be seen at a point in time in which the webs 03 do not yet engage in the retaining groove 06 of the shaft 01, ie the pretensioning spring has not yet been brought into its end position.
  • the webs 03 When sliding the biasing spring 01 on the shaft shoulder 07, the webs 03 are bent radially. In this case, the entire biasing spring 01 is biased by the resulting axial force component. As soon as the webs 03 engage in the retaining groove 06, the pretensioning process is ended. The tension can only be canceled again if a corresponding axial back pressure causes the webs 03 to snap out of the retaining groove 06. To facilitate this, for example, if disassembly operations are to be expected, the free ends of the webs 03 may have a phase and / or a phase may be provided on the end face of the retaining groove 06.
  • FIG. 5 shows a 3D representation of a double-row angular contact ball bearing on a pinion shaft, which is braced axially by means of the inventive bracing system.
  • a double-row angular contact ball bearing with inner rings 08 and outer rings 09 is arranged, between which rolling elements 10 are located.
  • the biasing spring 01 and the cooperating with this holding groove 06 is used for axial clamping of the bearing on the shaft 05.
  • the two inner rings 08 of the bearing are already clamped.
  • the biasing spring 01 engages with the webs 03 in the retaining groove 06 of the shaft 05 a.
  • the radially outer end of the biasing spring 01 exerts an axially acting compressive force on the adjacent inner ring of the ball bearing, so that the desired tension is achieved.
  • machine element is clamped, for example, in a carrier element designed as a housing region.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mounting Of Bearings Or Others (AREA)
  • Support Of The Bearing (AREA)
  • Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)

Abstract

Die Erfindung betrifft ein Verspannungssystem zum axialen Verspannen von Maschinenelementen mit einer ringförmigen Vorspannfeder (01 ) und einem Trägerelement (05), auf welchen bzw. in welchem das Maschinenelement verspannt wird. Das Verspannungssystem zeichnet sich dadurch aus, dass die Vorspannfeder (01) in ihrem inneren Umfang mehrere radial verlaufende Schlitze (02) und durch diese Schlitze (02) beabstandete, sich radial erstreckende Stege (03) aufweist, wobei der vom äußeren zum inneren Radius verlaufende Bereich der Vorspannfeder einen kurvenförmigen Verlauf mit einem Anstieg in axialer Richtung aufweist. In das Trägerelement (05) ist eine umlaufende Haltenut (06) zur Aufnahme der Stege (03) der Vorspannfeder (01 ) eingebracht, wobei der Radius der Haltenut (06) größer als der Innenradius der Vorspannfeder (01 ) im ungespannten Zustand ist.

