WO2008069305A1 - Exposure apparatus and conveyance apparatus - Google Patents

Exposure apparatus and conveyance apparatus Download PDF

Info

Publication number
WO2008069305A1
WO2008069305A1 PCT/JP2007/073668 JP2007073668W WO2008069305A1 WO 2008069305 A1 WO2008069305 A1 WO 2008069305A1 JP 2007073668 W JP2007073668 W JP 2007073668W WO 2008069305 A1 WO2008069305 A1 WO 2008069305A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum
chamber
wafer
vacuum robot
robot
Prior art date
Application number
PCT/JP2007/073668
Other languages
French (fr)
Japanese (ja)
Inventor
Motoko Suzuki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Publication of WO2008069305A1 publication Critical patent/WO2008069305A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/709Vibration, e.g. vibration detection, compensation, suppression or isolation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68707Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a robot blade, or gripped by a gripper for conveyance

Definitions

  • the present invention relates to an exposure apparatus used for lithography such as a semiconductor integrated circuit, a transfer apparatus used therefor, a transfer method using the transfer apparatus, and an exposure method.
  • a transport system for transporting the substrate from an atmospheric atmosphere to a vacuum processing chamber is used.
  • a substrate accommodated in a cassette is extracted by a transfer device and transferred to a load lock chamber, and the substrate transferred to the load lock chamber is transferred to an etching chamber by a vacuum transfer device provided in the transfer chamber.
  • a vacuum transfer device provided in the transfer chamber.
  • a wafer in an air atmosphere is transferred to a wafer stage in a vacuum atmosphere through a load lock chamber.
  • a vacuum robot for transferring the wafer to the wafer stage is arranged.
  • Patent Document 1 Japanese Patent No. 3145359
  • the present invention has been made to solve such a conventional problem, and provides an exposure apparatus, a transfer apparatus, a transfer method, and an exposure method that can reduce vibration of a vacuum robot that transfers a wafer to a wafer stage. The purpose is to do.
  • an exposure apparatus for transporting a wafer from a load lock chamber to a wafer stage in a vacuum chamber, the exposure apparatus being disposed in the vacuum chamber.
  • An exposure device is provided that is driven independently of the second vacuum robot.
  • the maximum transport acceleration of the first vacuum robot can be larger than the maximum transport acceleration of the second vacuum robot.
  • the exposure apparatus of the present invention may have a vibration suppressing device that suppresses transmission of vibration of the first vacuum robot to the second vacuum robot.
  • the vibration suppressing device can be a vibration isolation device provided between the second vacuum robot and the vacuum chamber.
  • the vacuum chamber includes a first chamber in which the first vacuum robot is disposed, and a second chamber in which the second vacuum robot is disposed, and the vibration suppression The device may be a flexible member that hermetically seals between the first chamber and the second chamber.
  • the first chamber and the second chamber may be placed on different pedestals.
  • the exposure apparatus of the present invention may further include a briar liner provided in the second chamber for performing bridging of the wafer.
  • the vacuum chamber has a vacuum load chamber in which the first vacuum robot and the second vacuum robot are arranged, and a chamber in which the wafer stage is arranged. obtain.
  • a lithography system can be housed in a chamber in which the wafer stage is placed. Lithography system
  • a transfer apparatus for transferring the substrate to the substrate stage of an exposure apparatus that exposes the substrate held on the substrate stage in a vacuum atmosphere, wherein the substrate is in a vacuum atmosphere.
  • the first vacuum robot for transporting the substrate at the first vacuum robot and the first vacuum robot are provided separately from each other and deliver the substrate to the substrate stage in a vacuum atmosphere, and the first vacuum robot
  • a transfer device including a suppression mechanism that suppresses transmission of vibration generated when the substrate is transferred to at least one of the substrate stage and the second vacuum robot.
  • the first vacuum robot and the second vacuum robot are placed on a pedestal common to them, and the suppression mechanism includes a first robot and a pedestal.
  • the vibration isolator may be disposed between the vibrations of the pedestal to suppress transmission of the vibration of the pedestal to the second robot.
  • the suppression mechanism includes a second pedestal separated from the first pedestal on which the first vacuum robot is placed, and the second vacuum robot includes the second pedestal. It can be mounted on.
  • the first vacuum robot is disposed in a first chamber that is provided on the first pedestal and maintains a vacuum atmosphere therein
  • the second vacuum robot is separated from the first chamber. It is disposed in a second chamber that is provided on the second chamber and maintains a vacuum atmosphere therein, and communicates the spaces in the first and second chambers between the first chamber and the second chamber. Bellows can be provided.
  • the first vacuum robot is driven at a maximum transfer acceleration larger than that of the second vacuum robot, and the first vacuum robot is set higher than the second vacuum robot. It may be disposed at a position far from the substrate stage.
  • the transport apparatus of the present invention further includes a brialiner that detects positional information of the substrate.
  • the second vacuum robot can transport the substrate, the position information of which is detected by a bria liner, to the substrate stage.
  • an exposure apparatus including the substrate stage, wherein the exposure apparatus exposes the substrate transported by the transport apparatus in a vacuum atmosphere.
  • an exposure apparatus that includes the substrate stage and exposes the substrate transported by the transport apparatus of the present invention in a vacuum atmosphere.
  • an exposure apparatus that includes the substrate stage and the transfer apparatus of the present invention, and exposes the substrate in a vacuum atmosphere.
  • an exposure method including transporting the substrate using the transport apparatus of the present invention, and exposing the transported substrate in a vacuum atmosphere.
  • FIG. 1 is an explanatory view of the first embodiment of the exposure apparatus of the present invention when viewed upward.
  • FIG. 2 is an explanatory view of the exposure apparatus of FIG. 1 viewed from the side (X direction).
  • FIG. 3 is an explanatory view of the second embodiment of the exposure apparatus of the present invention when viewed upward.
  • FIG. 4 is an explanatory view showing the exposure apparatus of FIG. 3 as viewed from the side (X direction).
  • FIG. 5 is an explanatory diagram showing details of an optical system of the exposure apparatus main body of FIG. 1.
  • FIG. 6 is a flowchart illustrating a transport method and an exposure method according to the present invention.
  • FIG. 1 schematically shows a first embodiment of the exposure apparatus, the transfer apparatus, and the transfer method of the present invention.
  • the exposure apparatus 1 has a vacuum chamber 11.
  • the vacuum chamber 11 mainly contains an exposure apparatus main body 100 and a transfer unit (transfer apparatus) 200 for transferring the wafer W (substrate) from the outside of the vacuum chamber 11 to the exposure apparatus main body.
  • the exposure apparatus main body 100 has a wafer stage 29 accommodated in a vacuum chamber 106.
  • the exposure system will be described in detail later (see Fig. 5).
  • the transfer unit 200 includes a first vacuum robot 25, a second vacuum robot 27, a wafer stocker 31, a wafer recovery stocker 33, and a wafer pre-aligner 35.
  • a load lock chamber 15 is communicated with the transfer unit 200 of the vacuum chamber 11 via a gate valve 13.
  • the inlet of the load lock chamber 15 is opened to the atmosphere via a gate valve 17.
  • the load lock chamber 15 is provided with a vacuum pump (not shown) for evacuating the chamber.
  • An atmospheric robot 19 (external transfer system) is disposed outside the vacuum chamber 11 and in the vicinity of the gate valve 17 of the load lock chamber 15.
  • a wafer cassette unit 21 and a wafer pre-aligner 23 are disposed outside the vacuum chamber 11 and in the vicinity of the atmospheric robot 19.
  • the wafer W is transferred from the load lock chamber 15 to the wafer stage 29 in the vacuum chamber 11
  • the first vacuum robot 25, wafer stocker 31 and wafer recovery stocker 33, second vacuum robot 27, wafer stage 29, and wafer pre-aligner 35 are arranged in this order from the upstream side.
  • the first vacuum robot 25 is arranged at a position close to the load lock chamber 15.
  • the second vacuum robot 27 is arranged on the side in the X direction in the drawing of the wafer stage 29.
  • the first vacuum robot 25 and the second vacuum robot 27 are arranged in the Y direction in the figure, and a wafer stocker 31 and a wafer collection stocker 33 are juxtaposed in the X direction between them.
  • the wafer pre-aligner 35 is arranged on the opposite side of the second vacuum force 31 with respect to the second vacuum robot 27.
  • the first vacuum robot 25 carries the wafer W from the load lock chamber 15 to the wafer stocker 31. Further, the wafer W from the wafer collection stocker 33 is transferred to the load lock chamber 15.
  • the second vacuum robot 27 transports the wafer W from the wafer stocker 31 to the wafer pre-aligner 35. Further, the wafer W from the wafer brialiner 35 is transferred to the wafer stage 29. Further, the wafer W from the wafer stage 29 is transferred to the wafer collection stocker 33.
  • the first vacuum robot and the second vacuum robot are installed independently and driven independently, preventing the vibration of the first vacuum robot from being transmitted to the second vacuum robot. It is done.
  • the first vacuum robot 25 has a transfer arm 25a.
  • the vibration isolator 39 may be, for example, an active type or a passive type.
  • the maximum transfer acceleration when the first vacuum robot 25 transfers the wafer W is the maximum transfer acceleration when the second vacuum port bot 27 transfers the wafer W. It is set to be larger than the maximum transport acceleration.
  • the first vacuum robot 25 is driven at a higher speed than the second vacuum robot 27. Therefore, the vibration of the first vacuum robot 25 is relatively large.
  • the distance between the first vacuum robot 25 and the vacuum chamber (wafer stage chamber) 49 is the same as that of the second vacuum robot 27 and the vacuum chamber 49. (The first vacuum robot 25 is farther away from the vacuum chamber 49 than the second vacuum robot 27), so that the vibration generated by the first vacuum robot 25 is accommodated. The influence on the exposure operation in the exposure apparatus main body 100 that is difficult to be transmitted to the vacuum chamber 49 is suppressed.
  • the vibration of the first vacuum robot 25 is transmitted from the floor surface 11a to the second surface 11a. Even if the first vacuum robot 25, which is difficult to be transmitted to the vacuum robot 27, is driven at the maximum transfer acceleration, the vibration hardly affects the positioning accuracy of the second vacuum robot 27. For this reason, the first vacuum robot 25 can exhibit the highest transfer capability without affecting the second vacuum robot 27 and the wafer stage 29 by the vibration. On the other hand, the distance between the second vacuum robot 27 and the vacuum chamber 49 is shorter than the distance between the first vacuum robot 25 and the vacuum chamber 49 !, but the second vacuum robot 27 has a reduced transfer acceleration.
  • the second vacuum robot 27 Since the second vacuum robot 27 itself is driven, the vibration generated by the second vacuum robot 27 is relatively small, and the influence of the second vacuum robot 27 on the exposure operation in the vacuum chamber 49 is suppressed. Further, as described above, the second vacuum robot 27 is placed on the floor 11a of the vacuum chamber 11 via the vibration isolator 39, so that the second vacuum robot 27 is not easily affected by the first vacuum robot 35. The wafer W position detection result can be maintained, and the wafer W can be transferred to the wafer stage 29 with high positional accuracy. Furthermore, the second vacuum robot 27 is placed on the floor 1 la of the vacuum chamber 11 via the vibration isolation device 39! /, So that the second vacuum robot 27 The vibration generated by the robot 27 itself is prevented from being transmitted to the wafer stage 29.
  • the second vacuum robot 27 is not always driven at a transport acceleration smaller than the maximum transport acceleration of the first vacuum robot 25, but only during a period during which exposure processing is performed in the vacuum chamber 49.
  • the transfer acceleration of the second vacuum robot 27 may be suppressed.
  • the second vacuum robot 27 may be driven without suppressing the transfer acceleration.
  • the drive of the second vacuum robot 27 is stopped rather than driving the second vacuum robot 27 with a small transport acceleration, and the exposure process is performed! /, Na!
  • the wafer stocker 31 has a plurality of shelves 31a in the vertical direction. Wafers W are accommodated in the plurality of shelves 31a.
  • the wafer stocker 31 is provided with a temperature controller 41 that maintains the temperature of the wafer stock force 31 at a predetermined temperature.
  • the temperature adjustment device 41 has a pipe 43 through which a refrigerant having a predetermined temperature circulates. Wafer stocker 31 is maintained at a predetermined temperature by a cooling medium.
  • the wafer W accommodated in the wafer stocker 31 is maintained at a predetermined temperature by heat conduction from the shelf 31a.
  • a lamp or the like may be used for the temperature controller.
  • the wafer collection stocker 33 is configured in substantially the same manner as the wafer stocker 31 except that the temperature controller 41 is not provided.
  • the wafer prealigner 35 detects the alignment mark (notch) for the wafer W by a detector (not shown) and aligns the wafer W.
  • the wafer stage 29 positions the wafer W to be exposed with high accuracy. In the exposure apparatus 1 described above, the transfer of the wafer W to the wafer stage 29 and the exposure operation will be described with reference to the flowchart of FIG.
  • the wafer W in the wafer cassette unit 21 is taken out by the atmospheric robot 19 and transferred to the wafer preparer 23.
  • Wafer briar liner 23 uses a detector (not shown) to The alignment mark (notch) is detected and the wafer w is aligned.
  • the wafer W is taken out by the atmospheric robot 19.
  • the gate valve 17 of the load lock chamber 15 is opened, and the wafer W is transferred into the load lock chamber 15 by the atmospheric robot 19 (Sl). Thereafter, the gate valve 17 is closed, and evacuation is performed until the load lock chamber 15 reaches the target vacuum level.
  • the gate valve 13 between the load lock chamber 15 and the vacuum chamber 11 is opened. Then, the wafer W is taken out from the load lock chamber 15 by the first vacuum robot 25 and transferred to the wafer stocker 31, and then the gate valve 13 is closed (S2). The wafer W transferred to the wafer stocker 31 is adjusted to a predetermined temperature by the temperature controller 41 (S3).
  • the wafer stocker 31 stores a plurality of wafers W transferred by the high-speed first vacuum robot 25. Since the first vacuum robot 25 moves at a higher speed than the second vacuum robot 27 and transports the wafer W to the wafer stocker 31, a plurality of wafers W are always waiting on the wafer stocker 31. Yes.
  • the low-speed second vacuum robot 27 takes out the wafer W whose temperature has been adjusted by waiting, and transfers it to the wafer briar liner 35.
  • Wafer brialiner 35 detects the wafer W alignment mark (notch) by a detector (not shown) and aligns wafer W (S4).
  • the wafer W is transferred to the wafer stage 29 by the second vacuum robot 27 (S5).
