WO2008072336A1 - 多入力多出力通信のためのアンテナを選択する制御装置 - Google Patents

多入力多出力通信のためのアンテナを選択する制御装置 Download PDF

Info

Publication number
WO2008072336A1
WO2008072336A1 PCT/JP2006/324979 JP2006324979W WO2008072336A1 WO 2008072336 A1 WO2008072336 A1 WO 2008072336A1 JP 2006324979 W JP2006324979 W JP 2006324979W WO 2008072336 A1 WO2008072336 A1 WO 2008072336A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
sector
mobile station
transmission
antennas
Prior art date
Application number
PCT/JP2006/324979
Other languages
English (en)
French (fr)
Inventor
Shoichi Miyamoto
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to EP06834733.5A priority Critical patent/EP2093918B1/en
Priority to PCT/JP2006/324979 priority patent/WO2008072336A1/ja
Priority to EP13166049.0A priority patent/EP2624474A3/en
Priority to JP2008549169A priority patent/JP4905461B2/ja
Publication of WO2008072336A1 publication Critical patent/WO2008072336A1/ja
Priority to US12/476,635 priority patent/US8565825B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0491Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more sectors, i.e. sector diversity
    • H04B7/0495Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more sectors, i.e. sector diversity using overlapping sectors in the same base station to implement MIMO for antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]