Description

Bezeichnung der Erfindung
Verspannungssystem zum axialen Verspannen von Maschinenelementen auf einer Welle oder in einem Gehäuse
Beschreibung
Gebiet der Erfindung
Die Erfindung betrifft ein Verspannungssystem zum axialen Verspannen von Maschinenelementen mit einer Vorspannfeder in Ringform und einem Trägerelement, auf welchem bzw. in welchem das Maschinenelement verspannt wird. Vorspannfedern kommen beispielsweise beim Verspannen von Lagersätzen zum Einsatz.
Der DE 38 08 556 A1 kann ein Schrägwälzlager entnommen werden, bei dem am Innenring eine den Außenring mit einem radialen Vorsprung hintergreifende Kunststoffbüchse angebracht ist und an deren größerer Seite weitere Ringe mit verschiedenen Funktionen, beispielsweise eine Stützscheibe, eine Feder und ein Klemmring, angeordnet sind. Die Kunststoffbüchse be- sitzt mindestens zwei diametral gegenüberliegende, axial gerichtete Haltebereiche, die die Funktionsringe umgreifen und mit einem radialen Vorsprung hintergreifen. Die axialen Haltebereiche bewirken eine radiale Fixierung der Ringe, während der radiale Vorsprung, der den Außenring hintergreift, ein axiales Herausfallen aus dem Lager verhindert. Ein Nachteil dieser Lösung ist in der relativ aufwendigen Ausführung der Kunststoffbüchse zu sehen.
Aus der DE 198 97 514 A1 ist ein spielfreies Radialkugellager mit einem in axialer Richtung zweiteiligen Lagerring bekannt. Wenigstens einer der beiden Lagerringteile des zweiteiligen Lagerrings wird von einem beispielsweise als Wellfeder ausgeführten Federelement in axialer Richtung mit Druck be- aufschlagt, so dass die Lagerkugeln unter Vorspannung gehalten sind. Ziel ist bei einer Schiefstellung der gelagerten Welle eine Beeinträchtigung der Spielfreiheit zu vermeiden. Beispielweise bei einer Kippbewegung der Welle kann die Federspannung zu sehr ansteigen und damit zu hohe Reibmomente im Lager hervorrufen. Hierzu wird der Innenring zweiteilig ausgeführt, wo- bei wenigstens einer der beiden Lagerringteile in radialer und in axialer Richtung verschiebbar ist. Der Außenring weist dabei eine Laufbahn auf, deren Radius deutlich größer als der Radius der Lagerkugeln ist. Durch die im Vergleich zu den Lagerkugeln deutlich größere Schmiegung der Außenlaufbahn soll im Zusammenspiel mit dem zweiteiligen beweglichen Innenring ein be- grenztes Verkippen der Welle bei gleichzeitiger Lagerspielfreiheit ermöglicht werden.
In der DE 199 46 383 A1 ist ein Regler zur Konstanthaltung der axialen Lagervorspannung durch Zwangspositionierung der Außenringe von axial ver- spannten Lagern mittels Linearaktor beschrieben. Zur Erzeugung der axialen Vorspannung sind die Außenringe der Lager entgegengesetzt zueinander angeordnet. Die Außenringe sind zwischen einem Aktor, vorzugsweise einem Hydraulikkolben, und einer stark vorgespannten Feder eingespannt. Durch diese Anordnung ist die vorliegende axiale Vorspannung im wesentli- chen von der Höhe der Kraft die der Aktor abgibt abhängig. Die von den Außenringen selbst erzeugt Vorspannung und die Reibung zwischen den Außenringen der Lager und dem Gehäuse bzw. zwischen Kolben und Gehäuse hat nur noch einen geringen Einfluss. Ein Nachteil der beschriebenen An- Ordnung besteht darin, dass sie ziemlich aufwendig in der Realisierung ist und damit auch hohe Kosten mit sich bringt.
