WO2008069013A1 - Resin foam suitable as energy absorption material - Google Patents

Resin foam suitable as energy absorption material Download PDF

Info

Publication number
WO2008069013A1
WO2008069013A1 PCT/JP2007/072249 JP2007072249W WO2008069013A1 WO 2008069013 A1 WO2008069013 A1 WO 2008069013A1 JP 2007072249 W JP2007072249 W JP 2007072249W WO 2008069013 A1 WO2008069013 A1 WO 2008069013A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
resin foam
foam
load
copolymer
Prior art date
Application number
PCT/JP2007/072249
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuharu Korogi
Takeshi Sugiyama
Hidekazu Oohara
Takeshi Sato
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2008548214A priority Critical patent/JPWO2008069013A1/en
Publication of WO2008069013A1 publication Critical patent/WO2008069013A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers

Definitions

  • Resin foam suitable for energy absorber is
  • the present invention relates to a resin foam suitable for an energy absorbing material.
  • Automotive energy absorbers are used in various applications such as bumper cores and side bumps, and are required to be lighter in terms of improving fuel consumption and reducing costs.
  • an energy absorber When an energy absorber receives an impact, it absorbs the impact energy by partial destruction or deformation of itself, so the protected object does not receive an impact directly, but a load is still generated by the impact. . If this load is too large, the object to be protected will be destroyed and its function will be lost. Therefore, an energy absorber that minimizes the maximum load that can be generated is desirable.
  • the energy absorption amount is an integration of the impact load and the amount of deformation of the energy absorbing material, and a larger impact load can absorb more energy. From these two conflicting events, the most important performance required for energy absorbers is to absorb more energy by maintaining a constant load while keeping the maximum load generated. .
  • foamed plastics are often used as energy absorbing materials for automobiles from the viewpoint of lightness.
  • Rigid polyurethane foam is widely known as a foamed plastic having such characteristics.
  • Rigid polyurethane worms exhibit an almost constant compressive stress from 20% to 70% in the dynamic compression test due to the longitudinal characteristics of the cells and the characteristics of the resin, which tends to cause brittle fracture. Since it has such characteristics, the impact absorption performance of rigid polyurethane foam is good, but it is expensive and the volume increase due to moisture absorption is large, so it is not suitable as a core material for automobile bumpers exposed to the outside air.
  • Patent Document 1 a plurality of thermoplastic extruded strand foams are combined to obtain a foam having higher compressive strength in one direction than in the other direction. It is disclosed that an impact is applied in the direction of higher strength to absorb the impact. This foam has been shown to have a higher compressive strength at 25% strain than a foam of the same material and density.
  • foams made of polyolefin are disclosed in the literature. Polyolefins have the disadvantage that they cannot exhibit sufficient shock absorbing properties at high temperatures in automobiles where the temperature dependence of their mechanical properties is large and the temperature is relatively high. In addition, polyolefin has poor resin brittleness, so it cannot exhibit the same energy absorption characteristics as rigid polyurethane foam.
  • Patent Document 2 discloses a foam having a bending stiffness of 6000 to 14,000 kgf / cm 2 , and the foam diameter in the direction in which the bubble diameter in the thickness direction of the foam is perpendicular to the thickness direction.
  • a foam having an elliptical shape that is larger than the bubble diameter is disclosed.
  • foams made of polyolefin cannot be expected to have the same energy absorption characteristics as rigid polyurethane foam.
  • expandable polystyrene resin is inexpensive and easily obtains an in-mold foam-molded product. Although the volume increase due to water absorption is small, it is not suitable for an energy absorbing material in an automobile at a relatively high temperature. In addition, since the load when subjected to an impact increases as the amount of deformation of the material increases, there is a drawback that the impact of the protected object increases.
  • Patent Document 3 discloses that a foam molded article having excellent impact absorption has a weight average molecular weight of 450,000 to 120,000 and a compression strain of 5% in a compression test defined by JIS-K7220.
  • a polystyrene foam is disclosed in which the ratio Y / X of the compressive stress X and the compressive stress Y when the compressive strain is 50% is 2.0 or less. This is not disclosed for absorbing a large amount of energy by maintaining a constant stress S, which indicates that the impact stress is small at the beginning of impact.
  • the stress during compression when the compressive strain exceeds 50% greatly increases. Therefore, it cannot be said that it exhibits good shock absorption in applications where compressive strain is further generated.
  • V absorbs a lot of energy, and even shock absorbers are required to exhibit almost constant stress from about 20% to 70% compressive strain.
  • Patent Document 4 includes a polycarbonate resin foam molded article, and a value obtained by dividing the energy absorption amount of the molded article at 50% compression at 80 ° C by the density of the molded article is 30 (kg ' cm/ An automotive energy absorber that is greater than or equal to cm 3 ) / (g / cm 3 ) is disclosed!
  • this document only shows that the amount of energy absorbed per unit mass of the compact is large, and does not mention compressive stress. Therefore, even if the absorbed energy is large, the impact received by the protected object at the same time. The load can be very large.
  • Patent Document 5 discloses a structure in which a foamed molded product is destroyed when subjected to a large impact by dispersing the polyolefin resin foamed particles (B) in a foamed product (A) made of polystyrene resin.
  • a thermoplastic resin foam molded article having a ratio of impact load at 20% strain to impact load at 60% strain of 1.6 or less. This document shows a performance close to that of polyurethane foam in a dynamic compression test, but only discloses that a constant load is maintained from 20% strain to 60% strain. Furthermore, it is required to maintain a constant load for a longer time!
  • Patent Document 6 describes at least one thermoplastic resin foamed particle having a three-dimensional network structure, and one or more thermoplastic resins that do not melt at least partially with the thermoplastic resin foamed particles.
  • an energy absorbing material comprising a composite resin molded body composed of particles and a space in which the composite resin molded body can be scattered during energy absorption.
  • Such a document discloses an energy absorbing material that exhibits a substantially constant compressive stress from 10% strain to 60% strain in a dynamic compression test.
  • the composite resin molded body and the space where the composite resin molded body can be scattered are formed, it is necessary to design the shape including the cutting, drilling, joining process, or scattered space of the composite resin molded body.
  • Patent Document 1 Japanese Translation of Special Publication 2002-511917
  • Patent Document 2 Japanese Patent Laid-Open No. 10-219017
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-212322
  • Patent Document 4 JP-A-11 287277
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004 142260
  • Patent Document 6 Japanese Unexamined Patent Publication No. 2006-68905
  • An object of the present invention is to provide a foam suitable for an energy absorbing material such as a bumper core and a side impact material that has a shock absorbing property equivalent to that of a rigid polyurethane foam and has a small volume increase due to moisture absorption. There is.
  • the present invention relates to a load at 70% strain (F) based on a dynamic compression test and a strain at 20% strain.
  • the load ratio (F) / ( ⁇ ) of load (F) is 0 ⁇ 70 or more and 1 ⁇ 30 or less.
  • the present invention relates to a thermoplastic resin foam having a volume increase rate of 5% or less when immersed in time.
  • Cell shape anisotropy ratio is 1.1 or more and 3.0 or less
  • the unsaturated dicarboxylic acid anhydride is maleic anhydride
  • N-alkyl-substituted maleimide force N-phenylmaleimide
  • the cyanide bur is acrylonitrile
  • thermoplastic resin foam is produced by an extrusion foam molding method
  • thermoplastic resin foam It relates to the thermoplastic resin foam described above.
  • thermoplastic resin foam Another aspect of the present invention is the thermoplastic resin foam described above.
  • thermoplastic resin foam that is low in cost, excellent in energy absorption characteristics, and small in volume change due to water absorption.
  • thermoplastic resin foam of the present invention has a load ratio between a load at 70% strain (hereinafter referred to as F) and a load at 20% strain (hereinafter referred to as F) based on a dynamic compression test. (F) / ⁇
  • the value of) is between 0.70 and 1.30. In order to absorb the energy while suppressing the maximum generated load as much as possible, it is preferably 0.75 or more and 1.20 or less.
  • ) / (F) is an index of shock absorption characteristics.
  • the load at 70% strain (F) is obtained as follows.
  • the dynamic compression test is performed according to JIS-K7134.
  • the equipment is a vertical drop tester with a guide, and the shape of the test sample is 100 mm long ⁇ 100 mm wide ⁇ 50 mm thick, and left in a constant temperature room at 23 ⁇ 2 ° C and 50 ⁇ 10% humidity for 24 hours. Is a test sample.
  • the dynamic compression test is performed in a constant temperature room at 23 ⁇ 2 ° C and a humidity of 50 ⁇ 10%.
  • the fall height and the weight of the cone are determined so that the strain of the test sample is 80% or more.
  • Free fall of the heavy cone on the test sample measure the acceleration a generated in the heavy cone with an accelerometer attached to the heavy cone of the test equipment, and record it as a time function.
  • the load F [kN] is given by the following equation as the product of the acceleration a [G] and the heavy cone mass M [kg].
  • the load ratio is calculated from these values according to the following formula.
  • the volume increase rate when the thermoplastic resin foam of the present invention is immersed in water for 24 hours is 5% or less. If the volume increase rate was greater than 5%, resin foam was used for the bumper core. In this case, the bumper face may be deformed when the vehicle body is covered with water.
  • the volume increase rate is calculated by measuring the dimensions of each side of the resin foam cut into a cubic shape, and then measuring the dimensions of each side by immersing the resin foam in water for 24 hours. The volume is calculated and the increase in volume is divided by the volume of the original resin foam.
  • thermoplastic resin constituting the thermoplastic resin foam specifically, a polyethylene naphthalate resin, a polycarbonate resin, a polyether ether ketone resin, a phenylene ether And a mixture of the resin and the styrene resin.
  • examples thereof include a bull copolymer and a resin composition made of these resins.
  • thermoplastic resin composition obtained by mixing a copolymer of an aromatic bule, an unsaturated dicarboxylic anhydride and an N-alkyl-substituted maleimide and an aromatic burcyanide bur copolymer is preferable.
  • thermoplastic resins a thermoplastic resin having a bending fracture strain of 0.1% to 2.5% is preferable.
  • thermoplastic resins preferably have heat resistance.
  • the thermoplastic resin foam of the present invention has a heat resistance of 120 ° C., preferably a heating dimensional change rate of 3% or less when exposed to a hot air circulating dryer maintained at 100 ° C. for 168 hours. It is more preferable that the rate of change in heating dimension is 3% or less when exposed to a hot air circulating dryer for 168 hours.
  • the cell anisotropy ratio of the thermoplastic resin foam of the present invention is preferably 1.1 or more and 3.0 or less.
  • the cell anisotropy ratio is defined by (cell vertical width) / (cell horizontal width).
  • the compression direction of the foam is the vertical direction
  • the direction orthogonal to the vertical direction is the horizontal direction. That is, when the cell is compressed in the longitudinal direction, good energy characteristics can be exhibited.
  • the vertical direction is determined, there are a plurality of horizontal directions perpendicular to it, and the cell width differs depending on which horizontal direction the width is taken, and the anisotropy ratio may be different. In such a case, the anisotropy ratio is calculated by adopting the width in the direction in which the lateral width becomes the smallest.
  • thermoplastic resin having a bending fracture strain of 0.1% or more and 2.5% or less is subjected to bending deformation. In this case, breakage tends to occur while the deformation is small. Further, a foam having a vertically long shape with a cell anisotropy ratio of 1.1 to 3.0 is liable to cause cell destruction.
  • a fracture zone occurs in the plane perpendicular to the compression direction, and as the compression strain increases, a fracture zone is created in sequence, so that a constant compressive stress is sustained and good. It is considered that it exhibits excellent energy absorption characteristics.
  • the thermoplastic resin foam of the present invention comprises a copolymer (A) comprising 80% to 30% by weight of an aromatic bull, an unsaturated dicarboxylic acid anhydride, and an N-alkyl-substituted maleimide, and an aromatic vinyl lucyanated bull copolymer.
  • the polymer (B) is preferably a foamed thermoplastic resin composition obtained by mixing 20 to 70% by weight.
  • the aromatic bur constituting the copolymer (A) comprising an aromatic bule, an unsaturated dicarboxylic acid anhydride and an N-alkyl-substituted maleimide includes styrene, ⁇ -methylstyrene, ethynole styrene, isopropino styrene, dimethino. Examples include restyrene, bromostyrene, chlorostyrene, butyltoluene, and butylxylene.