Definitions

  • Control device for selecting antenna for multi-input multi-output communication
  • the present invention relates to a control device that selects an antenna to be used for communication in a multiple-input multiple-output (MIMO) transmission system that performs mobile radio communication using a plurality of antennas for transmission and reception.
  • MIMO multiple-input multiple-output
  • MIMO transmission is used to improve the transmission rate in a limited frequency resource, and spatial multiplexing is performed by transmitting data having a plurality of correlated antenna powers different from each other. This makes it possible to improve the transmission rate without increasing the frequency band.
  • This MIMO technology is expected to be applied to next-generation mobile radio communication systems mainly for high-speed data communication such as LTE (Long Term Evolution) and WiMax (Worldwide Internet for Microwave Access).
  • FIG. 1 shows a configuration example (2 X 2MIMO) of a conventional MIMO transmission system!
  • the cell 103 in charge of the base station apparatus 101 is composed of three sectors 1 to 3, and the base station apparatus 101 has a configuration as shown in FIG.
  • the base station apparatus of FIG. 2 includes antennas 111 to 116, transmission / reception units (TRX) 201 to 206, baseband processing units (BB) 211 to 213, and an interface (INT) 221.
  • TRX transmission / reception units
  • BB baseband processing units
  • INT interface
  • the transmission / reception units 201 to 206 and the base node processing unit 211 to 213 ⁇ are connected to the node 231 [from here!
  • a mesh connection may be used instead of the bus 231.
  • the interface 221 communicates with the base station control apparatus via a wired transmission path.
  • Each branch of sectors 1 to 3 is configured by a combination of the following antenna and transmission / reception unit.
  • Sector 1 branch Br 1 Antenna 111 and transceiver 201
  • Sector 1 branch Br2 antenna 112 and transceiver 202
  • Sector 2 branch Br2 antenna 114 and transceiver 204 5.
  • Sector 3 branch Brl antenna 115 and transceiver 205
  • Sector 3 branch Br2 antenna 116 and transceiver 206
  • MIMO transmission is a system established in an area where a plurality of antennas can be received
  • the following conditions can be considered as conditions under which MIMO transmission between the base station apparatus 101 and the mobile station 102 is not established in the cell 103.
  • the antenna correlation becomes invisible.
  • MIMO transmission is not selected for handover.
  • the mobile station 102 normally performs MIMO transmission by selecting a plurality of antennas with good reception conditions. However, if the selected antennas belong to different sectors, M IMO transmission is not selected and fast cell selection (FCS) or soft handover (SHO) is selected. The reason is that the control target in the conventional scheduling is sector linking, and MIMO transmission across sectors is not defined.
  • FCS fast cell selection
  • SHO soft handover
  • the baseband processing unit 211 is connected to the transmission / reception units 201 and 202 and performs signal processing of the user data 401.
  • baseband processing units 211 and 212 are tied to sectors 1 and 2, respectively, mobile station 102 As shown in FIG. 6, the user data 401 is moved to the baseband processing unit 212. In this case, the baseband processing unit 212 is connected to the transmission / reception units 203 and 204.
  • FCS is applied as shown in FIG.
  • the baseband processing unit 211 is connected to the transmission / reception units 201 to 204, and the same data is transmitted to the sectors 1 and 2.
  • the mobile station 102 while the mobile station 102 exists in the vicinity of the center of the sector 1 or the sector 2, user data can be transmitted at high speed by 2 ⁇ 2 MIMO transmission. However, while the mobile station 102 exists in the vicinity of the boundary between the sector 1 and the sector 2, the mobile station 102 shifts to FCSZSHO, so that the transmission rate decreases and the maximum transmission rate may not be achieved.
  • Patent Document 1 relates to a communication system capable of switching selective diversity / MIMO transmission using a plurality of antennas, and Patent Document 2 divides a base station antenna into a plurality of array groups.
  • the present invention relates to a system that performs directional beam control.
  • Patent Document 3 relates to a system for transmitting data using many diversity 'transmission' modes.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-333443
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-338781
  • Patent Document 3 Japanese Translation of Special Publication 2005-531219
  • An object of the present invention is to establish MIMO transmission in a cell of a mobile radio communication system By increasing the area to be used, the average throughput in the cell is improved.
  • a first base station apparatus of the present invention is a base station apparatus that performs radio communication with a mobile station in a cell having a plurality of sector forces by MIMO transmission, and is provided corresponding to each sector. It has the above antenna and control unit. When the mobile station moves near the boundary between two sectors, the control unit also selects the antenna of the antennas provided in each of the sectors, and selects MIMO transmission using the selected antenna.
  • the control unit of the first base station apparatus corresponds to, for example, a scheduler 951 in FIG. 9 or a scheduler 1301 in FIG.
  • the second base station apparatus of the present invention is a base station apparatus that performs radio communication by MIMO transmission with a mobile station in a cell that does not have a sector configuration, and a plurality of base station apparatuses that are provided corresponding to the cell. Includes an antenna and a control unit. When the mobile station moves, the control unit selects two or more antennas from among a plurality of antennas, and selects MIMO transmission using the selected antennas.
  • the control unit of the second base station apparatus corresponds to, for example, a scheduler 1951 in FIG.
  • FIG. 1 is a configuration diagram of a conventional MIMO transmission system.
  • FIG. 2 is a configuration diagram of a conventional base station apparatus.
  • FIG. 3 is a diagram showing SIR in a conventional MIMO transmission system.
  • FIG. 4 is a diagram showing a state before handover.
  • FIG. 5 is a diagram showing a first handover.
  • FIG. 6 is a diagram showing a second handover.
  • FIG. 7 is a diagram showing fast cell selection.
  • FIG. 8 is a configuration diagram of a first MIMO transmission system.
  • FIG. 9 is a block diagram of a first base station apparatus.
  • FIG. 10 is a diagram showing SIR in the first MIMO transmission system.
  • FIG. 11 is a diagram illustrating first MIMO transmission.
  • FIG. 12 is a diagram illustrating second MIMO transmission.
  • FIG. 13 is a diagram showing a centralized scheduler.
  • FIG. 14 is a diagram showing scheduling control.
  • FIG. 15 is a diagram showing a first scheduling control sequence.
  • FIG. 16 is a diagram showing the relationship between SIR and threshold in the first MIMO transmission system.
  • FIG. 17 is a diagram showing threshold adjustment.
  • FIG. 18 is a configuration diagram of a second MIMO transmission system.
  • FIG. 19 is a block diagram of a second base station apparatus.
  • FIG. 20 is a diagram showing SIR in the second MIMO transmission system.
  • FIG. 21 is a diagram showing a second scheduling control sequence.
  • FIG. 22 is a diagram showing the relationship between SIR and threshold in the second MIMO transmission system.
  • FIG. 8 shows a configuration example (2 ⁇ 2MIMO) of the MIMO transmission system of the present invention.
  • the cell 803 that the base station apparatus 801 is in charge of consists of three sectors 1 to 3, and the base station apparatus 801 has a configuration as shown in FIG.
  • the base station apparatus in FIG. 9 includes antennas 811 to 816, transmission / reception units (TRX) 901 to 906, and baseband processing units (BB) 911 to 913.
  • TRX transmission / reception units
  • BB baseband processing units
  • the transmission / reception units 901 to 906 and the baseband processing units 911 to 913 are connected to each other by a bus 961.
  • a mesh connection may be used instead of the nos 961.
  • Each branch of sectors 1 to 3 is configured by a combination of the following antenna and transmission / reception unit.
  • Sector 1 branch Br 1 Antenna 811 and transceiver 901
  • Sector 2 branch Brl Antenna 813 and transceiver 903
  • Sector 2 branch Br2 Antenna 814 and transceiver 904
  • Sector 3 branch Br2 Antenna 816 and transceiver 906
  • the transmission / reception units 901 to 906 perform signal processing for each antenna (for each branch).
  • the transmission / reception unit 901 includes a radio unit (RF) 921 and a modulation / demodulation unit (ModZDem) 931.
  • the transmission / reception units 902 to 906 include radio units 922 to 926 and modulation / demodulation units 932 to 936, respectively.
  • the baseband processing units 911 to 913 perform signal processing for each user.
  • the baseband processing unit 911 includes a coding Z decoding unit (CoderZDecoder) 941 and a scheduler 951.
  • baseband processing units 912 and 913 include encoding Z decoding units 941 and 942 and schedulers 952 and 953, respectively.
  • the schedulers 951 to 953 are implemented using, for example, a CPU (central processing unit) and a memory, and perform scheduling control based on quality information of signals transmitted and received by the antennas 811 to 816. Select the antenna and modulation method used for MIMO transmission.
  • FIG. 8 when mobile station 802 exists near the center of sector 1, as shown in case C1 of FIG. 10, since the SIR of branch Brl and Br2 of sector 1 is large, antennas 8 11 and 812 2 X 2 MIMO transmission is performed using this.
  • a code Z decoding unit 941 of the baseband processing unit 911 is connected to transmission / reception units 901 and 902 to perform encoding Z decoding of user data.
  • MIMO transmission may be impossible at the sector boundary, and there is an area where MIMO transmission cannot be applied in the cell.
  • MIMO transmission becomes possible, and the area where M IMO transmission is possible in the cell increases.
  • FCSZSHO is selected at the sector boundary near the cell edge. Appropriate control can be performed according to the situation.
  • the scheduling control configuration includes a distributed type in which schedulers 951 to 953 are installed in the baseband processing units 911 to 913, respectively, and a scheduler 1301 is installed in the baseband processing unit as shown in FIG.
  • a centralized type that can be mounted separately from 911 to 913 can be considered.
  • the allocation power of all branches in the base station apparatus 801 is distributed and managed for each baseband processing unit. Possible management methods include a method of limiting the number of branches managed for each baseband processing unit, and a method of providing a master scheduler in the baseband processing unit of V or any other.