Die US 6,003,229 A beinhaltet eine Vorrichtung zum präzisen Vorspannen eines Lagers auf einer Welle mit einer Grundplatte und einem an der Grundplatte befestigten Halter, der sich von dieser nach oben erstreckt und eine Welle aufnimmt. Die Welle umfasst einen Absatz, eine daran angrenzende konische Oberfläche, an die sich ein Gewindeabschnitt anschließt. Auf der Welle befindet sich eine an den Absatz angrenzende Passscheibe, neben welcher sich ein Lager befindet. Das Lager wird auf der Welle mittels einer auf den Gewindeabschnitt geschraubten Kontermutter vorgespannt. Auf der Grundplatte ist ein Motor angeordnet, dessen Abtriebswelle axial zu den Lageraußenringen ausgerichtet ist und mit diesen verbunden ist. Am Motor befindet sich ein Kraftsensor zum Messen des Drehmoments, welches zum Rotieren des Außenrings in einer vorgegebenen Geschwindigkeit benötigt wird. Die Messergebnisse werden auf einer Anzeigeeinheit dargestellt. In dem Fall, dass die gemessenen Drehmomente mit vorgegebenen Drehmomentwerten übereinstimmen, ist das Lager präzise vorgespannt. Die beschriebene Vorrichtung ist sehr aufwendig und bedingt einen hohen Monta- geaufwand, was letztlich zu hohen Kosten führt.
Die DE 196 07 336 A1 beinhaltet eine Vorrichtung zum Einstellen der Position oder des Spiels bzw. der Vorspannung eines Lagers, die sich bei Verstellung axial verbreitert und somit Teile des Lagers relativ zueinander oder das ganze Lager verschiebt. Hierzu werden mehrere radial angeordnete Hebelarme oder ein Bauteil mit integrierten Hebelarmen durch die Verstellung einer Schraube gegen eine Auflagefläche bewegt. Die Hebelarme können durch eine Scheibe gebildet werden, die von außen radial eingeschlitzt ist. Der innere Teil der Scheibe übernimmt dabei die Aufgabe einer Rückstellfe- der, die bei der Zustellung der Schraube in Richtung der Auflagefläche der Zustellung entgegenwirkt. Auf diese Weise soll ein Verstellung in beide Richtungen ermöglicht werden, indem die Rückstellfeder die Hebel mit der Bewegung der Schraube mitführt. Die Vorrichtung kann sich beispielsweise auf einer Welle befinden und zwei Lagerringe eines Wälzlagers in O-Anordnung relativ zueinander verstellen. Zur Rückstellung der Lagerringe kann eine Feder verwendet werden. Die hier realisierte Lagerverspannung benötigt mehrere Elemente und ist relativ aufwendig in der Ausführung, insbesondere hinsichtlich der Verspannung mittels Schraube.
Die Aufgabe der vorliegenden Erfindung besteht somit darin, ein Verspan- nungssystem zur axialen Verspannung eines Maschinenelements zur Verfügung zu stellen, welche ein zuverlässiges Verspannen ohne zusätzliche Si- cherungselemente ermöglicht. Gleichzeitig soll das Verspannungssystem preiswert gefertigt und montiert werden können.
Zur Lösung dieser Aufgabe dient eine ringförmige Vorspannfeder und ein Trägerelement, auf welchen bzw. in welchem das Maschinenelement ver- spannt wird. Die Vorspannfeder besitzt in ihrem inneren Umfang mehrere radial verlaufende Schlitze und durch diese Schlitze beabstandete, sich radial erstreckende Stege. Weiterhin weist der vom äußeren zum inneren Radius verlaufender Bereich der Vorspannfeder einen kurvenförmigen Verlauf mit einem Anstieg in axialer Richtung auf. In das Trägerelement ist eine umlau- fende Haltenut zur Aufnahme der Stege der Vorspannfeder eingebracht, wobei der Radius der Haltenut größer als der Innenradius der Vorspannfeder ist.
Ein Vorteil dieser Lösung ist in der sehr einfachen Realisierung zu sehen. Neben der preiswert produzierbaren Vorspannfeder wird lediglich eine Haltenut im Trägerelement benötigt. Die Montage ist damit wenig zeitaufwendig.
Vorzugsweise besteht die Vorspannfeder aus einem federelastischen Material, welches die radiale Aufweitung des Innenradius der Vorspannfeder durch Verbiegung der Stege gestattet.