  • the wafer stage 29 is provided with a wafer holder 45, and the wafer W is fixed to the wafer holder 45.
  • the wafer W is positioned with high accuracy by the wafer stage 29, and step-and-scan exposure is performed using an EUV optical lithography system as described later (S6).
  • the exposed wafer W is transferred to the wafer collection stocker 33 by the second vacuum robot 27 (S7).
  • the wafer W transferred to the wafer recovery stock force 33 is taken out by the first vacuum robot 25, and is carried out to the wafer cassette unit by a procedure substantially opposite to the above-described procedure (S8).
  • the wafer W is transferred to the wafer stocker 31 by the first vacuum robot 25 with high vibration because of high speed, and the wafer W transferred to the wafer stocker 31 is vibrated because of low speed.
  • a small number of second vacuum robots 27 are used to transfer to wafer stage 29. Therefore, the vibration of the vacuum robot that transports the wafer W to the wafer stage 29 can be reduced. This reduces the possibility of vibration being transmitted to the wafer stage 29 side and affecting the exposure, and also reduces the possibility of displacement of the wafer W being transferred due to the vibration of the vacuum robot. .
  • the high-speed first vacuum robot 25 loads and unloads the wafer W from the load lock chamber 15, and the low-speed second vacuum robot 27 loads and loads the wafer W from the load lock chamber 15. Throughout is not performed, throughput can be increased. Further, in the wafer stocker 31, since the temperature of the wafer W is adjusted in advance, the second vacuum robot 27 can reliably transfer the wafer W at a predetermined temperature to the wafer stage 29.
  • the second vacuum robot 27 Since the second vacuum robot 27 is supported on the floor 11a of the vacuum chamber 11 via the vibration isolator 39, the first vacuum robot 25 and the gate valve 1 3 are connected to the second vacuum robot 27. , 17, no disturbance vibrations enter, and the force S reduces the vibration of the second vacuum robot 27 more.
  • FIG. 3 shows a second embodiment of the exposure apparatus 1 ′, the transfer apparatus 200 ′, and the transfer method of the present invention.
  • the vacuum chamber 11 A of the exposure apparatus 1 ′ of this embodiment has a vacuum load chamber 47 and a vacuum chamber 49.
  • An exposure apparatus main body (not shown) including the wafer stage 29 is disposed in the vacuum chamber 49. Details of the exposure apparatus main body will be described later.
  • the vacuum load chamber 47 is divided into a first chamber 51 and a second chamber 53.
  • a first vacuum robot 25, a wafer stocker 31, and a wafer collection force 33 are arranged in the first chamber 51.
  • a second vacuum robot 27 and a wep pre-aligner 35 are arranged in the second chamber 53.
  • the first chamber 51 and the second chamber 53 are connected by a bellows 55 in an airtight state.
  • the bellows can use any material such as rubber or plastic as long as the space between the first chamber 51 and the second chamber 53 is hermetically sealed and is flexible. Not only the velocity but also the vibration generated in the first chamber 51 is transmitted to the second chamber 53.
  • the first chamber 51 is mounted on the first pedestal 57.
  • the second chamber 53 is placed on a second pedestal 59 that is spaced apart from the first pedestal 57.
  • the transfer and exposure of the wafer W are performed as follows according to the transfer method and the exposure method of the present invention.
  • the wafer W is loaded into the load port chamber 15 by the atmospheric robot 19.
  • the first vacuum robot 25 transports the wafer W loaded into the load lock chamber 15 to the wafer stocker 31 installed in the first chamber 51.
  • the second vacuum robot 27 transports the wafer W of the wafer stocker 31 to the wafer prealigner 35 installed in the second chamber 53. Wafer briar liner 35 then aligns wafer W (orientation).
  • the second vacuum robot 27 carries the wafer W from the wafer pre-aligner 35 to the wafer stage 29 housed in a vacuum chamber 49 different from the second chamber 53.
  • the wafer W transferred to the wafer stage 29 is exposed with the exposure light by the pattern of the reticle R as described later.
  • the second vacuum robot 27 transports the wafer W that has been exposed from the wafer stage 29 to the wafer collection stocker 33.
  • the first vacuum robot 25 transports the wafer W of the wafer recovery stocker 33 to the load lock chamber 15, and the atmospheric robot 19 transports the wafer W to the outside of the exposure apparatus 1 'for later development processing (etching). .
  • substantially the same effect as that of the first embodiment can be obtained.
  • the vibration of the first vacuum robot is the second. Transmission to the vacuum robot is prevented.
  • the vacuum load chamber 47 is kept airtight in the first chamber 51 in which the first vacuum robot 25 is disposed and the second chamber 53 in which the second vacuum robot 27 is disposed. In this state, the vibrations of the first vacuum robot 25 and the gate vano levers 13 and 17 are transmitted to the second vacuum robot 27. It can be effectively suppressed. Therefore, disturbance vibrations do not enter the second chamber 53 and the second chamber 53 is prevented. The vibration of the second vacuum robot 27 in the node 53 can be reduced.
  • the second vacuum robot 25 through the pedestal is connected to the second vacuum robot 27. Transmission of vibration is prevented, and vibration of the second vacuum robot 27 can be further reduced. Further, since the wafer pre-aligner 35 for pre-aligning the wafer W is arranged in the second chamber 53, the wafer W 29 is maintained at high accuracy by the second vacuum robot 27. Can be transported.
  • the wafer stage 29 can be reliably maintained at a predetermined degree of vacuum and cleanliness. That is, in the second embodiment described above, the first vacuum robot is placed on the pedestal 57 different from the pedestal 59 on which the second vacuum robot 27, the wafer pre-aligner 35, and the wafer stage 29 are placed. Therefore, even if the first vacuum robot is driven at the maximum transfer speed and a large vibration is generated, this vibration is generated by the second vacuum robot 27 placed on the pedestal 59, the wafer pre-aligner 35, the wafer stage. 29 is difficult to get through. On the other hand, the second vacuum robot 27 is installed on the pedestal 59 in the same manner as the wafer pre-liner 35 and the wafer stage 29.
  • the second vacuum robot 27 is placed on a pedestal other than the pre-aligner 35 and wafer stage 29, the vibration that is generated by the drive of the second vacuum robot 27 is less likely to be transmitted to the wafer stage 29. Instead, since the pedestal on which the second vacuum robot 27 is placed and the pedestal on which the wafer stage 29 is placed are relatively displaced, the delivery accuracy of the wafer W to the wafer stage 29 is deteriorated.
  • the second vacuum robot 27, the wafer pre-aligner 35, and the wafer stage 29 are placed on a single pedestal. The result of the position detection of the wafer W by the pre-aligner 35 can be maintained and the wafer W can be transferred to the wafer stage 29 with high positional accuracy.
  • a vibration isolation device is not provided between the second vacuum robot 27 and the pedestal 59. In order to prevent further vibration, the exposure apparatus 1 ′ is the same as the first embodiment.
  • a vibration isolation device may be provided between the vacuum robot 27 and the pedestal 59.
  • FIG. 5 schematically shows an EUV optical lithography system of the exposure apparatus 1 shown in FIG. 1, that is, the exposure apparatus main body 100.
  • the exposure main body 100 mainly includes a laser light source 108, an illumination system that generates EUV light as illumination light, a reticle stage 102, an image optical system 101, and a wafer stage 29.
  • EUV light has a wavelength between 0.;! And 400 nm, and a wavelength of about 1 to 50 nm is particularly preferable.
  • the image optical system 101 reduces the pattern image formed by the reticle R on the wafer W.
  • the pattern irradiated on the wafer W is determined by a reflective reticle R disposed below the reticle stage 102 via an electrostatic chuck 103. Wafer W is placed on wafer stage 29. Typically, the exposure of the wafer W is performed by a step-and-scan method in which the wafer W and the reticle R are moved in synchronization with EUV light.
  • EUV light used as illumination light at the time of exposure has low permeability to the atmosphere
  • the light path through which EUV light passes is surrounded by a vacuum channel 106 that is kept in a vacuum using a suitable vacuum pump 107. It is.
  • EUV light is generated by a laser plasma X-ray source.
  • the laser plasma X-ray source consists of a laser source 108 (acting as an excitation light source) and a xenon gas supply device 109 power.
  • the laser plasma X-ray source is surrounded by a vacuum chamber 110. EUV light generated by the laser plasma X-ray source passes through the window 111 of the vacuum chamber 110.
  • the laser source 108 generates laser light having a wavelength equal to or shorter than ultraviolet rays.
  • a YAG laser or an excimer laser is used.
  • Laser light from the laser source 108 is collected and applied to the flow of xenon gas (supplied from the xenon gas supply device 109) emitted from the nozzle 112.
  • the laser light sufficiently warms the xenon gas and generates plasma.
  • EUV light photons are emitted when the xenon molecule excited by absorbing the laser light transitions to an energy level lower than the excited state!
  • the parabolic mirror 113 is disposed in the vicinity of the xenon gas discharge portion.
  • Parabolic mirror 1 13 collects EUV light generated by the plasma.
  • the parabolic mirror 113 constitutes a condensing optical system, and is arranged so that the focal point is located near the position where the xenon gas from the nozzle 112 is emitted.
  • EUV light is reflected by the multilayer film of the parabolic mirror 113, and the vacuum channel It reaches the condensing mirror 114 through the window 111 of the node 110.
  • the condensing mirror 114 condenses and reflects the EUV light to the reflective reticle R.
  • the EUV light is reflected by the condensing mirror 114 and illuminates a predetermined portion of the reticulometer R. That is, the parabolic mirror 113 and the condensing mirror 114 constitute an illumination system of this apparatus.
  • the reticle R has a multilayer film that reflects EUV light and an absorber pattern layer for forming a pattern.
  • EUV light is patterned by partially reflecting EUV light with reticle R.
  • the patterned EUV light reaches the wafer W through the projection system 101.
  • the image optical system 101 of this embodiment also has four reflecting mirror forces, ie, a concave first mirror 115a, a convex second mirror 115b, a convex third mirror 115c, and a concave fourth mirror 115d.
  • Each mirror 115a to 115d is provided with a multilayer film reflecting EUV light!
  • EUV light reflected by the reticle R is sequentially reflected from the first mirror 115a to the fourth mirror 115d to form a reduced (eg, 1/4, 1/5, 1/6) image of the reticle pattern.
  • the image optical system 101 constitutes a telecentric system in which the magnification rate does not vary on the image side (wafer W side).
  • Reticle R is supported at least in the XY plane by a movable reticle stage 102.
  • the wafer W is preferably supported by a wafer stage 29 movable in the X, Y and Z directions.
  • EUV light is irradiated to a predetermined area of the reticle R by the illumination system, and the reticle R and the wafer W are compared with the image optical system 101 in the image optical system 101. It moves at a predetermined speed according to the reduction rate. In this way, the reticle pattern is exposed to a predetermined exposure range (with respect to the die) on the wafer W.
  • the gas generated from the resist on the wafer W is mirrored in the image optical system 101.
  • the wafer stage 29 on which the wafer W is placed is disposed in the vacuum chamber 106 by being separated by the partition 116.
  • the partition 116 has an opening 116a through which EUV light is emitted from the mirror 115d to the wafer W.
  • the space in the partition 116 is evacuated by a vacuum pump 117.
  • the force described for the example in which the wafer stock force 31 and the wafer collection stocker 33 are arranged in the vacuum chamber 11 or the first chamber 51 is provided with the wafer collection stocker 33 separately. It is also possible to manage the number of stages of the wafer stocker 31 and to provide the role of wafer recovery stock force.
  • the present invention is widely applicable to an exposure apparatus that accommodates a wafer W, a reticle, or the like in a vacuum atmosphere and performs exposure. Can be applied.
  • the vibration isolation device may be provided in the first vacuum robot 25. Further, the exposure device or the transfer device may include a load lock chamber.
  • the force of providing the wafer brialiner 35, the wafer stocking force, and the wafer recovery stocker in the transfer unit of the exposure apparatus may be omitted. Instead of this, a table on which the wafer W is temporarily placed may be used.
  • the exposure apparatus has the transport apparatus (transport section).
  • the transport apparatus according to the present invention may be an apparatus independent of the exposure apparatus.
  • the exposure apparatus is not limited to the force described by using the EUV light as the exposure light as an example, and the present invention is also applied to an exposure apparatus that uses ArF or F laser light as the exposure light.
  • U.S. Pat.No. 7,023,610 it includes a solid-state laser light source such as a DFB semiconductor laser or a fiber laser, an optical amplification unit having a fiber amplifier, and a wavelength conversion unit. Use a harmonic generator that outputs the normal light.
  • the present invention can be applied to various types of exposure apparatuses.
  • a liquid is maintained between a terminal optical element of an optical system and a wafer, and the pattern is passed through the liquid.
  • the present invention can also be applied to a so-called immersion exposure apparatus that exposes.
  • the present invention can also be applied to a dry type exposure apparatus that fills the optical path space of exposure light with a gas such as an inert gas.
  • a gas such as an inert gas.
  • an exposure apparatus (lithography) that exposes a line 'and' space pattern on the substrate P by forming interference fringes on the substrate P.
  • the present invention can also be applied to a system.
  • JP 20 04-519850 corresponding US Pat. No.
  • the present invention can also be applied to an exposure apparatus that double exposes one shot area on a substrate almost simultaneously by exposure.
  • the present invention can also be applied to a proximity type exposure apparatus, mirror projection aligner, and the like.
  • the present invention can also be applied to an exposure apparatus that includes a stage and a measurement member equipped with a reference member on which a reference mark is formed and / or various photoelectric sensors. Further, as disclosed in US Pat.
  • a multi-stage including a plurality of (two) substrate stages 1 and 2 that can move while holding the substrate cage. It can also be applied to a type (twin stage type) exposure apparatus.
  • Exposure apparatus The use of the pad is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on a substrate, but an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head It can be widely applied to an exposure device for manufacturing an image pickup device (CCD), a micromachine, a MEMS, a DNA chip, a reticle or a mask, and the like.
  • CCD image pickup device
  • MEMS micromachine
  • DNA chip a reticle or a mask
  • the present invention when a wafer is transferred to the wafer stage of the exposure apparatus using the transfer device, vibrations from the outside are prevented from being transmitted, so that a device having desired performance can be obtained. Can be manufactured with high productivity. Therefore, the present invention can significantly contribute to the development of the precision instrument industry including Japan's semiconductor industry.