  • the allocation power of all branches in the base station apparatus 801 is managed by the scheduler 1301. Since the scheduler 1301 manages the allocation status of all branches, the destination branch can be allocated quickly.
  • FIG. 14 shows an example of scheduling control in a distributed configuration.
  • the scheduler 951 of the baseband processing unit 911 that mainly manages the sector 1 manages the mobile station 802 that is communicating, and the resources that are communicating with the mobile station 802 (the branch Brl and Br2 of the sector 1). ) Is assigned to the baseband processing unit 911.
  • a common channel signal (Pilot signal) is constantly transmitted from each antenna of each sector.
  • the mobile station 802 recognizes in which sector of which base station it exists, observes the reception status of each branch signal, and indicates the reception status of the CQI (Channel Quality Indicator). ) Collect information.
  • CQI information for example, SIR, Doppler frequency, delay spread, etc. are used.
  • this CQI information is included in the uplink signal and fed back to the base station apparatus 801.
  • the scheduler 951 recognizes the reception status of the mobile station 802 and then uses the sector, antenna, and transmission method (MIMO, FCS, modulation scheme, Select the coding rate.
  • MIMO MIMO, FCS, modulation scheme, Select the coding rate.
  • the downlink transmission amount, the number of users in the sector, and the like may be considered.
  • FIG. 15 shows a sequence of such scheduling control.
  • baseband processing section 911 performs MIMO transmission of user data to mobile station 802 via transmission / reception sections 901 and 902 in sector 1 (procedure 1501), and mobile station 802 receives pilot data and receives pilot data. Is received (step 1502).
  • MIMO transmission is continued between baseband processing section 911 and mobile station 802 via transmission / reception sections 901 and 902 in sector 1 (procedure 1503).
  • the SIRs of the branch Brl and Br2 of the sector 1 exceed the threshold value x.
  • the mobile station 802 transmits the SIR, the Doppler frequency, and the delay spread of each branch of each sector to the baseband processing unit 911 as CQI information (step 1504).
  • scheduler 951 of baseband processing section 911 performs threshold determination of SIR included in the received CQI information (procedure 1505).
  • the SIR of sector 1 branch Brl and sector 2 branch Br2 is less than threshold X
  • the SIR of sector 1 branch Br2 and sector 2 branch Brl is the threshold. You can see that it exceeds X.
  • scheduler 951 transmits a setting change notice message to mobile station 802 to notify that the antenna is to be changed after transmitting a specified number of frames (procedure 1508). Then, the mobile station 802 returns a response message (procedure 1509).
  • scheduler 951 transmits a connection release message to transmission / reception unit 901 (procedure 1510), and transmission / reception unit 901 returns a response message (procedure 1511). Then, scheduler 951 transmits a connection setting message to transmission / reception unit 903 (procedure 1512), and transmission / reception unit 903 returns a response message (procedure 1513).
  • scheduler 951 transmits a transmission restart message to mobile station 802 (procedure 15 14).
  • the baseband processing unit 911 includes the transmission / reception unit 902 in sector 1 and the The user data is MIMO transmitted to the mobile station 802 via the transmission / reception unit 903 (step 1515).
  • the mobile station 802 receives the user data and also receives the pilot signal (step 1516).
  • MIMO transmission is continued between baseband processing section 911 and mobile station 802 via transmission / reception section 902 in sector 1 and transmission / reception section 903 in sector 2 (step 1517). Then, the mobile station 802 transmits CQI information of each branch of each sector to the baseband processing unit 911 (procedure 1518).
  • mobile station 802 When mobile station 802 further moves and enters a state as shown in case C3 in FIG. 16, between baseband processing section 911 and mobile station 802 via transmission / reception sections 903 and 904 in sector 2. MIMO transmission is performed.
  • the radio propagation environment is constantly changing due to the moving speed of the mobile station 802 and the effect of multipath due to surrounding reflectors.
  • the moving speed can be estimated by measuring the Doppler frequency at the mobile station 802.
  • the effects of multipath can be calculated numerically by determining the delay spread.
  • the delay spread is a standard deviation of the power delay profile indicating the spread of the power distribution with respect to the delay time.
  • T m ⁇ E [T 2 ] ⁇ E 2 [T] (1)
  • Equations (2) and (3) represent the sum of the direct wave and the plurality of delayed waves.
  • the scheduler 951 uses the Dobler frequency and / or delay spread included in the received CQI information as necessary in step 1505 to set the SIR threshold. Fluctuate.
  • the normal antenna selection logic is as follows.
  • the threshold values X and y are adjusted by the following equation, and the adjusted threshold values x ′ and y ′ are used as shown in FIG.
  • the antenna is selected with the same logic as.
  • a is a parameter that is set according to the value of delay spread ⁇ .
  • j8 is a parameter set according to the value of the Doppler frequency fd.
  • 8 are given to the scheduler 951 in a table format, for example.
  • the antenna is selected based on the SIR of each branch, but the antenna may be selected based on other quality information indicating the signal quality of each branch! Nah ... In that case, another quality information is transmitted from the mobile station 802 as CQI information.
  • the cell is divided into three sectors, and each sector has two branches.
  • the cell is divided into two or more sectors.
  • Each sector can have N branches (N ⁇ 2).
  • N ⁇ 2 the number of antennas belonging to each sector are selected and MIMO transmission is performed.
  • the MIMO transmission system in FIG. 8 is premised on a cell with a sector configuration, but as shown in FIG. 18, a MIMO transmission system that eliminates the concept of the sector configuration is also conceivable.
  • cell 1803 handled by base station apparatus 1801 is not divided into sectors, and scheduling control is performed in units of antennas, not in units of sectors.
  • Base station apparatus 1801 has a configuration as shown in FIG.
  • the base station apparatus of FIG. 19 includes antennas 1811 to 1816, transmission / reception units (TRX) 1901 to 1906, and baseband processing units (BB) 1911 to 1913. Of these, the transmission / reception units 1901 to 1906 and the base node processing terminals 1911 to 1913 are connected to the 1961 nodes. Instead of the bus 1961, a mesh connection may be employed.
  • Each branch is configured by a combination of the following antenna and transmission / reception unit.
  • Branch Br 1 Antenna 1811 and transceiver 1901
  • Branch Br2 Antenna 1812 and transceiver 1902
  • Branch Br3 Antenna 1813 and transceiver 1903
  • Branch Br4 Antenna 1814 and transceiver 1904
  • Branch Br5 Antenna 1815 and transceiver 1905
  • the transmission / reception units 1901 to 1906 perform signal processing for each antenna (for each branch).
  • Transceiver 1901 includes a radio frequency (RF) 1921 and a modulation / demodulation frequency (ModZDem) 1931.
  • transmission / reception units 1902-1906 include radio units 1922-1926 and modulation / demodulation units 1932-1936, respectively.
  • the base node processing units 1911 to 1913 perform signal processing for each user.
  • the baseband processing unit 1911 includes an encoding Z decoding unit (CoderZDecoder) 1941 and schedulers 1951 and 1952.
  • the baseband processing unit 1912 includes an encoding Z decoding unit 1942 and schedulers 1953 and 1954
  • the baseband processing unit 1913 includes an encoding / decoding unit 1943 and schedulers 1955 and 1956.
  • Schedulers 1951 to 1956 manage the resources of branch Brl to Br6, respectively, and perform scheduling control for each branch.
  • FCSZSHO at the sector boundary is eliminated, so that the scheduling control load is lighter than that in the case of the sector configuration.
  • FIG. 21 shows a scheduling control sequence in the system of FIG. First, baseband processing section 1911 performs MIMO transmission of user data to mobile station 1802 via transmitting / receiving sections 1901 and 1902 (procedure 2101), and mobile station 1802 receives the pilot data as well as the user data. (Step 2102).
  • MIMO transmission is continued between baseband processing section 1911 and mobile station 1802 via transmission / reception sections 1901 and 1902 (procedure 2103).
  • the SIRs of branches Brl and Br2 exceed the threshold value x.
  • Mobile station 1802 The CQI information of the branch is transmitted to the baseband processing unit 1911 (procedure 2104).
  • the scheduler 1951 of the baseband processing unit 1911 performs threshold determination of the SIR included in the received CQI information (procedure 2105).
  • the SIRs of the branches Brl and Br4 are less than the threshold value X, and the SIRs of the branches Br2 and Br3 exceed the threshold value X.
  • scheduler 1951 transmits a setting change notice message similar to FIG. 15 to mobile station 180 2 (procedure 2108), and mobile station 802 returns a response message (procedure 2109).
  • scheduler 1951 transmits a connection release message to transmission / reception unit 1901 (procedure 2110), and transmission / reception unit 1901 returns a response message (procedure 2111). Then, the scheduler 1951 notifies the scheduler 1952 that the user data management source is changed to the branch Brl (scheduler 1951) force branch Br2 (scheduler 1952) (procedure).
  • scheduler 1952 transmits a connection setting message to transmission / reception section 1903 (procedure
  • the transmission / reception unit 1903 returns a response message (procedure 2114).
  • the scheduler 1952 transmits a transmission restart message to the mobile station 1802 (procedure 2115).
  • baseband processing section 1911 performs MIMO transmission of user data to mobile station 1802 via transmission / reception section 1902 and transmission / reception section 1903 (step 2116), and mobile station 1802 receives the pilot data and receives user data. Is received (step 2117).
  • MIMO transmission is continued between baseband processing section 1911 and mobile station 1802 via transmitting / receiving section 1902 and transmitting / receiving section 1903 (procedure 2118). Then, the mobile station 1802 transmits the CQI information of each branch to the baseband processing unit 1911 (procedure 2119).
  • the scheduler 1951 selects an antenna with the following logic.
  • the threshold values x and y can be changed to the threshold values x ′ and y ′ by the adjustment method described above.
  • the force provided with six branches is generally possible to provide N (N ⁇ 2) branches.
  • MIMO transmission is performed by selecting two or more of the N antennas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