Bei einer besonders bevorzugten Ausführungsform ist das Trägerelement eine Welle. Die Vorspannfeder lässt sich bei dieser Ausführung aufgrund der Schlitze und der damit erzielten Verformbarkeit der Stege über einen Wellen- absatz bis zu der Haltenut der Welle verschieben, wobei die Stege durch die dabei auftretende axiale Kraft aufgebogen werden und somit ein Spannen der Vorspannfeder bewirkt wird. Auf diese Weise kann das Maschinenelement sicher verspannt werden. Die Verspannung kann erst wieder aufgeho- ben werden, wenn durch Aufbringen eines entsprechenden axialen Gegendrucks oder unter Zuhilfenahme eines speziellen Werkzeugs die Stege aus der Haltenut herausgehoben werden. Eine zusätzliche Sicherung, beispielsweise über einen Sicherungsring kann somit entfallen.
Eine weitere zweckmäßige Ausführung verwendet als Trägerelement einen Gehäusebereich. Die Vorspannfeder kann auch hier mittels der Schlitze in oder über den Gehäusebereich bis zur Haltenut verschoben werden, wobei ein Spannen der Vorspannfeder bewirkt wird.
Nach einer vorteilhaften Ausführung sind die Schlitze gleichmäßig über den Umfang verteilt in den geneigten Bereich der Vorspannfeder eingebracht. Bei einer weitergebildeten Ausführungsform hat es sich als zweckmäßig erwiesen, wenn die Tiefe der Schlitze etwa der halben Höhe der Vorspannfeder entspricht. Derartig ausgebildete Schlitze ermöglichen ein problemloses Aufschieben auf den Wellenabsatz bzw. in oder über den Gehäusebereich.
Der Abstand zwischen Haltenut und Maschinenelement ist so zu wählen, dass beim Eingriff der Stege der Vorspannfeder in die Haltenut die radialen äußeren Enden der Vorspannfeder eine axial wirkende Druckkraft auf das Maschinenelement ausüben und dabei eine axiale Verspannung des Maschinenelementes bewirkt wird. Auf diese Weise kann ein zuverlässiges Verspannen des Maschinenelementes erreicht werden. Bei einem zu großen Abstand würde die Vorspannfeder keinen bzw. nur unzureichenden Druck auf das Maschinenelement ausüben, eine Spielfreiheit könnte nicht gewährleistet werden.
Eine bevorzugte Ausführung verwendet als Maschinenelement ein Wälzlager mit mindestens einem, vorzugsweise zwei Innenringen. Die Innenringe sind mittels Vorspannfeder axial verspannbar. Das Wälzlager kann als zweireihiges Schrägkugellager ausgeführt sein.
Nach einer weitergebildeten zweckmäßigen Ausführung ist die Welle als Ritzelwelle ausgeführt. Bei Lagerungen mit Ritzelwellen, die beispielsweise in Radlagern von Fahrzeugen zum Einsatz kommen, ist die Verspannung der beiden Innenringe zwingend erforderlich. Die Verspannung muss so ausgeführt sein, dass ein Auseinanderdrücken der Innenringe aufgrund der hohen Kräfte aus der Verzahnung wirksam vermieden werden kann. Gleichzeitig muss sie den erhöhten Beanspruchungen beim Fahren im Rückwärtsgang standhalten, wo die Gefahr besteht, dass das gesamte Lager aufgrund der hohen Kräfte aus der Verzahnung von der Ritzelwellen gezogen wird. Jede Lockerung der Verbindung zwischen den Innenringen und der Ritzelwelle würde zum Ausfall des Lagers bzw. des Getriebes führen. Durch Einsatz des erfindungsgemäßen Verspannungssystems wird eine zuverlässige Verspannung der Innenringe erreicht, wodurch die beschriebenen Probleme vermieden werden.
Weitere Vorteile, Einzelheiten und Weiterbildungen der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen, unter Bezugnahme auf die Zeichnung. Es zeigen:
Fig. 1 eine Vorspannfeder in einer perspektivischen Ansicht von oben;
Fig. 2 eine Schnittdarstellung der Vorspannfeder;
Fig. 3 ein vergrößerte Detailansicht der Vorspannfeder; Fig. 4 ein erfindungsgemäßes Verspannungssystems in einer Schnittdarstellung;
Fig. 5 eine teilweise aufgeschnittene 3D-Darstellung eines verspannten zweireihigen Schrägkugellagers auf einer Ritzelwelle unter Verwendung des erfindungsgemäßen Verspannungssystem.