Abstract

An exposure apparatus (1) in which vibration of a vacuum robot for conveying a wafer (W) to a wafer stage (29) is reduced. The exposure apparatus (1) has a first vacuum robot (25) and a second vacuum robot (27). In conveying the wafer (W) from a load lock chamber (15) to the wafer stage (29) inside a vacuum chamber (11), the first vacuum robot (25) is placed in the vacuum chamber (11) and conveys the wafer coming from the load lock chamber, and the second vacuum robot (27) is placed in the vacuum chamber and conveys the wafer (W) to the wafer stage (29). The first vacuum robot is driven independent of the second vacuum robot.

Description

明 細 書  Specification
露光装置及び搬送装置  Exposure apparatus and transfer apparatus
技術分野  Technical field
[0001] 本発明は、半導体集積回路等のリソグラフィに用いられる露光装置及びそれに使 用される搬送装置並びに搬送装置を用レ、る搬送方法及び露光方法に関する。 背景技術  The present invention relates to an exposure apparatus used for lithography such as a semiconductor integrated circuit, a transfer apparatus used therefor, a transfer method using the transfer apparatus, and an exposure method. Background art
[0002] 基板を真空状態で処理する真空処理装置では、基板を大気雰囲気から真空処理 室に搬送するための搬送系が使用されている。特許文献 1では、カセットに収容され た基板を搬送装置により抜き取り、ロードロック室に搬送し、ロードロック室に搬送され た基板は搬送室に設けられた真空搬送装置によりエッチング室に搬送されることが 開示されている。 EUV露光装置のように真空雰囲気中で露光を行う装置では、大気 雰囲気中のウェハを、ロードロック室を介して真空雰囲気中のウェハステージに搬送 することが行われている。そして、真空雰囲気の真空チャンバには、ロードロック室力、 らのウェハをウェハステージに搬送する真空ロボットが配置されている。  [0002] In a vacuum processing apparatus for processing a substrate in a vacuum state, a transport system for transporting the substrate from an atmospheric atmosphere to a vacuum processing chamber is used. In Patent Document 1, a substrate accommodated in a cassette is extracted by a transfer device and transferred to a load lock chamber, and the substrate transferred to the load lock chamber is transferred to an etching chamber by a vacuum transfer device provided in the transfer chamber. Is disclosed. In an apparatus that performs exposure in a vacuum atmosphere such as an EUV exposure apparatus, a wafer in an air atmosphere is transferred to a wafer stage in a vacuum atmosphere through a load lock chamber. In a vacuum chamber in a vacuum atmosphere, a vacuum robot for transferring the wafer to the wafer stage is arranged.
特許文献 1:特許第 3145359号公報  Patent Document 1: Japanese Patent No. 3145359
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかしながら、従来の露光装置では、スループットを高めるために、真空ロボットによ りウェハを高速で搬送しょうとすると、真空ロボットの振動が比較的大きくなり、ウェハ ステージ側に振動が伝達され露光に影響を与えるおそれがある。また、真空ロボット の振動により搬送しているウェハに位置ずれが生じるおそれがある。本発明は、かか る従来の問題を解決するためになされたもので、ウェハステージにウェハを搬送する 真空ロボットの振動を低減することができる露光装置及び搬送装置並びに搬送方法 及び露光方法を提供することを目的とする。  [0003] However, in a conventional exposure apparatus, when a wafer is transported at a high speed by a vacuum robot in order to increase throughput, the vibration of the vacuum robot becomes relatively large, and the vibration is transmitted to the wafer stage side to be exposed. May be affected. In addition, the wafer being transferred may be displaced due to the vibration of the vacuum robot. The present invention has been made to solve such a conventional problem, and provides an exposure apparatus, a transfer apparatus, a transfer method, and an exposure method that can reduce vibration of a vacuum robot that transfers a wafer to a wafer stage. The purpose is to do.
課題を解決するための手段  Means for solving the problem
[0004] 本発明の第 1の態様に従えば、ロードロック室からのウェハを真空チャンバ内のゥ ェハステージに搬送する露光装置であって、前記真空チャンバ内に配置され前記口 ードロック室からのウェハを搬送する第 1の真空ロボットと、前記真空チャンバ内に配 置され前記ウェハを前記ウェハステージに搬送する第 2の真空ロボットとを備え、前 記第 1の真空ロボットは前記第 2の真空ロボットとは独立に駆動される露光装置が提 供される。 [0004] According to a first aspect of the present invention, there is provided an exposure apparatus for transporting a wafer from a load lock chamber to a wafer stage in a vacuum chamber, the exposure apparatus being disposed in the vacuum chamber. A first vacuum robot for transporting the wafer from the lock chamber, and a second vacuum robot disposed in the vacuum chamber for transporting the wafer to the wafer stage, wherein the first vacuum robot is An exposure device is provided that is driven independently of the second vacuum robot.
[0005] 本発明の露光装置において、前記第 1の真空ロボットの最大搬送加速度は、前記 第 2の真空ロボットの最大搬送加速度より大きくし得る。本発明の露光装置において 、前記第 2の真空ロボットに前記第 1の真空ロボットの振動が伝達するのを抑制する 振動抑制装置を有し得る。  In the exposure apparatus of the present invention, the maximum transport acceleration of the first vacuum robot can be larger than the maximum transport acceleration of the second vacuum robot. The exposure apparatus of the present invention may have a vibration suppressing device that suppresses transmission of vibration of the first vacuum robot to the second vacuum robot.
[0006] 本発明の露光装置において、前記振動抑制装置は、前記第 2の真空ロボットと前 記真空チャンバとの間に設けられた除振装置にし得る。本発明の露光装置において 、前記真空チャンバは、前記第 1の真空ロボットが配置される第 1のチャンバと、前記 第 2の真空ロボットが配置される第 2のチャンバとを有し、前記振動抑制装置は第 1の チャンバと第 2のチャンバとの間を気密シールする可撓性部材にし得る。  In the exposure apparatus of the present invention, the vibration suppressing device can be a vibration isolation device provided between the second vacuum robot and the vacuum chamber. In the exposure apparatus of the present invention, the vacuum chamber includes a first chamber in which the first vacuum robot is disposed, and a second chamber in which the second vacuum robot is disposed, and the vibration suppression The device may be a flexible member that hermetically seals between the first chamber and the second chamber.
[0007] 本発明の露光装置において、前記第 1のチャンバと第 2のチャンバとを、異なるぺ デスタル上に載置し得る。本発明の露光装置は、さらに前記第 2のチャンバに設けら れた、前記ウェハのブリアライメントを行うブリアライナを備え得る。  [0007] In the exposure apparatus of the present invention, the first chamber and the second chamber may be placed on different pedestals. The exposure apparatus of the present invention may further include a briar liner provided in the second chamber for performing bridging of the wafer.
[0008] 本発明の露光装置において、前記真空チャンバは、前記第 1の真空ロボットおよび 前記第 2の真空ロボットが配置される真空ロードチャンバと、前記ウェハステージが配 置されるチャンバとを有し得る。本発明の露光装置において、前記ウェハステージが 配置されるチャンバ内に、リソグラフィシステムが収容され得る。リソグラフィシステムは  In the exposure apparatus of the present invention, the vacuum chamber has a vacuum load chamber in which the first vacuum robot and the second vacuum robot are arranged, and a chamber in which the wafer stage is arranged. obtain. In the exposure apparatus of the present invention, a lithography system can be housed in a chamber in which the wafer stage is placed. Lithography system
[0009] 本発明の第 2の態様に従えば、真空雰囲気中で基板ステージに保持した基板を露 光する露光装置の前記基板ステージへ前記基板を搬送する搬送装置であって、真 空雰囲気中で前記基板を搬送する第 1の真空ロボットと、前記第 1の真空ロボットとは 別設され、真空雰囲気中で前記基板ステージに基板を受け渡す第 2の真空ロボット と、前記第 1の真空ロボットが前記基板を搬送する際に発生する振動の、前記基板ス テージと前記第 2の真空ロボットとの少なくとも一方への伝達を抑制する抑制機構とを 含む搬送装置が提供される。 [0010] 本発明の搬送装置において、前記第 1の真空ロボットと前記第 2の真空ロボットとは それらに共通のペデスタル上に載置され、前記抑制機構は、前記第 1ロボットと前記 ペデスタルとの間に配置され、前記ペデスタルの振動の前記第 2ロボットへの伝達を 抑制する除振装置を含み得る。 [0009] According to a second aspect of the present invention, there is provided a transfer apparatus for transferring the substrate to the substrate stage of an exposure apparatus that exposes the substrate held on the substrate stage in a vacuum atmosphere, wherein the substrate is in a vacuum atmosphere. The first vacuum robot for transporting the substrate at the first vacuum robot and the first vacuum robot are provided separately from each other and deliver the substrate to the substrate stage in a vacuum atmosphere, and the first vacuum robot There is provided a transfer device including a suppression mechanism that suppresses transmission of vibration generated when the substrate is transferred to at least one of the substrate stage and the second vacuum robot. [0010] In the transfer device of the present invention, the first vacuum robot and the second vacuum robot are placed on a pedestal common to them, and the suppression mechanism includes a first robot and a pedestal. The vibration isolator may be disposed between the vibrations of the pedestal to suppress transmission of the vibration of the pedestal to the second robot.
[0011] 本発明の搬送装置において、前記抑制機構は、前記第 1の真空ロボットが載置さ れる第 1ペデスタルから分離された第 2ペデスタルを含み、前記第 2の真空ロボットが 前記第 2ペデスタルに載置され得る。この場合、前記第 1の真空ロボットは前記第 1ぺ デスタル上に設けられて内部に真空雰囲気を保持する第 1チャンバ内に配置され、 前記第 2の真空ロボットは前記第 1チャンバとは別に前記第 2チャンバ上に設けられ て内部に真空雰囲気を保持する第 2チャンバ内に配置され、前記第 1チャンバと前 記第 2チャンバとの間に前記第 1、第 2チャンバ内の空間を連通するべローズが設け られ得る。  [0011] In the transfer apparatus according to the present invention, the suppression mechanism includes a second pedestal separated from the first pedestal on which the first vacuum robot is placed, and the second vacuum robot includes the second pedestal. It can be mounted on. In this case, the first vacuum robot is disposed in a first chamber that is provided on the first pedestal and maintains a vacuum atmosphere therein, and the second vacuum robot is separated from the first chamber. It is disposed in a second chamber that is provided on the second chamber and maintains a vacuum atmosphere therein, and communicates the spaces in the first and second chambers between the first chamber and the second chamber. Bellows can be provided.
[0012] 本発明の搬送装置において、前記第 1の真空ロボットは前記第 2の真空ロボットより も大きな最大搬送加速度で駆動されるとともに、前記第 1の真空ロボットは前記第 2の 真空ロボットよりも前記基板ステージから遠い位置に配置され得る。  In the transfer apparatus of the present invention, the first vacuum robot is driven at a maximum transfer acceleration larger than that of the second vacuum robot, and the first vacuum robot is set higher than the second vacuum robot. It may be disposed at a position far from the substrate stage.
[0013] 本発明の搬送装置は、さらに、前記基板の位置情報を検出するブリアライナを備え[0013] The transport apparatus of the present invention further includes a brialiner that detects positional information of the substrate.
、前記第 2の真空ロボットは、ブリアライナで前記位置情報を検出された前記基板を 前記基板ステージへ搬送し得る。 The second vacuum robot can transport the substrate, the position information of which is detected by a bria liner, to the substrate stage.
[0014] 本発明の第 3の態様に従えば、前記基板ステージを含む露光装置であって、前記 搬送装置で搬送された基板を真空雰囲気中で露光する露光装置が提供される。 [0014] According to a third aspect of the present invention, there is provided an exposure apparatus including the substrate stage, wherein the exposure apparatus exposes the substrate transported by the transport apparatus in a vacuum atmosphere.
[0015] 本発明の第 4の態様に従えば、本発明の搬送装置を用いて前記基板を搬送する 搬送方法が提供される。 According to the fourth aspect of the present invention, there is provided a transport method for transporting the substrate using the transport apparatus of the present invention.
[0016] 本発明の第 5の態様に従えば、前記基板ステージを含み、本発明の搬送装置で搬 送された基板を真空雰囲気中で露光する露光装置が提供される。 [0016] According to a fifth aspect of the present invention, there is provided an exposure apparatus that includes the substrate stage and exposes the substrate transported by the transport apparatus of the present invention in a vacuum atmosphere.
[0017] 本発明の第 6の態様に従えば、前記基板ステージと、本発明の搬送装置を含み、 基板を真空雰囲気中で露光する露光装置が提供される。 According to a sixth aspect of the present invention, there is provided an exposure apparatus that includes the substrate stage and the transfer apparatus of the present invention, and exposes the substrate in a vacuum atmosphere.
[0018] 本発明の第 7の態様に従えば、本発明の搬送装置を用いて前記基板を搬送するこ とを、搬送された基板を真空雰囲気中で露光することを含む露光方法が提供される。 発明の効果 [0018] According to a seventh aspect of the present invention, there is provided an exposure method including transporting the substrate using the transport apparatus of the present invention, and exposing the transported substrate in a vacuum atmosphere. The The invention's effect