 複数のセクタからなるセル内の移動局と無線通信を行う基地局装置は、移動局が2つのセクタの境界付近に移動したとき、それらのセクタ各々に設けられたアンテナの中から選択したアンテナを用いてMIMO伝送を行う。また、セクタ構成を持たないセル内の移動局と無線通信を行う基地局装置は、移動局が移動したとき、複数のアンテナの中から選択した2つ以上のアンテナを用いてMIMO伝送を行う。

Description

明 細 書
多入力多出力通信のためのアンテナを選択する制御装置
技術分野
[0001] 本発明は、送受信に複数のアンテナを用いて移動無線通信を行う多入力多出力( MIMO : Multiple-Input Multiple- Output)伝送システムにおいて、通信に用いるアン テナを選択する制御装置に関する。
背景技術
[0002] MIMO伝送は、限られた周波数資源の中で伝送速度を向上させるために用いられ 、相関のある複数のアンテナ力 異なるデータを送信することで、空間多重が行われ る。これにより、周波数帯域を増加させることなぐ伝送速度を向上させることが可能 になる。この MIMO技術は、 LTE (Long Term Evolution )、 WiMax (Worldwide Inte roperability for Microwave Access )等の高速データ通信を主目的とした、次世代移 動無線通信システムへの適用が見込まれて 、る。
[0003] 図 1は、従来の MIMO伝送システムの構成例(2 X 2MIMO)を示して!/、る。基地局 装置 101が担当するセル 103は、 3つのセクタ 1〜3からなり、基地局装置 101は、図 2に示すような構成を有する。
[0004] 図 2の基地局装置は、アンテナ 111〜 116、送受信部(TRX) 201〜206、ベース バンド処理部(BB) 211〜213、およびインタフェース(INT) 221を備える。このうち、 送受信咅 201〜206およびベースノ ンド処理咅 211〜213ίま、ノ ス 231【こより互!/、 に接続されている。バス 231の代わりに、メッシュ接続が採用される場合もある。インタ フェース 221は、有線伝送路を介して基地局制御装置と通信を行う。
[0005] セクタ 1〜3の各ブランチは、以下のアンテナおよび送受信部の組み合わせにより 構成される。
1.セクタ 1のブランチ Br 1 :アンテナ 111および送受信部 201
2.セクタ 1のブランチ Br2:アンテナ 112および送受信部 202
3.セクタ 2のブランチ Brl :アンテナ 113および送受信部 203
4.セクタ 2のブランチ Br2:アンテナ 114および送受信部 204 5.セクタ 3のブランチ Brl :アンテナ 115および送受信部 205
6.セクタ 3のブランチ Br2:アンテナ 116および送受信部 206
MIMO伝送は、複数のアンテナが受信可能なエリアにおいて成立するシステムで あるため、セル 103内において基地局装置 101と移動局 102の MIMO伝送が成立 しない条件として、以下のようなものが考えられる。
(1)セル端
移動局 102が基地局装置 101から離れることにより、アンテナ相関が見えなくなる。
(2)セクタ境界
移動局 102がセクタ間の境界に近づくことにより、ハンドオーバのために MIMO伝 送が選択されなくなる。
[0006] 移動局 102は、通常、受信状態の良い複数のアンテナを選択して、 MIMO伝送を 行う。しかし、選択されたアンテナがそれぞれ異なるセクタに属している場合には、 M IMO伝送は選択されずに、高速セル選択 (FCS)またはソフトハンドオーバ(SHO) が選択される。その理由は、従来のスケジューリングにおける制御対象がセクタ括り 付けとなっており、セクタ間をまたがる MIMO伝送が定義されていないためである。
[0007] 例えば、移動局 102がセクタ 1の中央付近に存在する場合は、図 3のケース C1に 示すように、セクタ 1のブランチ Brlおよび Br2の信号対干渉比(SIR)が十分大きぐ 受信状態は良好である。そこで、アンテナ 111および 112を用いて 2 X 2MIMO伝送 が行われる。
[0008] 次に、移動局 102がセクタ 1とセクタ 2の境界付近に移動した場合、ケース C2に示 すように、セクタ 1のブランチ Br2およびセクタ 2のブランチ Brlの SIRは大きいが、セ クタ 1のブランチ Brlおよびセクタ 2の Br2の SIRは小さくなる。このため、 2 X 2MIM O伝送を行うことが難しい。そこで、通常は、 FCSまたは SHOが適用される。
[0009] 次に、移動局 102がセクタ 2の中央付近に移動した場合、ケース C3に示すように、 セクタ 2のブランチ Brlおよび Br2の SIRが大きくなるため、アンテナ 113および 114 を用いて 2 X 2MIMO伝送が行われる。
[0010] このように、移動局 102がセクタ 1からセクタ 2へ移動する場合、ハンドオーバにより ユーザデータの接続を切り替える必要がある。図 4に示すように、移動局 102がセク タ 1に存在する間は、ベースバンド処理部 211が送受信部 201および 202に接続さ れ、ユーザデータ 401の信号処理を行う。
[0011] ここで、図 2に示したように、送受信部 201〜204とベースバンド処理部 211がバス 231またはメッシュで接続されているとすると、移動局 102がセクタ 2へ移動したとき、 図 5に示すように接続が切り替えられる。この場合、ベースバンド処理部 211が送受 信部 203および 204に接続される。
[0012] これに対して、 HSDPA (High Speed Downlink Packet Access )に見られるように、 ベースバンド処理部 211および 212がそれぞれセクタ 1および 2に括り付けられてい るとすると、移動局 102がセクタ 2へ移動したとき、図 6に示すように、ユーザデータ 40 1がベースバンド処理部 212へ移される。この場合、ベースバンド処理部 212が送受 信部 203および 204に接続される。
[0013] また、移動局 102がセクタ 1とセクタ 2の境界付近に存在する間は、図 7に示すよう に、 FCSが適用される。この場合、ベースバンド処理部 211が送受信部 201〜204 に接続され、セクタ 1および 2に同じデータが送信される。
[0014] 上述したように、移動局 102がセクタ 1またはセクタ 2の中央付近に存在する間は、 2 X 2MIMO伝送により高速にユーザデータを伝送することができる。しかしながら、 移動局 102がセクタ 1とセクタ 2の境界付近に存在する間は、 FCSZSHOに移行す るため、伝送速度は低下し、最大伝送速度を出せない可能性がある。
[0015] 下記の特許文献 1は、複数のアンテナを用いて選択ダイバーシチ/ MIMO送信を 切り替え可能な通信システムに関し、特許文献 2は、基地局アンテナを複数アレー群 に分割して、各アレー群で指向性ビーム制御を行うシステムに関する。また、特許文 献 3は、多くのダイバーシチ 'トランスミッション'モードを用いてデータを伝送するシス テムに関する。
特許文献 1:特開 2005 - 333443号公報
特許文献 2:特開 2003 - 338781号公報
特許文献 3:特表 2005 - 531219号公報
発明の開示
[0016] 本発明の課題は、移動無線通信システムのセル内において、 MIMO伝送が成立 するエリアを増加させることにより、セル内における平均的なスループットを向上させ ることである。
[0017] 本発明の第 1の基地局装置は、複数のセクタ力 なるセル内の移動局と MIMO伝 送により無線通信を行う基地局装置であって、各セクタに対応して設けられた 1っ以 上のアンテナと制御部を備える。制御部は、移動局が 2つのセクタの境界付近に移 動したとき、それらのセクタ各々に設けられたアンテナの中力もアンテナを選択し、選 択されたアンテナを用いた MIMO伝送を選択する。
[0018] このような構成によれば、セクタ境界においても MIMO伝送が可能となり、セル内 における MIMO伝送が可能なエリアが増加する。第 1の基地局装置の制御部は、例 えば、後述する図 9のスケジューラ 951または図 13のスケジューラ 1301に対応する。
[0019] 本発明の第 2の基地局装置は、セクタ構成を持たないセル内の移動局と MIMO伝 送により無線通信を行う基地局装置であって、セルに対応して設けられた複数のアン テナと制御部を備える。制御部は、移動局が移動したとき、複数のアンテナの中から 2つ以上のアンテナを選択し、選択されたアンテナを用いた MIMO伝送を選択する
[0020] このような構成によれば、セル内の任意の位置において MIMO伝送が可能となり、 セル内における MIMO伝送が可能なエリアが増加する。第 2の基地局装置の制御 部は、例えば、後述する図 19のスケジューラ 1951に対応する。
図面の簡単な説明
[0021] [図 1]従来の MIMO伝送システムの構成図である。
[図 2]従来の基地局装置の構成図である。
[図 3]従来の MIMO伝送システムにおける SIRを示す図である。
[図 4]ハンドオーバ前の状態を示す図である。
[図5]第 1のハンドオーバを示す図である。
[図 6]第 2のハンドオーバを示す図である。
[図 7]高速セル選択を示す図である。
[図 8]第 1の MIMO伝送システムの構成図である。
[図 9]第 1の基地局装置の構成図である。 [図 10]第 1の MIMO伝送システムにおける SIRを示す図である。
[図 11]第 1の MIMO伝送を示す図である。
[図 12]第 2の MIMO伝送を示す図である。
[図 13]集中型スケジューラを示す図である。
[図 14]スケジューリング制御を示す図である。
[図 15]第 1のスケジューリング制御シーケンスを示す図である。
[図 16]第 1の MIMO伝送システムにおける SIRと閾値の関係を示す図である。
[図 17]閾値の調整を示す図である。
[図 18]第 2の MIMO伝送システムの構成図である。
[図 19]第 2の基地局装置の構成図である。
[図 20]第 2の MIMO伝送システムにおける SIRを示す図である。
[図 21]第 2のスケジューリング制御シーケンスを示す図である。
[図 22]第 2の MIMO伝送システムにおける SIRと閾値の関係を示す図である。
発明を実施するための最良の形態
[0022] 以下、図面を参照しながら、本発明を実施するための最良の形態を詳細に説明す る。
図 8は、本発明の MIMO伝送システムの構成例(2 X 2MIMO)を示している。基地 局装置 801が担当するセル 803は、図 1と同様に、 3つのセクタ 1〜3からなり、基地 局装置 801は、図 9に示すような構成を有する。
[0023] 図 9の基地局装置は、アンテナ 811〜816、送受信部(TRX) 901〜906、および ベースバンド処理部(BB) 911〜913を備える。このうち、送受信部 901〜906およ びベースバンド処理部 911〜913は、バス 961により互いに接続されている。ノ ス 96 1の代わりに、メッシュ接続を採用してもよい。
[0024] セクタ 1〜3の各ブランチは、以下のアンテナおよび送受信部の組み合わせにより 構成される。
1.セクタ 1のブランチ Br 1 :アンテナ 811および送受信部 901
2.セクタ 1のブランチ Br2 :アンテナ 812および送受信部 902
3.セクタ 2のブランチ Brl:アンテナ 813および送受信部 903 4.セクタ 2のブランチ Br2:アンテナ 814および送受信部 904
5.セクタ 3のブランチ Brl:アンテナ 815および送受信部 905