Die Beschreibung einer beim erfindungsgemäßen Verspannungssystem verwendeten Vorspannfeder 01 soll anhand der Figuren 1 bis 3 erfolgen. Fig. 1 zeigt die Vorspannfeder 01 in einer perspektivischen Ansicht von oben. In Fig. 2 ist eine Schnittdarstellung enthalten. Fig. 3 zeigt ein Detail der Vorspannfeder.
Die Vorspannfeder 01 ist ringförmig. In ihrem inneren Umfang besitzt sie mehrere Schlitze 02 und durch diese Schlitze 02 gebildete, voneinander vorzugsweise gleichmäßig beabstandete Stege 03. Ein vom äußeren zum inneren Radius verlaufender Bereich der Vorspannfeder 01 weist einen kurvenförmigen Verlauf mit einem Anstieg in axialer Richtung auf. Damit ist die äu- ßere ringförmige Begrenzung der Vorspannfeder 01 von der inneren Begrenzung, an welcher die Stege 03 enden, nicht nur in radialer sondern auch in axialer Richtung beabstandet.
Die Schlitze 02 sind vorzugsweise gleichmäßig über den Umfang der Vor- Spannfeder 01 verteilt eingebracht. Günstig hat sich dabei eine Schlitztiefe von etwa der halben Höhe der Vorspannfeder erwiesen. Die Schlitze 02 können einen abgerundeten Endbereich 04 besitzen (siehe Fig. 3). Ausführungen mit 16 Schlitzen haben sich als besonders vorteilhaft erwiesen. Mit einer solchen Schlitzanzahl und der bevorzugten Schlitztiefe lässt sich die Vorspannfeder 01 besonders einfach beispielsweise über einen Wellenabsatz schieben.
Fig. 4 zeigt ein erfindungsgemäßes Verspannungssystems in einer Schnittdarstellung. Das Verspannungssystem umfasst die Vorspannfeder 01 und ein Trägerelement, welches hier als Welle 05 ausgeführt ist. Die Welle 05 ist mit einer Haltenut 06 zur Aufnahme der Stege 03 der Vorspannfeder 01 versehen. Der Radius der Haltenut 06 ist größer als der Innenradius der Vorspannfeder 01 im entspannten Zustand. Die Haltenut 06 befindet sich axial hinter einem Wellenabsatz 07. Zu sehen ist die Vorspannfeder 01 zu einem Zeitpunkt in dem die Stege 03 noch nicht in die Haltenut 06 der Welle 01 eingreifen, die Vorspannfeder also noch nicht in ihre Endposition verbracht ist.
Beim Aufschieben der Vorspannfeder 01 über den Wellenabsatz 07 werden die Stege 03 radial aufgebogen. Dabei wird die gesamte Vorspannfeder 01 durch die entstehende axialen Kraftkomponente vorgespannt. Sobald die Stege 03 in die Haltenut 06 eingreifen ist der Vorspannvorgang beendet. Die Verspannung kann erst wieder aufgehoben werden, wenn ein entsprechen- der axialer Gegendruck ein Ausschnappen der Stege 03 aus der Haltenut 06 bewirkt. Um dies ggf. zu erleichtern, beispielsweise wenn Demontagevorgänge zu erwarten sind, können die freien Enden der Stege 03 eine Phase aufweisen und/oder eine Phase an der Stirnseite der Haltenut 06 vorgesehen sein.
Fig. 5 zeigt eine 3D-Darstellung eines zweireihigen Schrägkugellagers auf einer Ritzelwelle, welches mittels erfindungsgemäßem Verspannungssystem axial verspannt ist. Auf einer Ritzelwelle 05 ist ein zweireihiges Schrägkugellager mit Innenringen 08 und Außenringen 09 angeordnet, zwischen denen sich Wälzkörper 10 befinden. Zum axialen Verspannen des Lagers auf der Welle 05 dient die Vorspannfeder 01 und die mit dieser zusammenwirkende Haltenut 06. In Fig. 5 sind die beiden Innenringe 08 des Lagers bereits verspannt. Die Vorspannfeder 01 greift hierzu mit den Stegen 03 in die Haltenut 06 der Welle 05 ein. Das radial äußere Ende der Vorspannfeder 01 übt eine axial wirkende Druckkraft auf den angrenzenden Innenring des Kugellagers aus, so dass die gewünschte Verspannung erzielt wird.
Es sind auch weitere Ausführungen möglich, bei denen das Maschinenelement beispielsweise in einem als Gehäusebereich ausgeführten Trägerelement verspannt wird.
Bezugszeichenliste
Vorspannfeder
Schlitze
Stege abgerundeter Endbereich
Welle
Haltenut
Wellenabsatz
Innenringe des Wälzlagers
Außenringe des Wälzlagers
Wälzkörper