[0019] 本発明では、ウェハステージにウェハを搬送する真空ロボットの振動を低減するこ と力 Sできる。  In the present invention, it is possible to reduce the vibration of the vacuum robot that transports the wafer to the wafer stage.
図面の簡単な説明  Brief Description of Drawings
[0020] [図 1]本発明の露光装置の第 1の実施形態を上方力 見た説明図である。  [0020] FIG. 1 is an explanatory view of the first embodiment of the exposure apparatus of the present invention when viewed upward.
[図 2]図 1の露光装置を側方 (X方向)から見た説明図である。  2 is an explanatory view of the exposure apparatus of FIG. 1 viewed from the side (X direction).
[図 3]本発明の露光装置の第 2の実施形態を上方力 見た説明図である。  FIG. 3 is an explanatory view of the second embodiment of the exposure apparatus of the present invention when viewed upward.
[図 4]図 3の露光装置を側方 (X方向)から見て示す説明図である。  4 is an explanatory view showing the exposure apparatus of FIG. 3 as viewed from the side (X direction).
[図 5]図 1の露光装置本体の光学系の詳細を示す説明図である。  5 is an explanatory diagram showing details of an optical system of the exposure apparatus main body of FIG. 1.
[図 6]本発明の搬送方法及び露光方法を説明するフローチャートである。  FIG. 6 is a flowchart illustrating a transport method and an exposure method according to the present invention.
符号の説明  Explanation of symbols
[0021] 1,1 ' …露光装置、 100· · ·露光装置本体、 200· · ·搬送部、 11 · · ·真空チャンバ、 15 …ロード、ロック室、 19…大気ロボッ卜、 25…第 1の真空ロボッ卜、 27…第 2の真空ロボ ット、 29…ウェハステージ、 31…ウエノヽストツ力、 33…ウェハ回収ストッカ、 35…ゥェ ハプリアライナ、 47· · ·真空ロードチャンノ 、 49· · ·真空チャンノ 、 51 · · ·第 1のチャンバ 、 53· · ·第 2のチャンバ、 55· · ·ベローズ、 W…ウェハ。  [0021] 1,1 '... Exposure apparatus, 100 ... Exposure apparatus body, 200 ... Transport section, 11 ... Vacuum chamber, 15 ... Load, lock chamber, 19 ... Atmospheric robot, 25 ... First Vacuum robot, 27… Second vacuum robot, 29… Wafer stage, 31… Wenost's force, 33… Wafer recovery stocker, 35… We Hap Aligner, 47 ··· Vacuum load channel, 49 ··· · Vacuum channel, 51 ··· First chamber, 53 ··· Second chamber, 55 ··· Bellows, W ... wafer.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下、本発明の実施形態を図面を用いて詳細に説明する。  Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0023] <第 1の実施形態〉  <First Embodiment>
図 1は、本発明の露光装置並びに搬送装置及び搬送方法の第 1の実施形態を模 式的に示している。この実施形態では、本発明力 ¾UV露光装置に適用される。この 露光装置 1は、真空チャンバ 11を有している。真空チャンバ 11には、主に、露光装 置本体 100と、露光装置本体に、真空チャンバ 11外部からウェハ W (基板)を受け渡 すための搬送部 (搬送装置) 200が収容されている。露光装置本体 100は、真空チヤ ンバ 106に収容されたウェハステージ 29を有する。露光装置本体については、後に 詳述する(図 5参照)。搬送部 200は、第 1の真空ロボット 25、第 2の真空ロボット 27、 ウェハストッカ 31、ウェハ回収ストッカ 33及びウェハプリアライナ 35を有する。 [0024] 真空チャンバ 11の搬送部 200には、ゲートバルブ 13を介してロードロック室 15が 連通されている。ロードロック室 15の入口はゲートバルブ 17を介して大気中に開放さ れている。ロードロック室 15には室内を真空引きするための真空ポンプ (不図示)が設 けられている。真空チャンバ 11の外側であって、ロードロック室 15のゲートバルブ 17 の近傍には、大気ロボット 19 (外部搬送系)が配置されている。真空チャンバ 11の外 側であって、この大気ロボット 19の近傍には、ウェハカセット部 21およびウェハプリア ライナ 23が配置されている。 FIG. 1 schematically shows a first embodiment of the exposure apparatus, the transfer apparatus, and the transfer method of the present invention. In this embodiment, the present invention is applied to a UV exposure apparatus. The exposure apparatus 1 has a vacuum chamber 11. The vacuum chamber 11 mainly contains an exposure apparatus main body 100 and a transfer unit (transfer apparatus) 200 for transferring the wafer W (substrate) from the outside of the vacuum chamber 11 to the exposure apparatus main body. The exposure apparatus main body 100 has a wafer stage 29 accommodated in a vacuum chamber 106. The exposure system will be described in detail later (see Fig. 5). The transfer unit 200 includes a first vacuum robot 25, a second vacuum robot 27, a wafer stocker 31, a wafer recovery stocker 33, and a wafer pre-aligner 35. A load lock chamber 15 is communicated with the transfer unit 200 of the vacuum chamber 11 via a gate valve 13. The inlet of the load lock chamber 15 is opened to the atmosphere via a gate valve 17. The load lock chamber 15 is provided with a vacuum pump (not shown) for evacuating the chamber. An atmospheric robot 19 (external transfer system) is disposed outside the vacuum chamber 11 and in the vicinity of the gate valve 17 of the load lock chamber 15. A wafer cassette unit 21 and a wafer pre-aligner 23 are disposed outside the vacuum chamber 11 and in the vicinity of the atmospheric robot 19.
[0025] 真空チャンバ 11内には、ウェハ Wがロードロック室 15からウェハステージ 29に搬 送されることを考慮してロードロック室 15の側を上流、ウェハステージ 29の側を下流 とすると、上流側から第 1の真空ロボット 25、ウェハストッカ 31及びウェハ回収ストッカ 33、第 2の真空ロボット 27、ウェハステージ 29、及びウェハプリアライナ 35の順に配 置されている。第 1の真空ロボット 25は、ロードロック室 15にもつとも近い位置に配置 されている。第 2の真空ロボット 27は、ウェハステージ 29の図中、 X方向の側方に配 置されている。第 1の真空ロボット 25と第 2の真空ロボット 27は、図中、 Y方向に配列 されており、それらの間には、ウェハストッカ 31およびウェハ回収ストッカ 33が X方向 に並置されている。ウェハプリアライナ 35は、第 2の真空ロボット 27を基準としてゥェ ハストツ力 31と反対側に配置されている。  [0025] In consideration of the fact that the wafer W is transferred from the load lock chamber 15 to the wafer stage 29 in the vacuum chamber 11, if the load lock chamber 15 side is upstream and the wafer stage 29 side is downstream, The first vacuum robot 25, wafer stocker 31 and wafer recovery stocker 33, second vacuum robot 27, wafer stage 29, and wafer pre-aligner 35 are arranged in this order from the upstream side. The first vacuum robot 25 is arranged at a position close to the load lock chamber 15. The second vacuum robot 27 is arranged on the side in the X direction in the drawing of the wafer stage 29. The first vacuum robot 25 and the second vacuum robot 27 are arranged in the Y direction in the figure, and a wafer stocker 31 and a wafer collection stocker 33 are juxtaposed in the X direction between them. The wafer pre-aligner 35 is arranged on the opposite side of the second vacuum force 31 with respect to the second vacuum robot 27.
[0026] 第 1の真空ロボット 25は、ロードロック室 15からのウェハ Wをウェハストッカ 31に搬 送する。また、ウェハ回収ストッカ 33からのウェハ Wをロードロック室 15に搬送する。 第 2の真空ロボット 27は、ウェハストッカ 31からのウェハ Wをウェハプリアライナ 35に 搬送する。また、ウェハブリアライナ 35からのウェハ Wをウェハステージ 29に搬送す る。さらに、ウェハステージ 29からのウェハ Wをウェハ回収ストッカ 33に搬送する。こ のように、第 1の真空ロボットと第 2の真空ロボットとが独立に設置されて、独立に駆動 されるので、第 1の真空ロボットの振動が第 2の真空ロボットに伝達することが防止さ れる。第 1の真空ロボット 25は、図 2に示すように、搬送アーム 25aを有している。そし て、真空チャンバ 11の床面 11aに直接載置されている。真空チャンバ 11は、ぺデス タル 37上に載置されている。第 2の真空ロボット 27は、搬送アーム 27aを有している。 そして、真空チャンバ 11の床面 11aに除振装置 39を介して載置されている。除振装 置 39は、真空チャンバ 11の床面 11aからの振動が第 2の真空ロボット 27に伝達する ことを抑制する。従って、第 2の真空ロボット 27に床面 11aからの振動が伝達すること がなくなり、第 2の真空ロボット 27の振動は、 自身の駆動による振動だけとなり小さな ものとなる。除振装置 39は、例えば、アクティブ型またはパッシブ型のいずれでもよい 第 1の真空ロボット 25がウェハ Wを搬送する時の最大搬送加速度は、第 2の真空口 ボット 27がウェハ Wを搬送する時の最大搬送加速度より大きくなるように設定される。 そして、第 1の真空ロボット 25は第 2の真空ロボット 27より高速で駆動される。従って、 第 1の真空ロボット 25の振動は比較的大きなものになる力 第 1の真空ロボット 25と真 空チャンバ(ウェハステージチャンバ) 49との距離は第 2の真空ロボット 27と真空チヤ ンバ 49との距離よりも長いので(第 1の真空ロボット 25は第 2の真空ロボット 27と比べ て真空チャンバ 49からより遠く離れているので)、第 1の真空ロボット 25が発生する振 動が収容されている真空チャンバ 49に伝わりにくぐ露光装置本体 100での露光動 作に与える影響は抑制される。また、前述の通り第 2の真空ロボット 27は除振装置 39 を介して真空チャンバ 11の床面 11aに載置されているので、第 1の真空ロボット 25の 振動が床面 11aから第 2の真空ロボット 27に伝わり難ぐ第 1の真空ロボット 25が最大 搬送加速度で駆動されても、その振動は第 2の真空ロボット 27の位置決め精度に影 響し難い。このため、第 1の真空ロボット 25は第 2の真空ロボット 27やウェハステージ 29にその振動の影響を与えることなぐ最高の搬送能力を発揮することが可能となる 。一方、第 2の真空ロボット 27と真空チャンバ 49との距離は、第 1の真空ロボット 25と 真空チャンバ 49との距離より短!/、が、第 2の真空ロボット 27は抑制された搬送加速度 で駆動されるため、第 2の真空ロボット 27自身が発生する振動は比較的小さなものに なり、第 2の真空ロボット 27が真空チャンバ 49での露光動作に与える影響は抑制さ れることになる。また前述の通り第 2の真空ロボット 27は除振装置 39を介して真空チ ヤンバ 11の床面 11aに載置されているので、第 1の真空ロボットの影響を受け難ぐゥ ェハプリアライナ 35でのウェハ Wの位置検出の結果を維持してウェハ Wをウェハス テージ 29へ高い位置精度で受け渡すことができる。さらに、第 2の真空ロボット 27は 除振装置 39を介して真空チャンバ 11の床面 1 laに載置されて!/、るので、第 2の真空 ロボット 27自身が発生する振動がウェハステージ 29に伝達することが防止される。 The first vacuum robot 25 carries the wafer W from the load lock chamber 15 to the wafer stocker 31. Further, the wafer W from the wafer collection stocker 33 is transferred to the load lock chamber 15. The second vacuum robot 27 transports the wafer W from the wafer stocker 31 to the wafer pre-aligner 35. Further, the wafer W from the wafer brialiner 35 is transferred to the wafer stage 29. Further, the wafer W from the wafer stage 29 is transferred to the wafer collection stocker 33. In this way, the first vacuum robot and the second vacuum robot are installed independently and driven independently, preventing the vibration of the first vacuum robot from being transmitted to the second vacuum robot. It is done. As shown in FIG. 2, the first vacuum robot 25 has a transfer arm 25a. Then, it is placed directly on the floor surface 11 a of the vacuum chamber 11. The vacuum chamber 11 is mounted on the pedestal 37. The second vacuum robot 27 has a transfer arm 27a. Then, it is placed on the floor surface 11 a of the vacuum chamber 11 via a vibration isolation device 39. Vibration isolation The device 39 suppresses the vibration from the floor surface 11a of the vacuum chamber 11 from being transmitted to the second vacuum robot 27. Accordingly, the vibration from the floor surface 11a is not transmitted to the second vacuum robot 27, and the vibration of the second vacuum robot 27 is only small due to its own drive. The vibration isolator 39 may be, for example, an active type or a passive type. The maximum transfer acceleration when the first vacuum robot 25 transfers the wafer W is the maximum transfer acceleration when the second vacuum port bot 27 transfers the wafer W. It is set to be larger than the maximum transport acceleration. The first vacuum robot 25 is driven at a higher speed than the second vacuum robot 27. Therefore, the vibration of the first vacuum robot 25 is relatively large. The distance between the first vacuum robot 25 and the vacuum chamber (wafer stage chamber) 49 is the same as that of the second vacuum robot 27 and the vacuum chamber 49. (The first vacuum robot 25 is farther away from the vacuum chamber 49 than the second vacuum robot 27), so that the vibration generated by the first vacuum robot 25 is accommodated. The influence on the exposure operation in the exposure apparatus main body 100 that is difficult to be transmitted to the vacuum chamber 49 is suppressed. Further, as described above, since the second vacuum robot 27 is placed on the floor surface 11a of the vacuum chamber 11 via the vibration isolator 39, the vibration of the first vacuum robot 25 is transmitted from the floor surface 11a to the second surface 11a. Even if the first vacuum robot 25, which is difficult to be transmitted to the vacuum robot 27, is driven at the maximum transfer acceleration, the vibration hardly affects the positioning accuracy of the second vacuum robot 27. For this reason, the first vacuum robot 25 can exhibit the highest transfer capability without affecting the second vacuum robot 27 and the wafer stage 29 by the vibration. On the other hand, the distance between the second vacuum robot 27 and the vacuum chamber 49 is shorter than the distance between the first vacuum robot 25 and the vacuum chamber 49 !, but the second vacuum robot 27 has a reduced transfer acceleration. Since the second vacuum robot 27 itself is driven, the vibration generated by the second vacuum robot 27 is relatively small, and the influence of the second vacuum robot 27 on the exposure operation in the vacuum chamber 49 is suppressed. Further, as described above, the second vacuum robot 27 is placed on the floor 11a of the vacuum chamber 11 via the vibration isolator 39, so that the second vacuum robot 27 is not easily affected by the first vacuum robot 35. The wafer W position detection result can be maintained, and the wafer W can be transferred to the wafer stage 29 with high positional accuracy. Furthermore, the second vacuum robot 27 is placed on the floor 1 la of the vacuum chamber 11 via the vibration isolation device 39! /, So that the second vacuum robot 27 The vibration generated by the robot 27 itself is prevented from being transmitted to the wafer stage 29.