6.セクタ 3のブランチ Br2:アンテナ 816および送受信部 906
送受信部 901〜906は、アンテナ毎 (ブランチ毎)の信号処理を行う。送受信部 90 1は、無線部 (RF) 921および変復調部(ModZDem) 931を含む。同様に、送受信 部 902〜906は、それぞれ無線部 922〜926および変復調部 932〜936を含む。
[0025] ベースバンド処理部 911〜913は、ユーザ毎の信号処理を行う。ベースバンド処理 部 911は、符号化 Z復号部(CoderZDecoder) 941およびスケジューラ 951を含む 。同様に、ベースバンド処理部 912および 913は、それぞれ符号化 Z復号部 941お よび 942とスケジューラ 952および 953を含む。
[0026] スケジューラ 951〜953は、例えば、 CPU (中央処理装置)およびメモリを用いて実 装され、アンテナ 811〜816により送受信される信号の品質情報に基づいてスケジュ 一リング制御を行うことで、 MIMO伝送に用いるアンテナ、変調方式等を選択する。
[0027] このような構成によれば、移動局 802が移動しても、ユーザデータを処理して!/、るべ ースバンド処理部を、任意のセクタの任意のアンテナへ接続することが可能になる。 なお、図 9では、 CDMA (Code Division Multiple Access )なしの共通チャネル(sha red channel)を用いた伝送システムを想定しているため、変復調部が送受信部内に 設けられている。これに対して、 CDMAを用いた伝送システム等では、変復調部を ベースバンド処理部内に設けても構わな 、。
[0028] 図 8において、移動局 802がセクタ 1の中央付近に存在する場合は、図 10のケース C1に示すように、セクタ 1のブランチ Brlおよび Br2の SIRが大きいため、アンテナ 8 11および 812を用いて 2 X 2MIMO伝送が行われる。この場合、図 11に示すように、 ベースバンド処理部 911の符号ィ匕 Z復号部 941が送受信部 901および 902に接続 され、ユーザデータの符号化 Z復号を行う。
[0029] 次に、移動局 802がセクタ 1とセクタ 2の境界付近に移動した場合、ケース C2に示 すように、セクタ 1のブランチ Br2およびセクタ 2のブランチ Brlの SIRが大きくなるた め、アンテナ 812および 813を用いて 2 X 2MIMO伝送が行われる。この場合、図 12 に示すように、ベースバンド処理部 911の符号ィ匕 Z復号部 941が送受信部 902およ び 903に接続され、ユーザデータの符号化 Z復号を行う。
[0030] 次に、移動局 802がセクタ 2の中央付近に移動した場合、ケース C3に示すように、 セクタ 2のブランチ Brlおよび Br2の SIRが大きくなるため、アンテナ 813および 814 を用いて 2 X 2MIMO伝送が行われる。
[0031] このように、セクタ括り付けの信号処理をなくして、 MIMO伝送に使用するアンテナ をフレキシブルに選択することで、セクタ境界にお 、ても最大伝送速度で MIMO伝 送を行うことが可能になる。したがって、移動局 802の接続状況に応じて、下りリンク における FCSまたは MIMO伝送の選択や、上りリンクにおける SHO (選択セクタ数 を含む)または MIMO伝送の選択が可能になる。
[0032] 図 11および図 12に示したように、移動局 802が移動しても、ユーザデータを処理 するベースバンド処理部は変更されな 、ので、瞬断等の不具合は発生しな!、。
図 1に示した従来のシステムでは、セクタ境界において MIMO伝送が不可能にな る可能性があり、セル内に MIMO伝送を適用できないエリアが存在する力 図 8に示 したシステムでは、セクタ境界において MIMO伝送が可能となり、セル内における M IMO伝送が可能なエリアが増加する。また、 MIMOZFCSZSHOの選択が可能な 接続構成およびスケジューラを採用することで、基地局近傍のセクタ境界では MIM O伝送を選択し、セル端のセクタ境界では FCSZSHOを選択するというように、セル 内の環境に応じて適切な制御を行うことが可能になる。
[0033] 次に、図 13から図 17までを参照しながら、基地局装置 801におけるスケジユーリン グ制御について説明する。
スケジューリング制御の構成としては、図 9に示したように、ベースバンド処理部 911 〜913のそれぞれにスケジューラ 951〜953を実装する分散型と、図 13に示すよう に、スケジューラ 1301をベースバンド処理部 911〜913から分離して実装する集中 型が考えられる。
[0034] 分散型構成では、基地局装置 801内のすべてのブランチの割り当て力 ベースバ ンド処理部毎に分散して管理される。管理方法としては、ベースバンド処理部毎に管 理するブランチ数を制限する方法や、 V、ずれかのベースバンド処理部にマスタスケジ ユーラを設ける方法等が考えられる。 [0035] 集中型構成では、基地局装置 801内のすべてのブランチの割り当て力 スケジユー ラ 1301により管理される。スケジューラ 1301は、すべてのブランチの割り当て状況を 管理しているため、移動先ブランチの割り当てを迅速に行うことができる。
[0036] 図 14は、分散型構成におけるスケジューリング制御の例を示している。この例では 、主としてセクタ 1を管理するベースバンド処理部 911のスケジューラ 951が、通信中 の移動局 802の管理を行っており、移動局 802と通信中のリソース(セクタ 1のブラン チ Brlおよび Br2)は、ベースバンド処理部 911に割り当てられている。
[0037] 下りリンクにおいて、各セクタの各アンテナからは共通チャネルの信号 (Pilot信号) が常時送信されている。移動局 802は、これらの信号を受信することで、どの基地局 のどのセクタに存在しているかを認識するとともに、各ブランチの信号の受信状態を 観測し、受信状態を示す CQI (Channel Quality Indicator )情報を収集する。 CQI情 報としては、例えば、 SIR,ドッブラ周波数、遅延スプレッド等が用いられる。
[0038] 移動局 802が接続中の場合、上りリンクの信号にこの CQI情報を含めて、基地局装 置 801にフィードバックする。フィードバック情報を受信した基地局装置 801では、ス ケジユーラ 951が、移動局 802の受信状態を認識した上で、下りリンクの伝送に使用 するセクタ、アンテナ、および伝送方法 (MIMO、 FCS、変調方式、符号化率等)を 選択する。これらの選択項目を決定するための要因として、 CQI情報以外に、下り伝 送量、セクタ内のユーザ数等を考慮してもよい。
[0039] 一般に、 MIMO伝送を適用する場合はある程度の SIRが必要とされ、 SIRが一定 値未満の場合は、誤り率および再送回数を考慮すると、 FCSを選択した方が有利に なる可能性もある。そこで、スケジューラ 951は、下りリンクにて高速伝送を行いたい 場合で、かつ、ケース C2に示すように、 SIRが閾値 X以上 (比較的高品質)のアンテ ナが 2つ以上ある場合は、 MIMO伝送を選択する。一方、ケース C4に示すように、 S IRが閾値 y以上かつ閾値 X未満の場合は、 FCSを選択する。
[0040] 決定された伝送方法においてセクタ 2のアンテナを使用する場合は、セクタ 2のリソ ース割り当て状況を確認する必要があるため、スケジューラ 951とスケジューラ 952の 間で、スケジューリングに関する制御信号の送受信が発生する。そして、スケジューラ 間でリソース割り当てと送信タイミングの調整が完了した後に、 MIMO伝送が開始さ れる。
[0041] 図 15は、このようなスケジューリング制御のシーケンスを示している。まず、ベースバ ンド処理部 911は、セクタ 1の送受信部 901および 902を介して、ユーザデータを移 動局 802に MIMO送信し(手順 1501)、移動局 802は、ユーザデータを受信すると ともに Pilot信号を受信する(手順 1502)。
[0042] その後、セクタ 1の送受信部 901および 902を介して、ベースバンド処理部 911と移 動局 802の間で MIMO伝送が継続される(手順 1503)。この間、図 16のケース C1 に示すように、セクタ 1のブランチ Brlおよび Br2の SIRは、閾値 xを超えている。移動 局 802は、各セクタの各ブランチの SIR、ドッブラ周波数、および遅延スプレッドを、 C QI情報としてベースバンド処理部 911に送信する(手順 1504)。
[0043] 次に、ベースバンド処理部 911のスケジューラ 951は、受信した CQI情報に含まれ る SIRの閾値判定を行う(手順 1505)。この例では、図 16のケース C2に示すように、 セクタ 1のブランチ Brlおよびセクタ 2のブランチ Br2の SIRが閾値 X未満であり、セク タ 1のブランチ Br2およびセクタ 2のブランチ Brlの SIRが閾値 Xを超えていることが分 かる。
[0044] そこで、セクタ 1のブランチ Br2およびセクタ 2のブランチ Brlを用いた MIMO伝送 を選択し、ベースバンド処理部 912のスケジューラ 952に、セクタ 2のリソース割り当て 状況を問い合わせる(手順 1506)。そして、スケジューラ 952は、セクタ 2のブランチ B rlに空きがある旨の応答メッセージを返信する(手順 1507)。
[0045] 次に、スケジューラ 951は、設定変更予告メッセージを移動局 802に送信し、指定 数のフレーム送信後にアンテナを変更する旨を通知する(手順 1508)。そして、移動 局 802は、応答メッセージを返信する(手順 1509)。
[0046] 次に、スケジューラ 951は、接続解除メッセージを送受信部 901に送信し (手順 15 10)、送受信部 901は、応答メッセージを返信する(手順 1511)。そして、スケジユー ラ 951は、接続設定メッセージを送受信部 903に送信し (手順 1512)、送受信部 903 は、応答メッセージを返信する(手順 1513)。
[0047] 次に、スケジューラ 951は、送信再開メッセージを移動局 802に送信する(手順 15 14)。そして、ベースバンド処理部 911は、セクタ 1の送受信部 902およびセクタ 2の 送受信部 903を介して、ユーザデータを移動局 802に MIMO送信し(手順 1515)、 移動局 802は、ユーザデータを受信するとともに Pilot信号を受信する(手順 1516)
[0048] その後、セクタ 1の送受信部 902およびセクタ 2の送受信部 903を介して、ベースバ ンド処理部 911と移動局 802の間で MIMO伝送が継続される(手順 1517)。そして 、移動局 802は、各セクタの各ブランチの CQI情報をベースバンド処理部 911に送 信する(手順 1518)。
[0049] 移動局 802がさらに移動して、図 16のケース C3に示すような状態になれば、セクタ 2の送受信部 903および 904を介して、ベースバンド処理部 911と移動局 802の間 で MIMO伝送が行われる。
[0050] 無線伝播環境は、移動局 802の移動速度と、周囲の反射物によるマルチパスの影 響により、常に変化している。このうち、移動速度については、移動局 802においてド ップラ周波数を測定することにより推定することができる。また、マルチパスの影響に ついては、遅延スプレッドを求めることにより数値ィ匕することができる。
[0051] 遅延スプレッドは、遅延時間に対する電力分布の広がりを示す電力遅延プロフアイ ルの標準偏差である。時刻 τにおける受信波(直接波または遅延波)の電力遅延プ 口ファイルを関数 ρ ( τ )で表すと、遅延スプレッド Τ は、次式により求められる。