Claims

Schaeffler KG Industriestr. 1 - 3, 91074 HerzogenaurachPatentansprüche
1. Verspannungssystem zum axialen Verspannen von Maschinenelementen mit einer ringförmigen Vorspannfeder (01) und einem Trägerelement (05), auf welchen bzw. in welchem das Maschinenelement verspannt wird, dadurch gekennzeichnet, dass die Vorspannfeder (01) in ih- rem inneren Umfang mehrere radial verlaufende Schlitze (02) und durch diese Schlitze (02) beabstandete, sich radial erstreckende Stege (03) aufweist, wobei der vom äußeren zum inneren Radius verlaufende Bereich der Vorspannfeder einen kurvenförmigen Verlauf mit einem Anstieg in axialer Richtung aufweist, und dass in das Trägerelement (05) eine umlaufende Haltenut (06) zur Aufnahme der Stege (03) der Vorspannfeder (01) eingebracht ist, wobei der Radius der Haltenut (06) größer als der Innenradius der Vorspannfeder (01) im ungespannten Zustand ist.
2. Verspannungssystem nach Anspruch 1 , dadurch gekennzeichnet, dass die Vorspannfeder (01) aus einem federelastischen Material besteht, welches die radiale Aufweitung des Innenradius der Vorspannfeder durch Verbiegung der Stege (03) gestattet.
3. Verspannungssystem nach Anspruch 2, dadurch gekennzeichnet, dass das Trägerelement eine Welle (05) ist, welche einen Wellenabsatz (07) vor der Haltenut (06) besitzt, wobei der Wellenabstaz (07) einen größeren Durchmesser als die Haltenut (06) aufweist, wobei die Vorspannfe- der (01) über den Wellenabsatz (07) verschiebbar ist, wobei der Innendurchmesser der Vorspannfeder im Bereich der Stege (03) beim Verschieben über den Wellenabsatz (07) aufgeweitet wird, wobei diese Aufweitung beim Eingriff in die Haltenut (06) zumindest teilweise zurück gestellt wird, und wobei die Vorspannfeder (01) in dieser Eingrifsspositi- on axial zwischen dem Maschinenelement und der Haltenut eingespannt ist.
4. Verspannungssystem nach Anspruch 2, dadurch gekennzeichnet, dass das Trägerelement (05) ein Gehäuseteil ist, in welchem die Haltenut (06) eingearbeitet ist.
5. Verspannungssystem nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Schlitze (02) gleichmäßig über den inneren Umfang der Vorspannfeder (01) verteilt eingebracht sind.
6. Verspannungssystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Tiefe der Schlitze (02) etwa der halben Höhe der Vorspannfeder (01 ) entspricht.
7. Verspannungssystem nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Abstand zwischen Haltenut und Maschinenelement gewählt ist, dass beim Eingriff der Stege (03) der Vorspannfeder (01) in die Haltenut (06) die radialen äußeren Enden der Vorspannfeder (01) eine axial wirkende Druckkraft auf das Maschinenelement ausüben und dabei eine axiale Verspannung des Maschinenelementes bewirkt wird.
8. Verspannungssystem nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Maschinenelement ein Wälzlager ist und dass die Vorspannfeder (01) zum axialen Verspannen der Innenringe (08) dieses Wälzlagers dient.
9. Verspannungssystem nach Anspruch 8, dadurch gekennzeichnet, dass das Wälzlager ein zweireihiges Schrägkugellager ist.
10. Verspannungssystem nach Anspruch 3, dadurch gekennzeichnet, dass die Welle (05) eine Ritzelwelle ist.
PCT/DE2007/002207 2006-12-22 2007-12-06 Verspannungssystem zum axialen verspannen von maschinenelementen auf einer welle oder in einem gehäuse WO2008077367A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006060883.6 2006-12-22
DE102006060883A DE102006060883A1 (de) 2006-12-22 2006-12-22 Verspannungssystem zum axialen Verspannen von Maschinenelementen auf einer Welle oder in einem Gehäuse