[0028] なお、第 2の真空ロボット 27を常時第 1真空ロボット 25の最大搬送加速度よりも小さ な搬送加速度で駆動するのではなぐ真空チャンバ 49内で露光処理が行われてい る期間だけ、第 2の真空ロボット 27の搬送加速度を抑えたものとしてもよい。例えば、 露光処理が終了してウェアステージ 29から露光済みのウェハ Wを回収する場合や、 次に露光するウェハ Wが載置されることを待っているウェハステージ 29にウェハ Wを 搬送するときには、第 2の真空ロボット 27の搬送加速度を抑えることなく駆動しても良 い。さらには、露光処理が行われている期間には、第 2の真空ロボット 27を小さな搬 送加速度で駆動するのではなぐ第 2の真空ロボット 27の駆動を停止し、露光処理が 行われて!/、な!/、期間だけ第 2の真空ロボット 27を駆動してもよ!/、。第 1の真空ロボット 25と第 2の真空ロボット 27は、それらの搬送能力(駆動パワー)を調節可能であれば 、同一の真空ロボットを用いてもよぐ第 1の真空ロボット 25に、その最大搬送能力が 第 2の真空ロボット 27の最大搬送能力よりも高!/、ものを用いてもよ!/、。 [0028] It should be noted that the second vacuum robot 27 is not always driven at a transport acceleration smaller than the maximum transport acceleration of the first vacuum robot 25, but only during a period during which exposure processing is performed in the vacuum chamber 49. The transfer acceleration of the second vacuum robot 27 may be suppressed. For example, when the exposed wafer W is collected from the wear stage 29 after the exposure process is completed, or when the wafer W is transported to the wafer stage 29 waiting for the next wafer W to be exposed to be mounted, The second vacuum robot 27 may be driven without suppressing the transfer acceleration. Furthermore, during the exposure process, the drive of the second vacuum robot 27 is stopped rather than driving the second vacuum robot 27 with a small transport acceleration, and the exposure process is performed! /, Na! /, You can drive the second vacuum robot 27 for a period! / ... If the first vacuum robot 25 and the second vacuum robot 27 can adjust their transfer capability (driving power), the maximum vacuum robot 25 can be used by the same vacuum robot. The transfer capability is higher than the maximum transfer capability of the second vacuum robot 27! /, You can use something! /.
[0029] ウェハストッカ 31は、図 2に示すように、上下方向に複数の棚 31aを有している。複 数の棚 31aにはそれぞれウェハ Wが収容される。ウェハストッカ 31には、ウェハストツ 力 31の温度を所定の温度に保持する温度調節器 41が配置されている。温度調節手 器 41は、所定温度の冷媒が循環する配管 43を有している。ウェハストッカ 31は、冷 媒により所定の温度に維持される。そして、ウェハストッカ 31に収容されたウェハ W は棚 31aからの熱伝導により所定の温度に維持される。なお、温度調節器にランプ等 を用いても良い。 As shown in FIG. 2, the wafer stocker 31 has a plurality of shelves 31a in the vertical direction. Wafers W are accommodated in the plurality of shelves 31a. The wafer stocker 31 is provided with a temperature controller 41 that maintains the temperature of the wafer stock force 31 at a predetermined temperature. The temperature adjustment device 41 has a pipe 43 through which a refrigerant having a predetermined temperature circulates. Wafer stocker 31 is maintained at a predetermined temperature by a cooling medium. The wafer W accommodated in the wafer stocker 31 is maintained at a predetermined temperature by heat conduction from the shelf 31a. A lamp or the like may be used for the temperature controller.
[0030] ウェハ回収ストッカ 33は、温度調節器 41がないことを除いてウェハストッカ 31と略 同様に構成されている。ウェハプリアライナ 35は、検出器 (不図示)によりウェハ Wの 位置合わせ用マーク (ノッチ)を検出しウェハ Wの位置合わせを行う。ウェハステージ 2 9は、露光されるウェハ Wを高精度で位置決めする。上述した露光装置 1では、ゥェ ハステージ 29へのウェハ Wの搬送及び露光動作を図 6のフローチャートを参照しな 力 ¾説明する。  The wafer collection stocker 33 is configured in substantially the same manner as the wafer stocker 31 except that the temperature controller 41 is not provided. The wafer prealigner 35 detects the alignment mark (notch) for the wafer W by a detector (not shown) and aligns the wafer W. The wafer stage 29 positions the wafer W to be exposed with high accuracy. In the exposure apparatus 1 described above, the transfer of the wafer W to the wafer stage 29 and the exposure operation will be described with reference to the flowchart of FIG.
[0031] 先ず、ウェハカセット部 21内のウェハ Wを大気ロボット 19により取り出し、ウェハプリ ァライナ 23に搬送する。ウェハブリアライナ 23では、検出器 (不図示)によりウェハ W の位置合わせ用マーク (ノッチ)が検出されウェハ wの位置合わせが行われる。ァライ メント終了後、大気ロボット 19によりウェハ Wを取り出す。そして、ロードロック室 15の ゲートバルブ 17を開け大気ロボット 19によりウェハ Wをロードロック室 15内に搬送す る(Sl)。この後、ゲートバルブ 17を閉め、ロードロック室 15内が目的の真空度に達 するまで真空引きを行う。 First, the wafer W in the wafer cassette unit 21 is taken out by the atmospheric robot 19 and transferred to the wafer preparer 23. Wafer briar liner 23 uses a detector (not shown) to The alignment mark (notch) is detected and the wafer w is aligned. After alignment, the wafer W is taken out by the atmospheric robot 19. Then, the gate valve 17 of the load lock chamber 15 is opened, and the wafer W is transferred into the load lock chamber 15 by the atmospheric robot 19 (Sl). Thereafter, the gate valve 17 is closed, and evacuation is performed until the load lock chamber 15 reaches the target vacuum level.
[0032] ロードロック室 15内が所定の真空度に達すると、ロードロック室 15と真空チャンバ 1 1間のゲートバルブ 13が開かれる。そして、第 1の真空ロボット 25によって、ロードロッ ク室 15からウェハ Wが取り出され、ウェハストッカ 31に搬送され、この後、ゲートバル ブ 13が閉められる(S2)。ウェハストッカ 31に搬送されたウェハ Wは、温度調節器 41 により所定の温度に温度調節される(S3)  When the load lock chamber 15 reaches a predetermined degree of vacuum, the gate valve 13 between the load lock chamber 15 and the vacuum chamber 11 is opened. Then, the wafer W is taken out from the load lock chamber 15 by the first vacuum robot 25 and transferred to the wafer stocker 31, and then the gate valve 13 is closed (S2). The wafer W transferred to the wafer stocker 31 is adjusted to a predetermined temperature by the temperature controller 41 (S3).
[0033] ウェハストッカ 31には、高速の第 1の真空ロボット 25により搬送されたウェハ Wが複 数枚収容されている。第 1の真空ロボット 25は、第 2の真空ロボット 27より高速で移動 し、ウェハストッカ 31へのウェハ Wの搬送を行っているため、ウェハストッカ 31には常 に複数のウェハ Wが待機している。低速の第 2の真空ロボット 27は、待機により温度 調節が完了したウェハ Wを取り出し、ウェハブリアライナ 35に搬送する。ウェハブリア ライナ 35では、検出器 (不図示)によりウェハ Wの位置合わせ用マーク (ノッチ)が検出 されウェハ Wの位置合わせが行われる(S4)  The wafer stocker 31 stores a plurality of wafers W transferred by the high-speed first vacuum robot 25. Since the first vacuum robot 25 moves at a higher speed than the second vacuum robot 27 and transports the wafer W to the wafer stocker 31, a plurality of wafers W are always waiting on the wafer stocker 31. Yes. The low-speed second vacuum robot 27 takes out the wafer W whose temperature has been adjusted by waiting, and transfers it to the wafer briar liner 35. Wafer brialiner 35 detects the wafer W alignment mark (notch) by a detector (not shown) and aligns wafer W (S4).
[0034] ウェハ Wの位置合わせが終了すると、ウェハ Wが第 2の真空ロボット 27によってゥ ェハステージ 29 搬送される(S5)。ウェハステージ 29にはウェハホルダ 45が備え られており、ウェハ Wがウェハホルダ 45に固定される。そして、ウェハステージ 29に よりウェハ Wが高精度で位置決めされ、後述するような EUV光リソグラフィシステムを 用いてステップアンドスキャン露光が行われる(S6)。露光の終了したウェハ Wは、第 2の真空ロボット 27によりウェハ回収ストッカ 33に搬送される(S7)。ウェハ回収ストッ 力 33に搬送されたウェハ Wは、第 1の真空ロボット 25により取り出され、上述した手 順と略反対の手順でウェハカセット部に搬出される(S8)  When the alignment of the wafer W is completed, the wafer W is transferred to the wafer stage 29 by the second vacuum robot 27 (S5). The wafer stage 29 is provided with a wafer holder 45, and the wafer W is fixed to the wafer holder 45. Then, the wafer W is positioned with high accuracy by the wafer stage 29, and step-and-scan exposure is performed using an EUV optical lithography system as described later (S6). The exposed wafer W is transferred to the wafer collection stocker 33 by the second vacuum robot 27 (S7). The wafer W transferred to the wafer recovery stock force 33 is taken out by the first vacuum robot 25, and is carried out to the wafer cassette unit by a procedure substantially opposite to the above-described procedure (S8).
[0035] 上述した露光装置では、高速なため振動の大きい第 1の真空ロボット 25によりゥェ ハ Wをウェハストッカ 31に搬送し、ウェハストッカ 31に搬送されたウェハ Wを、低速な ため振動の少ない第 2の真空ロボット 27によりウェハステージ 29に搬送するようにし たので、ウェハステージ 29にウェハ Wを搬送する真空ロボットの振動を低減すること ができる。これにより、ウェハステージ 29側に振動が伝達されて露光に影響を与える 可能性を低減し、また、真空ロボットの振動により搬送しているウェハ Wに位置ずれ が生じる可能性を低減することができる。 In the above-described exposure apparatus, the wafer W is transferred to the wafer stocker 31 by the first vacuum robot 25 with high vibration because of high speed, and the wafer W transferred to the wafer stocker 31 is vibrated because of low speed. A small number of second vacuum robots 27 are used to transfer to wafer stage 29. Therefore, the vibration of the vacuum robot that transports the wafer W to the wafer stage 29 can be reduced. This reduces the possibility of vibration being transmitted to the wafer stage 29 side and affecting the exposure, and also reduces the possibility of displacement of the wafer W being transferred due to the vibration of the vacuum robot. .
[0036] また、高速の第 1の真空ロボット 25がロードロック室 15からのウェハ Wの搬入、搬出 を行い、低速の第 2の真空ロボット 27はロードロック室 15からのウェハ Wの搬入、搬 出を行わないため、スループットを高めることができる。さらに、ウェハストッカ 31では 、ウェハ Wが予め温度調節されているため、第 2の真空ロボット 27により、所定温度 のウェハ Wをウェハステージ 29に確実に搬送することができる。  The high-speed first vacuum robot 25 loads and unloads the wafer W from the load lock chamber 15, and the low-speed second vacuum robot 27 loads and loads the wafer W from the load lock chamber 15. Throughout is not performed, throughput can be increased. Further, in the wafer stocker 31, since the temperature of the wafer W is adjusted in advance, the second vacuum robot 27 can reliably transfer the wafer W at a predetermined temperature to the wafer stage 29.
[0037] また、第 2の真空ロボット 27を除振装置 39を介して真空チャンバ 11の床面 11aに 支持したので、第 2の真空ロボット 27に、第 1の真空ロボット 25およびゲートバルブ 1 3, 17からの外乱振動が侵入することがなくなり、第 2の真空ロボット 27の振動をより 低減すること力 Sでさる。  [0037] Since the second vacuum robot 27 is supported on the floor 11a of the vacuum chamber 11 via the vibration isolator 39, the first vacuum robot 25 and the gate valve 1 3 are connected to the second vacuum robot 27. , 17, no disturbance vibrations enter, and the force S reduces the vibration of the second vacuum robot 27 more.
[0038] <第 2の実施形態〉  [0038] <Second Embodiment>
図 3は、本発明の露光装置 1 '並びに搬送装置 200'及び搬送方法の第 2の実施形 態を示している。なお、この実施形態の露光装置 1 'において第 1の実施形態の露光 装置と同一の要素には、同一の符号を付してその説明を省略する。この実施形態の 露光装置 1 'の真空チャンバ 11Aは、真空ロードチャンバ 47と真空チャンバ 49とを有 している。真空チャンバ 49には、ウェハステージ 29を含む露光装置本体(不図示)が 配置されている。露光装置本体の詳細は後述する。  FIG. 3 shows a second embodiment of the exposure apparatus 1 ′, the transfer apparatus 200 ′, and the transfer method of the present invention. Note that in the exposure apparatus 1 ′ of this embodiment, the same elements as those of the exposure apparatus of the first embodiment are denoted by the same reference numerals and description thereof is omitted. The vacuum chamber 11 A of the exposure apparatus 1 ′ of this embodiment has a vacuum load chamber 47 and a vacuum chamber 49. An exposure apparatus main body (not shown) including the wafer stage 29 is disposed in the vacuum chamber 49. Details of the exposure apparatus main body will be described later.
[0039] また、真空ロードチャンバ 47は、第 1のチャンバ 51と第 2のチャンバ 53とに分割され ている。第 1のチャンバ 51には、第 1の真空ロボット 25、ウェハストッカ 31、ウェハ回 収ストツ力 33が配置されている。第 2のチャンバ 53には、第 2の真空ロボット 27、ゥェ ハプリアライナ 35が配置されている。第 1のチャンバ 51と第 2のチャンバ 53とは、図 4 に示すように、ベローズ 55により気密を維持した状態で連結されている。ベローズは 、第 1のチャンバ 51と第 2のチャンバ 53の間の空間を気密シールするとともに、可撓 性を有する材料であれば、ラバーやプラスチックなど任意の材料を使用し得る。ベロ ーズに限らず、第 1のチャンバ 51で発生した振動を第 2のチャンバ 53に伝達すること を防止する目的で、そのような振動を吸収又は減衰することができる構造または材料 からなる部材を使用し得る。ベローズの内側には気密性を向上するためのコーティン グを塗布してもよい。第 1のチャンバ 51は第 1のペデスタル 57上に載置されている。 第 2のチャンバ 53は、第 1のペデスタル 57から離隔して設置された第 2のぺデスタノレ 59上に載置されている。 Further, the vacuum load chamber 47 is divided into a first chamber 51 and a second chamber 53. In the first chamber 51, a first vacuum robot 25, a wafer stocker 31, and a wafer collection force 33 are arranged. In the second chamber 53, a second vacuum robot 27 and a wep pre-aligner 35 are arranged. As shown in FIG. 4, the first chamber 51 and the second chamber 53 are connected by a bellows 55 in an airtight state. The bellows can use any material such as rubber or plastic as long as the space between the first chamber 51 and the second chamber 53 is hermetically sealed and is flexible. Not only the velocity but also the vibration generated in the first chamber 51 is transmitted to the second chamber 53. In order to prevent this, a member made of a structure or material that can absorb or attenuate such vibration can be used. A coating for improving airtightness may be applied to the inside of the bellows. The first chamber 51 is mounted on the first pedestal 57. The second chamber 53 is placed on a second pedestal 59 that is spaced apart from the first pedestal 57.
[0040] この実施形態では、ウェハ Wの搬送及び露光は、本発明の搬送方法及び露光方 法に従い、次のようにして行われる。最初に大気ロボット 19によりウェハ Wがロード口 ック室 15に搬入される。第 1の真空ロボット 25は、ロードロック室 15に搬入されるに搬 入されたウェハ Wを第 1チャンバ 51に設置されたウェハストッカ 31に搬送する。第 2 の真空ロボット 27は、ウェハストッカ 31のウェハ Wを、第 2チャンバ 53に設置されたゥ ェハプリアライナ 35に搬送する。ウェハブリアライナ 35は、そこでウェハ Wの位置合 わせ(オリエンテーション)を行う。ついで、第 2の真空ロボット 27は、ウェハプリアライ ナ 35からウェハ Wを、第 2チャンバ 53とは別の真空チャンバ 49に収容されたウェハ ステージ 29に搬送する。ウェハステージ 29に搬送されたウェハ Wは、後述するように してレチクル Rのパターンにより露光光で露光される。第 2の真空ロボット 27は、露光 が終了したウェハ Wをウェハステージ 29からウェハ回収ストッカ 33に搬送する。第 1 の真空ロボット 25は、ウェハ回収ストッカ 33のウェハ Wをロードロック室 15に搬送し、 後の現像処理(エッチング)のために大気ロボット 19はウェハ Wを露光装置 1 'の外部 に搬送する。 In this embodiment, the transfer and exposure of the wafer W are performed as follows according to the transfer method and the exposure method of the present invention. First, the wafer W is loaded into the load port chamber 15 by the atmospheric robot 19. The first vacuum robot 25 transports the wafer W loaded into the load lock chamber 15 to the wafer stocker 31 installed in the first chamber 51. The second vacuum robot 27 transports the wafer W of the wafer stocker 31 to the wafer prealigner 35 installed in the second chamber 53. Wafer briar liner 35 then aligns wafer W (orientation). Next, the second vacuum robot 27 carries the wafer W from the wafer pre-aligner 35 to the wafer stage 29 housed in a vacuum chamber 49 different from the second chamber 53. The wafer W transferred to the wafer stage 29 is exposed with the exposure light by the pattern of the reticle R as described later. The second vacuum robot 27 transports the wafer W that has been exposed from the wafer stage 29 to the wafer collection stocker 33. The first vacuum robot 25 transports the wafer W of the wafer recovery stocker 33 to the load lock chamber 15, and the atmospheric robot 19 transports the wafer W to the outside of the exposure apparatus 1 'for later development processing (etching). .
[0041] この実施形態においても第 1の実施形態と略同様の効果を得ることができる。特に 、第 1の実施形態と同様に、第 1の真空ロボット 25と第 2の真空ロボット 27とが独立に 設置されて、独立に駆動されるので、第 1の真空ロボットの振動が第 2の真空ロボット に伝達することが防止される。そして、この実施形態では、真空ロードチャンバ 47を、 第 1の真空ロボット 25が配置される第 1のチャンバ 51と、第 2の真空ロボット 27が配置 される第 2のチャンバ 53とに気密を維持した状態で分割するとともにそれらの間を振 動伝達を抑止するべローズで連結したので、第 1の真空ロボット 25およびゲートバノレ ブ 13, 17の振動が、第 2の真空ロボット 27に伝達することを有効に抑制することがで きる。従って、第 2のチャンバ 53に外乱振動が侵入することがなくなり、第 2のチャン ノ 53内の第 2の真空ロボット 27の振動を低減することができる。 [0041] In this embodiment, substantially the same effect as that of the first embodiment can be obtained. In particular, as in the first embodiment, since the first vacuum robot 25 and the second vacuum robot 27 are independently installed and driven independently, the vibration of the first vacuum robot is the second. Transmission to the vacuum robot is prevented. In this embodiment, the vacuum load chamber 47 is kept airtight in the first chamber 51 in which the first vacuum robot 25 is disposed and the second chamber 53 in which the second vacuum robot 27 is disposed. In this state, the vibrations of the first vacuum robot 25 and the gate vano levers 13 and 17 are transmitted to the second vacuum robot 27. It can be effectively suppressed. Therefore, disturbance vibrations do not enter the second chamber 53 and the second chamber 53 is prevented. The vibration of the second vacuum robot 27 in the node 53 can be reduced.
[0042] また、第 1のチャンバ 51と第 2のチャンバ 53とを、異なるペデスタル 57, 59上に載 置したので、ペデスタルを通じた第 2の真空ロボット 25からの第 2の真空ロボット 27へ の振動の伝達が防止され、第 2の真空ロボット 27の振動をより低減することができる。 さらに、第 2のチャンバ 53に、ウェハ Wのプリアライメントを行うウェハプリアライナ 35 を配置したので、位置合わせされたウェハ Wを、第 2の真空ロボット 27によりウェハス テージ 29に高い精度を維持して搬送することができる。 [0042] Further, since the first chamber 51 and the second chamber 53 are mounted on different pedestals 57, 59, the second vacuum robot 25 through the pedestal is connected to the second vacuum robot 27. Transmission of vibration is prevented, and vibration of the second vacuum robot 27 can be further reduced. Further, since the wafer pre-aligner 35 for pre-aligning the wafer W is arranged in the second chamber 53, the wafer W 29 is maintained at high accuracy by the second vacuum robot 27. Can be transported.
[0043] また、ウェハステージ 29を収容する真空チャンバ 49を設けたので、ウェハステージ 29を所定の真空度および清浄度に確実に維持することができる。つまり、以上の第 2 の実施形態では、第 1の真空ロボットは、第 2の真空ロボット 27、ウェハプリアライナ 3 5、ウェハステージ 29が載置されるペデスタル 59とは異なるペデスタル 57に載置す るので、例え第 1の真空ロボットが最高搬送速度で駆動して大きな振動が発生しても 、この振動はペデスタル 59に載置された第 2の真空ロボット 27、ウェハプリアライナ 3 5、ウェハステージ 29には伝わり難い。一方、第 2の真空ロボット 27はウェハプリァラ イナ 35、ウェハステージ 29と同様にペデスタル 59に設置されている。仮に第 2の真 空ロボット 27をプリアライナ 35、ウェハステージ 29とは別のペデスタル上に載置した 場合、第 2の真空ロボット 27の駆動によって発生する振動がウェハステージ 29に伝 わり難くなる力 その代わり、第 2の真空ロボット 27が載置されたペデスタルとウェハス テージ 29が載置されたペデスタルとが相対的に変位することにより、ウェハステージ 29へのウェハ Wの受け渡し精度が悪化する。これに対して、第 2の実施形態では、 第 2の真空ロボット 27、ウェハプリアライナ 35、ウェハステージ 29がー体のぺデスタ ル上に載置されるため、第 2の真空ロボット 29はウェハプリアライナ 35でのウェハ W の位置検出の結果を維持してウェハ Wをウェハステージ 29へ高い位置精度で受け 渡すことができる。 In addition, since the vacuum chamber 49 that houses the wafer stage 29 is provided, the wafer stage 29 can be reliably maintained at a predetermined degree of vacuum and cleanliness. That is, in the second embodiment described above, the first vacuum robot is placed on the pedestal 57 different from the pedestal 59 on which the second vacuum robot 27, the wafer pre-aligner 35, and the wafer stage 29 are placed. Therefore, even if the first vacuum robot is driven at the maximum transfer speed and a large vibration is generated, this vibration is generated by the second vacuum robot 27 placed on the pedestal 59, the wafer pre-aligner 35, the wafer stage. 29 is difficult to get through. On the other hand, the second vacuum robot 27 is installed on the pedestal 59 in the same manner as the wafer pre-liner 35 and the wafer stage 29. If the second vacuum robot 27 is placed on a pedestal other than the pre-aligner 35 and wafer stage 29, the vibration that is generated by the drive of the second vacuum robot 27 is less likely to be transmitted to the wafer stage 29. Instead, since the pedestal on which the second vacuum robot 27 is placed and the pedestal on which the wafer stage 29 is placed are relatively displaced, the delivery accuracy of the wafer W to the wafer stage 29 is deteriorated. On the other hand, in the second embodiment, the second vacuum robot 27, the wafer pre-aligner 35, and the wafer stage 29 are placed on a single pedestal. The result of the position detection of the wafer W by the pre-aligner 35 can be maintained and the wafer W can be transferred to the wafer stage 29 with high positional accuracy.
[0044] この実施形態の露光装置 1 'では、第 2真空ロボット 27とペデスタル 59との間に除 振装置を設けな力、つたが、さらなる振動防止のために第 1実施形態のように第 2真空 ロボット 27とペデスタル 59との間に除振装置を設けても良い。  In the exposure apparatus 1 ′ of this embodiment, a vibration isolation device is not provided between the second vacuum robot 27 and the pedestal 59. In order to prevent further vibration, the exposure apparatus 1 ′ is the same as the first embodiment. (2) A vibration isolation device may be provided between the vacuum robot 27 and the pedestal 59.
[0045] <露光装置本体の説明〉 図 5は、図 1の露光装置 1の EUV光リソグラフィシステム、すなわち、露光装置本体 100を模式化して示している。露光本体部 100は、主に、レーザ光源 108と、照明光 としての EUV光を発生する照明システムと、レチクルステージ 102と、像光学システ ム 101と、ウェハステージ 29とを備える。 EUV光は 0. ;!〜 400nmの間の波長を持ち 、特に l〜50nm程度の波長が好ましい。像光学システム 101は、ウェハ W上にレチ クル Rによるパターンの像を縮小して形成する。ウェハ W上に照射されるパターンは 、レチクルステージ 102の下側に静電チャック 103を介して配置されている反射型の レチクル Rにより決められる。また、ウェハ Wはウェハステージ 29の上に載せられてい る。典型的には、ウェハ Wの露光は、ウェハ Wとレチクル Rとを EUV光に対して同期 して移動するステップ ·アンド ' ·スキャン方式によりなされる。 <Description of exposure apparatus main body> FIG. 5 schematically shows an EUV optical lithography system of the exposure apparatus 1 shown in FIG. 1, that is, the exposure apparatus main body 100. The exposure main body 100 mainly includes a laser light source 108, an illumination system that generates EUV light as illumination light, a reticle stage 102, an image optical system 101, and a wafer stage 29. EUV light has a wavelength between 0.;! And 400 nm, and a wavelength of about 1 to 50 nm is particularly preferable. The image optical system 101 reduces the pattern image formed by the reticle R on the wafer W. The pattern irradiated on the wafer W is determined by a reflective reticle R disposed below the reticle stage 102 via an electrostatic chuck 103. Wafer W is placed on wafer stage 29. Typically, the exposure of the wafer W is performed by a step-and-scan method in which the wafer W and the reticle R are moved in synchronization with EUV light.
[0046] 露光時の照明光として使用する EUV光は大気に対する透過性が低いので、 EUV 光が通過する光経路は、適当な真空ポンプ 107を用いて真空に保たれた真空チャン ノ 106に囲まれている。また EUV光はレーザプラズマ X線源によって生成される。レ 一ザプラズマ X線源はレーザ源 108 (励起光源として作用)とキセノンガス供給装置 1 09力、らなっている。レーザプラズマ X線源は真空チャンバ 110によって取り囲まれて V、る。レーザプラズマ X線源によって生成された EUV光は真空チャンバ 110の窓 11 1を通過する。 [0046] Since EUV light used as illumination light at the time of exposure has low permeability to the atmosphere, the light path through which EUV light passes is surrounded by a vacuum channel 106 that is kept in a vacuum using a suitable vacuum pump 107. It is. EUV light is generated by a laser plasma X-ray source. The laser plasma X-ray source consists of a laser source 108 (acting as an excitation light source) and a xenon gas supply device 109 power. The laser plasma X-ray source is surrounded by a vacuum chamber 110. EUV light generated by the laser plasma X-ray source passes through the window 111 of the vacuum chamber 110.
[0047] レーザ源 108は紫外線以下の波長を持つレーザ光を発生させるものであって、例 えば、 YAGレーザ、エキシマレーザが使用される。レーザ源 108からのレーザ光は 集光され、ノズル 112から放出されたキセノンガス(キセノンガス供給装置 109から供 給されている)の流れに照射される。キセノンガスの流れにレーザ光を照射するとレー ザ光がキセノンガスを十分に暖め、プラズマを生じさせる。レーザ光を吸収して励起さ れたキセノン分子が励起状態より低!/、エネルギ準位に遷移する時、 EUV光の光子 が放出される。  [0047] The laser source 108 generates laser light having a wavelength equal to or shorter than ultraviolet rays. For example, a YAG laser or an excimer laser is used. Laser light from the laser source 108 is collected and applied to the flow of xenon gas (supplied from the xenon gas supply device 109) emitted from the nozzle 112. When laser light is applied to the flow of xenon gas, the laser light sufficiently warms the xenon gas and generates plasma. EUV light photons are emitted when the xenon molecule excited by absorbing the laser light transitions to an energy level lower than the excited state!
[0048] 放物面ミラー 113は、キセノンガス放出部の近傍に配置されている。放物面ミラー 1 13はプラズマによって生成された EUV光を集光する。放物面ミラー 113は集光光学 系を構成し、ノズル 112からのキセノンガスが放出される位置の近傍に焦点が位置す るように配置されている。 EUV光は放物面ミラー 113の多層膜で反射し、真空チャン ノ 110の窓 111を通じて集光ミラー 114へと達する。集光ミラー 114は反射型のレチ クル Rへと EUV光を集光、反射させる。 EUV光は集光ミラー 114で反射され、レチク ノレ Rの所定の部分を照明する。すなわち、放物面ミラー 113と集光ミラー 114はこの 装置の照明システムを構成する。 [0048] The parabolic mirror 113 is disposed in the vicinity of the xenon gas discharge portion. Parabolic mirror 1 13 collects EUV light generated by the plasma. The parabolic mirror 113 constitutes a condensing optical system, and is arranged so that the focal point is located near the position where the xenon gas from the nozzle 112 is emitted. EUV light is reflected by the multilayer film of the parabolic mirror 113, and the vacuum channel It reaches the condensing mirror 114 through the window 111 of the node 110. The condensing mirror 114 condenses and reflects the EUV light to the reflective reticle R. The EUV light is reflected by the condensing mirror 114 and illuminates a predetermined portion of the reticulometer R. That is, the parabolic mirror 113 and the condensing mirror 114 constitute an illumination system of this apparatus.
[0049] レチクル Rは、 EUV光を反射する多層膜とパターンを形成するための吸収体パタ 一ン層を持っている。レチクル Rで EUV光が部分的に反射されることにより EUV光 はパターン化される。パターン化された EUV光は投影システム 101を通じてウェハ W に達する。この実施形態の像光学システム 101は、凹面第 1ミラー 115a、凸面第 2ミ ラー 115b、凸面第 3ミラー 115c、凹面第 4ミラー 115dの 4つの反射ミラー力もなつて V、る。各ミラー 115a〜; 115dには EUV光を反射する多層膜が備えられて!/、る。  The reticle R has a multilayer film that reflects EUV light and an absorber pattern layer for forming a pattern. EUV light is patterned by partially reflecting EUV light with reticle R. The patterned EUV light reaches the wafer W through the projection system 101. The image optical system 101 of this embodiment also has four reflecting mirror forces, ie, a concave first mirror 115a, a convex second mirror 115b, a convex third mirror 115c, and a concave fourth mirror 115d. Each mirror 115a to 115d is provided with a multilayer film reflecting EUV light!
[0050] レチクル Rにより反射された EUV光は第 1ミラー 115aから第 4ミラー 115dまで順次 反射されて、レチクルパターンの縮小(例えば、 1/4、 1/5、 1/6)された像を形成 する。像光学系システム 101は、像の側(ウェハ Wの側)で倍射率が変動しないテレ セントリック系を構成している。レチクル Rは可動のレチクルステージ 102によって少 なくとも X— Y平面内で支持されている。ウェハ Wは、好ましくは X, Y, Z方向に可動 なウェハステージ 29によって支持されている。ウェハ W上のダイ(ショットエリア)を露 光するときには、 EUV光が照明システムによりレチクル Rの所定の領域に照射され、 レチクル Rとウェハ Wは像光学系システム 101に対して像光学システム 101の縮小率 に従った所定の速度で動く。このようにして、レチクルパターンはウェハ W上の所定 の露光範囲(ダイに対して)に露光される。  [0050] EUV light reflected by the reticle R is sequentially reflected from the first mirror 115a to the fourth mirror 115d to form a reduced (eg, 1/4, 1/5, 1/6) image of the reticle pattern. Form. The image optical system 101 constitutes a telecentric system in which the magnification rate does not vary on the image side (wafer W side). Reticle R is supported at least in the XY plane by a movable reticle stage 102. The wafer W is preferably supported by a wafer stage 29 movable in the X, Y and Z directions. When the die (shot area) on the wafer W is exposed, EUV light is irradiated to a predetermined area of the reticle R by the illumination system, and the reticle R and the wafer W are compared with the image optical system 101 in the image optical system 101. It moves at a predetermined speed according to the reduction rate. In this way, the reticle pattern is exposed to a predetermined exposure range (with respect to the die) on the wafer W.
[0051] 露光の際には、ウェハ W上のレジストから生じるガスが像光学システム 101のミラー  [0051] At the time of exposure, the gas generated from the resist on the wafer W is mirrored in the image optical system 101.
115a〜; 115dに影響を与えないように、ウェハ Wを載置するウェハステージ 29は、真 空チャンバ 106中でパーティション 116により隔離されて配置されることが望ましい。 パーティション 116は開口 116aを持っており、それを通じて EUV光がミラー 115dか らウェハ Wへと照射される。パーティション 116内の空間は真空ポンプ 117により真 空排気されている。このように、レジストに照射することにより生じるガス状のゴミがミラ 一 115a〜; 115dあるいはレチクル Rに付着するのを防ぐ。それゆえ、これらの光学性 能の悪化を防いでいる。以上、本発明を上述した実施形態によって説明してきた力 本発明の技術的範囲は上述した実施形態に限定されるものではなぐ例えば、以下 のような形態でも良い。 In order not to affect 115a to 115d, it is desirable that the wafer stage 29 on which the wafer W is placed is disposed in the vacuum chamber 106 by being separated by the partition 116. The partition 116 has an opening 116a through which EUV light is emitted from the mirror 115d to the wafer W. The space in the partition 116 is evacuated by a vacuum pump 117. Thus, gaseous dust generated by irradiating the resist is prevented from adhering to the mirrors 115a to 115d or the reticle R. Therefore, the deterioration of these optical performances is prevented. As mentioned above, the force which demonstrated this invention by embodiment mentioned above The technical scope of the present invention is not limited to the above-described embodiment. For example, the following forms may be used.
[0052] (1)上述した実施形態では、真空チャンバ 11または第 1のチャンバ 51内にウェハス トツ力 31とウェハ回収ストッカ 33とを配置した例について説明した力 ウェハ回収スト ッカ 33を別途設けることなぐウェハストッカ 31を段数管理してウェハ回収ストッ力の 役割を設けても良い。  (1) In the embodiment described above, the force described for the example in which the wafer stock force 31 and the wafer collection stocker 33 are arranged in the vacuum chamber 11 or the first chamber 51 is provided with the wafer collection stocker 33 separately. It is also possible to manage the number of stages of the wafer stocker 31 and to provide the role of wafer recovery stock force.
[0053] (2)上述した第 2の実施形態では、第 2のチャンバ 53内にウェハブリアライナ 35を配 置した例について説明した力 例えば真空チャンバ 49内にウェハプリアライナ 35を 配置しても良い。  (2) In the second embodiment described above, the force described in the example in which the wafer briar liner 35 is arranged in the second chamber 53, for example, even if the wafer pre-aligner 35 is arranged in the vacuum chamber 49, good.
[0054] (3)上述した実施形態では、 EUV露光装置に本発明を適用した例について説明し たが、真空雰囲気内にウェハ W, レチクル等の基板を収容して露光を行う露光装置 に広く適用することができる。  (3) In the above-described embodiment, the example in which the present invention is applied to the EUV exposure apparatus has been described. However, the present invention is widely applicable to an exposure apparatus that accommodates a wafer W, a reticle, or the like in a vacuum atmosphere and performs exposure. Can be applied.
[0055] (4)第 1及び第 2実施形態の露光装置及び搬送装置において除振装置は第 1の真 空ロボット 25に設けてもよい。また、露光装置または搬送装置がロードロック室を備え ていてもよい。 (4) In the exposure apparatus and transfer apparatus of the first and second embodiments, the vibration isolation device may be provided in the first vacuum robot 25. Further, the exposure device or the transfer device may include a load lock chamber.
[0056] (5)上記実施形態では、露光装置の搬送部にウェハブリアライナ 35、ウェハストツ 力やウェハ回収ストッカを設けた力 それらを省略しても良い。それらの代わりに、一 時的にウェハ Wを載置するだけの台でもよい。  (5) In the above-described embodiment, the force of providing the wafer brialiner 35, the wafer stocking force, and the wafer recovery stocker in the transfer unit of the exposure apparatus may be omitted. Instead of this, a table on which the wafer W is temporarily placed may be used.
[0057] (6)上記実施形態では、露光装置が搬送装置 (搬送部)を有していたが、本発明に 係る搬送装置は露光装置とは独立した装置としてもよい。 (6) In the above embodiment, the exposure apparatus has the transport apparatus (transport section). However, the transport apparatus according to the present invention may be an apparatus independent of the exposure apparatus.
[0058] (7)露光装置は EUV光を露光光として用いる場合を例に挙げて説明した力 それ に限らず、 ArFや Fレーザ光を露光光として用いる露光装置でも本発明を適用する [0058] (7) The exposure apparatus is not limited to the force described by using the EUV light as the exposure light as an example, and the present invention is also applied to an exposure apparatus that uses ArF or F laser light as the exposure light.
2  2
ことができる。さらには、例えば米国特許第 7,023,610号などに開示されているよう に、 DFB半導体レーザ又はファイバーレーザなどの固体レーザ光源、ファイバーァ ンプなどを有する光増幅部、及び波長変換部などを含み、波長 193nmのノ ルス光 を出力する高調波発生装置を用いてもょレ、。  be able to. Furthermore, as disclosed in, for example, U.S. Pat.No. 7,023,610, it includes a solid-state laser light source such as a DFB semiconductor laser or a fiber laser, an optical amplification unit having a fiber amplifier, and a wavelength conversion unit. Use a harmonic generator that outputs the normal light.
[0059] (8)本発明は、種々のタイプの露光装置に適用することができる。例えば、本発明 は、光学系の末端光学素子とウェハとの間に液体を維持して液体を介してパターン を露光するいわゆる液浸露光装置にも適用することができる。また、露光光の光路空 間を不活性ガスなどの気体で満たすドライ型露光装置にも適用することができる。ま た、国際公開第 2001/035168号パンフレットに開示されているように、干渉縞を基 板 P上に形成することによって、基板 P上にライン 'アンド'スペースパターンを露光す る露光装置(リソグラフィシステム)にも本発明を適用することができる。また、特表 20 04— 519850号公報(対応米国特許第 6,611,316号)に開示されているように、 2つ のマスクのパターンを、投影光学系を介して基板上で合成し、 1回の走査露光によつ て基板上の 1つのショット領域をほぼ同時に二重露光する露光装置などにも本発明 を適用することカできる。また、プロキシミティ方式の露光装置、ミラープロジェクシヨン -ァライナーなどにも本発明を適用することができる。また、特開平 11— 135400号公 報(対応国際公開第 1999/23692号パンフレット)、特開 2000— 164504号公報( 対応米国特許第 6,897,963号)に開示されているように、基板を保持する基板ステ ージと、基準マークが形成された基準部材及び/又は各種の光電センサを搭載した 計測ステージとを備えた露光装置にも本発明を適用することができる。さらには、米 国特許第 6,341,007、 6,400,441 , 6,549,269及び 6,590,634号 ίこ開示されてレヽ るように、基板 Ρを保持しながら移動可能な複数(2つ)の基板ステージ 1、 2を備えた マルチステージ型 (ツインステージ型)の露光装置に適用することもできる。 (8) The present invention can be applied to various types of exposure apparatuses. For example, in the present invention, a liquid is maintained between a terminal optical element of an optical system and a wafer, and the pattern is passed through the liquid. The present invention can also be applied to a so-called immersion exposure apparatus that exposes. The present invention can also be applied to a dry type exposure apparatus that fills the optical path space of exposure light with a gas such as an inert gas. Further, as disclosed in WO 2001/035168, an exposure apparatus (lithography) that exposes a line 'and' space pattern on the substrate P by forming interference fringes on the substrate P. The present invention can also be applied to a system. In addition, as disclosed in JP 20 04-519850 (corresponding US Pat. No. 6,611,316), two mask patterns are synthesized on the substrate via the projection optical system and scanned once. The present invention can also be applied to an exposure apparatus that double exposes one shot area on a substrate almost simultaneously by exposure. The present invention can also be applied to a proximity type exposure apparatus, mirror projection aligner, and the like. Further, as disclosed in Japanese Patent Application Laid-Open No. 11-135400 (corresponding to International Publication No. 1999/23692) and Japanese Patent Application Laid-Open No. 2000-164504 (corresponding to US Pat. No. 6,897,963), The present invention can also be applied to an exposure apparatus that includes a stage and a measurement member equipped with a reference member on which a reference mark is formed and / or various photoelectric sensors. Further, as disclosed in US Pat. Nos. 6,341,007, 6,400,441, 6,549,269, and 6,590,634, a multi-stage including a plurality of (two) substrate stages 1 and 2 that can move while holding the substrate cage. It can also be applied to a type (twin stage type) exposure apparatus.
[0060] (9)露光装置 ΕΧの用途としては、基板に半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置、薄膜磁気ヘッド、撮像素子(CCD)、マイクロマシン、 MEMS, DNAチッ プ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用で きる。 [0060] (9) Exposure apparatus The use of the pad is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on a substrate, but an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head It can be widely applied to an exposure device for manufacturing an image pickup device (CCD), a micromachine, a MEMS, a DNA chip, a reticle or a mask, and the like.
[0061] 本願明細書に掲げた種々の米国特許及び米国特許出願公開については、指定国 または選択国の法令が許す範囲においてそれらの開示を援用して本文の一部とす 産業上の利用可能性  [0061] Various US patents and US patent application publications listed in this specification are incorporated herein by reference to the extent permitted by the laws of the designated or selected countries. Sex
[0062] 本発明によれば、搬送装置を用いてウェハを露光装置のウェハステージに搬送す る際に、外部からの振動の伝達が防止されているので、所望の性能を有するデバイ スを生産性良く製造できる。それゆえ、本発明は、我国の半導体産業を含む精密機 器産業の発展に著しく貢献することができる。 [0062] According to the present invention, when a wafer is transferred to the wafer stage of the exposure apparatus using the transfer device, vibrations from the outside are prevented from being transmitted, so that a device having desired performance can be obtained. Can be manufactured with high productivity. Therefore, the present invention can significantly contribute to the development of the precision instrument industry including Japan's semiconductor industry.

Claims

請求の範囲 The scope of the claims
[1] ロードロック室からのウェハを真空チャンバ内のウェハステージに搬送する露光装 置であって、  [1] An exposure apparatus for transferring a wafer from a load lock chamber to a wafer stage in a vacuum chamber,
前記真空チャンバ内に配置され前記ロードロック室からのウェハを搬送する第 1の 真空ロボッ卜と、  A first vacuum robot disposed in the vacuum chamber and carrying a wafer from the load lock chamber;
前記真空チャンバ内に配置され前記ウェハを前記ウェハステージに搬送する第 2 の真空ロボットとを備え、  A second vacuum robot disposed in the vacuum chamber and transporting the wafer to the wafer stage;
前記第 1の真空ロボットは前記第 2の真空ロボットとは独立に駆動される露光装置。  An exposure apparatus in which the first vacuum robot is driven independently of the second vacuum robot.
[2] 請求項 1記載の露光装置において、 [2] In the exposure apparatus according to claim 1,
前記第 1の真空ロボットの最大搬送加速度は、前記第 2の真空ロボットの最大搬送 加速度より大きい露光装置。  An exposure apparatus wherein the maximum transport acceleration of the first vacuum robot is greater than the maximum transport acceleration of the second vacuum robot.
[3] 請求項 1または請求項 2記載の露光装置において、 [3] In the exposure apparatus according to claim 1 or claim 2,
前記第 2の真空ロボットに前記第 1の真空ロボットの振動が伝達するのを抑制する 振動抑制装置を有する露光装置。  An exposure apparatus having a vibration suppressing device that suppresses transmission of vibration of the first vacuum robot to the second vacuum robot.
[4] 請求項 3記載の露光装置において、 [4] The exposure apparatus according to claim 3,
前記振動抑制装置は、前記第 2の真空ロボットと前記真空チャンバとの間に設けら れた除振装置である露光装置。  The exposure apparatus, wherein the vibration suppressing device is a vibration isolation device provided between the second vacuum robot and the vacuum chamber.
[5] 請求項 3記載の露光装置において、 [5] The exposure apparatus according to claim 3,
前記真空チャンバが、前記第 1の真空ロボットが配置される第 1のチャンバと、前記 第 2の真空ロボットが配置される第 2のチャンバとを有し、前記振動制御装置は第 1の チャンバと第 2のチャンバとの間にそれらの間の空間を気密シールする可撓性部材 である露光装置。  The vacuum chamber has a first chamber in which the first vacuum robot is disposed, and a second chamber in which the second vacuum robot is disposed, and the vibration control device includes the first chamber, An exposure apparatus that is a flexible member that hermetically seals a space between the second chamber and the second chamber.
[6] 請求項 5記載の露光装置において、 [6] The exposure apparatus according to claim 5,
前記第 1のチャンバと第 2のチャンバとを、異なるペデスタル上に載置してなる露光 装置。  An exposure apparatus in which the first chamber and the second chamber are placed on different pedestals.
[7] 請求項 5または請求項 6記載の露光装置にお!/、て、  [7] In the exposure apparatus according to claim 5 or claim 6,! /,
さらに、前記第 2のチャンバに設けられ、前記ウェハのプリアライメントを行うプリァラ イナを備える露光装置。 Further, an exposure apparatus comprising a preparer provided in the second chamber for performing pre-alignment of the wafer.
[8] 請求項 1な!/、し請求項 7の!/、ずれか 1項記載の露光装置にお!/ヽて、 前記真空チャンバは、前記第 1の真空ロボットおよび前記第 2の真空ロボットが配置 される真空ロードチャンバと、前記ウェハステージが配置されるチャンバとを有する露 光装置。 [8] The exposure apparatus according to claim 1, wherein the vacuum chamber includes the first vacuum robot and the second vacuum. An exposure apparatus comprising a vacuum load chamber in which a robot is disposed and a chamber in which the wafer stage is disposed.
[9] 前記ウェハステージが配置されるチャンバ内に、リソグラフィシステムが収容されて いる請求項 8に記載の露光装置。  9. The exposure apparatus according to claim 8, wherein a lithography system is accommodated in a chamber in which the wafer stage is disposed.
[10] 前記リソグラフィシステムが EUVリソグラフィシステムである請求項 9に記載の露光 装置。 10. The exposure apparatus according to claim 9, wherein the lithography system is an EUV lithography system.
[11] 真空雰囲気中で基板ステージに保持した基板を露光する露光装置の前記基板ス テージへ前記基板を搬送する搬送装置であつて、  [11] A transport device that transports the substrate to the substrate stage of an exposure device that exposes the substrate held on the substrate stage in a vacuum atmosphere,
真空雰囲気中で前記基板を搬送する第 1の真空ロボットと、  A first vacuum robot for transporting the substrate in a vacuum atmosphere;
前記第 1の真空ロボットとは別設され、真空雰囲気中で前記基板ステージに基板を 受け渡す第 2の真空ロボットと、  A second vacuum robot that is provided separately from the first vacuum robot and delivers a substrate to the substrate stage in a vacuum atmosphere;
前記第 1の真空ロボットが前記基板を搬送する際に発生する振動の、前記基板ステ ージと前記第 2の真空ロボットとの少なくとも一方への伝達を抑制する抑制機構とを 含む搬送装置。  A transfer apparatus comprising: a suppression mechanism that suppresses transmission of vibration generated when the first vacuum robot transports the substrate to at least one of the substrate stage and the second vacuum robot.
[12] 前記第 1の真空ロボットと前記第 2の真空ロボットとはそれらに共通のペデスタル上 に載置され、前記抑制機構は、前記第 2ロボットと前記ペデスタルとの間に配置され、 前記ペデスタルの振動の前記第 2ロボットへの伝達を抑制する除振装置を含む請求 項 11記載の搬送装置。  [12] The first vacuum robot and the second vacuum robot are placed on a common pedestal, and the suppression mechanism is disposed between the second robot and the pedestal, and the pedestal 12. The transfer device according to claim 11, further comprising a vibration isolation device that suppresses transmission of vibrations to the second robot.
[13] 前記抑制機構は、前記第 2の真空ロボットが載置される第 2ペデスタルから分離さ れた第 1ペデスタルを含み、前記第 1の真空ロボットが前記第 1ペデスタルに載置さ れる請求項 11記載の搬送装置。  [13] The suppression mechanism includes a first pedestal separated from a second pedestal on which the second vacuum robot is placed, and the first vacuum robot is placed on the first pedestal. Item 11. The transport device according to Item 11.
[14] 前記第 1の真空ロボットは前記第 1ペデスタル上に設けられて内部に真空雰囲気を 保持する第 1チャンバ内に配置され、前記第 2の真空ロボットは前記第 1チャンバとは 別に前記第 2チャンバ上に設けられて内部に真空雰囲気を保持する第 2チャンバ内 に配置され、前記第 1チャンバと前記第 2チャンバとの間に、前記第 1、第 2チャンバ 内の空間を連通するべローズが設けられている請求項 13記載の搬送装置。 [14] The first vacuum robot is disposed in a first chamber provided on the first pedestal and maintaining a vacuum atmosphere therein, and the second vacuum robot is separated from the first chamber. It is disposed in a second chamber that is provided on the two chambers and maintains a vacuum atmosphere therein, and the space in the first and second chambers should be communicated between the first chamber and the second chamber. 14. The transfer device according to claim 13, wherein a rose is provided.
[15] 前記第 1の真空ロボットは前記第 2の真空ロボットよりも大きな最大搬送加速度で駆 動可能であり、前記第 1の真空ロボットは前記第 2の真空ロボットよりも前記基板ステ ージから遠!/、位置に配置される請求項 11に記載の搬送装置。 [15] The first vacuum robot can be driven at a maximum transfer acceleration larger than that of the second vacuum robot, and the first vacuum robot can move from the substrate stage more than the second vacuum robot. 12. The transfer device according to claim 11, which is disposed at a far position.
[16] 前記基板の位置情報を検出するブリアライナを備え、前記第 2の真空ロボットは、プ リアライナで前記位置情報を検出された前記基板を前記基板ステージへ搬送する請 求項 11〜; 15いずれか一項に記載の搬送装置。 [16] The apparatus according to any one of claims 11 to 15, wherein the second vacuum robot includes a brialiner that detects position information of the substrate, and the second vacuum robot transports the substrate, the position information of which is detected by the prealiner, to the substrate stage. The conveying apparatus as described in any one.
[17] 前記基板ステージを含み、請求項 16に記載の搬送装置で搬送された基板を真空 雰囲気中で露光する露光装置。 [17] An exposure apparatus that includes the substrate stage and exposes the substrate transported by the transport apparatus according to claim 16 in a vacuum atmosphere.
[18] 請求項 16に記載の搬送装置を用いて前記基板を搬送する搬送方法。 18. A transport method for transporting the substrate using the transport apparatus according to claim 16.
[19] 前記基板ステージを含み、請求項 11〜; 15いずれか一項に記載の搬送装置で搬 送された基板を真空雰囲気中で露光する露光装置。 [19] An exposure apparatus that includes the substrate stage, and that exposes the substrate transported by the transport apparatus according to any one of claims 11 to 15 in a vacuum atmosphere.
[20] 前記基板ステージと、請求項 16に記載の搬送装置を含み、基板を真空雰囲気中 で露光する露光装置。 [20] An exposure apparatus comprising the substrate stage and the transfer apparatus according to claim 16, and exposing the substrate in a vacuum atmosphere.
[21] 請求項 11〜; 15いずれか一項に記載の搬送装置を用いて前記基板を搬送すること と、搬送された基板を真空雰囲気中で露光することを含む基板の露光方法。  [21] A substrate exposure method comprising transporting the substrate using the transport apparatus according to any one of [11] to [15], and exposing the transported substrate in a vacuum atmosphere.
PCT/JP2007/073668 2006-12-07 2007-12-07 Exposure apparatus and conveyance apparatus WO2008069305A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-330400 2006-12-07
JP2006330400A JP2008147280A (en) 2006-12-07 2006-12-07 Exposure apparatus

Publications (1)

Publication Number Publication Date
WO2008069305A1 true WO2008069305A1 (en) 2008-06-12

Family

ID=39492180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073668 WO2008069305A1 (en) 2006-12-07 2007-12-07 Exposure apparatus and conveyance apparatus

Country Status (3)

Country Link
JP (1) JP2008147280A (en)
TW (1) TW200834255A (en)
WO (1) WO2008069305A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115547915A (en) * 2022-11-28 2022-12-30 四川上特科技有限公司 Wafer exposure clamp and exposure device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5687009B2 (en) * 2010-08-25 2015-03-18 株式会社ニューフレアテクノロジー Charged particle beam drawing apparatus and charged particle beam drawing method
WO2018181912A1 (en) * 2017-03-31 2018-10-04 株式会社ニコン Mobile unit apparatus, exposure apparatus, method for manufacturing flat panel display, method for manufacturing device, and method for driving mobile unit
WO2019047244A1 (en) * 2017-09-11 2019-03-14 深圳市柔宇科技有限公司 Mechanical arm, exposure machine front unit and temperature control method
TWI787785B (en) * 2020-12-07 2022-12-21 旺矽科技股份有限公司 Wafer testing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232721A (en) * 1988-03-14 1989-09-18 Fujitsu Ltd Electron beam exposing device
JPH02309624A (en) * 1989-05-24 1990-12-25 Canon Inc Aligner
JP2001210576A (en) * 2000-01-25 2001-08-03 Nikon Corp Load-canceling mechanism, vacuum chamber coupling body, aligner, and producing method of semiconductor device
JP2003163251A (en) * 2001-11-27 2003-06-06 Sendai Nikon:Kk Transport unit and aligner
JP2003229348A (en) * 2002-01-31 2003-08-15 Canon Inc Semiconductor aligner
JP2004343063A (en) * 2003-03-11 2004-12-02 Asml Netherlands Bv Lithographic projection assembly, handling apparatus for handling substrate, and method of handling substrate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01232721A (en) * 1988-03-14 1989-09-18 Fujitsu Ltd Electron beam exposing device
JPH02309624A (en) * 1989-05-24 1990-12-25 Canon Inc Aligner
JP2001210576A (en) * 2000-01-25 2001-08-03 Nikon Corp Load-canceling mechanism, vacuum chamber coupling body, aligner, and producing method of semiconductor device
JP2003163251A (en) * 2001-11-27 2003-06-06 Sendai Nikon:Kk Transport unit and aligner
JP2003229348A (en) * 2002-01-31 2003-08-15 Canon Inc Semiconductor aligner
JP2004343063A (en) * 2003-03-11 2004-12-02 Asml Netherlands Bv Lithographic projection assembly, handling apparatus for handling substrate, and method of handling substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115547915A (en) * 2022-11-28 2022-12-30 四川上特科技有限公司 Wafer exposure clamp and exposure device
CN115547915B (en) * 2022-11-28 2023-02-14 四川上特科技有限公司 Wafer exposure clamp and exposure device

Also Published As

Publication number Publication date
JP2008147280A (en) 2008-06-26
TW200834255A (en) 2008-08-16

Similar Documents

Publication Publication Date Title
US8347915B2 (en) Load-lock technique
TWI247337B (en) Transfer method for a mask or substrate, storage box, device or apparatus adapted for use in such method, and device manufacturing method comprising such a method
TWI289726B (en) Temperature conditioned load lock, lithographic apparatus comprising such a load lock and method of manufacturing a substrate with such a load lock
WO2000055891A1 (en) Exposure device, exposure method, and device manufacturing method
JP2008227505A (en) Exposure apparatus and method of manufacturing device
JP2008277824A (en) Moving object apparatus, aligner and optical unit, and method of manufacturing device
JP4336509B2 (en) Processing method and system
JP2005057154A (en) Aligner
WO2008069305A1 (en) Exposure apparatus and conveyance apparatus
US7391498B2 (en) Technique of suppressing influence of contamination of exposure atmosphere
JP2000243684A (en) Aligner and device manufacture
JP2006332518A (en) Electrostatic chuck and exposure apparatus
JP2003172858A (en) Optical component holding unit and aligner
JP2006245257A (en) Processor, exposure device having it, and protective mechanism
JP4277517B2 (en) Exposure apparatus and substrate transfer apparatus
JP2007281142A (en) Exposure device and method therefor, and manufacturing method of device
US7705964B2 (en) Exposure system and exposure method
TWI529839B (en) Conveyors and exposure devices
KR20080044783A (en) Lithographic apparatus and device manufacturing method
JP2006351863A (en) Object transfer device and exposure device
WO2003054936A1 (en) Gas purging method and exposure system, and device production method
JP2004103824A (en) Substrate transfer method, substrate transfer device and aligner
JP2014127655A (en) Suction device, method, exposure device, and device manufacturing method
JPWO2002075795A1 (en) Exposure method and apparatus, and device manufacturing method
JP2010087256A (en) Differential exhaust apparatus, light source unit, exposure apparatus, and method of manufacturing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07859746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07859746

Country of ref document: EP

Kind code of ref document: A1