m
[0052] [数 1]
Tm = ^E[T2] ~ E2[T] ( 1 )
Ε[τ2 = ( 2 )
(て)
τ · ρ(τ)
Ε[τ] = ( 3 )
(り
[0053] ただし、(2)式および(3)式の総和記号は、直接波と複数の遅延波に関する総和を 表している スケジューラ 951は、移動速度とマルチノスの影響を考慮するために、手順 1505 においては、必要に応じて、受信した CQI情報に含まれるドッブラ周波数および/ま たは遅延スプレッドを用いて、 SIRの閾値を変動させる。
セクタ 1のブランチ Br2およびセクタ 2のブランチ Brlの SIRを、それぞれ SIR12お よび SIR21とすると、通常のアンテナ選択論理は以下のようになる。
1. SIR12≥x, SIR21≥x
→MIMO,セクタ 1のブランチ Br2およびセクタ 2のブランチ Brl
2. SIR12≥x, x > SIR21≥y
→下りリンク: FCS,セクタ 1のブランチ Br2またはセクタ 2のブランチ Brl
上りリンク: SHO,セクタ 1のブランチ Br2またはセクタ 2のブランチ Brl
3. x> SIR12≥y, SIR21≥x
→下りリンク: FCS,セクタ 1のブランチ Br2またはセクタ 2のブランチ Brl
上りリンク: SHO,セクタ 1のブランチ Br2またはセクタ 2のブランチ Brl
4. x> SIR12≥y, x> SIR21≥y
→下りリンク: FCS,セクタ 1のブランチ Br2またはセクタ 2のブランチ Brl
上りリンク: SHO,セクタ 1のブランチ Br2またはセクタ 2のブランチ Brl
5. x> SIR12≥y, y> SIR21
→セクタ 1のブランチ Br 2
6. y> SIR12, x > SIR21≥y
→セクタ 2のブランチ Brl
7. y> SIR12, y> SIR21
→伝送不可能
これに対して、ドッブラ周波数 fdおよび遅延スプレッド σを考慮した場合は、次式に より閾値 Xおよび yを調整し、図 17に示すように、調整後の閾値 x'および y'を用いて 上記と同様の論理でアンテナが選択される。
χ' =χ+ α + β (4)
Figure imgf000013_0001
(4)式および(5)式の aは、遅延スプレッド σの値に応じて設定されるパラメータで あり、 j8は、ドッブラ周波数 fdの値に応じて設定されるパラメータである。 σおよび α の対応関係と、 fdおよび |8の対応関係は、例えば、テーブル形式でスケジューラ 95 1に与えられる。
[0055] この例では、各ブランチの SIRに基づ 、てアンテナを選択して 、るが、各ブランチ の信号品質を示す別の品質情報に基づ!/、てアンテナを選択しても構わな 、。その場 合は、移動局 802から別の品質情報が CQI情報として送信される。
[0056] また、図 8および図 9に示した構成では、セルを 3つのセクタに分割し、各セクタに 2 つのブランチが設けられている力 一般には、セルを 2つ以上のセクタに分割し、各 セクタに N個(N≥ 2)のブランチを設けることが可能である。この場合、セクタ境界に おいては、それぞれのセクタに属する 1つ以上のアンテナを選択して、 MIMO伝送 が行われる。
[0057] 図 8の MIMO伝送システムでは、セクタ構成のセルを前提としているが、図 18に示 すように、セクタ構成の概念をなくした MIMO伝送システムも考えられる。この場合、 基地局装置 1801が担当するセル 1803は、セクタに分割されておらず、スケジユーリ ング制御は、セクタ単位ではなくアンテナ単位で行われる。基地局装置 1801は、図 19に示すような構成を有する。
[0058] 図 19の基地局装置は、アンテナ 1811〜1816、送受信部(TRX) 1901〜1906、 およびベースバンド処理部(BB) 1911〜1913を備える。このうち、送受信部 1901 〜 1906およびベースノ ンド処理咅 1911〜 1913 ίま、ノ ス 1961【こより互! ヽ【こ接続さ れている。バス 1961の代わりに、メッシュ接続を採用してもよい。
[0059] 各ブランチは、以下のアンテナおよび送受信部の組み合わせにより構成される。
1.ブランチ Br 1:アンテナ 1811および送受信部 1901
2.ブランチ Br2:アンテナ 1812および送受信部 1902
3.ブランチ Br3:アンテナ 1813および送受信部 1903
4.ブランチ Br4:アンテナ 1814および送受信部 1904
5.ブランチ Br5:アンテナ 1815および送受信部 1905
6.ブランチ Br6 :アンテナ 1816および送受信部 1906
送受信部 1901〜1906は、アンテナ毎 (ブランチ毎)の信号処理を行う。送受信部 1901は、無線咅 (RF) 1921および変復調咅 (ModZDem) 1931を含む。同様に、 送受信部 1902〜1906は、それぞれ無線部 1922〜1926および変復調部 1932〜 1936を含む。
[0060] ベースノ ンド処理部 1911〜1913は、ユーザ毎の信号処理を行う。ベースバンド 処理部 1911は、符号化 Z復号部(CoderZDecoder) 1941およびスケジューラ 19 51、 1952を含む。同様に、ベースバンド処理部 1912は、符号化 Z復号部 1942お よびスケジューラ 1953、 1954を含み、ベースバンド処理部 1913は、符号化/復号 部 1943およびスケジューラ 1955、 1956を含む。
[0061] スケジューラ 1951〜1956は、それぞれブランチ Brl〜: Br6のリソースを管理し、ブ ランチ毎にスケジューリング制御を行う。
図 18において、移動局 1802が位置 P1に存在する場合は、図 20のケース C1に示 すように、ブランチ Brlおよび Br2の SIRが大きいため、アンテナ 1811および 1812 を用いて 2 X 2MIMO伝送が行われる。
[0062] 次に、移動局 1802が位置 P2に移動した場合、ケース C2に示すように、ブランチ B r2および Br3の SIRが大きくなるため、アンテナ 1812および 1813を用いて 2 X 2MI MO伝送が行われる。
[0063] 次に、移動局 1802がさらに先に移動した場合、ケース C3に示すように、ブランチ B r3および Br4の SIRが大きくなるため、アンテナ 1813および 1814を用いて 2 X 2MI MO伝送が行われる。
[0064] このような構成によれば、セクタ境界における FCSZSHOがなくなるため、セクタ構 成の場合よりもスケジューリング制御の負荷が軽くなる。
図 21は、図 18のシステムにおけるスケジューリング制御のシーケンスを示している 。まず、ベースバンド処理部 1911は、送受信部 1901および 1902を介して、ユーザ データを移動局 1802に MIMO送信し(手順 2101)、移動局 1802は、ユーザデー タを受信するとともに Pilot信号を受信する(手順 2102)。
[0065] その後、送受信部 1901および 1902を介して、ベースバンド処理部 1911と移動局 1802の間で MIMO伝送が継続される(手順 2103)。この間、図 22のケース C1に示 すように、ブランチ Brlおよび Br2の SIRは、閾値 xを超えている。移動局 1802は、各 ブランチの CQI情報をベースバンド処理部 1911に送信する(手順 2104)。
[0066] 次に、ベースバンド処理部 1911のスケジューラ 1951は、受信した CQI情報に含ま れる SIRの閾値判定を行う(手順 2105)。この例では、図 22のケース C2に示すよう に、ブランチ Brlおよび Br4の SIRが閾値 X未満であり、ブランチ Br2および Br3の SI Rが閾値 Xを超えて ヽることが分かる。
[0067] そこで、ブランチ Br2および Br3を用いた MIMO伝送を選択し、ベースバンド処理 部 1912のスケジューラ 1953に、ブランチ Br3のリソース割り当て状況を問 、合わせ る(手順 2106)。そして、スケジューラ 1953は、ブランチ Br3に空きがある旨の応答メ ッセージを返信する(手順 2107)。
[0068] 次に、スケジューラ 1951は、図 15と同様の設定変更予告メッセージを移動局 180 2に送信し (手順 2108)、移動局 802は、応答メッセージを返信する(手順 2109)。
[0069] 次に、スケジューラ 1951は、接続解除メッセージを送受信部 1901に送信し (手順 2110)、送受信部 1901は、応答メッセージを返信する(手順 2111)。そして、スケジ ユーラ 1951は、ユーザデータの管理元をブランチ Brl (スケジューラ 1951)力 ブラ ンチ Br2 (スケジューラ 1952)に変更する旨を、スケジューラ 1952に通知する(手順
2112)。
[0070] 次に、スケジューラ 1952は、接続設定メッセージを送受信部 1903に送信し (手順
2113)、送受信部 1903は、応答メッセージを返信する(手順 2114)。
次に、スケジューラ 1952は、送信再開メッセージを移動局 1802に送信する(手順 2115)。そして、ベースバンド処理部 1911は、送受信部 1902および送受信部 190 3を介して、ユーザデータを移動局 1802に MIMO送信し(手順 2116)、移動局 180 2は、ユーザデータを受信するとともに Pilot信号を受信する(手順 2117)。
[0071] その後、送受信部 1902および送受信部 1903を介して、ベースバンド処理部 191 1と移動局 1802の間で MIMO伝送が継続される(手順 2118)。そして、移動局 180 2は、各ブランチの CQI情報をベースバンド処理部 1911に送信する(手順 2119)。
[0072] 移動局 1802がさらに移動して、図 22のケース C3に示すような状態になれば、送受 信部 1903および 1904を介して、ベースノ ンド処理部 1911と移動局 1802の間で M IMO伝送が行われる。 [0073] このようなスケジューリング制御では、図 15の場合よりもスケジューラの数が増加す るため、処理が煩雑になるように見える。しかし、各スケジューラの規模は、図 15の場 合よりも減少するとともに、 1つのベースバンド処理部に複数のブランチをフレキシブ ルに組み合わせることができる、という利点がある。このため、装置が故障したときの 切り替え動作や、アンテナの増設が容易になると考えられる。
[0074] ブランチ Br2および Br3の SIRを、それぞれ SIR2および SIR3とすると、手順 2105 において、スケジューラ 1951は、以下の論理でアンテナを選択する。
1. SIR2≥x, SIR3≥x
→MIMO,ブランチ Br2および Br3
2. SIR2≥x, x>SIR3≥y
→ブランチ Br2または Br3
3. x>SIR2≥y, SIR3≥x
→ブランチ Br2または Br3
4. x>SIR2≥y, x>SIR3≥y
→ブランチ Br2または Br3
5. x>SIR2≥y, y>SIR3
→ブランチ Br2
6. y>SIR2, x>SIR3≥y
→ブランチ Br3
7. y>SIR2, y>SIR3
→伝送不可能
なお、閾値 xおよび yは、上述した調整方法により閾値 x'および y'に変更することも できる。また、図 18および図 19に示した構成では、 6個のブランチが設けられている 力 一般には、 N個(N≥ 2)のブランチを設けることが可能である。この場合、 N個の アンテナのうち 2つ以上を選択して、 MIMO伝送が行われる。