Publications (2)

Publication Number Publication Date
WO2008077367A2 true WO2008077367A2 (de) 2008-07-03
WO2008077367A3 WO2008077367A3 (de) 2009-02-05

Family

ID=39295962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2007/002207 WO2008077367A2 (de) 2006-12-22 2007-12-06 Verspannungssystem zum axialen verspannen von maschinenelementen auf einer welle oder in einem gehäuse

Country Status (2)

Country Link
DE (1) DE102006060883A1 (de)
WO (1) WO2008077367A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9032833B2 (en) 2011-08-01 2015-05-19 Schaeffler Technologies Gmbh & Co. Kg Securing element, steering bearing with a securing element and steering column with a steering bearing and a securing element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017127185A1 (de) * 2017-11-17 2019-05-23 ACO Severin Ahlmann GmbH & Co Kommanditgesellschaft Verbundelement für den Hochbau oder Tiefbau und Verwendung von einem als Klemmelement ausgebildeten Befestigungselement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3808556A1 (de) 1988-03-15 1989-09-28 Kugelfischer G Schaefer & Co Schraegwaelzlager, insbesondere fuer lenksaeulen von kraftfahrzeugen
DE19607336A1 (de) 1996-02-27 1997-08-28 Krais Martin Vorrichtung zum Einstellen der Position, oder des Spiels, eines Lagers
DE19807514A1 (de) 1998-02-21 1999-08-26 Schaeffler Waelzlager Ohg Spielfreies Radialkugellager
US6003229A (en) 1995-12-12 1999-12-21 Kimberly-Clark Worldwide, Inc. Apparatus and method of precisely preloading a bearing onto a shaft
DE19946383A1 (de) 1999-09-28 2001-04-05 Weck Manfred Regelung der axialen Lagerverspannung durch Zwangspositionierung der Außenringe

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1923390A (en) * 1932-02-15 1933-08-22 Moline Tool Company Lapping machine
US4364615A (en) * 1980-09-08 1982-12-21 The Bendix Corporation Retaining ring
DE3111689A1 (de) * 1981-03-25 1982-10-07 FAG Kugelfischer Georg Schäfer & Co, 8720 Schweinfurt Sichere axiale befestigung eines maschinenelements
DE3132443A1 (de) * 1981-08-17 1983-02-24 Skf Kugellagerfabriken Gmbh, 8720 Schweinfurt Anordnung zur axialen festlegung von maschinenelementen
FR2544429B1 (fr) * 1983-04-15 1985-08-02 Valeo Procede pour le montage d'une butee de debrayage, et butee de debrayage correspondante, notamment pour vehicule automobile
DE3611251A1 (de) * 1986-04-04 1987-10-08 Wittenstein Manfred Auf das gewinde einer drehbar gelagerten welle aufschraubbare spannmutter
FR2726058B1 (fr) * 1994-10-24 1996-12-13 Valeo Butee de debrayage a element de manoeuvre en matiere synthetique comportant une plaque d'appui pour eviter le fluage
FR2756885B1 (fr) * 1996-12-09 1999-01-15 Skf France Palier a roulement de colonne de direction pour vehicules automobiles
DE19961709A1 (de) * 1999-12-21 2001-07-12 Daimler Chrysler Ag Befestigungseinrichtung für eine Lagerung einer Spindel
DE10027513A1 (de) * 2000-06-06 2001-12-13 Schaeffler Waelzlager Ohg Lager zur Lagerung einer Lenkwelle
DE10300725A1 (de) * 2003-01-11 2004-07-22 Ina-Schaeffler Kg Wälzlager zur Lagerung einer Lenkwelle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3808556A1 (de) 1988-03-15 1989-09-28 Kugelfischer G Schaefer & Co Schraegwaelzlager, insbesondere fuer lenksaeulen von kraftfahrzeugen
US6003229A (en) 1995-12-12 1999-12-21 Kimberly-Clark Worldwide, Inc. Apparatus and method of precisely preloading a bearing onto a shaft
DE19607336A1 (de) 1996-02-27 1997-08-28 Krais Martin Vorrichtung zum Einstellen der Position, oder des Spiels, eines Lagers
DE19807514A1 (de) 1998-02-21 1999-08-26 Schaeffler Waelzlager Ohg Spielfreies Radialkugellager
DE19946383A1 (de) 1999-09-28 2001-04-05 Weck Manfred Regelung der axialen Lagerverspannung durch Zwangspositionierung der Außenringe

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9032833B2 (en) 2011-08-01 2015-05-19 Schaeffler Technologies Gmbh & Co. Kg Securing element, steering bearing with a securing element and steering column with a steering bearing and a securing element

Also Published As

Publication number Publication date
DE102006060883A1 (de) 2008-06-26
WO2008077367A3 (de) 2009-02-05

Similar Documents

Publication Publication Date Title
DE102005012323B3 (de) Lageranordnung
EP2029906B1 (de) Verfahren zur herstellung eines mehrreihigen axial vorgespanntens schrägkugellagers
DE2912725C2 (de) Lagerspannvorrichtung für ein Gasturbinentriebwerk
DE102009045980B4 (de) Reibungskupplung
DE3829276C2 (de) Anordnung zum Anstellen von auf einem Tragkörper angeordneten Laufrollen
WO2014076191A1 (de) Lageranordnung
EP1832154A1 (de) Verbindungsanordnung zwischen einem Mähmesserantrieb und einem Mähmesser
EP2140155B1 (de) Wälzlager sowie lagerungsanordnung mit wälzlager
DE3546671C2 (de)
EP2153066A2 (de) Lageranordnung für eine windturbine
EP4185784A1 (de) Verfahren und system zum herstellen eines getriebes
DE102014215000B4 (de) Dichtung für ein Wälzlager, Kreuzgelenk und Lagerbüchse mit der Dichtung
DE102006053731A1 (de) Vorrichtung mit einem auf Temperaturwechsel reagierenden Kompensationselement
EP2527676B1 (de) Verfahren zum Erzeugen einer mechanischen Spannung und Vorrichtung zum mechanischen Verspannen mindestens einer Verschraubung
DE102004053078A1 (de) Lageranordung
WO2008077367A2 (de) Verspannungssystem zum axialen verspannen von maschinenelementen auf einer welle oder in einem gehäuse
EP3489534B1 (de) Lagervorspannvorrichtung für eine grosslagereinheit sowie grosslagereinheit
DE102015205748B4 (de) Lageranordnung mit Vorspannung
DD235699A1 (de) Klemmscheibe zur beweglichen lagerung, sicherung oder befestigung von bauteilen auf wellen und dgl., vorzugsweise mit axialspiel
WO2008043346A1 (de) Radialzylinderrollenlager
EP2450584A2 (de) Lageranordnung für eine Welle
EP1467111A2 (de) Verfahren zur Einstellung des Spiels oder der Vorspannung eines Lagers
WO2007099110A1 (de) Mehrreihiges axial vorgespanntes schrägkugellager und verfahren zu seiner herstellung
CH364664A (de) Spieleinstellbares Wälzlager
DE102005055822B4 (de) Hülsenanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07856064

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 07856064

Country of ref document: EP

Kind code of ref document: A2