  • styrene and ⁇ -methylstyrene are preferred from the viewpoint of compatibility with the aromatic bulcyanated bulene copolymer ( ⁇ ) and ease of polymerization, and are also inexpensive. Some styrene is optimal.
  • Examples of the unsaturated dicarboxylic acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. From the viewpoint of compatibility with the copolymer ( ⁇ ), ease of polymerization, and low cost. Hydrous maleic acid is preferred.
  • Examples of ⁇ ⁇ ⁇ ⁇ -alkyl-substituted maleimide include ⁇ ⁇ ⁇ methyl maleimide, ⁇ ⁇ ⁇ butyl maleimide, ⁇ ⁇ ⁇ cyclohexyl maleimide, ⁇ phenyl maleimide, ⁇ -4-diphenyl maleimide, ⁇ -2 kurono phenolemaleimide, ⁇ - 4 Bromophenylalemaleimide, N-1-naphthalemaleimide, and the like.
  • ⁇ phenylmaleimide is most suitable from the viewpoint of compatibility with the copolymer ( ⁇ ), ease of polymerization, and low cost.
  • the copolymer (B) used in the present invention also has an aromatic bull force and a cyanide bull force.
  • aromatic bullet as described above, styrene and ⁇ -methylstyrene are preferable from the viewpoint of compatibility with the copolymer (A) and ease of polymerization, and styrene is also inexpensive. Is the best.
  • examples of cyanuric bur include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, and the like. From the viewpoint of compatibility with the copolymer ( ⁇ ) and ease of polymerization, acrylonitrile is preferred. Is preferred. In view of compatibility with the copolymer ( ⁇ ⁇ ⁇ ⁇ ), ease of polymerization, and low cost, a copolymer of styrene and acrylonitrile is preferred.
  • thermoplastic resin composition of the present invention comprises the copolymer ( ⁇ ) and the copolymer.
  • the weight ratio of the copolymer ( ⁇ ) to the copolymer ( ⁇ ) in the resin composition is such that the copolymer ( ⁇ ) is 30 to 80% by weight and the copolymer ( ⁇ ) is 70 to 20% by weight.
  • % Of the preferred copolymer ( ⁇ ) is 35 to 70% by weight and the copolymer ( ⁇ ) is more preferably 65 to 30% by weight of the copolymer ( ⁇ ) and 40 to 65% by weight.
  • the polymer (60) is more preferably 60 to 35% by weight.
  • thermoplastic resin composition as required for the thermoplastic resin composition, a nucleating agent, a stabilizer, a lubricant, a flame retardant, an antistatic agent, a plasticizer, a water absorbing agent, a radiation inhibitor, and the like. Additives may be added.
  • thermoplastic resin foam of the present invention can be obtained by a known foaming method.
  • thermoplastic resin foam of the present invention As a foaming method for obtaining the thermoplastic resin foam of the present invention, a thermoplastic resin is melt-kneaded in an extruder, a foaming agent is injected and kneaded, and the foamed molded body is extruded into the atmosphere from a die. There is an extrusion foaming method of obtaining
  • the cell expands in the thickness direction when the resin is extruded. It is possible to obtain a foam having an anisotropy ratio larger than 1.1. In order to greatly increase the cell anisotropy ratio in the thickness direction, the thickness expansion ratio when foaming the molten resin into the atmosphere during extrusion foaming is increased. As a method of increasing the thickness expansion rate, a slit die is used as the die.
  • foamable resin particles impregnated with a foaming agent when foamable resin particles impregnated with a foaming agent are produced, the foamable resin particles are heated to be prefoamed to produce prefoamed particles, and the prefoamed particles are subjected to in-mold foam molding, Method and resin particles are placed in a pressure-resistant container with a dispersant, an aqueous dispersion containing a surfactant, and a volatile foaming agent. The temperature is raised and the resin particles are impregnated with the foaming agent, and then released under a low-pressure atmosphere. Then, pre-expanded particles are prepared, and when the pre-expanded particles are molded in a mold, there are the re-coating method and the V, bead method.
  • pre-expanded particles are filled in a mold and heated to fuse the pre-expanded particles together. After expanding to form a foam that has no gaps between the particles, one mold is moved, and the foam is further expanded in that direction, so that the cell shape is elongated in the moving direction. A molded product can be obtained.
  • thermoplastic resin foam of the present invention one type selected from the group consisting of a physical type foaming agent and a chemical type foaming agent, or a mixture of two or more types may be used. Can do.
  • the physical blowing agent include hydrocarbons such as propane, n-butane, i-butane, n-pentane, i-pentane, neopentane, and cyclopentane; —Gifnole talented Yutan, 1, 1, 1 ⁇ Lifnore talented Routan, 1, 1, 2— ⁇ Lifnore talented Loetan, 1, 1, 1, 2—Teraf Nooret Roetan, 1, 1, 2, 2, —Te ⁇ Rafnorée Roetan, 1, 1, 1, 2, 2-Fluorinated hydrocarbons such as pentafluoroethane, difluoromethane, trifluoromethane; inorganic gases such as carbon dioxide, nitrogen, water, argon, helium; dimethyl ether And ethers such as Nore, Jetinoreethenore, Methinoleetinoreetenore, Isopropinoreetenore;
  • the chemical foaming agent include, for example, N, N'-dinitrosopentamethylenetetramine, p, p, monooxybisbenzenesulfonyl hydrazide, hydrazodicarbonamide, sodium carbonate, and azodicarbon.
  • Examples include amide, terephthalazide, 5-phenyltetrazole, p-toluenesulfonyl semicarbazide and the like. These can be used alone or in admixture of two or more.
  • the density of the thermoplastic resin foam of the present invention is preferably 1 lkg / m 3 or more and 110 kg / m 3 or less from the viewpoint of obtaining good energy absorption characteristics. Within this range, the density can be adjusted according to the desired impact load.
  • the foamed molded product obtained by the molding method of the present invention is a side impact pad for automobiles and a bumper core material.
  • thermoplastic resin foam of the present invention will be described in detail by way of specific examples, but the present invention is not limited to only these examples.
  • “part” and “%” are based on weight unless otherwise specified.
  • the dynamic compression test was carried out in a constant temperature room at a temperature of 23 ⁇ 2 ° C and a humidity of 50 ⁇ 10%, using a shock impact tester CST-320S for shock absorbers manufactured by Yoshida Seiki Co., Ltd.
  • the energy given to the test piece in the dynamic compression test is determined by the product of the drop height and the weight of the heavy cone.
  • the fall height and weight of the cone in the present invention were determined so that the strain of the evaluation sample was 80% or more.
  • An acceleration transducer AS-500HA manufactured by Kyowa Denki Co., Ltd. was fixed to the heavy cone of the test machine, and the force and acceleration G measured on the heavy truncated cone were measured.
  • the load F [N] generated by impact is given by the following equation as the product of acceleration a [G] and the weight of the heavy cone M [kg].
  • the deformation amount of the evaluation test piece was measured using a laser displacement meter manufactured by Keyence Corporation. in front Attach the displacement meter to the tester and measure the distance H between it and the displacement meter.
  • the method of calculating the deformation of the evaluation specimen is calculated from the distance HO at which the output of the accelerometer is obtained, that is, when the drop jig and the evaluation specimen are in contact with each other.
  • Deformation amount [mm] HO— H
  • the strain based on the dynamic compression test is expressed as a percentage by dividing the amount of deformation by the thickness of the test piece as represented by the following equation.
  • Bending fracture strain is measured according to JIS K7171.
  • the foam base resin is molded into a strip-shaped test piece with a thickness of 6 mm, a width of 15 mm, and a length of 120 mm, and left in a constant temperature room at 23 ° C ⁇ 1 ° C for 24 hours. Obtained.
  • a three-point bending test was performed using a tensile compression tester manufactured by Minebea Co., Ltd. The distance between fulcrums was 90 mm, and the test speed (indenter descent speed) was 2 mm / min.
  • the strain at break ⁇ [%] is the deflection at break s [mm] and the thickness h of the specimen.
  • a line was drawn vertically / horizontally in the foam cross-sectional photograph, the number of cells crossing the line was counted, and the width per cell was calculated by dividing the line length by the number of cells.
  • the cell anisotropy ratio was calculated according to the following formula.
  • the foam thickness direction was vertical and the direction perpendicular thereto was horizontal.
  • V vertical X horizontal X height
  • volume increase rate was calculated by the following formula.
  • the heating dimensional change rate was measured according to JIS-K6767. Write three straight lines that are parallel to each other in the vertical and horizontal directions on a flat plate of length 100mm, width 100mm, and thickness 25mm. The dimension of was measured and used as the dimension before heating (L1). Next, the foam was placed horizontally in a hot air circulating dryer maintained at 120 ° C, heated for 168 hours, then taken out, measured for the dimensions of the sample, and set to the dimension after heating (L2). The heating dimensional change rate was calculated from the following equation.
  • Heating dimensional change rate (%) ((L2-L1) / L1) X 100
  • Copolymer (A) made by Denki Kagaku Kogyo Co., Ltd., which is a copolymer of styrene 49% N-phenylmaleimide 50% and maleic anhydride 1%, trade name: Denka IP MS-NA, copolymer ( As B), AS—XGS made by Denki Kagaku Kogyo Co., Ltd., which is a copolymer of 25% acrylonitrile and 75% styrene, is used. 80% / 20% of copolymer (A) / copolymer (B) is used.
  • a thermoplastic resin composition was prepared.
  • the thermoplastic resin composition was molded and subjected to a bending test. As a result, the bending fracture strain was 0.32%.
  • Table 1 shows the measurement results of the volume change rate of the obtained foam when immersed in water and the heating dimensional change rate at 100 ° C and 120 ° C.
  • Table 1 shows the measurement results of the rate of change in dimensional heating at 100 ° C and 120 ° C.
  • the bending fracture strain was 0.49%.
  • Example 1 Except that PS Japan Co., Ltd. polystyrene G9401 was changed to Example 1 except that the heating and kneading temperature in an extruder with a diameter of 65 mm was changed to 200 ° C and the cooling temperature in an extruder with a diameter of 90 mm was changed to 120 ° C.
  • An extruded foam having a density of 31 kg / cm 3 was obtained under the same conditions.
  • Table 1 shows the measurement results of the volume change rate of the obtained foam when immersed in water and the heat dimensional change rate at 100 ° C and 120 ° C.
  • the bending fracture strain was 0.92%.
  • Example 2 A test piece was cut so that the extruded foam obtained by the same method as in Example 1 was compressed in the extrusion direction, that is, in the direction perpendicular to the thickness direction, and a dynamic compression test was performed.
  • the cell anisotropy ratio was calculated with the extrusion direction as the longitudinal direction. The results are shown in Table 1.
  • Table 1 shows the measurement results of the volume change rate of the obtained foam when immersed in water and the heating dimensional change rate at 100 ° C and 120 ° C.
  • the bending fracture strain was 0.49%.
  • thermoplastic resin composition 100 parts by weight of the thermoplastic resin composition obtained by the same method as in Example 2 was supplied to a single screw extruder and melt kneaded to obtain 0.8 mg of resin particles per grain.
  • thermoplastic resin particles 100 parts of water, 0.2 part of calcium phosphate, and 0.006 part of ⁇ -olefin sulfonate.
  • 10 parts of normal butane was added, the temperature was raised to 125 ° C. while stirring, and the temperature was maintained for 9.5 hours to impregnate the thermoplastic resin particles with a foaming agent to obtain expandable thermoplastic resin particles.
  • Heating was performed for 2 minutes and 40 seconds with 190 ° C steam generated by a heated steam generator to obtain pre-expanded particles having a bulk ratio of 25 times.
  • the obtained pre-expanded particles were filled in a mold of 450mm in length X 350mm in width X 40mm in thickness, molded by heating with 0.38MPa steam for 10 seconds, cooled and cooled to a density of 45kg / m 3
  • the foamed molded product was obtained.
  • Table 1 shows the measurement results of the volume change rate of the obtained foam when immersed in water and the heating dimensional change rate at 100 ° C and 120 ° C.
  • the thermoplastic resin composition used in Comparative Example 2 was molded and subjected to a bending test. As a result, the bending fracture strain was 0.49%.
  • Table 1 shows the anisotropy ratio of the cells calculated by observation. Furthermore, Table 1 shows the measurement results of the volume change rate of the obtained foam when immersed in water, and the heating dimensional change rate at 100 ° C and 120 ° C.
  • Table 1 shows the anisotropy ratio of the cells calculated by observation. Furthermore, Table 1 shows the measurement results of the volume change rate of the obtained foam when immersed in water, and the heating dimensional change rate at 100 ° C and 120 ° C.
  • Example 1 100 ° C 120 ° C Increase (%)
  • Example 1 2.0 1.16 -0.04 -0.10 0.1
  • Example 2 2.0 1.01 0.10 -0.37 2.5
  • Example 3 1.9 1.19 -0.21 -20 0,3
  • Example 4 1.9 1.07
  • One 45- 68 1.0 Comparative Example 1 0.66 2.20 -0.11 -0.38 2.3
  • Comparative Example 2 1.0 2.50 -0.09 -0.35 2.4
  • Comparative Example 3 1.4 0.88 0.42 3.0 8.3
  • Comparative Example 4 1.4 0.84 0.40 2.9 8.2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Disclosed is a form which has the same level of impact absorption property as that of a hard polyurethane foam, shows a little increase in volume when absorbs moisture, and is suitable as an energy absorption material such as a bumper core and a side impact material. Specifically disclosed is a thermoplastic resin foam, which is characterized by having a ratio between a load at 70% deformation (F70%) and a load at 20% deformation (F20%) (i.e., a (F70%)/(F20%) ratio) as determined by a dynamic compression test of 0.70 to 1.30 inclusive, and more preferably having an anisotropy ratio for each cell of 1.1 to 3.0 inclusive.

Description

明 細 書  Specification
エネルギー吸収材に適した樹脂発泡体  Resin foam suitable for energy absorber
技術分野  Technical field
[0001] 本発明は、エネルギー吸収材に好適な樹脂発泡体に関する。  [0001] The present invention relates to a resin foam suitable for an energy absorbing material.
背景技術  Background art
[0002] 自動車用エネルギー吸収材は、バンパーの芯材、側突材等の様々な用途に使用 されており、燃費の向上やコスト削減の観点から軽量化が求められている。  [0002] Automotive energy absorbers are used in various applications such as bumper cores and side bumps, and are required to be lighter in terms of improving fuel consumption and reducing costs.
[0003] エネルギー吸収材は衝撃を受けると、それ自身が部分破壊や変形することによって 衝撃エネルギーを吸収するので、被保護物が直接衝撃を受けることはないが、それ でも衝撃によって荷重が発生する。この荷重が大きすぎると被保護物が破壊、機能 消失してしまうので、発生する最大荷重をできるだけ抑えたエネルギー吸収材が望ま しい。  [0003] When an energy absorber receives an impact, it absorbs the impact energy by partial destruction or deformation of itself, so the protected object does not receive an impact directly, but a load is still generated by the impact. . If this load is too large, the object to be protected will be destroyed and its function will be lost. Therefore, an energy absorber that minimizes the maximum load that can be generated is desirable.
[0004] 一方、エネルギー吸収量は、衝撃荷重とエネルギー吸収材の変形量の積算であり 、衝撃荷重が大きいほうがより多くのエネルギーを吸収できる。これら 2つの相反する 事象より、エネルギー吸収材に要求される最も重要な性能としては、発生する最大荷 重を抑えながら、一定の荷重を維持することでより多くのエネルギーを吸収することが 挙げられる。  [0004] On the other hand, the energy absorption amount is an integration of the impact load and the amount of deformation of the energy absorbing material, and a larger impact load can absorb more energy. From these two conflicting events, the most important performance required for energy absorbers is to absorb more energy by maintaining a constant load while keeping the maximum load generated. .
[0005] また、自動車用エネルギー吸収材としては、軽量性の観点から発泡プラスチックを 使用することが多い。このような特性を持つ発泡プラスチックとしては、硬質ポリウレタ ンフォームが広く知られている。硬質ポリウレタンウォームはそのセルが縦長であるこ とと、その脆性破壊を起こしやすいという樹脂の特性によって、動的圧縮試験におい て圧縮歪が 20%から 70%までほぼ一定の圧縮応力を示す。かかる特性を有するた め、硬質ポリウレタンフォームの衝撃吸収性能は良いが、高コストである上、吸湿によ る体積増加が大きいため、外気にさらされる自動車バンパーの芯材としては不適当 である。  [0005] Furthermore, foamed plastics are often used as energy absorbing materials for automobiles from the viewpoint of lightness. Rigid polyurethane foam is widely known as a foamed plastic having such characteristics. Rigid polyurethane worms exhibit an almost constant compressive stress from 20% to 70% in the dynamic compression test due to the longitudinal characteristics of the cells and the characteristics of the resin, which tends to cause brittle fracture. Since it has such characteristics, the impact absorption performance of rigid polyurethane foam is good, but it is expensive and the volume increase due to moisture absorption is large, so it is not suitable as a core material for automobile bumpers exposed to the outside air.
[0006] 特許文献 1には、複数の熱可塑性押出ストランド発泡体を合体させることによって、 一つの方向において他の方向よりも高い圧縮強度を有する発泡体を得て、この圧縮 強度が高い方向に衝撃を加えて衝撃を吸収することが開示されている。この発泡体 は同じ材料で同じ密度の発泡体よりも 25%歪時の圧縮強度が高くなることが示され ている。し力、しながら、力、かる文献にはポリオレフインからなる発泡体しか開示されて いない。ポリオレフインはその機械的特性の温度依存が大きぐ比較的高い温度とな る自動車内では、高温時に十分な衝撃吸収特性を発揮できなレ、と!/、う欠点がある。 また、ポリオレフインは樹脂の脆性が乏しいために、硬質ポリウレタンフォーム並みの エネルギー吸収特性は発揮できなレ、。 In Patent Document 1, a plurality of thermoplastic extruded strand foams are combined to obtain a foam having higher compressive strength in one direction than in the other direction. It is disclosed that an impact is applied in the direction of higher strength to absorb the impact. This foam has been shown to have a higher compressive strength at 25% strain than a foam of the same material and density. However, only the foams made of polyolefin are disclosed in the literature. Polyolefins have the disadvantage that they cannot exhibit sufficient shock absorbing properties at high temperatures in automobiles where the temperature dependence of their mechanical properties is large and the temperature is relatively high. In addition, polyolefin has poor resin brittleness, so it cannot exhibit the same energy absorption characteristics as rigid polyurethane foam.
[0007] 特許文献 2には、曲げこわさが 6000〜; 14000kgf/cm2であるポリオレフイン樹脂 力、らなる発泡体であって、発泡体の厚み方向の気泡径が厚み方向に直行する方向 での気泡径に対して大きくなる楕円形状を有する発泡体が開示されている。しかしな がら、前述の理由から、ポリオレフインからなる発泡体は、硬質ポリウレタンフォーム並 みのエネルギー吸収特性は期待できない。 [0007] Patent Document 2 discloses a foam having a bending stiffness of 6000 to 14,000 kgf / cm 2 , and the foam diameter in the direction in which the bubble diameter in the thickness direction of the foam is perpendicular to the thickness direction. A foam having an elliptical shape that is larger than the bubble diameter is disclosed. However, for the reasons described above, foams made of polyolefin cannot be expected to have the same energy absorption characteristics as rigid polyurethane foam.
[0008] 一方、発泡性ポリスチレン樹脂は安価であり、容易に型内発泡成形品が得られ、吸 水による体積増加は小さいが、比較的高い温度となる自動車内のエネルギー吸収材 には適さず、衝撃を受けたときの荷重が材料の変形量が大きくなるに従って増加する ために、被保護物衝撃が大きくなるという欠点がある。  [0008] On the other hand, expandable polystyrene resin is inexpensive and easily obtains an in-mold foam-molded product. Although the volume increase due to water absorption is small, it is not suitable for an energy absorbing material in an automobile at a relatively high temperature. In addition, since the load when subjected to an impact increases as the amount of deformation of the material increases, there is a drawback that the impact of the protected object increases.
[0009] 特許文献 3には、衝撃吸収性に優れた発泡成形品として、重量平均分子量が 4. 5 万以上 12万以下であり JIS— K7220で定められた圧縮試験において圧縮歪が 5% のときの圧縮応力 Xと圧縮歪が 50%のときの圧縮応力 Yの比 Y/Xが 2. 0以下となる ポリスチレン発泡体が開示されている。これは、衝撃初期において衝撃応力が小さい ことを示している力 S、一定の応力を維持することによって多くのエネルギーを吸収する ことについては開示されていない。一般的にポリスチレン発泡体において、圧縮歪が 50%を越えたときの圧縮時の応力は大きく上昇するため、それ以上の圧縮歪が生じ る用途では良好な衝撃吸収性を示すとは言えない。多くのエネルギーを吸収すると V、うものでも衝撃吸収材としては、圧縮歪が概ね 20%から 70%程度までほぼ一定の 応力を示すことが要求される。  [0009] Patent Document 3 discloses that a foam molded article having excellent impact absorption has a weight average molecular weight of 450,000 to 120,000 and a compression strain of 5% in a compression test defined by JIS-K7220. A polystyrene foam is disclosed in which the ratio Y / X of the compressive stress X and the compressive stress Y when the compressive strain is 50% is 2.0 or less. This is not disclosed for absorbing a large amount of energy by maintaining a constant stress S, which indicates that the impact stress is small at the beginning of impact. In general, in polystyrene foam, the stress during compression when the compressive strain exceeds 50% greatly increases. Therefore, it cannot be said that it exhibits good shock absorption in applications where compressive strain is further generated. V absorbs a lot of energy, and even shock absorbers are required to exhibit almost constant stress from about 20% to 70% compressive strain.
[0010] 特許文献 4には、ポリカーボネート樹脂発泡成形体からなり、該成形体の 80°Cにお ける 50%圧縮時のエネルギー吸収量を該成形体の密度で除した値が 30 (kg'cm/ cm3) / (g/cm3)以上である自動車用エネルギー吸収材が開示されて!/、る。しかし 、当該文献では成形体単位質量あたりのエネルギー吸収量が大きいことを示したの みであり、圧縮応力については言及されていないため、たとえ吸収エネルギーが大き くても同時に被保護物が受ける衝撃荷重が極めて大きくなることがあり得る。 [0010] Patent Document 4 includes a polycarbonate resin foam molded article, and a value obtained by dividing the energy absorption amount of the molded article at 50% compression at 80 ° C by the density of the molded article is 30 (kg ' cm/ An automotive energy absorber that is greater than or equal to cm 3 ) / (g / cm 3 ) is disclosed! However, this document only shows that the amount of energy absorbed per unit mass of the compact is large, and does not mention compressive stress. Therefore, even if the absorbed energy is large, the impact received by the protected object at the same time. The load can be very large.
[0011] 特許文献 5には、ポリスチレン系樹脂からなる発泡体 (A)にポリオレフイン系樹脂発 泡粒子(B)を分散させることによって、大きな衝撃を受けたときに発泡成形体が破壊 される構造を付与し、動的圧縮試験にお!/ヽて 20%歪時の衝撃荷重と 60%歪時の衝 撃荷重比が 1. 6以下となる熱可塑性樹脂発泡成形体が開示されている。本文献は、 動的圧縮試験にぉレ、て発泡ポリウレタンに近!/、性能を示すが、 20%歪時から 60% 歪時に関して一定荷重を維持することが開示されているのみである。更には、より長 い間、一定の荷重を維持することが求められて!/、る。  [0011] Patent Document 5 discloses a structure in which a foamed molded product is destroyed when subjected to a large impact by dispersing the polyolefin resin foamed particles (B) in a foamed product (A) made of polystyrene resin. In the dynamic compression test, there is disclosed a thermoplastic resin foam molded article having a ratio of impact load at 20% strain to impact load at 60% strain of 1.6 or less. This document shows a performance close to that of polyurethane foam in a dynamic compression test, but only discloses that a constant load is maintained from 20% strain to 60% strain. Furthermore, it is required to maintain a constant load for a longer time!
[0012] また、特許文献 6には、 3次元的に網目構造をとる少なくとも 1つの熱可塑性樹脂発 泡粒子と、該熱可塑性樹脂発泡粒子と少なくとも部分的に溶融しない 1以上の熱可 塑性樹脂粒子から構成される複合樹脂成形体と、エネルギー吸収時に該複合樹脂 成形体が散在できる空間からなるエネルギー吸収材が開示されて!/、る。かかる文献 は動的圧縮試験において 10%歪時から 60%歪時までほぼ一定の圧縮応力を示す エネルギー吸収材が開示されてレ、る。かかる文献では複合樹脂成形体と複合樹脂 成形体が散在できる空間からなるために、複合樹脂成形体の切削、穴あけ、接合加 ェ、あるいは散在空間を含んだ形状設計が必要となる。このような後加工や形状設 計を加えることなぐ発泡成形体そのもので良好な衝撃吸収性能を示す材料が求め られている。  [0012] Further, Patent Document 6 describes at least one thermoplastic resin foamed particle having a three-dimensional network structure, and one or more thermoplastic resins that do not melt at least partially with the thermoplastic resin foamed particles. There is disclosed an energy absorbing material comprising a composite resin molded body composed of particles and a space in which the composite resin molded body can be scattered during energy absorption. Such a document discloses an energy absorbing material that exhibits a substantially constant compressive stress from 10% strain to 60% strain in a dynamic compression test. In this document, since the composite resin molded body and the space where the composite resin molded body can be scattered are formed, it is necessary to design the shape including the cutting, drilling, joining process, or scattered space of the composite resin molded body. There is a demand for a material that exhibits good shock absorbing performance as a foamed molded product itself without adding such post-processing and shape design.
[0013] 特許文献 1:特表 2002— 511917号公報  [0013] Patent Document 1: Japanese Translation of Special Publication 2002-511917
特許文献 2:特開平 10— 219017号公報  Patent Document 2: Japanese Patent Laid-Open No. 10-219017
特許文献 3 :特開 2002— 212322号公報  Patent Document 3: Japanese Patent Laid-Open No. 2002-212322
特許文献 4 :特開平 11 287277号公報  Patent Document 4: JP-A-11 287277
特許文献 5:特開 2004 142260号公報  Patent Document 5: Japanese Unexamined Patent Application Publication No. 2004 142260
特許文献 6 :特開 2006— 68905号公報  Patent Document 6: Japanese Unexamined Patent Publication No. 2006-68905
発明の開示 発明が解決しょうとする課題 Disclosure of the invention Problems to be solved by the invention
[0014] 本発明の目的は、硬質ポリウレタン発泡体と同等の衝撃吸収特性を備え、吸湿によ る体積増加が小さぐバンパーコア、側突材等のエネルギー吸収材に適した発泡体 を提供することにある。 [0014] An object of the present invention is to provide a foam suitable for an energy absorbing material such as a bumper core and a side impact material that has a shock absorbing property equivalent to that of a rigid polyurethane foam and has a small volume increase due to moisture absorption. There is.
課題を解決するための手段  Means for solving the problem
[0015] すなわち、本発明は、動的圧縮試験に基づく 70%歪時荷重 (F )と 20%歪時の That is, the present invention relates to a load at 70% strain (F) based on a dynamic compression test and a strain at 20% strain.
70%  70%
荷重(F )の荷重比(F ) / {¥ )の値が 0· 70以上 1 · 30以下であり、水に 24  The load ratio (F) / (¥) of load (F) is 0 · 70 or more and 1 · 30 or less.
20% 70% 20%  20% 70% 20%
時間浸したときの体積増加率が 5%以下である熱可塑性樹脂発泡体に関する。  The present invention relates to a thermoplastic resin foam having a volume increase rate of 5% or less when immersed in time.
[0016] 好ましい態様としては、 [0016] As a preferred embodiment,
(1)セル形状の異方性比が 1. 1以上 3. 0以下である、  (1) Cell shape anisotropy ratio is 1.1 or more and 3.0 or less,
(2)芳香族ビュル、不飽和ジカルボン酸無水物および N アルキル置換マレイミドか らなる共重合体 (A) 80〜30重量%と芳香族ビュル シアン化ビュル共重合体 (B) 2 0〜70重量%を混合してなる熱可塑性樹脂組成物を発泡させてなる、  (2) Copolymer comprising aromatic bur, unsaturated dicarboxylic anhydride and N-alkyl-substituted maleimide (A) 80-30 wt% and aromatic bul cyanide bur copolymer (B) 2 0-70 wt % Of a foamed thermoplastic resin composition formed by mixing
(3)前記芳香族ビュルが、スチレンであることを特徴とする、  (3) The aromatic bullet is styrene,
(4)前記不飽和ジカルボン酸無水物が、無水マレイン酸であることを特徴とする、 (4) The unsaturated dicarboxylic acid anhydride is maleic anhydride,
(5) N—アルキル置換マレイミド力 N—フエニルマレイミドであることを特徴とする、(5) N-alkyl-substituted maleimide force N-phenylmaleimide,
(6)シアン化ビュルがアクリロニトリルであることを特徴とする、 (6) The cyanide bur is acrylonitrile,
(7)熱可塑性樹脂発泡体が押出発泡成形法によって製造されたものであることを特 徴とする、  (7) The thermoplastic resin foam is produced by an extrusion foam molding method,
前記記載の熱可塑性樹脂発泡体に関する。  It relates to the thermoplastic resin foam described above.
[0017] また、別の本発明は、前記記載の熱可塑性樹脂発泡体からなる、 [0017] Another aspect of the present invention is the thermoplastic resin foam described above.
(1)自動車用バンパーコア、  (1) Automotive bumper core,
(2)自動車用側突パッド、に関する。  (2) It relates to a side impact pad for automobiles.
発明の効果  The invention's effect
[0018] 本発明によれば、低コストであり、エネルギー吸収特性が優れ、吸水により体積変 化が小さい熱可塑性樹脂発泡体を得ることができる。  [0018] According to the present invention, it is possible to obtain a thermoplastic resin foam that is low in cost, excellent in energy absorption characteristics, and small in volume change due to water absorption.
発明を実施するための最良の形態 [0019] 本発明の熱可塑性樹脂発泡体は、動的圧縮試験に基づく 70%歪時荷重(以下、 F と表記する)と 20%歪時の荷重(以下、 F と表記する)の荷重比(F ) / {¥BEST MODE FOR CARRYING OUT THE INVENTION [0019] The thermoplastic resin foam of the present invention has a load ratio between a load at 70% strain (hereinafter referred to as F) and a load at 20% strain (hereinafter referred to as F) based on a dynamic compression test. (F) / {\
70% 20% 70% 20%70% 20% 70% 20%
)の値は、 0. 70以上 1. 30以下である。発生する最大荷重をできるだけ抑えてエネ ルギーを吸収するためには 0. 75以上 1. 20以下が好ましい。 The value of) is between 0.70 and 1.30. In order to absorb the energy while suppressing the maximum generated load as much as possible, it is preferably 0.75 or more and 1.20 or less.
[0020] 動的圧縮試験に基づく 70%歪時荷重 F と 20%歪時の荷重 F の荷重比(F [0020] Load ratio of load F at 70% strain and load F at 20% strain based on dynamic compression test (F
70% 20% 70% 70% 20% 70%
) / (F )は衝撃吸収特性の指標であり、 1に近いほど発生する最大荷重をできる) / (F) is an index of shock absorption characteristics.
20% 20%
だけ抑えて大きなエネルギーを吸収するという良好なエネルギー吸収性能であること を意味する。本発明において、動的圧縮試験に基づく 70%歪時荷重 (F )と 20%  It means that it has good energy absorption performance that absorbs large energy while suppressing it. In the present invention, 70% load at strain (F) and 20% based on the dynamic compression test.
70% 歪時の荷重(F )は以下のようにして求める。  The load at 70% strain (F) is obtained as follows.
20%  20%
[0021] 動的圧縮試験は、 JIS— K7134に準じて行なう。装置はガイド付き垂直落下型試 験機を用い、試験用試料の形状は縦 100mm X横 100mm X厚み 50mmとし、室温 23 ± 2°C、湿度 50 ± 10%の恒温室で 24時間放置したものを試験用試料とする。  [0021] The dynamic compression test is performed according to JIS-K7134. The equipment is a vertical drop tester with a guide, and the shape of the test sample is 100 mm long × 100 mm wide × 50 mm thick, and left in a constant temperature room at 23 ± 2 ° C and 50 ± 10% humidity for 24 hours. Is a test sample.
[0022] 動的圧縮試験は室温 23 ± 2°C、湿度 50 ± 10%の恒温室内で行なう。落下高さと 重錐重量は、試験用試料の歪が 80%以上になるように決定する。試験用試料上に 重錐を自由落下させ、試験装置の重錐に取り付けた加速度計により該重錐に生じる 加速度 aを測定し、時間関数として記録する。  [0022] The dynamic compression test is performed in a constant temperature room at 23 ± 2 ° C and a humidity of 50 ± 10%. The fall height and the weight of the cone are determined so that the strain of the test sample is 80% or more. Free fall of the heavy cone on the test sample, measure the acceleration a generated in the heavy cone with an accelerometer attached to the heavy cone of the test equipment, and record it as a time function.
[0023] 荷重 F[kN]は、加速度 a[G]と重錐質量 M[kg]の積として次式により与えられる。  [0023] The load F [kN] is given by the following equation as the product of the acceleration a [G] and the heavy cone mass M [kg].
F [kN] = (a X M X 9. 8) /1000  F [kN] = (a X M X 9.8) / 1000
[0024] 試験用試料が重錐により圧縮されている間の重錐高さ Hを測定し、時間関数として 記録する。試料の変形量は重錐下面と試料上面が接した時点の重錐高さ H0と Hの 差 (変形量 [mm] =H0— H)であり、変形量を試料の初期厚みで除し、百分率で表 したものを歪とする。  [0024] Measure the height H of the pyramid while the test sample is compressed by the cone, and record it as a function of time. The amount of deformation of the sample is the difference between the height of the heavy cone H0 and H when the bottom surface of the heavy cone touches the top surface of the sample (deformation amount [mm] = H0—H). Strain is expressed as a percentage.
歪[%] = (変形量/試験用試料初期厚み) X 100  Strain [%] = (Deformation amount / Initial thickness of test sample) X 100
[0025] 以上のようにして 70%歪時の荷重(F )と 20%歪時の荷重(F )を得ることが出 [0025] As described above, the load at 70% strain (F) and the load at 20% strain (F) can be obtained.
70% 20%  70% 20%
来る。これらの値より次式に従って荷重比を算出する。  come. The load ratio is calculated from these values according to the following formula.
荷重比 = (F ) / (F )  Load ratio = (F) / (F)
70% 20%  70% 20%
[0026] また、本発明の熱可塑性樹脂発泡体を水に 24時間浸したときの体積増加率は 5% 以下である。体積増加率が 5%より大きいと、樹脂発泡体をバンパーコアに使用した 場合、車体が水をかぶったときにバンパーフェイスを変形させる恐れがある。体積増 加率は、立方体形状に切り出した樹脂発泡体の各辺の寸法を測定して体積を算出 し、そのあと樹脂発泡体を 24時間水に浸して同様に各辺の寸法を測定して体積を算 出し、体積の増加量をもとの樹脂発泡体の体積で除したものである。 [0026] The volume increase rate when the thermoplastic resin foam of the present invention is immersed in water for 24 hours is 5% or less. If the volume increase rate was greater than 5%, resin foam was used for the bumper core. In this case, the bumper face may be deformed when the vehicle body is covered with water. The volume increase rate is calculated by measuring the dimensions of each side of the resin foam cut into a cubic shape, and then measuring the dimensions of each side by immersing the resin foam in water for 24 hours. The volume is calculated and the increase in volume is divided by the volume of the original resin foam.
[0027] 本発明にお!/、て熱可塑性樹脂発泡体を構成する熱可塑性樹脂として、具体的に は、ポリエチレンナフタレート系樹脂、ポリカーボネート系樹脂、ポリエーテルエーテ ルケトン系樹脂、フエ二レンエーテル系樹脂、および、前記樹脂とスチレン系樹脂の 混合物が挙げられる。また、前記樹脂を構成する単量体と無水マレイン酸、 N ァノレ キル置換マレイミド等との共重合体、芳香族ビュルと無水マレイン酸、 N アルキノレ 置換マレイミド等との共重合体、芳香族ビニルーシアン化ビュル共重合体、およびこ れらの樹脂からなる樹脂組成物等が挙げられる。中でも、芳香族ビュル、不飽和ジカ ルボン酸無水物および N アルキル置換マレイミドからなる共重合体と芳香族ビュル シアン化ビュル共重合体を混合してなる熱可塑性樹脂組成物が好ましレ、。かかる 熱可塑性樹脂の中でも、曲げ破断歪が 0. 1 %以上 2. 5%以下である熱可塑性樹脂 が好ましい。 [0027] In the present invention, as the thermoplastic resin constituting the thermoplastic resin foam, specifically, a polyethylene naphthalate resin, a polycarbonate resin, a polyether ether ketone resin, a phenylene ether And a mixture of the resin and the styrene resin. Also, a copolymer of the monomer constituting the resin and maleic anhydride, N-analkyl substituted maleimide, etc., a copolymer of aromatic bur and maleic anhydride, N alkynole-substituted maleimide, etc., aromatic vinyl cyanide Examples thereof include a bull copolymer and a resin composition made of these resins. Among them, a thermoplastic resin composition obtained by mixing a copolymer of an aromatic bule, an unsaturated dicarboxylic anhydride and an N-alkyl-substituted maleimide and an aromatic burcyanide bur copolymer is preferable. Among such thermoplastic resins, a thermoplastic resin having a bending fracture strain of 0.1% to 2.5% is preferable.
[0028] これらの熱可塑性樹脂は、耐熱性を有していることが好ましい。本発明の熱可塑性 樹脂発泡体の耐熱性は、 100°Cに保った熱風循環乾燥機内に 168時間暴露した場 合の加熱寸法変化率が 3%以下であることが好ましぐ 120°Cに保った熱風循環乾 燥機内に 168時間暴露した場合の加熱寸法変化率が 3%以下であることがより好ま しい。  [0028] These thermoplastic resins preferably have heat resistance. The thermoplastic resin foam of the present invention has a heat resistance of 120 ° C., preferably a heating dimensional change rate of 3% or less when exposed to a hot air circulating dryer maintained at 100 ° C. for 168 hours. It is more preferable that the rate of change in heating dimension is 3% or less when exposed to a hot air circulating dryer for 168 hours.
[0029] 本発明の熱可塑性樹脂発泡体のセル異方性比は 1. 1以上 3. 0以下であることが 好ましい。セル異方性比とは、(セル縦幅) / (セル横幅)で定義され、本発明におい ては発泡体の圧縮方向を縦方向、縦方向に直行する方向を横方向とする。すなわち 、セル縦長の方向に圧縮した場合、良好なエネルギー特性を発揮できるのである。 縦方向を決めた場合、それに直行する横方向は複数存在し、どの横方向に幅を取る かによつてセル横幅が異なり、異方性比が異なる場合がある。そのような場合は、最 も横幅が小さくなる方向の幅を採用して異方性比を算出する。  [0029] The cell anisotropy ratio of the thermoplastic resin foam of the present invention is preferably 1.1 or more and 3.0 or less. The cell anisotropy ratio is defined by (cell vertical width) / (cell horizontal width). In the present invention, the compression direction of the foam is the vertical direction, and the direction orthogonal to the vertical direction is the horizontal direction. That is, when the cell is compressed in the longitudinal direction, good energy characteristics can be exhibited. When the vertical direction is determined, there are a plurality of horizontal directions perpendicular to it, and the cell width differs depending on which horizontal direction the width is taken, and the anisotropy ratio may be different. In such a case, the anisotropy ratio is calculated by adopting the width in the direction in which the lateral width becomes the smallest.
[0030] 曲げ破断歪が 0. 1 %以上 2. 5%以下である熱可塑性樹脂は曲げ変形を加えた場 合、変形が小さいうちに破壊を生じやすくなる。また、セル異方性比が 1. 1以上 3. 0 以下の縦長の形状である発泡体はセルの破壊を生じやすくなる。このような発泡体に 圧縮変形を加えた場合、圧縮方向に垂直な面の破壊帯が生じ、圧縮歪を大きくする につれて順次破壊帯が生じていくために、一定の圧縮応力が持続し、良好なエネノレ ギー吸収特性を発揮すると考えられる。 [0030] A thermoplastic resin having a bending fracture strain of 0.1% or more and 2.5% or less is subjected to bending deformation. In this case, breakage tends to occur while the deformation is small. Further, a foam having a vertically long shape with a cell anisotropy ratio of 1.1 to 3.0 is liable to cause cell destruction. When compressive deformation is applied to such a foam, a fracture zone occurs in the plane perpendicular to the compression direction, and as the compression strain increases, a fracture zone is created in sequence, so that a constant compressive stress is sustained and good. It is considered that it exhibits excellent energy absorption characteristics.
[0031] 本発明の熱可塑性樹脂発泡体は、芳香族ビュル、不飽和ジカルボン酸無水物お よび N アルキル置換マレイミドからなる共重合体 (A) 80〜30重量%と芳香族ビニ ルーシアン化ビュル共重合体 (B) 20〜70重量%を混合してなる熱可塑性樹脂組成 物を発泡させてなるものであることが好ましレ、。  [0031] The thermoplastic resin foam of the present invention comprises a copolymer (A) comprising 80% to 30% by weight of an aromatic bull, an unsaturated dicarboxylic acid anhydride, and an N-alkyl-substituted maleimide, and an aromatic vinyl lucyanated bull copolymer. The polymer (B) is preferably a foamed thermoplastic resin composition obtained by mixing 20 to 70% by weight.
[0032] 芳香族ビュル、不飽和ジカルボン酸無水物および N アルキル置換マレイミドから なる共重合体 (A)を構成する芳香族ビュルとしては、スチレン、 α—メチルスチレン、 ェチノレスチレン、イソプロピノレスチレン、ジメチノレスチレン、ブロモスチレン、クロロスチ レン、ビュルトルエン、ビュルキシレン等が挙げられる。  [0032] The aromatic bur constituting the copolymer (A) comprising an aromatic bule, an unsaturated dicarboxylic acid anhydride and an N-alkyl-substituted maleimide includes styrene, α-methylstyrene, ethynole styrene, isopropino styrene, dimethino. Examples include restyrene, bromostyrene, chlorostyrene, butyltoluene, and butylxylene.
[0033] これらのうち、芳香族ビュル シアン化ビュル共重合体 (Β)との相溶性、重合の容 易性の点から、スチレン、 α—メチルスチレンが好適であり、さらに価格的に安価であ るスチレンが最適である。  [0033] Of these, styrene and α-methylstyrene are preferred from the viewpoint of compatibility with the aromatic bulcyanated bulene copolymer (Β) and ease of polymerization, and are also inexpensive. Some styrene is optimal.
[0034] 不飽和ジカルボン酸無水物としては、無水マレイン酸、無水ィタコン酸、無水シトラ コン酸等が挙げられ、共重合体 (Β)との相溶性、重合の容易性、安価の点から、無 水マレイン酸が好適である。  [0034] Examples of the unsaturated dicarboxylic acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride, and the like. From the viewpoint of compatibility with the copolymer (Β), ease of polymerization, and low cost. Hydrous maleic acid is preferred.
[0035] Ν—アルキル置換マレイミドとしては、 Ν メチルマレイミド、 Ν ブチルマレイミド、 Ν シクロへキシルマレイミド、 Ν フエニルマレイミド、 Ν— 4—ジフエニルマレイミド、 Ν— 2 クロ口フエ二ノレマレイミド、 Ν— 4 ブロモフエ二ノレマレイミド、 N—1—ナフチ ルマレイミド等が挙げられ、共重合体 (Β)との相溶性、重合の容易性、安価の点から 、 Ν フエニルマレイミドが最適である。  [0035] Examples of ア ル キ ル -alkyl-substituted maleimide include メ チ ル methyl maleimide, ブ チ ル butyl maleimide, シ ク ロ cyclohexyl maleimide, Ν phenyl maleimide, Ν-4-diphenyl maleimide, Ν-2 kurono phenolemaleimide, Ν- 4 Bromophenylalemaleimide, N-1-naphthalemaleimide, and the like. Among them, Νphenylmaleimide is most suitable from the viewpoint of compatibility with the copolymer (Β), ease of polymerization, and low cost.
[0036] 芳香族ビュル、不飽和ジカルボン酸無水物および Ν アルキル置換マレイミドから なる共重合体 (Α)において、芳香族ビュル、不飽和ジカルボン酸無水物および Ν— アルキル置換マレイミドの単量体の合計量を 100重量%とした場合、 Ν アルキル置 換マレイミドは 40重量%以上であることが耐熱性を付与できる点から好ましぐまた、 耐吸水吸湿性を考慮すると、不飽和ジカルボン酸無水物は 5 %以下であることが好 ましい。 [0036] Sum of aromatic bur, unsaturated dicarboxylic anhydride and Ν-alkyl-substituted maleimide monomers in copolymer (Α) consisting of aromatic bur, unsaturated dicarboxylic anhydride and ア ル キ ル alkyl-substituted maleimide When the amount is 100% by weight, it is preferable that the alkyl-substituted maleimide is 40% by weight or more from the viewpoint of imparting heat resistance. In view of water absorption and moisture absorption resistance, the unsaturated dicarboxylic acid anhydride is preferably 5% or less.
[0037] また、本発明で用いられる共重合体 (B)は、芳香族ビュル、およびシアン化ビュル 力もなる。芳香族ビュルとしては、上記記載のとおり、共重合体 (A)との相溶性、重合 の容易性の点から、スチレン、 α—メチルスチレンが好適であり、さらに価格的に安 価であるスチレンが最適である。  [0037] Further, the copolymer (B) used in the present invention also has an aromatic bull force and a cyanide bull force. As the aromatic bullet, as described above, styrene and α-methylstyrene are preferable from the viewpoint of compatibility with the copolymer (A) and ease of polymerization, and styrene is also inexpensive. Is the best.
[0038] また、シアン化ビュルとしては、アクリロニトリル、メタタリロニトリル、 α—クロロアクリロ 二トリル等が挙げられ、共重合体 (Α)との相溶性、重合の容易性の点から、アタリロニ トリルが好適である。共重合体 (Α)との相溶性、重合の容易性、価格的に安価である こと等から鑑み、スチレンとアクリロニトリルの共重合体が好ましレ、。  [0038] Further, examples of cyanuric bur include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, and the like. From the viewpoint of compatibility with the copolymer (Α) and ease of polymerization, acrylonitrile is preferred. Is preferred. In view of compatibility with the copolymer (ニ ト リ ル), ease of polymerization, and low cost, a copolymer of styrene and acrylonitrile is preferred.
[0039] 本発明における熱可塑性樹脂組成物は、前記共重合体 (Α)および前記共重合体  [0039] The thermoplastic resin composition of the present invention comprises the copolymer (Α) and the copolymer.
(Β)を混合してなる。  (Β) is mixed.
[0040] 該樹脂組成物における共重合体 (Α)と共重合体 (Β)の重量比は、共重合体 (Α)が 30〜80重量%および共重合体(Β)が 70〜20重量%が好ましぐ共重合体 (Α)が 3 5〜70重量%および共重合体(Β)が 65〜30重量%がより好ましぐ共重合体 (Α)が 40〜65重量%および共重合体(Β)が 60〜35重量%がさらに好ましい。  [0040] The weight ratio of the copolymer (Α) to the copolymer (Β) in the resin composition is such that the copolymer (Α) is 30 to 80% by weight and the copolymer (Β) is 70 to 20% by weight. % Of the preferred copolymer (Α) is 35 to 70% by weight and the copolymer (Β) is more preferably 65 to 30% by weight of the copolymer (Α) and 40 to 65% by weight. The polymer (60) is more preferably 60 to 35% by weight.
[0041] なお、本発明においては、前記熱可塑性樹脂組成物に必要に応じて、造核剤、安 定剤、滑剤、難燃剤、帯電防止剤、可塑剤、吸水剤、輻射抑制剤等の添加剤を配合 してもよい。  [0041] In the present invention, as required for the thermoplastic resin composition, a nucleating agent, a stabilizer, a lubricant, a flame retardant, an antistatic agent, a plasticizer, a water absorbing agent, a radiation inhibitor, and the like. Additives may be added.
[0042] 本発明の熱可塑性樹脂発泡体は、公知の発泡方法により得ることができる。  [0042] The thermoplastic resin foam of the present invention can be obtained by a known foaming method.
[0043] 本発明の熱可塑性樹脂発泡体を得る発泡方法としては、熱可塑性樹脂を押出機 内で溶融混練し、更に発泡剤を圧入して混練し、ダイから大気中に押出して発泡成 形体を得るという押出発泡成形法がある。 [0043] As a foaming method for obtaining the thermoplastic resin foam of the present invention, a thermoplastic resin is melt-kneaded in an extruder, a foaming agent is injected and kneaded, and the foamed molded body is extruded into the atmosphere from a die. There is an extrusion foaming method of obtaining
[0044] 押出発泡成形法の場合、板状の押出発泡体を成形するためにスリット状のダイを用 いた場合には、樹脂が押出されるときに厚さ方向に拡大するために、セルの異方性 比が 1. 1よりも大きな発泡体を得ること力 Sできる。厚さ方向にセル異方性比を格段に 大きくするためには、押出発泡時に溶融樹脂を大気中へ発泡させるときの厚み拡大 率を大きくする。厚み拡大率を大きくする方法としては、ダイとしてスリット状のダイを 使用し、スリット厚みを薄くして押出時の背圧を上げる方法、樹脂の溶融時の弾性を 上げる方法、またはダイ流路を変更することによってダイスゥエルを大きくする方法等 がある。あるいは、成形時の成形抵抗を大きくする方法もある。成形抵抗を大きくする ためには、成形ロールの速度を遅くする方法、成型金型と発泡体との間の摩擦抵抗 を大きくする方法等がある。 [0044] In the case of the extrusion foam molding method, when a slit-shaped die is used to form a plate-like extruded foam, the cell expands in the thickness direction when the resin is extruded. It is possible to obtain a foam having an anisotropy ratio larger than 1.1. In order to greatly increase the cell anisotropy ratio in the thickness direction, the thickness expansion ratio when foaming the molten resin into the atmosphere during extrusion foaming is increased. As a method of increasing the thickness expansion rate, a slit die is used as the die. There are a method of increasing the back pressure during extrusion by reducing the slit thickness, a method of increasing the elasticity at the time of melting the resin, or a method of increasing the die swell by changing the die flow path. Alternatively, there is a method of increasing the molding resistance during molding. In order to increase the molding resistance, there are a method of reducing the speed of the molding roll and a method of increasing the frictional resistance between the molding die and the foam.
[0045] また、発泡剤を含浸した発泡性樹脂粒子を作製し、該発泡性樹脂粒子を加熱して 予備発泡させて予備発泡粒子を作製し、該予備発泡粒子を型内発泡成形するとレ、う 方法や樹脂粒子を耐圧容器内に分散剤、界面活性剤を含む水性分散液ならびに揮 発性発泡剤を仕込み、昇温して樹脂粒子に発泡剤を含浸させた後、低圧雰囲気下 に放出して予備発泡粒子を作成し、この予備発泡粒子を型内成形するとレ、う方法と V、つたビーズ法型内成形法がある。  [0045] Further, when foamable resin particles impregnated with a foaming agent are produced, the foamable resin particles are heated to be prefoamed to produce prefoamed particles, and the prefoamed particles are subjected to in-mold foam molding, Method and resin particles are placed in a pressure-resistant container with a dispersant, an aqueous dispersion containing a surfactant, and a volatile foaming agent. The temperature is raised and the resin particles are impregnated with the foaming agent, and then released under a low-pressure atmosphere. Then, pre-expanded particles are prepared, and when the pre-expanded particles are molded in a mold, there are the re-coating method and the V, bead method.
[0046] ビーズ法型内成形法において、セル異方性比を所望の範囲に調整する方法として は、予備発泡粒子を金型内に充填し、加熱して予備発泡粒子同士を融着させるとと もに膨張させて一旦粒子間の隙間がない発泡体を形作った後に、一方の金型を移 動させ、その方向にさらに該発泡体を膨張させて、セル形状がその移動方向に長く 伸びた成形体を得ることができる。  [0046] In the bead method in-mold molding method, as a method of adjusting the cell anisotropy ratio to a desired range, pre-expanded particles are filled in a mold and heated to fuse the pre-expanded particles together. After expanding to form a foam that has no gaps between the particles, one mold is moved, and the foam is further expanded in that direction, so that the cell shape is elongated in the moving direction. A molded product can be obtained.
[0047] 本発明の熱可塑性樹脂発泡体を得るための発泡剤としては、物理型発泡剤および 化学型発泡剤からなる群から選ばれた 1種を、または 2種以上混合して使用すること ができる。  [0047] As the foaming agent for obtaining the thermoplastic resin foam of the present invention, one type selected from the group consisting of a physical type foaming agent and a chemical type foaming agent, or a mixture of two or more types may be used. Can do.
[0048] 物理型発泡剤の具体例としては、例えば、プロパン、 n ブタン、 i ブタン、 n ぺ ンタン、 i—ペンタン、ネオペンタン、シクロペンタン等の炭化水素; 1 , 1 ジフノレオ口 ユタン、 1 , 2—ジフノレ才口ユタン、 1 , 1 , 1 卜リフノレ才ロュタン、 1 , 1 , 2—卜リフノレ才 ロェタン、 1 , 1 , 1 , 2—テ卜ラフノレ才ロェタン、 1 , 1 , 2, 2—テ卜ラフノレ才ロェタン、 1 , 1 , 1 , 2, 2—ペンタフルォロェタン、ジフルォロメタン、トリフルォロメタン等のフッ素化 炭化水素;二酸化炭素、窒素、水、アルゴン、ヘリウム等の無機ガス;ジメチルエーテ ノレ、ジェチノレエーテノレ、メチノレエチノレエーテノレ、イソプロピノレエーテノレ、 n プ'チノレエ 一テル、ジイソアミルエーテル等のエーテル類等が挙げられる。これらは、単独で、ま たは 2種以上混合して使用することができる。 [0049] 化学型発泡剤の具体例としては、例えば、 N, N'—ジニトロソペンタメチレンテトラミ ン、 p, p, 一ォキシビス ベンゼンスルホニルヒドラジド、ヒドラゾジカルボンアミド、炭 酸ナトリウム、ァゾジカルボンアミド、テレフタルアジド、 5—フエ二ルテトラゾール、 p— トルエンスルホニルセミカルバジド等が挙げられる。これらは、単独で、または 2種以 上混合して使用することができる。 [0048] Specific examples of the physical blowing agent include hydrocarbons such as propane, n-butane, i-butane, n-pentane, i-pentane, neopentane, and cyclopentane; —Gifnole talented Yutan, 1, 1, 1 卜 Lifnore talented Routan, 1, 1, 2— 卜 Lifnore talented Loetan, 1, 1, 1, 2—Teraf Nooret Roetan, 1, 1, 2, 2, —Te卜 Rafnorée Roetan, 1, 1, 1, 2, 2-Fluorinated hydrocarbons such as pentafluoroethane, difluoromethane, trifluoromethane; inorganic gases such as carbon dioxide, nitrogen, water, argon, helium; dimethyl ether And ethers such as Nore, Jetinoreethenore, Methinoleetinoreetenore, Isopropinoreetenore, n- Pinoleete, and Diisoamylether. These can be used alone or in admixture of two or more. [0049] Specific examples of the chemical foaming agent include, for example, N, N'-dinitrosopentamethylenetetramine, p, p, monooxybisbenzenesulfonyl hydrazide, hydrazodicarbonamide, sodium carbonate, and azodicarbon. Examples include amide, terephthalazide, 5-phenyltetrazole, p-toluenesulfonyl semicarbazide and the like. These can be used alone or in admixture of two or more.
[0050] 本発明の熱可塑性樹脂発泡体の密度につ!/、ては、良好なエネルギー吸収特性が 得られるという点から、 l lkg/m3以上 110kg/m3以下であることが好ましぐこの範 囲で所望の衝撃荷重に応じ密度を調整することができる。 [0050] The density of the thermoplastic resin foam of the present invention is preferably 1 lkg / m 3 or more and 110 kg / m 3 or less from the viewpoint of obtaining good energy absorption characteristics. Within this range, the density can be adjusted according to the desired impact load.
[0051] 本発明の成形方法で得られた発泡成形体は、自動車用側突パッド、バンパー芯材  [0051] The foamed molded product obtained by the molding method of the present invention is a side impact pad for automobiles and a bumper core material.
(コア)等に好適に用いられる。  It is preferably used for (core) and the like.
実施例  Example
[0052] 以下、本発明の熱可塑性樹脂発泡体を具体的な実施例により詳細に説明するが、 本発明は力、かる実施例のみに限定されるものではない。なお、以下、特に断りのない 限り、「部」「%」は重量基準である。  [0052] Hereinafter, the thermoplastic resin foam of the present invention will be described in detail by way of specific examples, but the present invention is not limited to only these examples. In the following, “part” and “%” are based on weight unless otherwise specified.
[0053] (試験方法)  [0053] (Test method)
[動的圧縮試験]  [Dynamic compression test]
樹脂発泡体を縦 100mm、横 100mm、厚さ 50mmの直方体形状に表面スキン層 を含まないように切り出し、温度 23°C ± 2°C、湿度 50 ± 10%の恒温室で 24時間放 置し、動的圧縮試験用の試験片とした。  Cut the resin foam into a rectangular parallelepiped shape with a length of 100 mm, width of 100 mm, and thickness of 50 mm so as not to include the surface skin layer, and leave it in a temperature-controlled room at a temperature of 23 ° C ± 2 ° C and a humidity of 50 ± 10% for 24 hours. A test piece for a dynamic compression test was obtained.
[0054] 動的圧縮試験は、温度 23 ± 2°C、湿度 50 ± 10%の恒温室内で、吉田精機 (株)製 緩衝材用落下衝撃試験機 CST— 320Sを用いて実施した。該動的圧縮試験におい て試験片に与えるエネルギーは、落下高さと重錐重量の積で決まる。本発明におけ る落下高さと重錐重量は、評価サンプルの歪が 80%以上になるように決定した。  [0054] The dynamic compression test was carried out in a constant temperature room at a temperature of 23 ± 2 ° C and a humidity of 50 ± 10%, using a shock impact tester CST-320S for shock absorbers manufactured by Yoshida Seiki Co., Ltd. The energy given to the test piece in the dynamic compression test is determined by the product of the drop height and the weight of the heavy cone. The fall height and weight of the cone in the present invention were determined so that the strain of the evaluation sample was 80% or more.
[0055] 試験機の重錐に、共和電業 (株)製加速度変換機 AS— 500HAを固定し、該重錐 台に力、かる加速度 Gを計測した。衝撃により発生する荷重 F [N]は、加速度 a [G]と 重錐重量 M[kg]との積として次式により与えられる。  [0055] An acceleration transducer AS-500HA manufactured by Kyowa Denki Co., Ltd. was fixed to the heavy cone of the test machine, and the force and acceleration G measured on the heavy truncated cone were measured. The load F [N] generated by impact is given by the following equation as the product of acceleration a [G] and the weight of the heavy cone M [kg].
F [kN] = (a X M X 9. 8) /1000  F [kN] = (a X M X 9.8) / 1000
[0056] 評価試験片の変形量はキーエンス (株)製のレーザー変位計を用いて測定した。前 記試験機に該変位計を取り付け、これと変位計との距離 Hを測定する。評価試験片 の変形量を計算する方法は、測定した距離のうち、加速度計の出力が得られる、す なわち落下治具と評価試験片が接した時点の距離 HOから次式により算出する。 変形量 [mm] = HO— H [0056] The deformation amount of the evaluation test piece was measured using a laser displacement meter manufactured by Keyence Corporation. in front Attach the displacement meter to the tester and measure the distance H between it and the displacement meter. The method of calculating the deformation of the evaluation specimen is calculated from the distance HO at which the output of the accelerometer is obtained, that is, when the drop jig and the evaluation specimen are in contact with each other. Deformation amount [mm] = HO— H
[0057] 該動的圧縮試験に基づく歪とは次式で表すように変形量を試験片の厚みで除し、 百分率で表したものである。  [0057] The strain based on the dynamic compression test is expressed as a percentage by dividing the amount of deformation by the thickness of the test piece as represented by the following equation.
歪[%] = (変形量/評価サンプル厚み) X 100  Strain [%] = (Deformation amount / Evaluation sample thickness) X 100
[0058] 該動的圧縮試験に基づく 70%歪時の荷重 F と 20%歪時の荷重 F は、文言ど  [0058] The load F at 70% strain and the load F at 20% strain based on the dynamic compression test are
70% 20% おり前記のごとく歪を規定した場合に、該歪時に測定される荷重で定義する。これら の値より次式に従って荷重比を算出した。  70% 20% When the strain is specified as described above, it is defined by the load measured at the time of the strain. The load ratio was calculated from these values according to the following formula.
荷重比 = (F ) / (F )  Load ratio = (F) / (F)
70% 20%  70% 20%
[0059] [曲げ破断歪]  [0059] [Bending fracture strain]
曲げ破断歪の測定は、 JIS— K7171に準じて行う。発泡体の基材樹脂を厚さ 6mm 、幅 15mm、長さ 120mmの短冊状試験片に成形し、 23°C ± 1°Cの恒温室で 24時 間放置し、曲げ試験用の試験片を得た。ミネベア (株)製の引っ張り圧縮試験機を用 いて 3点曲げ試験を実施した。支点間距離は 90mm、試験速度 (圧子の降下速度) は 2mm/minとした。破断歪 ε [%]は、破断時のたわみ s [mm]、試験片の厚さ h  Bending fracture strain is measured according to JIS K7171. The foam base resin is molded into a strip-shaped test piece with a thickness of 6 mm, a width of 15 mm, and a length of 120 mm, and left in a constant temperature room at 23 ° C ± 1 ° C for 24 hours. Obtained. A three-point bending test was performed using a tensile compression tester manufactured by Minebea Co., Ltd. The distance between fulcrums was 90 mm, and the test speed (indenter descent speed) was 2 mm / min. The strain at break ε [%] is the deflection at break s [mm] and the thickness h of the specimen.
b b  b b
[mm]、支点間距離 L [mm]から次式により与えられる。  It is given by the following equation from [mm] and the distance between supporting points L [mm].
ε = (6 X h X s X 100) / (L2) ε = (6 X h X s X 100) / (L 2 )
b b  b b
[0060] [セル異方性比]  [0060] [Cell anisotropy ratio]
発泡体断面写真の縦/横それぞれに線を引き、その線を横切るセルの数を数え、 線の長さをセルの数で割ってセル 1個あたりの幅を算出した。次式に従ってセル異方 性比を算出した。なお、発泡体厚さ方向を縦、それに垂直な方向を横とした。  A line was drawn vertically / horizontally in the foam cross-sectional photograph, the number of cells crossing the line was counted, and the width per cell was calculated by dividing the line length by the number of cells. The cell anisotropy ratio was calculated according to the following formula. The foam thickness direction was vertical and the direction perpendicular thereto was horizontal.
セル異方性比 = (セル縦幅) / (セル横幅)  Cell anisotropy ratio = (cell height) / (cell width)
[0061] [吸水による体積変化試験]  [0061] [Volume change test by water absorption]
樹脂発泡体を縦 25mm、横 25mm、高さ 25mmの立方体形状に表面スキン層を含 まないように切り出し、 23°C ± 1°Cの恒温室で 24時間放置し、体積変化測定用の試 験片を得た。該試験片の縦、横、高さを測定し、次式より試験片の体積 Vを算出した vi =縦 X横 X高さ Cut the resin foam into a cube shape 25 mm long, 25 mm wide, and 25 mm high so that it does not include the surface skin layer, and leave it in a constant temperature room at 23 ° C ± 1 ° C for 24 hours. A specimen was obtained. The length, width, and height of the test piece were measured, and the volume V of the test piece was calculated from the following equation. v i = vertical X horizontal X height
[0062] 樹脂発泡体を水中に完全に浸し、 23°C ± 1°Cの恒温室で 24時間放置した後の試 験片の縦、横、高さを測定し、次式より 24時間水に浸漬した後の試験片の体積を算 し/  [0062] After completely immersing the resin foam in water and leaving it in a constant temperature room at 23 ° C ± 1 ° C for 24 hours, measure the length, width, and height of the test piece. Calculate the volume of the specimen after immersion in
V =縦 X横 X高さ  V = vertical X horizontal X height
2  2
[0063] 次式により体積増加率を算出した。  [0063] The volume increase rate was calculated by the following formula.
体積増加率 [%] = { (V -V ) /V } X 100  Volume increase rate [%] = {(V -V) / V} X 100
2 1 1  2 1 1
[0064] [耐熱性試験]  [0064] [Heat resistance test]
JIS— K6767に準じて加熱寸法変化率を測定した。長さ 100mm、幅 100mm、厚 さ 25mmの平板上の発泡成形体に、縦および横方向にそれぞれお互いに平行とな る 3本の直線を 33. 3mmの等間隔になるように記入し、直線の寸法を測定し加熱前 寸法 (L1)とした。次に、 120°Cに保った熱風循環乾燥機内にかかる発泡体を水平 に置き、 168時間加熱したあと、取り出し、試料の寸法を測定し、加熱後寸法 (L2)と した。加熱寸法変化率は以下の式から算出した。  The heating dimensional change rate was measured according to JIS-K6767. Write three straight lines that are parallel to each other in the vertical and horizontal directions on a flat plate of length 100mm, width 100mm, and thickness 25mm. The dimension of was measured and used as the dimension before heating (L1). Next, the foam was placed horizontally in a hot air circulating dryer maintained at 120 ° C, heated for 168 hours, then taken out, measured for the dimensions of the sample, and set to the dimension after heating (L2). The heating dimensional change rate was calculated from the following equation.
加熱寸法変化率(%) = ( (L2-L1) /L1) X 100  Heating dimensional change rate (%) = ((L2-L1) / L1) X 100
また、熱風循環乾燥機の温度を 100°Cとして同様の試験を行い、同じ式で 100°Cの 加熱寸法変化率を算出した。  The same test was conducted with the temperature of the hot air circulating dryer set at 100 ° C, and the heating dimensional change rate at 100 ° C was calculated using the same formula.
[0065] (実施例 1)  [Example 1]
共重合体(A)としてスチレン 49% N—フエニルマレイミド 50%、無水マレイン酸 1 %の共重合体である電気化学工業 (株)製、商品名:デンカ IP MS— NA、共重合 体(B)として、アクリロニトリル 25%、スチレン 75%の共重合体である電気化学工業( 株)製 AS— XGSを使用し、共重合体 (A) /共重合体 (B)を 80%/20%の比率に て混合し、熱可塑性樹脂組成物とした。該熱可塑性樹脂組成物を成形して曲げ試験 を実施した結果、曲げ破断歪は 0. 32%であった。  Copolymer (A) made by Denki Kagaku Kogyo Co., Ltd., which is a copolymer of styrene 49% N-phenylmaleimide 50% and maleic anhydride 1%, trade name: Denka IP MS-NA, copolymer ( As B), AS—XGS made by Denki Kagaku Kogyo Co., Ltd., which is a copolymer of 25% acrylonitrile and 75% styrene, is used. 80% / 20% of copolymer (A) / copolymer (B) is used. Thus, a thermoplastic resin composition was prepared. The thermoplastic resin composition was molded and subjected to a bending test. As a result, the bending fracture strain was 0.32%.
[0066] この樹脂組成物 100部に対して、造核剤としてタルク (林化成 (株)製、商品名:タル カンパウダー) 0. 5部をドライブレンドし、得られた樹脂組成物を、口径 65mmの一段 目押出機と口径 90mmの二段目押出機とを直列に連結した二段連結型押出機へ 5 Okg/時間の割合で供給した。前記口径 65mmの押出機に供給した樹脂組成物を 、約 280°Cに加熱して溶融混練した後、一段目押出機の先端付近において、発泡剤 としてジメチルエーテル 2. 5部および n—ブタン 3. 5部を溶融された熱可塑性樹脂 組成物に圧入した。 [0066] To 100 parts of this resin composition, 0.5 parts of talc (trade name: Talcan powder, manufactured by Hayashi Kasei Co., Ltd.) as a nucleating agent was dry blended, and the resulting resin composition was To a two-stage connection type extruder with a 65mm diameter first stage extruder and a 90mm diameter second stage extruder connected in series 5 It was supplied at a rate of Okg / hour. The resin composition supplied to the 65 mm diameter extruder is melted and kneaded by heating to about 280 ° C., and then 2.5 parts of dimethyl ether and n-butane as a blowing agent near the tip of the first stage extruder. 5 parts were press-fitted into the molten thermoplastic resin composition.
[0067] その後、これに連結された口径 90mmの押出機で樹脂温度が 200°Cになるように 冷却して、 口径 90mmの押出機の先端に設けた矩形スリットダイのダイリップから大 気中に押出し、密度 42kg/cm3である押出発泡体を得た。顕微鏡により得られた発 泡体のセル構造を観察して算出したセルの異方性比を表 1に示す。得られた発泡体 の動的圧縮試験を行い、算出した荷重比 = (F ) / (F )を表 1に示す。さらに、 [0067] Thereafter, the resin temperature is cooled to 200 ° C with an extruder having a diameter of 90 mm connected to the extruder, and the air is released from the die lip of the rectangular slit die provided at the tip of the extruder having a diameter of 90 mm. Extrusion foam having a density of 42 kg / cm 3 was obtained by extrusion. Table 1 shows the anisotropy ratio of the cells calculated by observing the cell structure of the foam obtained by a microscope. The obtained foam was subjected to a dynamic compression test, and the calculated load ratio = (F) / (F) is shown in Table 1. further,
70% 20%  70% 20%
得られた発泡体の水浸漬時の体積変化率、および 100°Cと 120°Cの加熱寸法変化 率の測定結果を表 1に示す。  Table 1 shows the measurement results of the volume change rate of the obtained foam when immersed in water and the heating dimensional change rate at 100 ° C and 120 ° C.
[0068] (実施例 2) [Example 2]
共重合体 (A) /共重合体 (B)の混合比率を 60%/40%に変更し、さらに口径 65 mmの押出機での加熱混練温度を 260°C、口径 90mmでの押出機での冷却温度を 180°Cに変更した以外は、実施例 1と同様の条件にて密度 39kg/cm3の押出発泡 体を得た。顕微鏡により得られた発泡体のセル構造を観察して算出したセルの異方 性比を表 1に示す。得られた発泡体の動的圧縮試験を行い、算出した荷重比 = (F The mixing ratio of copolymer (A) / copolymer (B) was changed to 60% / 40%, and the heat-kneading temperature in an extruder with a diameter of 65 mm was 260 ° C and the extruder with a diameter of 90 mm. Extruded foam having a density of 39 kg / cm 3 was obtained under the same conditions as in Example 1 except that the cooling temperature was changed to 180 ° C. Table 1 shows the anisotropic ratio of the cells calculated by observing the cell structure of the foam obtained by the microscope. The resulting foam was subjected to a dynamic compression test and the calculated load ratio = (F
70 70
) / (F )を表 1に示す。さらに、得られた発泡体の水浸漬時の体積変化率、およ) / (F) is shown in Table 1. Further, the volume change rate of the obtained foam when immersed in water, and
% 20% % 20%
び 100°Cと 120°Cの加熱寸法変化率の測定結果を表 1に示す。なお、実施例 2で使 用した熱可塑性樹脂組成物 (共重合体 (A) /共重合体 (B)の混合比率が 60%/4 0%)を成形して曲げ試験を実施した結果、曲げ破断歪は 0. 49%であった。  Table 1 shows the measurement results of the rate of change in dimensional heating at 100 ° C and 120 ° C. As a result of molding the thermoplastic resin composition used in Example 2 (copolymer (A) / copolymer (B) mixing ratio 60% / 40%) and performing a bending test, The bending fracture strain was 0.49%.
[0069] (実施例 3) [0069] (Example 3)
共重合体 (A) /共重合体 (B)の混合比率を 30%/70%に変更し、さらに口径 65 mmの押出機での加熱混練温度を 240°C、口径 90mmでの押出機での冷却温度を 140°Cに変更した以外は、実施例 1と同様の条件にて密度 28kg/cm3の押出発泡 体を得た。顕微鏡により得られた発泡体のセル構造を観察して算出したセルの異方 性比を表 1に示す。得られた発泡体の動的圧縮試験を行い、算出した荷重比 = (F The mixing ratio of copolymer (A) / copolymer (B) was changed to 30% / 70%, and the heating and kneading temperature in an extruder with a diameter of 65 mm was 240 ° C and the extruder with a diameter of 90 mm Extruded foam having a density of 28 kg / cm 3 was obtained under the same conditions as in Example 1 except that the cooling temperature was changed to 140 ° C. Table 1 shows the anisotropic ratio of the cells calculated by observing the cell structure of the foam obtained by the microscope. The resulting foam was subjected to a dynamic compression test and the calculated load ratio = (F
70 70
) / (F )を表 1に示す。さらに、得られた発泡体の水浸漬時の体積変化率、およ び 100°Cと 120°Cの加熱寸法変化率の測定結果を表 1に示す。なお、実施例 3で使 用した熱可塑性樹脂組成物 (共重合体 (A) /共重合体 (B)の混合比率が 30%/7 0%)を成形して曲げ試験を実施した結果、曲げ破断歪は 0. 74%であった。 ) / (F) is shown in Table 1. Further, the volume change rate of the obtained foam when immersed in water, and Table 1 shows the measurement results of the rate of change in dimensional heating at 100 ° C and 120 ° C. As a result of molding the thermoplastic resin composition used in Example 3 (copolymer (A) / copolymer (B) mixing ratio is 30% / 70%) and conducting a bending test, The bending fracture strain was 0.74%.
[0070] (実施例 4) [0070] (Example 4)
PSジャパン(株)製、ポリスチレン G9401を、口径 65mmの押出機での加熱混練温 度を 200°C、 口径 90mmの押出機での冷却温度を 120°Cに変更した以外は、実施 例 1と同様の条件にて密度 31kg/cm3の押出発泡体を得た。顕微鏡により得られた 発泡体のセル構造を観察して算出したセルの異方性比を表 1に示す。得られた発泡 体の動的圧縮試験を行い、算出した荷重比 = (F ) / (F )を表 1に示す。さらに Except that PS Japan Co., Ltd. polystyrene G9401 was changed to Example 1 except that the heating and kneading temperature in an extruder with a diameter of 65 mm was changed to 200 ° C and the cooling temperature in an extruder with a diameter of 90 mm was changed to 120 ° C. An extruded foam having a density of 31 kg / cm 3 was obtained under the same conditions. Table 1 shows the anisotropy ratio of the cells calculated by observing the cell structure of the foam obtained by the microscope. The obtained foam was subjected to a dynamic compression test, and the calculated load ratio = (F) / (F) is shown in Table 1. further
70% 20%  70% 20%
、得られた発泡体の水浸漬時の体積変化率、および 100°Cと 120°Cの加熱寸法変 化率の測定結果を表 1に示す。なお、実施例 4で使用した熱可塑性樹脂 (PSジャパ ン (株)製、ポリスチレン G9401)を成形して曲げ試験を実施した結果、曲げ破断歪 は 0. 92%であった。  Table 1 shows the measurement results of the volume change rate of the obtained foam when immersed in water and the heat dimensional change rate at 100 ° C and 120 ° C. In addition, as a result of carrying out a bending test after molding the thermoplastic resin (PS Japan Co., Ltd., polystyrene G9401) used in Example 4, the bending fracture strain was 0.92%.
[0071] (比較例 1) [0071] (Comparative Example 1)
実施例 1と同じ方法で得た押出発泡体を、その押出方向、すなわち厚さ方向に直 行する方向に圧縮されるように試験片を切削して動的圧縮試験を行った。また、押出 方向を縦方向としてセル異方性比を算出した。結果を表 1に示す。得られた発泡体 の動的圧縮試験を行い、算出した荷重比 = (F ) / (F )を表 1に示す。さらに、  A test piece was cut so that the extruded foam obtained by the same method as in Example 1 was compressed in the extrusion direction, that is, in the direction perpendicular to the thickness direction, and a dynamic compression test was performed. The cell anisotropy ratio was calculated with the extrusion direction as the longitudinal direction. The results are shown in Table 1. The obtained foam was subjected to a dynamic compression test, and the calculated load ratio = (F) / (F) is shown in Table 1. In addition,
70% 20%  70% 20%
得られた発泡体の水浸漬時の体積変化率、および 100°Cと 120°Cの加熱寸法変化 率の測定結果を表 1に示す。なお、比較例 1で使用した熱可塑性樹脂組成物を成形 して曲げ試験を実施した結果、曲げ破断歪は 0. 49%であった。  Table 1 shows the measurement results of the volume change rate of the obtained foam when immersed in water and the heating dimensional change rate at 100 ° C and 120 ° C. In addition, as a result of molding the thermoplastic resin composition used in Comparative Example 1 and conducting a bending test, the bending fracture strain was 0.49%.
[0072] (比較例 2) [0072] (Comparative Example 2)
実施例 2と同じ方法で得た熱可塑性樹脂組成物 100重量部を単軸押出機に供給 し、溶融混練して一粒あたり重量 0. 8mgの樹脂粒子を得た。  100 parts by weight of the thermoplastic resin composition obtained by the same method as in Example 2 was supplied to a single screw extruder and melt kneaded to obtain 0.8 mg of resin particles per grain.
[0073] 攪拌機のついた 6Lオートクレーブに、得られた熱可塑性樹脂粒子 100部、水 100 部、リン酸カルシウム 0. 2部、 α—ォレフインスルホン酸塩 0. 006部を仕込んだ。次 に、ノルマルブタンを 10部加え、攪拌しながら 125°Cに昇温し、その温度を 9. 5時間 保って熱可塑性樹脂粒子中に発泡剤を含浸させ、発泡性熱可塑性樹脂粒子を得た [0074] 加熱水蒸気発生装置により発生させた 190°Cの水蒸気で 2分 40秒間加熱し、嵩倍 率 25倍の予備発泡粒子を得た。得られた予備発泡粒子を縦 450mm X横 350mm X厚さ 40mmの金型内に充填し、 0. 38MPaの水蒸気で 10秒間加熱して融着させ て成形し、冷却して密度 45kg/m3の発泡成形体を得た。得られた発泡体のセル構 造を顕微鏡により観察して算出したセルの異方性比を表 1に示す。得られた発泡体 の動的圧縮試験を行い、算出した荷重比 = (F ) / (F )を表 1に示す。さらに、 [0073] A 6L autoclave equipped with a stirrer was charged with 100 parts of the obtained thermoplastic resin particles, 100 parts of water, 0.2 part of calcium phosphate, and 0.006 part of α-olefin sulfonate. Next, 10 parts of normal butane was added, the temperature was raised to 125 ° C. while stirring, and the temperature was maintained for 9.5 hours to impregnate the thermoplastic resin particles with a foaming agent to obtain expandable thermoplastic resin particles. The [0074] Heating was performed for 2 minutes and 40 seconds with 190 ° C steam generated by a heated steam generator to obtain pre-expanded particles having a bulk ratio of 25 times. The obtained pre-expanded particles were filled in a mold of 450mm in length X 350mm in width X 40mm in thickness, molded by heating with 0.38MPa steam for 10 seconds, cooled and cooled to a density of 45kg / m 3 The foamed molded product was obtained. Table 1 shows the anisotropy ratio of the cells calculated by observing the cell structure of the obtained foam with a microscope. The obtained foam was subjected to a dynamic compression test, and the calculated load ratio = (F) / (F) is shown in Table 1. further,
70% 20%  70% 20%
得られた発泡体の水浸漬時の体積変化率、および 100°Cと 120°Cの加熱寸法変化 率の測定結果を表 1に示す。なお、比較例 2で使用した熱可塑性樹脂組成物を成形 して曲げ試験を実施した結果、曲げ破断歪は 0. 49%であった。  Table 1 shows the measurement results of the volume change rate of the obtained foam when immersed in water and the heating dimensional change rate at 100 ° C and 120 ° C. The thermoplastic resin composition used in Comparative Example 2 was molded and subjected to a bending test. As a result, the bending fracture strain was 0.49%.
[0075] (比較例 3) [0075] (Comparative Example 3)
ジフエニルメタン一 4, 4 'ージイソシァネートとポリプロピレングリコールを原材料とす る密度が 58kg/cm3の硬質ポリウレタンフォームの動的圧縮試験を行い、算出した 荷重比 = (F ) / {¥ )を表 1に示す。顕微鏡により得られた発泡体のセル構造を A dynamic compression test was conducted on rigid polyurethane foam with a density of 58 kg / cm 3 using 1,4'-diisocyanate and polypropylene glycol as raw materials, and the calculated load ratio = (F) / (¥) Table 1 shows. Cell structure of foam obtained by microscope
70% 20%  70% 20%
観察して算出したセルの異方性比を表 1に示す。さらに、得られた発泡体の水浸漬 時の体積変化率、および 100°Cと 120°Cの加熱寸法変化率の測定結果を表 1に示 す。  Table 1 shows the anisotropy ratio of the cells calculated by observation. Furthermore, Table 1 shows the measurement results of the volume change rate of the obtained foam when immersed in water, and the heating dimensional change rate at 100 ° C and 120 ° C.
[0076] (比較例 4)  [0076] (Comparative Example 4)
ジフエニルメタン 4, 4 'ージイソシァネートとポリプロピレングリコールを原材料とす る密度が 79kg/cm3の硬質ポリウレタンフォームの動的圧縮試験を行い、算出した 荷重比 = (F ) / {¥ )を表 1に示す。顕微鏡により得られた発泡体のセル構造を A dynamic compression test was performed on a rigid polyurethane foam with a density of 79 kg / cm 3 using diphenylmethane 4,4'-diisocyanate and polypropylene glycol as raw materials, and the calculated load ratio = (F) / (¥) Shown in 1. Cell structure of foam obtained by microscope
70% 20%  70% 20%
観察して算出したセルの異方性比を表 1に示す。さらに、得られた発泡体の水浸漬 時の体積変化率、および 100°Cと 120°Cの加熱寸法変化率の測定結果を表 1に示 す。  Table 1 shows the anisotropy ratio of the cells calculated by observation. Furthermore, Table 1 shows the measurement results of the volume change rate of the obtained foam when immersed in water, and the heating dimensional change rate at 100 ° C and 120 ° C.
[0077] [表 1] 加熱寸法変化率(%) 水浸漬時体積 異方性比 (r 70°/。)Z (F2。%ノ [0077] [Table 1] Dimensional change rate during heating (%) Volume anisotropy ratio when immersed in water ( r 70 ° /.) Z (F 2 .
100°C 120°C 増加率 (%) 実施例 1 2.0 1.16 -0.04 -0.10 0.1 実施例 2 2.0 1.01 0.10 -0.37 2.5 実施例 3 1.9 1.19 -0.21 -20 0,3 実施例 4 1.9 1.07 一 45 -68 1.0 比較例 1 0.66 2.20 -0.11 -0.38 2.3 比較例 2 1.0 2.50 -0.09 -0.35 2.4 比較例 3 1.4 0.88 0.42 3.0 8.3 比較例 4 1.4 0.84 0.40 2.9 8.2  100 ° C 120 ° C Increase (%) Example 1 2.0 1.16 -0.04 -0.10 0.1 Example 2 2.0 1.01 0.10 -0.37 2.5 Example 3 1.9 1.19 -0.21 -20 0,3 Example 4 1.9 1.07 One 45- 68 1.0 Comparative Example 1 0.66 2.20 -0.11 -0.38 2.3 Comparative Example 2 1.0 2.50 -0.09 -0.35 2.4 Comparative Example 3 1.4 0.88 0.42 3.0 8.3 Comparative Example 4 1.4 0.84 0.40 2.9 8.2

Claims

請求の範囲 The scope of the claims
[1] 動的圧縮試験に基づく 70%歪時荷重 (F )と 20%歪時の荷重 (F )の荷重比(  [1] Load ratio of 70% strain load (F) and 20% strain load (F) based on dynamic compression test (F)
70% 20%  70% 20%
F ) / {¥ )の値が 0. 70以上 1. 30以下であり、水に 24時間浸したときの体積増 F) / (¥) value is 0.70 or more and 1.30 or less, and volume increase when immersed in water for 24 hours
70% 20% 70% 20%
加率が 5 %以下である熱可塑性樹脂発泡体。  Thermoplastic resin foam having an addition rate of 5% or less.
[2] セル形状の異方性比が 1. 1以上 3. 0以下である請求項 1記載の熱可塑性樹脂発 泡体。 [2] The thermoplastic resin foam according to claim 1, wherein the cell-shaped anisotropy ratio is 1.1 or more and 3.0 or less.
[3] 芳香族ビュル、不飽和ジカルボン酸無水物および N アルキル置換マレイミドから なる共重合体 (A) 80〜30重量%と芳香族ビュル シアン化ビュル共重合体 (B) 20 〜70重量%を混合してなる熱可塑性樹脂組成物を発泡させてなる請求項 1または 2 に記載の熱可塑性樹脂発泡体。  [3] A copolymer consisting of an aromatic bur, an unsaturated dicarboxylic acid anhydride and an N-alkyl-substituted maleimide (A) 80 to 30% by weight and an aromatic bulcyanated bulene copolymer (B) 20 to 70% by weight The thermoplastic resin foam according to claim 1 or 2, wherein a thermoplastic resin composition obtained by mixing is foamed.
[4] 前記芳香族ビュルが、スチレンであることを特徴とする請求項 3に記載の熱可塑性 樹脂発泡体。  4. The thermoplastic resin foam according to claim 3, wherein the aromatic bullet is styrene.
[5] 前記不飽和ジカルボン酸無水物が、無水マレイン酸であることを特徴とする請求項 [5] The unsaturated dicarboxylic acid anhydride is maleic anhydride.
3に記載の熱可塑性樹脂発泡体。 3. The thermoplastic resin foam according to 3.
[6] 前記 N アルキル置換マレイミド力 N フエニルマレイミドであることを特徴とする 請求項 3に記載の熱可塑性樹脂発泡体。 6. The thermoplastic resin foam according to claim 3, wherein the N alkyl-substituted maleimide force is N phenylmaleimide.
[7] 前記シアン化ビュルがアクリロニトリルであることを特徴とする請求項 3に記載の熱 可塑性樹脂発泡体。 7. The thermoplastic resin foam according to claim 3, wherein the cyanide bur is acrylonitrile.
[8] 熱可塑性樹脂発泡体が押出発泡成形法によって製造されたものであることを特徴 とする請求項 1〜7何れか一項に記載の熱可塑性樹脂発泡体。  8. The thermoplastic resin foam according to any one of claims 1 to 7, wherein the thermoplastic resin foam is produced by an extrusion foam molding method.
[9] 請求項 1〜8何れか一項に記載の熱可塑性樹脂発泡体からなる自動車用バンパー コア。 [9] An automobile bumper core comprising the thermoplastic resin foam according to any one of claims 1 to 8.
[10] 請求項 1〜8何れか一項に記載の熱可塑性樹脂発泡体からなる自動車用側突パッ ド、。  [10] An automobile side bump pad comprising the thermoplastic resin foam according to any one of claims 1 to 8.
PCT/JP2007/072249 2006-12-05 2007-11-16 Resin foam suitable as energy absorption material WO2008069013A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008548214A JPWO2008069013A1 (en) 2006-12-05 2007-11-16 Resin foam suitable for energy absorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006327823 2006-12-05
JP2006-327823 2006-12-05

Publications (1)

Publication Number Publication Date
WO2008069013A1 true WO2008069013A1 (en) 2008-06-12

Family

ID=39491917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072249 WO2008069013A1 (en) 2006-12-05 2007-11-16 Resin foam suitable as energy absorption material

Country Status (2)

Country Link
JP (1) JPWO2008069013A1 (en)
WO (1) WO2008069013A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156468A (en) * 2006-12-22 2008-07-10 Denki Kagaku Kogyo Kk Heat-resistant extrusion foam board and production method thereof
DE102009040203A1 (en) * 2009-09-07 2011-03-10 Puren Gmbh Molded foam element with at least two distinguishable geometry structures

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261834A (en) * 1989-03-31 1990-10-24 Tokai Rubber Ind Ltd Water-absorptive resin composition
JPH03203921A (en) * 1989-12-28 1991-09-05 Sumitomo Seika Chem Co Ltd Water absorbing polyurethane foam and cold reservoir
JPH0425532A (en) * 1990-05-21 1992-01-29 Denki Kagaku Kogyo Kk Expandable resin composition and its molded item
WO2003102064A2 (en) * 2002-05-31 2003-12-11 Owens Corning Anisotropic polymer foam
JP2004142260A (en) * 2002-10-24 2004-05-20 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin foam molded body and method for manufacturing it
JP2007169623A (en) * 2005-11-25 2007-07-05 Kaneka Corp Thermoplastic resin foam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261834A (en) * 1989-03-31 1990-10-24 Tokai Rubber Ind Ltd Water-absorptive resin composition
JPH03203921A (en) * 1989-12-28 1991-09-05 Sumitomo Seika Chem Co Ltd Water absorbing polyurethane foam and cold reservoir
JPH0425532A (en) * 1990-05-21 1992-01-29 Denki Kagaku Kogyo Kk Expandable resin composition and its molded item
WO2003102064A2 (en) * 2002-05-31 2003-12-11 Owens Corning Anisotropic polymer foam
JP2004142260A (en) * 2002-10-24 2004-05-20 Kanegafuchi Chem Ind Co Ltd Thermoplastic resin foam molded body and method for manufacturing it
JP2007169623A (en) * 2005-11-25 2007-07-05 Kaneka Corp Thermoplastic resin foam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156468A (en) * 2006-12-22 2008-07-10 Denki Kagaku Kogyo Kk Heat-resistant extrusion foam board and production method thereof
DE102009040203A1 (en) * 2009-09-07 2011-03-10 Puren Gmbh Molded foam element with at least two distinguishable geometry structures

Also Published As

Publication number Publication date
JPWO2008069013A1 (en) 2010-03-18

Similar Documents

Publication Publication Date Title
WO2007099833A1 (en) Styrene-modified polypropylene resin particle, expandable styrene-modified polypropylene resin particle, styrene-modified polypropylene resin foam particle, styrene-modified polypropylene resin foam molded body, and their production methods
JP7326023B2 (en) Thermoplastic elastomer foamed particles and molded products thereof
JP2007084744A (en) Styrene-based resin expandable beads and method for producing the same, and styrene-based resin expansion molded form
WO2011118706A1 (en) Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form
WO2016111017A1 (en) Propylene resin foam particles and foam particle molded article
JP2022127578A (en) Foamed particle and method for producing the same
JP7252859B2 (en) Expanded polypropylene resin particles and expanded polypropylene resin particles
CN112638615B (en) Laminated article
JP5630591B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP5591965B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
WO2008069013A1 (en) Resin foam suitable as energy absorption material
JP2022096231A (en) Polypropylene-based resin foam particle, and foam particle molding
US6214896B1 (en) Water-containing polypropylene resin composition and pre-expanded particles made thereof
JP5026827B2 (en) Expandable polystyrene resin particles and polystyrene resin foam molded article comprising the expandable polystyrene resin particles
JP2013100555A (en) Pre-expanded particle of polyolefin resin, and method for producing the same
US11952474B2 (en) Foam particles
JP4202716B2 (en) Thermoplastic resin foam molding and method for producing the same
JP7225038B2 (en) Expanded polypropylene resin particles and expanded polypropylene resin particles
JP4653321B2 (en) Expandable rubber-modified acrylonitrile / styrene-based resin particles, process for producing the same, and foam molded article
JP2006022138A (en) Preliminary expanded polypropylene-based resin particle
JP5739057B2 (en) Automotive parts
JP2018100380A (en) Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same
JP5220486B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP2007217597A (en) Method for producing propylene-based resin pre-expanded particle
JP2009292919A (en) Energy absorbing component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831979

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008548214

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831979

Country of ref document: EP

Kind code of ref document: A1