Claims

請求の範囲
[1] 複数のセクタ力 なるセル内の移動局と多入力多出力伝送により無線通信を行う基 地局装置であって、
前記複数のセクタの各々に対応して設けられた 1つ以上のアンテナと、 前記移動局が 2つのセクタの境界付近に移動したとき、該 2つのセクタ各々に設け られたアンテナの中からアンテナを選択し、選択されたアンテナを用いた多入力多出 力伝送を選択する制御部と
を備えることを特徴とする基地局装置。
[2] 前記制御部は、それぞれのアンテナ力 前記移動局が受信する信号の品質情報 を閾値と比較し、前記 2つのセクタにおいて該閾値を超える品質情報を有するアンテ ナの中から前記多入力多出力伝送に用いるアンテナを選択し、該閾値を超える品質 情報を有する複数のアンテナが存在しなければ、高速セル選択またはソフトハンドォ ーバによる伝送を選択することを特徴とする請求項 1記載の基地局装置。
[3] 前記制御部は、それぞれのアンテナ力 前記移動局が受信する信号のドッブラ周 波数または遅延スプレッドの情報に基づ 、て、前記閾値を調整することを特徴とする 請求項 2記載の基地局装置。
[4] 前記制御部は、前記 2つのセクタのうち、前記移動局の移動元であるセクタのアン テナを管理する第 1のスケジューラと、該移動局の移動先であるセクタのアンテナを 管理する第 2のスケジューラを含み、該第 1のスケジューラは、該移動先のセクタのァ ンテナが空 、て 、る力否かを該第 2のスケジューラに問 、合わせ、該移動先のセクタ のアンテナが空 、て 、れば、該移動先のセクタのアンテナを用いた多入力多出力伝 送を選択することを特徴とする請求項 1、 2、または 3記載の基地局装置。
[5] セクタ構成を持たないセル内の移動局と多入力多出力伝送により無線通信を行う 基地局装置であって、
前記セルに対応して設けられた複数のアンテナと、
前記移動局が移動したとき、前記複数のアンテナの中から 2つ以上のアンテナを選 択し、選択されたアンテナを用いた多入力多出力伝送を選択する制御部と を備えることを特徴とする基地局装置。
[6] 前記制御部は、それぞれのアンテナ力 前記移動局が受信する信号の品質情報 を閾値と比較し、該閾値を超える品質情報を有するアンテナの中力 前記多入力多 出力伝送に用いるアンテナを選択することを特徴とする請求項 5記載の基地局装置
[7] 前記制御部は、それぞれのアンテナ力 前記移動局が受信する信号のドッブラ周 波数または遅延スプレッドの情報に基づ 、て、前記閾値を調整することを特徴とする 請求項 6記載の基地局装置。
[8] 前記制御部は、前記複数のアンテナのうち、前記移動局と通信中のアンテナを管 理する第 1のスケジューラと、新たに選択されたアンテナを管理する第 2のスケジユー ラを含み、該第 1のスケジューラは、該新たに選択されたアンテナが空いている力否 かを該第 2のスケジューラに問 、合わせ、該新たに選択されたアンテナが空 、て!/ヽれ ば、該新たに選択されたアンテナを用いた多入力多出力伝送を選択することを特徴 とする請求項 5、 6、または 7記載の基地局装置。
[9] 複数のセクタ力 なるセル内の移動局と多入力多出力伝送により無線通信を行う通 信方法であって、
前記移動局が 2つのセクタの境界付近に移動したとき、該 2つのセクタ各々に設け られたアンテナの中からアンテナを選択し、
選択されたアンテナを用 、て多入力多出力伝送を行う
ことを特徴とする通信方法。
PCT/JP2006/324979 2006-12-14 2006-12-14 多入力多出力通信のためのアンテナを選択する制御装置 WO2008072336A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP06834733.5A EP2093918B1 (en) 2006-12-14 2006-12-14 Controller for selecting antenna for multi-input/multi-output communication
PCT/JP2006/324979 WO2008072336A1 (ja) 2006-12-14 2006-12-14 多入力多出力通信のためのアンテナを選択する制御装置
EP13166049.0A EP2624474A3 (en) 2006-12-14 2006-12-14 Controller for selecting antenna for multiple-input/multiple-output communication
JP2008549169A JP4905461B2 (ja) 2006-12-14 2006-12-14 多入力多出力通信のためのアンテナを選択する制御装置
US12/476,635 US8565825B2 (en) 2006-12-14 2009-06-02 Controller for selecting antenna for multiple-input/multiple-output communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/324979 WO2008072336A1 (ja) 2006-12-14 2006-12-14 多入力多出力通信のためのアンテナを選択する制御装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/476,635 Continuation US8565825B2 (en) 2006-12-14 2009-06-02 Controller for selecting antenna for multiple-input/multiple-output communication

Publications (1)

Publication Number Publication Date
WO2008072336A1 true WO2008072336A1 (ja) 2008-06-19

Family

ID=39511368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324979 WO2008072336A1 (ja) 2006-12-14 2006-12-14 多入力多出力通信のためのアンテナを選択する制御装置

Country Status (4)

Country Link
US (1) US8565825B2 (ja)
EP (2) EP2093918B1 (ja)
JP (1) JP4905461B2 (ja)
WO (1) WO2008072336A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239098A (ja) * 2010-05-07 2011-11-24 Toshiba Corp 無線基地局装置及び無線制御装置
JP2012191262A (ja) * 2011-03-08 2012-10-04 Toshiba Corp 無線基地局装置、無線部制御装置及び無線通信方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009034614A1 (ja) * 2007-09-11 2009-03-19 Fujitsu Limited 無線基地局及びその制御方法
US8706125B2 (en) * 2008-11-28 2014-04-22 Freescale Semiconductor, Inc. Allocation of communication channels
CN101895325B (zh) * 2010-07-30 2013-12-11 杭州华三通信技术有限公司 一种数据传输方法及其装置
US9154968B2 (en) 2010-11-03 2015-10-06 Telefonaktiebolaget L M Ericsson (Publ) Radio base station and a method therein
US9270346B2 (en) * 2011-12-02 2016-02-23 Apple Inc. Methods for operating wireless electronic devices in coordinated multipoint transmission networks

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09501299A (ja) * 1994-06-01 1997-02-04 モトローラ・インコーポレーテッド 通信信号を受信すべき2つのアンテナを選択するための方法および装置
JPH11341540A (ja) * 1998-05-13 1999-12-10 Lucent Technol Inc Cdmaアンテナダイバシティシステム、基地局装置およびcdmaソフタハンドオフシステム
JP2001168778A (ja) * 1999-12-06 2001-06-22 Matsushita Electric Ind Co Ltd 無線通信基地局
JP2003338781A (ja) 2002-05-21 2003-11-28 Nec Corp アンテナ送受信システム
JP2005531219A (ja) 2002-06-24 2005-10-13 クゥアルコム・インコーポレイテッド Mimoofdm通信システム用のダイバーシティ通信システム
EP1587338A2 (en) 2004-04-14 2005-10-19 Samsung Electronics Co., Ltd. Reselecting antennas in a cellular mobile communication system with multiple antennas
JP2005333443A (ja) 2004-05-20 2005-12-02 Nippon Telegr & Teleph Corp <Ntt> 送信ダイバーシチを行う方法および無線装置ならびに同装置を用いた通信システム
US20060234777A1 (en) 2005-04-18 2006-10-19 Telefonaktiebolaget Lm Ericsson (Publ) Flexible multi-sector multiple antenna system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2911090B2 (ja) * 1993-09-29 1999-06-23 エヌ・ティ・ティ移動通信網株式会社 移動通信の基地局装置及び移動局装置
JP3583304B2 (ja) * 1998-11-18 2004-11-04 松下電器産業株式会社 通信端末装置、基地局装置及び送信アンテナ切替方法
US20030162519A1 (en) * 2002-02-26 2003-08-28 Martin Smith Radio communications device
US7120395B2 (en) * 2003-10-20 2006-10-10 Nortel Networks Limited MIMO communications
US8249518B2 (en) * 2003-12-29 2012-08-21 Telefonaktiebolaget Lm Ericsson (Publ) Network controlled feedback for MIMO systems
CN1838558A (zh) * 2005-03-25 2006-09-27 松下电器产业株式会社 多天线多用户通信系统中的发送天线选择方法和设备
US7869421B2 (en) * 2006-07-14 2011-01-11 Qualcomm Incorporated Uplink access request in an OFDM communication environment
US8233939B2 (en) * 2008-03-31 2012-07-31 Intel Corporation Multiuser sector micro diversity system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09501299A (ja) * 1994-06-01 1997-02-04 モトローラ・インコーポレーテッド 通信信号を受信すべき2つのアンテナを選択するための方法および装置
JPH11341540A (ja) * 1998-05-13 1999-12-10 Lucent Technol Inc Cdmaアンテナダイバシティシステム、基地局装置およびcdmaソフタハンドオフシステム
JP2001168778A (ja) * 1999-12-06 2001-06-22 Matsushita Electric Ind Co Ltd 無線通信基地局
JP2003338781A (ja) 2002-05-21 2003-11-28 Nec Corp アンテナ送受信システム
JP2005531219A (ja) 2002-06-24 2005-10-13 クゥアルコム・インコーポレイテッド Mimoofdm通信システム用のダイバーシティ通信システム
EP1587338A2 (en) 2004-04-14 2005-10-19 Samsung Electronics Co., Ltd. Reselecting antennas in a cellular mobile communication system with multiple antennas
JP2005333443A (ja) 2004-05-20 2005-12-02 Nippon Telegr & Teleph Corp <Ntt> 送信ダイバーシチを行う方法および無線装置ならびに同装置を用いた通信システム
US20060234777A1 (en) 2005-04-18 2006-10-19 Telefonaktiebolaget Lm Ericsson (Publ) Flexible multi-sector multiple antenna system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2093918A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011239098A (ja) * 2010-05-07 2011-11-24 Toshiba Corp 無線基地局装置及び無線制御装置
JP2012191262A (ja) * 2011-03-08 2012-10-04 Toshiba Corp 無線基地局装置、無線部制御装置及び無線通信方法

Also Published As

Publication number Publication date
EP2093918A4 (en) 2012-10-24
JP4905461B2 (ja) 2012-03-28
EP2093918A1 (en) 2009-08-26
US8565825B2 (en) 2013-10-22
US20090239523A1 (en) 2009-09-24
EP2093918B1 (en) 2015-12-30
JPWO2008072336A1 (ja) 2010-03-25
EP2624474A3 (en) 2013-09-18
EP2624474A2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
US8009578B2 (en) Wireless base station device, terminal, and wireless communication method
EP1875631B1 (en) Flexible multi-sector multiple antenna system
US8891390B2 (en) Wireless base station for controlling antenna transmission power
CN101651880B (zh) 多小区协作发送方法
KR101084831B1 (ko) Mimo 기반 통신 시스템에서의 방법 및 장치
JP5450638B2 (ja) マルチセクタ協調通信における協調タイプの切り替え技術
US7639984B2 (en) Wireless communication system
KR101727016B1 (ko) 상향 링크에서의 다중 사용자 간섭 정렬 시스템 및 방법
US20130114458A1 (en) Wireless communication system, radio base station apparatus and radio terminal apparatus
US20070249340A1 (en) Cellular network resource control method and apparatus
KR20100046338A (ko) 이동통신 시스템의 공조 빔 형성 장치 및 방법
JPWO2005083907A1 (ja) 移動局装置および移動局装置における送信アンテナ選択方法
US20100099416A1 (en) MIMO Mode Selection at Handover
WO2008072336A1 (ja) 多入力多出力通信のためのアンテナを選択する制御装置
KR20090106101A (ko) 분산 안테나 시스템에서 스케줄링 장치 및 방법
KR101910309B1 (ko) 기지국, 무선 통신 단말기, 무선 통신 시스템, 및 무선 통신 방법
US8452284B2 (en) Base station apparatus, mobile communication system and cell selection communication method
US9369997B2 (en) Methods and arrangements for coordinating uplink transmit diversity mode adaptation
JP2011229171A (ja) 無線基地局装置、端末装置及び無線通信方法
JP7044012B2 (ja) 分散アンテナを用いた無線基地局およびスケジューリング方法
CN107210789B (zh) 无线设备、网络节点及用于它们之间的通信的相应方法
US20040008648A1 (en) Diversity decisions for downlink antenna transmission
Siam et al. An overview of MIMO-oriented channel access in wireless networks
KR101698898B1 (ko) 이동통신 서비스를 위한 핸드오버 방법
US20050084027A1 (en) Method for multiple broadcasting in a mobile radiocommunication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06834733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008549169

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006834733

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE