JP2022096231A - Polypropylene-based resin foam particle, and foam particle molding - Google Patents

Polypropylene-based resin foam particle, and foam particle molding Download PDF

Info

Publication number
JP2022096231A
JP2022096231A JP2020209224A JP2020209224A JP2022096231A JP 2022096231 A JP2022096231 A JP 2022096231A JP 2020209224 A JP2020209224 A JP 2020209224A JP 2020209224 A JP2020209224 A JP 2020209224A JP 2022096231 A JP2022096231 A JP 2022096231A
Authority
JP
Japan
Prior art keywords
polypropylene
foamed particles
based resin
mass
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020209224A
Other languages
Japanese (ja)
Inventor
拓映 坂村
Takumi Sakamura
肇 太田
Hajime Ota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2020209224A priority Critical patent/JP2022096231A/en
Priority to CN202110276047.0A priority patent/CN113045827B/en
Publication of JP2022096231A publication Critical patent/JP2022096231A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/06CO2, N2 or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

To provide polypropylene-based resin foam particles which enable production of a foam particle molding having good appearance and excellent mechanical physical properties such as compression strength in a wide molding heating temperature range; and polypropylene-based resin foam particles which enable production of a foam particle molding having a desired shape and good appearance even by omitting a cure step.SOLUTION: There is provided a foam particle molding in which cylindrical polypropylene-based resin foam particles having a through hole and foam particles are mutually fused to each other. An average pore diameter d of the foam particles is within a specific range, and a ratio d/D of the average pore diameter d to an average outer diameter D is within a specific range. A polypropylene-based resin constituting the foam particles is an ethylene-propylene-butene copolymer, a butene component content and an ethylene component content are specific amounts, and bending elastic modulus of the polypropylene-based resin is within a specific range.SELECTED DRAWING: None

Description

本発明は、基材樹脂としてエチレン-プロピレン-ブテン共重合体を含むポリプロピレン系樹脂発泡粒子及びポリプロピレン系樹脂発泡粒子成形体に関する。 The present invention relates to polypropylene-based resin foamed particles containing an ethylene-propylene-butene copolymer as a base resin and a polypropylene-based resin foamed particle molded body.

ポリプロピレン系樹脂発泡粒子成形体は、軽量で、緩衝性、剛性等に優れるため種々の用途に用いられている。ポリプロピレン系樹脂発泡粒子成形体は、たとえば、ポリプロピレン系樹脂発泡粒子を成形型内に充填し、スチームで加熱することにより、発泡粒子を二次発泡させると共にその表面を溶融させて相互に融着させて、所望の形状に成形するという型内成形法によって得られる。成形後の発泡粒子成形体は、成形型内で水や空気等で冷却された後成形型から離型される。 Polypropylene-based resin foamed particle molded products are used for various purposes because they are lightweight and have excellent cushioning properties, rigidity, and the like. In the polypropylene-based resin foamed particle molded product, for example, polypropylene-based resin foamed particles are filled in a molding mold and heated with steam to cause secondary foaming of the foamed particles and melt the surfaces thereof to fuse them to each other. It is obtained by an in-mold molding method of molding into a desired shape. The foamed particle molded product after molding is cooled with water, air, or the like in the molding mold and then released from the molding mold.

従来、発泡粒子の型内成形性や発泡粒子成形体の物性を向上させるために、ポリプロピレン系樹脂として、プロピレンと他のモノマーとを共重合した共重合体が用いられることがある。共重合体の中でも、プロピレンと1-ブテンとエチレンとを共重合させた3元共重合体を用いる試みが行われている。たとえば、特許文献1には、特定の融点とメルトインデックスを有するエチレン-プロピレン-1-ブテンランダム共重合体を基材樹脂とするポリプロピレン系樹脂予備発泡粒子が開示されている。また、特許文献2には、1-ブテンからなる構造単位を含むポリプロピレン系樹脂と高融点のポリプロピレン系樹脂とを含むポリプロピレン系樹脂発泡粒子が開示されている。 Conventionally, in order to improve the in-mold moldability of the foamed particles and the physical properties of the foamed particle molded body, a copolymer obtained by copolymerizing propylene with another monomer may be used as the polypropylene-based resin. Among the copolymers, attempts have been made to use a ternary copolymer obtained by copolymerizing propylene, 1-butene and ethylene. For example, Patent Document 1 discloses polypropylene-based resin prefoamed particles using an ethylene-propylene-1-butene random copolymer having a specific melting point and melt index as a base resin. Further, Patent Document 2 discloses polypropylene-based resin foamed particles containing a polypropylene-based resin containing a structural unit composed of 1-butene and a polypropylene-based resin having a high melting point.

型内成形後の発泡粒子成形体を常温で保管すると、型内成形時に発泡粒子成形体の気泡内へ流入していたスチームが気泡中で凝縮し、気泡内が負圧となり、発泡粒子成形体に体積収縮が生じて成形体が大きく変形することがある。そのため、発泡粒子成形体を離型した後に、たとえば60℃から80℃程度の温度に調整された高温雰囲気下で所定時間静置させて発泡粒子成形体の形状を回復させる養生工程が通常は必要である。 When the foamed particle molded body after in-mold molding is stored at room temperature, the steam that has flowed into the bubbles of the foamed particle molded body during in-mold molding condenses in the bubbles, and the inside of the bubbles becomes negative pressure, resulting in the foamed particle molded body. Volume shrinkage may occur and the molded body may be significantly deformed. Therefore, after the foamed particle molded body is released, a curing step is usually required to restore the shape of the foamed particle molded body by allowing it to stand for a predetermined time in a high temperature atmosphere adjusted to a temperature of, for example, about 60 ° C. to 80 ° C. Is.

ポリプロピレン系樹脂発泡粒子成形体の製造においては、養生工程を省略する試みが行われている。たとえば、特許文献3には、発泡芯層と被覆層とからなる発泡粒子を粒子間に空隙を維持したまま融着させる技術が開示されており、特許文献3によれば、養生工程を省略できるとしている。また、特許文献4には、特定の融点、メルトフローインデックス、及びZ平均分子量等を有するポリプロピレン系樹脂を用いた発泡粒子を型内成形する技術が開示されており、特許文献4によれば養生時間を短縮できるとしている。 In the production of polypropylene-based resin foamed particle molded products, attempts have been made to omit the curing step. For example, Patent Document 3 discloses a technique for fusing foamed particles composed of a foam core layer and a coating layer while maintaining voids between the particles, and according to Patent Document 3, the curing step can be omitted. It is supposed to be. Further, Patent Document 4 discloses a technique for in-mold molding of foamed particles using a polypropylene-based resin having a specific melting point, melt flow index, Z average molecular weight, and the like. According to Patent Document 4, curing is performed. It is said that the time can be shortened.

特開平10-316791号公報Japanese Unexamined Patent Publication No. 10-316791 WO2016/60162号WO2016 / 60162 特開2003-39565号公報Japanese Patent Application Laid-Open No. 2003-39565 特開2000-129028号公報Japanese Unexamined Patent Publication No. 2000-129028

ポリプロピレン系樹脂発泡粒子には、広い温度範囲で成形可能であることが求められている。特に、装置の負担軽減や使用エネルギー削減の観点から、より低温で成形可能であることが求められている。また、発泡粒子成形体には、十分な剛性や優れた外観が求められている。さらに、養生工程を省略した場合であっても、剛性や外観の良好な発泡粒子成形体を製造することができるポリプロピレン系樹脂発泡粒子の開発が求められている。 Polypropylene resin foam particles are required to be moldable in a wide temperature range. In particular, from the viewpoint of reducing the burden on the device and reducing the energy used, it is required to be able to mold at a lower temperature. Further, the foamed particle molded body is required to have sufficient rigidity and an excellent appearance. Further, there is a demand for the development of polypropylene-based resin foamed particles capable of producing a foamed particle molded product having good rigidity and appearance even when the curing step is omitted.

特許文献1、2に記載された技術では、成形可能な加熱温度範囲が狭く、また、養生工程を省略すると、発泡粒子成形体が著しく収縮、変形してしまい、外観が良好な発泡粒子成形体を製造することは困難であった。
特許文献3に記載された技術では、養生工程を省略できるものの、成形体の発泡粒子間に空隙が形成されるため、成形体の外観が悪くなる。また、特許文献3の発泡粒子成形体を、たとえば、エネルギー吸収材として用いた場合には、剛性、強度が不十分であった。特許文献4の技術によれば、養生工程を短縮できるものの、養生工程を必要とするものであり、養生工程を省略した場合には、発泡粒子成形体が収縮、変形してしまい、外観の良好な発泡粒子成形体を得ることは困難であった。
In the techniques described in Patent Documents 1 and 2, the heating temperature range that can be molded is narrow, and if the curing step is omitted, the foamed particle molded product is significantly shrunk and deformed, and the foamed particle molded product has a good appearance. Was difficult to manufacture.
In the technique described in Patent Document 3, although the curing step can be omitted, the appearance of the molded product is deteriorated because voids are formed between the foamed particles of the molded product. Further, when the foamed particle molded product of Patent Document 3 is used as, for example, an energy absorbing material, the rigidity and strength are insufficient. According to the technique of Patent Document 4, although the curing process can be shortened, the curing process is required, and if the curing process is omitted, the foamed particle molded body shrinks and deforms, and the appearance is good. It was difficult to obtain a foamed particle molded product.

本発明は、かかる背景に鑑みてなされてものであって、外観が良好であるとともに、圧縮強度などの機械的物性に優れる発泡粒子成形体を、広い成形加熱温度範囲で作製できるポリプロピレン系樹脂発泡粒子を提供しようとするものである。さらに、たとえ養生工程を省略しても、所望の形状を有する外観が良好な発泡粒子成形体を製造することができるポリプロピレン系樹脂発泡粒子を提供しようとするものである。 The present invention has been made in view of the above background, and is a polypropylene-based resin foam capable of producing a foamed particle molded body having a good appearance and excellent mechanical properties such as compressive strength in a wide molding heating temperature range. It is intended to provide particles. Further, it is an object of the present invention to provide polypropylene-based resin foamed particles capable of producing a foamed particle molded product having a desired shape and having a good appearance even if the curing step is omitted.

本発明の一態様は、貫通孔を有する筒形状のポリプロピレン系樹脂発泡粒子であって、
上記発泡粒子の上記貫通孔の平均孔径dが1mm未満であるとともに、上記発泡粒子の平均外径Dに対する上記平均孔径dの比d/Dが0.4以下であり、
上記発泡粒子を構成するポリプロピレン系樹脂がエチレン-プロピレン-ブテン共重合体であり、
上記エチレン-プロピレン-ブテン共重合体におけるブテン成分含有量とエチレン成分含有量との合計量が2質量%以上15質量%以下であるとともに、上記エチレン成分含有量[質量%]に対する上記ブテン成分含有量[質量%]の比が2以上であり、
上記ポリプロピレン系樹脂の曲げ弾性率が800MPa以上である、ポリプロピレン系樹脂発泡粒子にある。
One aspect of the present invention is a tubular polypropylene-based resin foamed particle having a through hole.
The average pore diameter d of the through holes of the foamed particles is less than 1 mm, and the ratio d / D of the average pore diameter d to the average outer diameter D of the foamed particles is 0.4 or less.
The polypropylene-based resin constituting the foamed particles is an ethylene-propylene-butene copolymer.
The total amount of the butene component content and the ethylene component content in the ethylene-propylene-butene copolymer is 2% by mass or more and 15% by mass or less, and the butene component is contained with respect to the ethylene component content [mass%]. The ratio of amount [mass%] is 2 or more,
The polypropylene-based resin foamed particles have a flexural modulus of 800 MPa or more.

本発明の他の態様は、ポリプロピレン系樹脂発泡粒子が相互に融着した発泡粒子成形体であって、連通した空隙を有する、発泡粒子成形体にある。 Another aspect of the present invention is a foamed particle molded body in which polypropylene-based resin foamed particles are fused to each other and has open spaces in which they communicate with each other.

上記ポリプロピレン系樹脂発泡粒子によれば、外観が良好であるとともに、圧縮強度などの機械的物性に優れる発泡粒子成形体を、幅広い範囲の成形加熱温度において作製できる。さらに、養生工程を省略しても外観が良好であるとともに、機械的物性に優れる発泡粒子成形体を製造することができる。 According to the polypropylene-based resin foamed particles, a foamed particle molded body having a good appearance and excellent mechanical properties such as compression strength can be produced in a wide range of molding heating temperatures. Further, even if the curing step is omitted, it is possible to produce a foamed particle molded product having a good appearance and excellent mechanical properties.

また、上記発泡粒子成形体は、外観が良好であるとともに、圧縮強度などの機械的物性に優れる。 In addition, the foamed particle molded product has a good appearance and is excellent in mechanical properties such as compressive strength.

図1は、高温ピークの面積の算出方法を示す説明図である。FIG. 1 is an explanatory diagram showing a method of calculating the area of a high temperature peak.

本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。また、下限として数値又は物性値を表現する場合、その数値又は物性値以上であることを意味し、上限として数値又は物性値を表現する場合、その数値又は物性値以下であることを意味する。また、「重量%」と「質量%」、「重量部」と「質量部」は、それぞれ実質的に同義である。また、以降の説明において、ポリプロピレン系樹脂発泡粒子のことを適宜「発泡粒子」といい、発泡粒子成形体のことを適宜「成形体」という。 In the present specification, when a numerical value or a physical property value is inserted before and after using "-", it is used as including the values before and after that. Further, when expressing a numerical value or a physical property value as a lower limit, it means that it is equal to or more than the numerical value or the physical property value, and when expressing a numerical value or a physical property value as an upper limit, it means that it is equal to or less than the numerical value or the physical property value. Further, "% by weight" and "% by mass", and "parts by weight" and "parts by mass" are substantially synonymous with each other. Further, in the following description, the polypropylene-based resin foamed particles are appropriately referred to as “foamed particles”, and the foamed particle molded body is appropriately referred to as “molded body”.

上記発泡粒子は、貫通孔を有する筒形状であって、平均孔径dが1mm未満であるとともに、平均外径Dに対する平均孔径dの比[d/D]が0.4以下である。また、発泡粒子を構成するポリプロピレン系樹脂の曲げ弾性率が800MPa以上であり、ポリプロピレン系樹脂はエチレン-プロピレン-ブテン共重合体を含有する。エチレン-プロピレン-ブテン共重合体のブテン成分含有量とエチレン成分含有量との合計量は2~15質量%である。エチレン-プロピレン-ブテン共重合体におけるブテン成分含有量Cbuとエチレン成分含有量Cetとの比(具体的には、Cbu/Cet)が2以上である。発泡粒子が上記構成を備えることにより、外観が良好であるとともに、圧縮時の強度にも優れる成形体を幅広い範囲の成形加熱温度条件で製造できる。さらに、養生工程を省略しても、所望の形状を有する外観が良好な成形体を製造することができる。 The foamed particles have a tubular shape having through holes, the average pore diameter d is less than 1 mm, and the ratio [d / D] of the average pore diameter d to the average outer diameter D is 0.4 or less. Further, the bending elastic modulus of the polypropylene-based resin constituting the foamed particles is 800 MPa or more, and the polypropylene-based resin contains an ethylene-propylene-butene copolymer. The total amount of the butene component content and the ethylene component content of the ethylene-propylene-butene copolymer is 2 to 15% by mass. The ratio of the butene component content C bu to the ethylene component content C et in the ethylene-propylene-butene copolymer (specifically, C bu / C et ) is 2 or more. When the foamed particles have the above-mentioned structure, it is possible to produce a molded product having a good appearance and excellent strength at the time of compression under a wide range of molding heating temperature conditions. Further, even if the curing step is omitted, it is possible to produce a molded product having a desired shape and having a good appearance.

(エチレン-プロピレン-ブテン共重合体)
発泡粒子の基材樹脂であるエチレン-プロピレン-ブテン共重合体(以下、単に「共重合体」ともいう。)中のブテン成分含有量とエチレン成分含有量との合計量が2質量%以上15質量%以下であるとともに、ブテン成分含有量とエチレン成分含有量との質量比(ブテン成分含有量/エチレン成分含有量)が2以上である。なお、共重合体中のブテン成分含有量とエチレン成分含有量とプロピレン成分含有量との合計を100質量%とする。
(Ethylene-propylene-butene copolymer)
The total amount of the butene component content and the ethylene component content in the ethylene-propylene-butene copolymer (hereinafter, also simply referred to as “copolymer”) which is the base resin of the foamed particles is 2% by mass or more 15 It is mass% or less, and the mass ratio (butene component content / ethylene component content) between the butene component content and the ethylene component content is 2 or more. The total of the butene component content, the ethylene component content, and the propylene component content in the copolymer is 100% by mass.

エチレン-プロピレン-ブテン共重合体中のブテン成分含有量とエチレン成分含有量との合計量が少なすぎると、低い成形加熱温度で外観が良好な成形体を得ることができないおそれがある。かかる観点から、エチレン-プロピレン-ブテン共重合体中のブテン成分含有量とエチレン成分含有量との合計量は上記のごとく2質量%以上である。より低い成形加熱温度での成形が可能になるという観点から、エチレン-プロピレン-ブテン共重合体中のブテン成分含有量とエチレン成分含有量との合計量は5質量%以上であることが好ましく、6質量%を超えることがより好ましく、8質量%以上であることがさらにより好ましい。一方、エチレン-プロピレン-ブテン共重合体中のブテン成分含有量とエチレン成分含有量との合計量が多すぎると、養生工程を省略した場合には、離型後の成形体の収縮、変形を抑制することが難しくなり、所望の形状を有する外観が良好な成形体を得ることができないおそれがある。かかる観点から、エチレン-プロピレン-ブテン共重合体中のブテン成分含有量とエチレン成分含有量との合計量は上記のごとく15質量%以下である。離型後の成形体の著しい収縮、変形をより抑制し易くするという観点から、エチレン-プロピレン-ブテン共重合体中のブテン成分含有量とエチレン成分含有量との合計量は14質量%以下であることが好ましく、12質量%以下であることがより好ましい。 If the total amount of the butene component content and the ethylene component content in the ethylene-propylene-butene copolymer is too small, it may not be possible to obtain a molded product having a good appearance at a low molding heating temperature. From this point of view, the total amount of the butene component content and the ethylene component content in the ethylene-propylene-butene copolymer is 2% by mass or more as described above. From the viewpoint of enabling molding at a lower molding heating temperature, the total amount of the butene component content and the ethylene component content in the ethylene-propylene-butene copolymer is preferably 5% by mass or more. It is more preferably more than 6% by mass, and even more preferably 8% by mass or more. On the other hand, if the total amount of the butene component content and the ethylene component content in the ethylene-propylene-butene copolymer is too large, if the curing step is omitted, the molded product shrinks and deforms after the mold release. It becomes difficult to suppress it, and there is a possibility that a molded product having a desired shape and having a good appearance cannot be obtained. From this point of view, the total amount of the butene component content and the ethylene component content in the ethylene-propylene-butene copolymer is 15% by mass or less as described above. The total amount of the butene component content and the ethylene component content in the ethylene-propylene-butene copolymer is 14% by mass or less from the viewpoint of making it easier to suppress the remarkable shrinkage and deformation of the molded product after the mold release. It is preferably present, and more preferably 12% by mass or less.

エチレン-プロピレン-ブテン共重合体中の、エチレン成分含有量Cetに対するブテン成分含有量Cbuの比Cbu/Cetは2以上である。比Cbu/Cetが小さすぎると、幅広い範囲の成形加熱温度条件において発泡粒子を型内成形することができなくなるおそれがある。また、養生工程を省略した場合には、離型後、成形体が収縮、変形しやすくなる。成形加熱温度がより広くなるという観点、成形体の収縮、変形をより抑制し易くなるという観点から、比Cbu/Cetは、好ましくは3以上、より好ましくは5以上、さらに好ましくは6以上、さらにより好ましくは7以上、特に好ましくは9以上、最も好ましくは13以上である。一方、比Cbu/Cetの上限は、上記観点からは特に限定されるものではないが、好ましくは50、より好ましくは30、さらに好ましくは20である。 The ratio C bu / C et of the butene component content C bu to the ethylene component content C et in the ethylene-propylene-butene copolymer is 2 or more. If the ratio C bu / C et is too small, it may not be possible to in-mold the foamed particles under a wide range of molding heating temperature conditions. Further, when the curing step is omitted, the molded product tends to shrink and deform after the mold is released. The ratio C bu / C et is preferably 3 or more, more preferably 5 or more, still more preferably 6 or more, from the viewpoint that the molding heating temperature becomes wider and the shrinkage and deformation of the molded product can be more easily suppressed. , Even more preferably 7 or more, particularly preferably 9 or more, and most preferably 13 or more. On the other hand, the upper limit of the ratio C bu / C et is not particularly limited from the above viewpoint, but is preferably 50, more preferably 30, and even more preferably 20.

樹脂の剛性を維持しつつ融点を低下させることができるという観点から、エチレン-プロピレン-ブテン共重合体のブテン成分含有量は、好ましくは2質量%以上であり、より好ましくは5質量%以上であり、さらに好ましくは6質量%以上、さらにより好ましくは7質量%以上であり、特に好ましくは7質量%超であり、最も好ましくは8質量%以上である。一方、エチレン-プロピレン-ブテン共重合体のブテン成分含有量は、15質量%未満であり、好ましくは14質量%以下、より好ましくは12質量%以下である。上記エチレン-プロピレン-ブテン共重合体のブテン成分含有量が上記範囲内であれば、発泡粒子は、成形性と剛性とのバランスにより優れる。共重合体のブテン成分に用いられるブテンは、直鎖のα-オレフィンである1-ブテンが好ましい。また、エチレン-プロピレン-ブテン共重合体は、ランダム共重合体であることが好ましい。 From the viewpoint that the melting point can be lowered while maintaining the rigidity of the resin, the butene component content of the ethylene-propylene-butene copolymer is preferably 2% by mass or more, more preferably 5% by mass or more. It is more preferably 6% by mass or more, further preferably 7% by mass or more, particularly preferably more than 7% by mass, and most preferably 8% by mass or more. On the other hand, the butene component content of the ethylene-propylene-butene copolymer is less than 15% by mass, preferably 14% by mass or less, and more preferably 12% by mass or less. When the butene component content of the ethylene-propylene-butene copolymer is within the above range, the foamed particles are excellent in the balance between moldability and rigidity. The butene used as the butene component of the copolymer is preferably 1-butene, which is a linear α-olefin. Further, the ethylene-propylene-butene copolymer is preferably a random copolymer.

成形性向上の観点から、エチレン-プロピレン-ブテン共重合体のエチレン成分含有量は、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.4質量%以上である。また、養生工程を省略した場合の成形性を向上させるという観点、型内成形時の水冷時間を短縮させるという観点から、エチレン-プロピレン-ブテン共重合体のエチレン成分含有量は、好ましくは5質量%以下、より好ましくは4質量%以下、更に好ましくは3質量%以下、特に好ましくは2質量%以下、最も好ましくは1.2質量%以下である。
また、エチレン-プロピレン-ブテン共重合体のプロピレン成分含有量は、好ましくは85質量%以上、より好ましくは86質量%以上、更に好ましくは88質量%である。エチレン-プロピレン-ブテン共重合体のプロピレン成分含有量は、好ましくは98質量%以下、より好ましくは95質量以下、さらに好ましくは92質量%以下である。
From the viewpoint of improving formability, the ethylene component content of the ethylene-propylene-butene copolymer is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, still more preferably 0.4% by mass or more. Is. Further, from the viewpoint of improving the moldability when the curing step is omitted and shortening the water cooling time during in-mold molding, the ethylene component content of the ethylene-propylene-butene copolymer is preferably 5% by mass. % Or less, more preferably 4% by mass or less, still more preferably 3% by mass or less, particularly preferably 2% by mass or less, and most preferably 1.2% by mass or less.
The propylene component content of the ethylene-propylene-butene copolymer is preferably 85% by mass or more, more preferably 86% by mass or more, and further preferably 88% by mass. The propylene component content of the ethylene-propylene-butene copolymer is preferably 98% by mass or less, more preferably 95% by mass or less, and further preferably 92% by mass or less.

エチレン-プロピレン-ブテン共重合体は、ブテン成分含有量Cbuとエチレン成分含有量Cetとの合計量が6質量%を超え15質量%以下であるとともに、上記ブテン成分含有量Cbuが6質量%以上15質量%未満であることが特に好ましく、さらに比Cbu/Cetが6以上であることが最も好ましい。この場合には、成形性と剛性とのバランスにより優れるとともに、養生工程を省略した場合の成形性がより良好なものとなる。さらに、型内成形時の水冷時間が短くなる。 In the ethylene-propylene-butene copolymer, the total amount of the butene component content C bu and the ethylene component content C et is more than 6% by mass and 15% by mass or less, and the above-mentioned butene component content C bu is 6. It is particularly preferable that it is by mass or more and less than 15% by mass, and it is most preferable that the ratio C bu / C et is 6 or more. In this case, the balance between moldability and rigidity is excellent, and the moldability when the curing step is omitted is better. Further, the water cooling time at the time of in-mold molding is shortened.

エチレン-プロピレン-ブテン共重合体は、エチレン成分、プロピレン成分、及びブテン成分以外のモノマー成分を含んでいてもよいが、実質的にこれら3種のモノマー成分からなることが好ましく、これら3種のモノマー成分のみからなることがより好ましい。
IRスペクトル測定によりこれらモノマー成分の含有量を求めることができる。
The ethylene-propylene-butene copolymer may contain a monomer component other than the ethylene component, the propylene component, and the butene component, but it is preferably composed of these three types of monomer components, and these three types are preferable. It is more preferable that it consists of only a monomer component.
The content of these monomer components can be determined by IR spectrum measurement.

エチレン-プロピレン-ブテン共重合体のエチレン成分、プロピレン成分、ブテン成分は、エチレン-プロピレン-ブテン共重合体におけるエチレン由来の構成単位、プロピレン由来の構成単位、ブテン由来の構成単位をそれぞれ意味する。エチレン成分、プロピレン成分及びブテン成分以外のモノマー成分は、エチレン由来の構成単位、プロピレン由来の構成単位及びブテン由来の構成単位以外のモノマー由来の構成単位を意味する。
また、共重合体中の各モノマー成分の含有量は、共重合体中の各モノマー由来の構成単位の含有量を意味するものとする。
The ethylene component, propylene component, and butene component of the ethylene-propylene-butene copolymer mean a constituent unit derived from ethylene, a constituent unit derived from propylene, and a constituent unit derived from butene in the ethylene-propylene-butene copolymer, respectively. The monomer component other than the ethylene component, the propylene component and the butene component means a constituent unit derived from ethylene, a constituent unit derived from propylene and a constituent unit derived from a monomer other than the constituent unit derived from butene.
Further, the content of each monomer component in the copolymer means the content of the constituent unit derived from each monomer in the copolymer.

発泡粒子を構成するポリプロピレン系樹脂は、本発明の目的効果を阻害しない範囲でエチレン-プロピレン-ブテン共重合体以外の他の重合体を含んでいてもよい。他の重合体としては、エチレン-プロピレンランダム共重体、プロピレン-ブテンランダム共重体、プロピレン単独重合体等のその他のポリプロピレン系樹脂が例示され、また、ポリエチレン系樹脂、ポリスチレン系樹脂等のポリプロピレン系樹脂以外の熱可塑性樹脂が例示される。発泡粒子を構成するポリプロピレン系樹脂中の他の重合体の含有量は、20質量%以下であることが好ましく、10質量%以下であることがより好ましく、5質量%以下であることがさらに好ましく、0、つまり、発泡粒子を構成するポリプロピレン系樹脂が重合体としてエチレン-プロピレン-ブテン共重合体のみを含むことが特に好ましい。 The polypropylene-based resin constituting the foamed particles may contain a polymer other than the ethylene-propylene-butene copolymer as long as the object effect of the present invention is not impaired. Examples of other polymers include other polypropylene-based resins such as ethylene-propylene random copolymer, propylene-butene random copolymer, and propylene homopolymer, and polypropylene-based resins such as polyethylene-based resin and polystyrene-based resin. Examples of thermoplastic resins other than the above. The content of the other polymer in the polypropylene-based resin constituting the foamed particles is preferably 20% by mass or less, more preferably 10% by mass or less, and further preferably 5% by mass or less. , 0, that is, it is particularly preferable that the polypropylene-based resin constituting the foamed particles contains only the ethylene-propylene-butene copolymer as the polymer.

型内成形性と耐熱性を両立させるという観点から、ポリプロピレン系樹脂の融点は、好ましくは135℃以上、より好ましくは136℃以上、さらに好ましくは137℃以上、特に好ましくは138℃以上である。型内成形性向上の観点から、ポリプロピレン系樹脂の融点は、好ましくは145℃以下、より好ましくは142℃以下、更に好ましくは140℃以下である。 From the viewpoint of achieving both in-mold moldability and heat resistance, the melting point of the polypropylene resin is preferably 135 ° C. or higher, more preferably 136 ° C. or higher, still more preferably 137 ° C. or higher, and particularly preferably 138 ° C. or higher. From the viewpoint of improving in-mold moldability, the melting point of the polypropylene resin is preferably 145 ° C. or lower, more preferably 142 ° C. or lower, and further preferably 140 ° C. or lower.

ポリプロピレン系樹脂の融点は、JIS K7121:1987に基づき求められる。具体的には、状態調節としては「(2)一定の熱処理を行なった後、融解温度を測定する場合」を採用し、状態調節された試験片を10℃/minの加熱速度で30℃から200℃まで昇温することによりDSC曲線を取得し、該融解ピークの頂点温度を融点とする。なお、DSC曲線に複数の融解ピークが表れる場合は、最も面積の大きな融解ピークの頂点温度を融点とする。 The melting point of the polypropylene resin is determined based on JIS K7121: 1987. Specifically, "(2) When measuring the melting temperature after performing a certain heat treatment" is adopted as the state adjustment, and the state-adjusted test piece is heated from 30 ° C. at a heating rate of 10 ° C./min. The DSC curve is obtained by raising the temperature to 200 ° C., and the peak temperature of the melting peak is taken as the melting point. When a plurality of melting peaks appear on the DSC curve, the peak temperature of the melting peak having the largest area is used as the melting point.

ポリプロピレン系樹脂のメルトフローレイト(MFR)は、発泡性の観点から、好ましくは2~10g/10分、より好ましくは5~9g/10分である。なお、上記ポリプロピレン系樹脂のMFRは、JIS K7210-1:2014に基づき、試験温度230℃ 、荷重2.16kgの条件で測定される値である。 From the viewpoint of foamability, the melt flow rate (MFR) of the polypropylene-based resin is preferably 2 to 10 g / 10 minutes, more preferably 5 to 9 g / 10 minutes. The MFR of the polypropylene-based resin is a value measured based on JIS K7210-1: 2014 under the conditions of a test temperature of 230 ° C. and a load of 2.16 kg.

発泡粒子は、加熱速度10℃/分で23℃から200℃まで加熱した際に得られるDSC曲線に、ポリプロピレン系樹脂固有の融解による吸熱ピーク(つまり、樹脂固有ピーク)と、その高温側に1以上の融解ピーク(つまり、高温ピーク)とが現れる結晶構造を有することが好ましい。DSC曲線は、発泡粒子1~3mgを試験サンプルとして用い、JIS K7121:1987に準拠した示差走査熱量測定(DSC)により得られる。
樹脂固有ピークとは、発泡粒子を構成するポリプロピレン系樹脂固有の融解による吸熱ピークであり、ポリプロピレン系樹脂が本来有する結晶の融解時の吸熱によるものであると考えられる。一方、樹脂固有ピークの高温側の吸熱ピーク(つまり、高温ピーク)とは、DSC曲線で上記樹脂固有ピークよりも高温側に現れる吸熱ピークである。この高温ピークが現れる場合、樹脂中に二次結晶が存在するものと推定される。なお、上記のように10℃/分の昇温速度で23℃から200℃までの加熱(つまり、第1回目の加熱)を行った後、10℃/分の冷却速度で200℃から23℃まで冷却し、その後再び10℃/分の昇温速度で23℃から200℃までの加熱(つまり、第2回目の加熱)を行ったときに得られるDSC曲線においては、発泡粒子を構成するポリプロピレン系樹脂に固有の融解による吸熱ピークのみが見られるため、樹脂固有ピークと高温ピークとを見分けることができる。この樹脂固有ピークの頂点の温度は、第1回目の加熱と第2回目の加熱とで多少異なる場合があるが、通常、その差は5℃以内である。
The foamed particles have an endothermic peak due to melting (that is, a resin-specific peak) peculiar to polypropylene-based resin and 1 on the high temperature side thereof in the DSC curve obtained when heating from 23 ° C. to 200 ° C. at a heating rate of 10 ° C./min. It is preferable to have a crystal structure in which the above melting peaks (that is, high temperature peaks) appear. The DSC curve is obtained by differential scanning calorimetry (DSC) according to JIS K7121: 1987 using 1 to 3 mg of foamed particles as a test sample.
The resin-specific peak is an endothermic peak due to melting inherent in the polypropylene-based resin constituting the foamed particles, and is considered to be due to the endothermic heat at the time of melting the crystal originally possessed by the polypropylene-based resin. On the other hand, the endothermic peak on the high temperature side of the resin-specific peak (that is, the high-temperature peak) is an endothermic peak that appears on the high-temperature side of the resin-specific peak on the DSC curve. When this high temperature peak appears, it is presumed that secondary crystals are present in the resin. After heating from 23 ° C to 200 ° C at a heating rate of 10 ° C / min (that is, the first heating) as described above, the temperature is 200 ° C to 23 ° C at a cooling rate of 10 ° C / min. In the DSC curve obtained when the mixture was cooled to 30 ° C. and then heated again from 23 ° C. to 200 ° C. at a heating rate of 10 ° C./min (that is, the second heating), the polypropylene constituting the foamed particles was obtained. Since only the endothermic peak due to melting, which is peculiar to the based resin, can be seen, it is possible to distinguish between the resin peculiar peak and the high temperature peak. The temperature of the apex of this resin-specific peak may be slightly different between the first heating and the second heating, but the difference is usually within 5 ° C.

発泡粒子の高温ピークの融解熱量は、好ましくは5~40J/g、より好ましくは7~30J/g、更に好ましくは10~20J/gである。
また、上記高温ピークの融解熱量と、DSC曲線の全融解ピークの融解熱量の比(高温ピークの融解熱量/全融解ピークの融解熱量)は、好ましくは0.05~0.3、より好ましくは0.1~0.25、更に好ましくは0.15~0.2である。
高温ピークの融解熱量及び全融解ピークの融解熱量との比をこのような範囲にすることで、高温ピークとして表れる二次結晶の存在により、発泡粒子は特に機械的強度に優れると共に、型内成形性に優れるものになると考えられる。
ここで、全融解ピークの融解熱量とは、DSC曲線の全ての融解ピークの面積から求められる融解熱量の合計をいう。
The heat of fusion of the high temperature peak of the foamed particles is preferably 5 to 40 J / g, more preferably 7 to 30 J / g, and further preferably 10 to 20 J / g.
The ratio of the heat of melting of the high temperature peak to the heat of melting of the total melting peak of the DSC curve (heat of melting of the high temperature peak / heat of melting of the total melting peak) is preferably 0.05 to 0.3, more preferably. It is 0.1 to 0.25, more preferably 0.15 to 0.2.
By setting the ratio of the heat of fusion of the high temperature peak to the heat of fusion of the total melting peak in such a range, the foamed particles are particularly excellent in mechanical strength due to the presence of secondary crystals appearing as the high temperature peak, and are formed in the mold. It is thought that it will be excellent in sex.
Here, the heat of fusion of the total melting peak means the total amount of heat of melting obtained from the areas of all the melting peaks of the DSC curve.

発泡粒子を構成するポリプロピレン系樹脂の曲げ弾性率が低すぎると、養生工程を省略した場合、成形体が著しく収縮、変形して所望の形状を有する成形体を得ることができないおそれがある。かかる観点から、ポリプロピレン系樹脂の曲げ弾性率は上記のごとく800MPa以上である。養生工程を省略したときの成形体の著しい収縮、変形をより抑制し易くするという観点から、曲げ弾性率は850MPa以上であることが好ましく、880MPa以上であることがさらに好ましく、900MPa以上であることが特に好ましい。また、成形性向上の観点から、曲げ弾性率は、好ましくは1200MPa以下、より好ましくは1100MPa以下、さらに好ましくは1000MPa以下である。
なお、ポリプロピレン系樹脂の曲げ弾性率は、JIS K7171:2008に基づき、求めることができる。
If the flexural modulus of the polypropylene-based resin constituting the foamed particles is too low, the molded body may be significantly shrunk and deformed to obtain a molded body having a desired shape if the curing step is omitted. From this point of view, the flexural modulus of the polypropylene resin is 800 MPa or more as described above. From the viewpoint of making it easier to suppress significant shrinkage and deformation of the molded product when the curing step is omitted, the flexural modulus is preferably 850 MPa or more, more preferably 880 MPa or more, and more preferably 900 MPa or more. Is particularly preferable. From the viewpoint of improving moldability, the flexural modulus is preferably 1200 MPa or less, more preferably 1100 MPa or less, and further preferably 1000 MPa or less.
The flexural modulus of the polypropylene resin can be determined based on JIS K7171: 2008.

発泡粒子は、貫通孔を有する筒形状であり、平均孔径dが1mm未満であるとともに、平均外径Dに対する平均孔径dの比d/Dが0.4以下である。発泡粒子が上記特定のエチレン-プロピレン-ブテン共重合体を含有するポリプロピレン系樹脂を基材樹脂とし、かつ上記特定の貫通孔を有することにより、広い成形加熱温度条件において、外観が良好であるとともに、圧縮時の強度にも優れる成形体を製造することができる。さらに、養生工程を省略した場合であっても、良好な成形体を製造することができる。発泡粒子が貫通孔を有することにより成形性が向上する理由は、成形工程において供給されるスチーム等の加熱媒体が貫通孔を通り発泡粒子群の内部まで行きわたることにより、型内に充填された発泡粒子全体が十分に加熱され、発泡粒子の二次発泡性や融着性が向上するためと考えられる。 The foamed particles have a tubular shape having through holes, the average pore diameter d is less than 1 mm, and the ratio d / D of the average pore diameter d to the average outer diameter D is 0.4 or less. By using a polypropylene-based resin containing the specific ethylene-propylene-butene copolymer as the base resin as the foamed particles and having the specific through holes, the appearance is good under wide molding heating temperature conditions. , It is possible to manufacture a molded product having excellent strength at the time of compression. Further, even if the curing step is omitted, a good molded product can be produced. The reason why the foamed particles have through holes to improve the moldability is that the heating medium such as steam supplied in the molding process passes through the through holes and spreads to the inside of the foamed particles group, so that the mold is filled. It is considered that the entire foamed particles are sufficiently heated to improve the secondary foaming property and the fusion property of the foamed particles.

貫通孔を有する筒形状の発泡粒子は、円柱、角柱等の柱状の発泡粒子の軸方向を貫通する筒孔を少なくとも1つ有することが好ましい。発泡粒子は、円柱状であり、その軸方向を貫通する筒孔を有することがより好ましい。
また、融着性を向上させる観点から、発泡粒子に、その表面を被覆する被覆層を形成してもよい。被覆層は、例えば、発泡粒子を構成するポリプロピレン系樹脂よりも融点の低いポリオレフィン系樹脂から構成されることが好ましい。
The tubular foam particles having through holes preferably have at least one tubular hole penetrating the axial direction of the columnar foam particles such as a cylinder and a prism. It is more preferable that the foamed particles are columnar and have a tubular hole penetrating the axial direction thereof.
Further, from the viewpoint of improving the fusion property, a coating layer covering the surface of the foamed particles may be formed on the foamed particles. The coating layer is preferably composed of, for example, a polyolefin-based resin having a melting point lower than that of the polypropylene-based resin constituting the foamed particles.

発泡粒子が貫通孔を有していない場合には、低い成形加熱温度で成形体を成形することが困難となるおそれがある。また、養生工程を省略した場合において、良好な成形体を製造することが難しくなるおそれがある。一方、発泡粒子が貫通孔を有している場合であっても、平均孔径dが大きすぎる場合には、成形体の外観が低下するおそれがあるとともに、圧縮時の強度が低下するおそれがある。また、型内成形時の発泡粒子の二次発泡性が低下するおそれがある。かかる観点から、発泡粒子の平均孔径dは上記のごとく1mm未満である。成形体の外観がより向上するという観点、圧縮強度がより向上するという観点、発泡粒子の二次発泡性がより向上するという観点から、発泡粒子の平均孔径dは、0.9mm以下であることが好ましく、0.85mm以下であることがより好ましく、0.8mm以下であることがさらに好ましい。なお、製造容易性の観点から、発泡粒子の平均孔径dの下限は、概ね0.2mm以上である。 If the foamed particles do not have through holes, it may be difficult to mold the molded product at a low molding heating temperature. Further, when the curing step is omitted, it may be difficult to produce a good molded product. On the other hand, even when the foamed particles have through holes, if the average pore diameter d is too large, the appearance of the molded product may be deteriorated and the strength at the time of compression may be deteriorated. .. In addition, the secondary foamability of the foamed particles during in-mold molding may decrease. From this point of view, the average pore size d of the foamed particles is less than 1 mm as described above. The average pore size d of the foamed particles is 0.9 mm or less from the viewpoint of further improving the appearance of the molded body, further improving the compressive strength, and further improving the secondary foamability of the foamed particles. Is more preferable, 0.85 mm or less is more preferable, and 0.8 mm or less is further preferable. From the viewpoint of ease of manufacture, the lower limit of the average pore size d of the foamed particles is approximately 0.2 mm or more.

発泡粒子の貫通孔の平均孔径dは、以下のように求められる。発泡粒子群から無作為に選択した50個以上の発泡粒子を、切断面の面積が最大となる位置で、貫通孔の貫通方向に対して垂直に切断する。各発泡粒子の切断面の写真撮影をし、貫通孔の部分の断面積(具体的には、開口面積)を求め、その面積と同じ面積を有する仮想真円の直径を算出し、これらを算術平均した値を、発泡粒子の貫通孔の平均孔径dとする。 The average pore diameter d of the through holes of the foamed particles is obtained as follows. Fifty or more foamed particles randomly selected from the foamed particle group are cut at a position where the area of the cut surface is maximum, perpendicular to the penetrating direction of the through hole. A photograph of the cut surface of each foamed particle is taken, the cross-sectional area (specifically, the opening area) of the through hole portion is obtained, the diameter of a virtual perfect circle having the same area as the area is calculated, and these are arithmetically performed. The average value is taken as the average pore diameter d of the through holes of the foamed particles.

発泡粒子の成形型への充填性を高めるとともに、成形体の剛性を高める観点から、発泡粒子の平均外径Dは、好ましくは2mm以上、より好ましくは2.5mm以上、更に好ましくは3mm以上であり、そして、好ましくは5mm以下、より好ましくは4.5mm以下、更に好ましくは4.3mm以下である。 The average outer diameter D of the foamed particles is preferably 2 mm or more, more preferably 2.5 mm or more, still more preferably 3 mm or more, from the viewpoint of increasing the filling property of the foamed particles into the mold and increasing the rigidity of the molded product. Yes, and preferably 5 mm or less, more preferably 4.5 mm or less, still more preferably 4.3 mm or less.

発泡粒子の平均外径Dに対する上記平均孔径dの比d/Dが大きすぎる場合には、成形体の外観が低下するおそれがあるとともに、圧縮時の強度が低下するおそれがある。また、この場合には、型内成形時の発泡粒子の二次発泡性が低下するおそれがある。かかる観点から、比d/Dは上記のごとく0.4以下である。成形体の外観がより良好になるという観点、圧縮強度がより向上するという観点、二次発泡性がより向上するという観点から、d/Dは、0.35以下であることが好ましく、0.3以下であることがより好ましく、0.25以下であることがさらに好ましく、0.2未満であることが特に好ましい。なお、比d/Dは、製造容易性の観点から、0.1以上であることが好ましい。 If the ratio d / D of the average pore diameter d to the average outer diameter D of the foamed particles is too large, the appearance of the molded body may be deteriorated and the strength at the time of compression may be deteriorated. Further, in this case, the secondary foamability of the foamed particles at the time of in-mold molding may decrease. From this point of view, the ratio d / D is 0.4 or less as described above. From the viewpoint of improving the appearance of the molded product, improving the compressive strength, and further improving the secondary foamability, the d / D is preferably 0.35 or less, and 0. It is more preferably 3 or less, further preferably 0.25 or less, and particularly preferably less than 0.2. The ratio d / D is preferably 0.1 or more from the viewpoint of ease of manufacture.

発泡粒子の平均外径Dは、以下のように求められる。発泡粒子群から無作為に選択した50個以上の発泡粒子を、切断面の面積が最大となる位置で、貫通孔の貫通方向に対して垂直に切断する。各発泡粒子の切断面の写真撮影をし、発泡粒子の断面積(具体的には、貫通孔の開口部分も含む断面積)を求め、その面積と同じ面積を有する仮想真円の直径を算出し、これらの算術平均した値を、発泡粒子の平均外径Dとする。 The average outer diameter D of the foamed particles is determined as follows. Fifty or more foamed particles randomly selected from the foamed particle group are cut at a position where the area of the cut surface is maximum, perpendicular to the penetrating direction of the through hole. A photograph of the cut surface of each foamed particle is taken, the cross-sectional area of the foamed particle (specifically, the cross-sectional area including the opening of the through hole) is obtained, and the diameter of a virtual perfect circle having the same area as the area is calculated. Then, the calculated average value is taken as the average outer diameter D of the foamed particles.

発泡粒子の肉厚tの平均値は1.2mm以上2mm以下であることが好ましい。該肉厚tの平均値がこの範囲内であれば、発泡粒子の肉厚が十分に厚いため、型内成形時の二次発泡性がより向上する。また、外力に対して発泡粒子がより潰れにくくなり、成形体の圧縮応力がより向上するという観点から、発泡粒子の平均肉厚tは、より好ましくは1.3mm以上、さらに好ましくは1.5mm以上である。 The average value of the wall thickness t of the foamed particles is preferably 1.2 mm or more and 2 mm or less. When the average value of the wall thickness t is within this range, the wall thickness of the foamed particles is sufficiently thick, so that the secondary foamability at the time of in-mold molding is further improved. Further, from the viewpoint that the foamed particles are less likely to be crushed by an external force and the compressive stress of the molded body is further improved, the average wall thickness t of the foamed particles is more preferably 1.3 mm or more, still more preferably 1.5 mm. That is all.

発泡粒子の肉厚tは、発泡粒子の表面(つまり、外表面)から貫通孔の外縁(つまり、発泡粒子の内表面)までの距離であり、下記式(1)により求められる値である。
t=(D-d)/2 ・・・(1)
d:貫通孔の平均孔径(mm)
D:発泡粒子の平均外径(mm)
The wall thickness t of the foamed particles is the distance from the surface of the foamed particles (that is, the outer surface) to the outer edge of the through hole (that is, the inner surface of the foamed particles), and is a value obtained by the following formula (1).
t = (Dd) / 2 ... (1)
d: Average hole diameter (mm) of through holes
D: Average outer diameter (mm) of foamed particles

また、発泡粒子の平均外径Dに対する平均肉厚tの比t/Dは0.35以上0.5以下であることが好ましい。t/Dが上記範囲内であれば、発泡粒子の型内成形において、発泡粒子の充填性がよく、また、二次発泡性をより向上させることができる。したがって、剛性に優れる成形体をより低い成形加熱温度で製造することができる。 Further, the ratio t / D of the average wall thickness t to the average outer diameter D of the foamed particles is preferably 0.35 or more and 0.5 or less. When t / D is within the above range, the filling property of the foamed particles is good and the secondary foaming property can be further improved in the in-mold molding of the foamed particles. Therefore, a molded product having excellent rigidity can be manufactured at a lower molding heating temperature.

成形体の軽量性と剛性とのバランスの観点から、発泡粒子の見掛け密度は、10kg/m3以上150kg/m3以下であることが好ましく、より好ましくは15kg/m3以上100kg/m3以下、さらに好ましくは20kg/m3以上80kg/m3以下である。従来、特に見掛け密度の小さい成形体を製造する場合には、成形体が離型後に著しく変形しやすく、養生工程を省略することは困難であった。これに対し、本開示における発泡粒子は、見掛け密度が小さい場合であっても、養生工程を省略することが可能であり、無養生成形により良好な成形体を製造することができる。無養生成形は、型内成形後に養生を行わない成形方法のことを意味する。 From the viewpoint of the balance between the lightness and rigidity of the molded body, the apparent density of the foamed particles is preferably 10 kg / m 3 or more and 150 kg / m 3 or less, and more preferably 15 kg / m 3 or more and 100 kg / m 3 or less. More preferably, it is 20 kg / m 3 or more and 80 kg / m 3 or less. Conventionally, particularly in the case of producing a molded product having a low apparent density, the molded product is remarkably easily deformed after mold release, and it is difficult to omit the curing step. On the other hand, in the foamed particles in the present disclosure, even when the apparent density is small, the curing step can be omitted, and a better molded product can be produced in the non-curing form. The non-curing form means a molding method in which curing is not performed after in-mold molding.

発泡粒子の見掛け密度は、23℃のアルコール(例えばエタノール)を入れたメスシリンダー内に、相対湿度50%、23℃、1atmの条件にて1日放置した発泡粒子群(発泡粒子群の重量W(g))を、金網などを使用して沈め、水位の上昇分から発泡粒子群の体積V(L)を求め、発泡粒子群の重量を発泡粒子群の体積で除し(W/V)、単位を[kg/m3]に換算することにより求めることができる。 The apparent density of the foamed particles is such that the foamed particles are left in a measuring cylinder containing alcohol (for example, ethanol) at 23 ° C. at a relative humidity of 50%, 23 ° C., and 1 atm for one day (weight W of the foamed particles). (G)) is submerged using a wire net or the like, the volume V (L) of the foamed particle group is obtained from the rising water level, and the weight of the foamed particle group is divided by the volume of the foamed particle group (W / V). It can be obtained by converting the unit into [kg / m 3 ].

成形体の剛性をより高める観点、外観をより良好なものとする観点から、発泡粒子の嵩密度に対する発泡粒子の見掛け密度の比(つまり、見掛け密度/嵩密度)は、好ましくは1.7以上であり、そして、好ましくは2.3以下、より好ましくは2.1以下、さらに好ましくは1.9以下である。 The ratio of the apparent density of the foamed particles to the bulk density of the foamed particles (that is, the apparent density / bulk density) is preferably 1.7 or more from the viewpoint of further increasing the rigidity of the molded body and improving the appearance. And, preferably 2.3 or less, more preferably 2.1 or less, still more preferably 1.9 or less.

発泡粒子の嵩密度は、以下のように求められる。発泡粒子群から発泡粒子を無作為に取り出して容積1Lのメスシリンダーに入れ、自然堆積状態となるように多数の発泡粒子を1Lの目盛まで収容し、収容された発泡粒子の質量W2[g]を収容体積V2(1L])で除して(W2/V2)、単位を[kg/m3]に換算することにより、発泡粒子の嵩密度が求められる。 The bulk density of the foamed particles is determined as follows. Foamed particles were randomly taken out from the foamed particle group and placed in a measuring cylinder having a volume of 1 L, and a large number of foamed particles were accommodated up to a scale of 1 L so as to be in a naturally deposited state. Is divided by the accommodating volume V2 (1L]) (W2 / V2) and the unit is converted to [kg / m 3 ] to obtain the bulk density of the foamed particles.

発泡粒子は、型内成形性に優れ、広い範囲の成形加熱温度で良好な成形体を製造することができる。さらに、養生工程を省略しても成形体が著しく収縮、変形することなく良好な成形体を製造することができる。上記発泡粒子が、養生工程を省略しても良好な成形体を製造することができる理由は、明らかではないが、以下のように考えられる。 The foamed particles have excellent in-mold moldability, and a good molded product can be produced at a wide range of molding heating temperatures. Further, even if the curing step is omitted, a good molded product can be manufactured without the molded product being significantly shrunk or deformed. The reason why the foamed particles can produce a good molded product even if the curing step is omitted is not clear, but it is considered as follows.

発泡粒子は、曲げ弾性率が特定以上のポリプロピレン系樹脂を基材樹脂としている。したがって、離型後に成形体が収縮することを抑制しやすく、寸法変化が抑制されると考えられる。また、発泡粒子が、共重合体組成が特定範囲のエチレン-プロピレン-ブテン共重合体から構成されているとともに、所定の形状の貫通孔を有することにより、より低い成形圧で成形することが可能である。そのため、型内成形においてスチーム等の加熱媒体により発泡粒子が受ける熱量を低く抑えることができるため、成形体の熱収縮による寸法変化が抑制されると考えられる。さらに、成形体が発泡粒子の貫通孔に由来する連通した微小な空隙を有すると、離型後速やかに成形体内部の気泡まで空気が流入し、成形体全体の内圧が高められる結果、成形体の寸法が早期に安定化しやすくなると考えられる。
以上の理由により、発泡粒子が、養生工程を省略しても成形体の寸法が安定し、良好な成形体を製造することができるものとなると考えられる。
The foamed particles are made of a polypropylene-based resin having a bending elastic modulus of a specific value or higher as a base resin. Therefore, it is considered that it is easy to suppress the shrinkage of the molded body after the mold release, and the dimensional change is suppressed. Further, the foamed particles are composed of an ethylene-propylene-butene copolymer having a copolymer composition in a specific range and have through holes having a predetermined shape, so that the foamed particles can be molded at a lower molding pressure. Is. Therefore, it is considered that the amount of heat received by the foamed particles by the heating medium such as steam in the in-mold molding can be suppressed to a low level, and the dimensional change due to the heat shrinkage of the molded body can be suppressed. Further, when the molded body has small air gaps derived from the through holes of the foamed particles, air immediately flows into the bubbles inside the molded body after the mold is released, and as a result, the internal pressure of the entire molded body is increased, and as a result, the molded body is formed. It is thought that the dimensions of the above can be easily stabilized at an early stage.
For the above reasons, it is considered that the foamed particles can produce a good molded product with stable dimensions even if the curing step is omitted.

[発泡粒子の製造方法]
発泡粒子は、たとえば、上記エチレン-プロピレン-ブテン共重合体を基材樹脂とするポリプロピレン系樹脂粒子を分散媒(例えば、液体)に分散させ、樹脂粒子に発泡剤を含浸させ、発泡剤を含む樹脂粒子を低圧下に放出する方法(つまり、分散媒放出発泡方法)により製造することができる。具体的には、エチレン-プロピレン-ブテン共重合体を基材樹脂とするポリプロピレン系樹脂粒子を、密閉容器内で分散媒に分散させ、加熱後、発泡剤を圧入して樹脂粒子に発泡剤を含浸させることが好ましい。その後、一定温度にて二次結晶を成長させる保持工程を経た後、密閉容器内の内容物を低圧下に放出することにより発泡剤を含む樹脂粒子を発泡させて発泡粒子を得ることが好ましい。
[Manufacturing method of foamed particles]
The foamed particles include, for example, polypropylene-based resin particles using the ethylene-propylene-butene copolymer as a base resin in a dispersion medium (for example, a liquid), the resin particles are impregnated with a foaming agent, and the foaming agent is contained. It can be produced by a method of discharging resin particles under low pressure (that is, a method of foaming by releasing a dispersion medium). Specifically, polypropylene-based resin particles using an ethylene-propylene-butene copolymer as a base resin are dispersed in a dispersion medium in a closed container, and after heating, a foaming agent is press-fitted to apply a foaming agent to the resin particles. It is preferably impregnated. Then, after undergoing a holding step of growing secondary crystals at a constant temperature, it is preferable to foam the resin particles containing a foaming agent by releasing the contents in the closed container under low pressure to obtain foamed particles.

(ポリプロピレン系樹脂粒子の製造)
発泡粒子の製造に用いられる樹脂粒子は、例えば、次のようにして製造される。まず、押出機内に基材樹脂を供給し、加熱、混練して樹脂溶融物とする。基材樹脂は、エチレン-プロピレン-ブテン共重合体であり、例えば、押出機内で気泡核剤等の添加剤が必要に応じて配合される。その後、押出機先端に付設されたダイの小孔から、樹脂溶融物を、貫通孔を有する筒形状のストランド状に押し出し、冷却させてカットすることにより樹脂粒子を得ることができる。カット方式は、ストランドカット方式、ホットカット方式、水中カット方式等から選択することができる。このようにして、貫通孔を有する筒形状の非発泡状態のポリプロピレン系樹脂粒子を得ることができる。
(Manufacturing of polypropylene resin particles)
The resin particles used for producing the foamed particles are produced, for example, as follows. First, the base resin is supplied into the extruder, heated and kneaded to obtain a resin melt. The base resin is an ethylene-propylene-butene copolymer, and for example, an additive such as a bubble nucleating agent is blended in the extruder as needed. After that, the resin melt can be obtained by extruding the resin melt into a tubular strand shape having through holes from the small holes of the die attached to the tip of the extruder, cooling the mixture, and cutting the resin particles. The cutting method can be selected from a strand cutting method, a hot cutting method, an underwater cutting method and the like. In this way, tubular non-foamed polypropylene-based resin particles having through holes can be obtained.

樹脂粒子の粒子径は、好ましくは0.1~3.0mm、より好ましくは0.3~1.5mmである。また、樹脂粒子の長さ/直径(具体的には外径)比は、好ましくは0.5~5.0、より好ましくは1.0~3.0である。また、1個当たりの平均質量(無作為に選んだ200個の粒子の質量から求める)は、0.1~20mgとなるように調製されることが好ましく、より好ましくは0.2~10mg、更に好ましくは0.3~5mg、特に好ましくは0.4~2mgである。 The particle size of the resin particles is preferably 0.1 to 3.0 mm, more preferably 0.3 to 1.5 mm. The length / diameter (specifically, outer diameter) ratio of the resin particles is preferably 0.5 to 5.0, and more preferably 1.0 to 3.0. The average mass per particle (determined from the mass of 200 randomly selected particles) is preferably adjusted to be 0.1 to 20 mg, more preferably 0.2 to 10 mg. It is more preferably 0.3 to 5 mg, and particularly preferably 0.4 to 2 mg.

なお、ストランドカット法における、樹脂粒子の粒子径、長さ/直径比や平均質量の調製は、樹脂溶融物を押出す際に、押出速度、引き取り速度、カッタースピードなどを適宜変えて切断することにより行うことができる。 In the strand cut method, the particle diameter, length / diameter ratio, and average mass of the resin particles are prepared by appropriately changing the extrusion speed, take-up speed, cutter speed, etc. when extruding the resin melt. Can be done by.

(発泡粒子の製造)
上記のようにして得られた樹脂粒子を密閉容器内で分散させるための分散媒(具体的には液体)としては水性分散媒が用いられる。該水性分散媒は、水を主成分とする分散媒である。水性分散媒における水の割合は、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上である。水性分散媒中の水以外の分散媒としては、エチレングリコール、グリセリン、メタノール、エタノール等が挙げられる。
(Manufacturing of foamed particles)
An aqueous dispersion medium is used as a dispersion medium (specifically, a liquid) for dispersing the resin particles obtained as described above in a closed container. The aqueous dispersion medium is a dispersion medium containing water as a main component. The proportion of water in the aqueous dispersion medium is preferably 60% by mass or more, more preferably 70% by mass or more, and further preferably 80% by mass or more. Examples of the dispersion medium other than water in the aqueous dispersion medium include ethylene glycol, glycerin, methanol, ethanol and the like.

樹脂粒子には、必要に応じて、気泡調製剤、結晶核剤、着色剤、難燃剤、難燃助剤、可塑剤、帯電防止剤、酸化防止剤、紫外線防止剤、光安定剤、導電性フィラー、抗菌剤等の添加剤を添加できる。気泡調製剤としては、タルク、マイカ、ホウ酸亜鉛、炭酸カルシウム、シリカ、酸化チタン、石膏、ゼオライト、ホウ砂、水酸化アルミニウム、カーボン等の無機粉体;リン酸系核剤、フェノール系核剤、アミン系核剤、ポリフッ化エチレン系樹脂粉末等の有機粉体が挙げられる。気泡調製剤を添加する場合、樹脂粒子中の気泡調製剤の含有量は、ポリプロピレン系樹脂100質量部に対して、好ましくは0.01~1質量部である。 Resin particles include bubble preparation agents, crystal nucleating agents, colorants, flame retardants, flame retardants, plasticizers, antistatic agents, antioxidants, UV inhibitors, light stabilizers, and conductive materials, as required. Additives such as fillers and antibacterial agents can be added. Inorganic powders such as talc, mica, zinc borate, calcium carbonate, silica, titanium oxide, gypsum, zeolite, boric acid, aluminum hydroxide, and carbon; phosphoric acid-based nucleating agents and phenol-based nucleating agents. , Amine-based nucleating agent, organic powder such as polyfluoroethylene-based resin powder, and the like. When the bubble adjusting agent is added, the content of the bubble adjusting agent in the resin particles is preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polypropylene-based resin.

上記分散媒放出発泡方法においては、容器内で加熱されたポリプロピレン系樹脂粒子同士が容器内で互いに融着しないように、分散媒体中に分散剤を添加することが好ましい。分散剤としては、ポリプロピレン系樹脂粒子の容器内での融着を防止するものであればよく、有機系、無機系を問わず使用可能であるが、取り扱いの容易さから微粒状無機物が好ましい。分散剤としては、例えば、アムスナイト、カオリン、マイカ、クレー等の粘土鉱物が挙げられる。粘土鉱物は、天然のものであっても、合成されたものであってもよい。また、分散剤としては、酸化アルミニウム、酸化チタン、塩基性炭酸マグネシウム、塩基性炭酸亜鉛、炭酸カルシウム、酸化鉄等が挙げられる。分散剤は、1種または2種以上が使用される。これらの中でも分散剤としては粘土鉱物を用いることが好ましい。分散剤は、樹脂粒子100質量部当たり0.001~5質量部程度添加することが好ましい。 In the dispersion medium release foaming method, it is preferable to add a dispersant to the dispersion medium so that the polypropylene-based resin particles heated in the container do not fuse with each other in the container. The dispersant may be any one that prevents the polypropylene-based resin particles from fusing in the container, and can be used regardless of whether it is an organic-based or an inorganic-based dispersant, but a fine-grained inorganic substance is preferable because of its ease of handling. Examples of the dispersant include clay minerals such as amsunite, kaolin, mica, and clay. Clay minerals may be natural or synthetic. Examples of the dispersant include aluminum oxide, titanium oxide, basic magnesium carbonate, basic zinc carbonate, calcium carbonate, iron oxide and the like. One or more dispersants are used. Among these, it is preferable to use clay mineral as the dispersant. The dispersant is preferably added in an amount of about 0.001 to 5 parts by mass per 100 parts by mass of the resin particles.

なお、分散剤を使用する場合、分散助剤としてドデシルベンゼンスルホン酸ナトリウム、アルキルベンゼンスルホン酸ナトリウム、ラウリル硫酸ナトリウム、オレイン酸ナトリウム等のアニオン系界面活性剤を併用することが好ましい。上記分散助剤の添加量は、上記樹脂粒子100質量部当たり、0.001~1質量部とすることが好ましい。 When a dispersant is used, it is preferable to use an anionic surfactant such as sodium dodecylbenzene sulfonate, sodium alkylbenzene sulfonate, sodium lauryl sulfate, and sodium oleate as a dispersion aid. The amount of the dispersion aid added is preferably 0.001 to 1 part by mass per 100 parts by mass of the resin particles.

ポリプロピレン系樹脂粒子を発泡させるための発泡剤としては、物理発泡剤を用いることが好ましい。物理発泡剤は、無機系物理発泡剤と有機系物理発泡剤が挙げられ、無機系物理発泡剤としては、二酸化炭素、空気、窒素、ヘリウム、アルゴン等が挙げられる。また、有機系物理発泡剤としては、プロパン、ブタン、ヘキサン等の脂肪族炭化水素、シクロペンタン、シクロヘキサン等の環式脂肪族炭化水素、クロロフルオロメタン、トリフルオロメタン、1,1-ジフルオロメタン、1-クロロ-1,1-ジクロロエタン、1,2,2,2-テトラフルオロエタン、メチルクロライド、エチルクロライド、メチレンクロライド等のハロゲン化炭化水素等が挙げられる。なお、物理発泡剤は単独で用いても、あるいは二種以上を混合して用いてもよい。また、無機系物理発泡剤と有機系物理発泡剤とを混合して用いることもできる。環境に対する負荷や取扱い性の観点から、好ましくは無機系物理発泡剤、より好ましくは二酸化炭素が用いられる。有機系物理発泡剤を用いる場合には、ポリプロピレン系樹脂への溶解性、発泡性の観点から、n-ブタン、i-ブタン、n-ペンタン、i-ペンタンを使用することが好ましい。 As a foaming agent for foaming polypropylene-based resin particles, it is preferable to use a physical foaming agent. Examples of the physical foaming agent include an inorganic physical foaming agent and an organic physical foaming agent, and examples of the inorganic physical foaming agent include carbon dioxide, air, nitrogen, helium, and argon. Examples of the organic physical foaming agent include aliphatic hydrocarbons such as propane, butane and hexane, cyclic aliphatic hydrocarbons such as cyclopentane and cyclohexane, chlorofluoromethane, trifluoromethane, 1,1-difluoromethane and 1 -Halogenated hydrocarbons such as chloro-1,1-dichloroethane, 1,2,2,2-tetrafluoroethane, methyl chloride, ethyl chloride, methylene chloride and the like can be mentioned. The physical foaming agent may be used alone or in combination of two or more. Further, an inorganic physical foaming agent and an organic physical foaming agent can be mixed and used. From the viewpoint of environmental load and handleability, an inorganic physical foaming agent is preferably used, and carbon dioxide is more preferable. When an organic physical foaming agent is used, it is preferable to use n-butane, i-butane, n-pentane, and i-pentane from the viewpoint of solubility in polypropylene resin and foamability.

ポリプロピレン系樹脂粒子100質量部に対する発泡剤の添加量は、好ましくは0.1~30質量部、より好ましくは0.5~15質量部である。 The amount of the foaming agent added to 100 parts by mass of the polypropylene-based resin particles is preferably 0.1 to 30 parts by mass, and more preferably 0.5 to 15 parts by mass.

発泡粒子の製造工程において、樹脂粒子に発泡剤を含浸させる方法としては、樹脂粒子を密閉容器内の水性分散媒中に分散させ、加熱しながら、発泡剤を圧入し、樹脂粒子に発泡剤を含浸させる方法が好ましく用いられる。 In the process of manufacturing foamed particles, as a method of impregnating the resin particles with a foaming agent, the resin particles are dispersed in an aqueous dispersion medium in a closed container, the foaming agent is press-fitted while heating, and the foaming agent is applied to the resin particles. The impregnation method is preferably used.

発泡時の密閉容器内圧は0.5MPa(G:ゲージ圧)以上であることが好ましい。一方、密閉容器内圧は4.0MPa(G)以下であることが好ましい。上記範囲内であれば、密閉容器の破損や爆発等のおそれがなく安全に発泡粒子を製造することができる。 The internal pressure of the closed container at the time of foaming is preferably 0.5 MPa (G: gauge pressure) or more. On the other hand, the internal pressure of the closed container is preferably 4.0 MPa (G) or less. Within the above range, foamed particles can be safely produced without fear of damage or explosion of the closed container.

発泡粒子製造工程における水性分散媒の昇温を、1~5℃/分で行うことで、発泡時の温度も適切な範囲とすることができる。 By raising the temperature of the aqueous dispersion medium in the foamed particle manufacturing step at 1 to 5 ° C./min, the temperature at the time of foaming can be set in an appropriate range.

示差走査熱量測定(DSC)によるDSC曲線に、樹脂固有の融解ピーク(樹脂固有ピーク)とその高温側に1以上の融解ピーク(高温ピーク)とが現れる結晶構造を有する発泡粒子は、例えば、次のようにして得られる。 Foamed particles having a crystal structure in which a resin-specific melting peak (resin-specific peak) and one or more melting peaks (high-temperature peak) appear on the high-temperature side of the DSC curve by differential scanning calorimetry (DSC) are, for example, as follows. It is obtained as follows.

発泡粒子製造工程における加熱時に、(ポリプロピレン系樹脂の融点-20℃)以上、(ポリプロピレン系樹脂の融解終了温度)未満の温度で十分な時間、好ましくは10~60分程度保持する一段保持工程を行う。その後、(ポリプロピレン系樹脂の融点-15℃)から(ポリプロピレン系樹脂の融解終了温度+10℃)の温度に調節する。そして、必要により、その温度でさらに十分な時間、好ましくは10~60分程度保持する二段保持工程を行う。次いで、発泡剤を含む発泡性樹脂粒子を密閉容器内から低圧下に放出して発泡させることにより、上述の結晶構造を有する発泡粒子を得ることができる。発泡は、密閉容器内を(ポリプロピレン系樹脂の融点-10℃)以上で行われることが好ましく、(ポリプロピレン系樹脂の融点)以上(ポリプロピレン系樹脂の融点+20℃)以下で行われることがより好ましい。 A one-stage holding step of holding at a temperature equal to or higher than (melting point of polypropylene resin -20 ° C) and lower than (melting end temperature of polypropylene resin) for a sufficient time, preferably about 10 to 60 minutes, during heating in the foamed particle manufacturing step. conduct. Then, the temperature is adjusted from (melting point of polypropylene resin −15 ° C.) to (melting end temperature of polypropylene resin + 10 ° C.). Then, if necessary, a two-stage holding step of holding at that temperature for a further sufficient time, preferably about 10 to 60 minutes is performed. Next, the effervescent resin particles containing the effervescent agent are discharged from the closed container under low pressure to be foamed, whereby the effervescent particles having the above-mentioned crystal structure can be obtained. Foaming is preferably carried out in a closed container at (melting point of polypropylene resin −10 ° C.) or higher, and more preferably at (melting point of polypropylene resin) or higher (melting point of polypropylene resin + 20 ° C.) or lower. ..

なお、上記のようにして得られる発泡粒子は、空気等により加圧処理して気泡の内圧を高めた後、スチーム等で加熱して発泡させ(二段発泡)、さらに見掛け密度の低い発泡粒子とすることもできる。 The foamed particles obtained as described above are pressurized with air or the like to increase the internal pressure of the bubbles, and then heated with steam or the like to foam (two-stage foaming), and the foamed particles have a lower apparent density. It can also be.

(成形体の製造)
成形体は、発泡粒子を型内成形すること(つまり、型内成形法)により得ることができる。型内成形法は、発泡粒子を成形型内に充填し、スチーム等の加熱媒体を用いて加熱成形することにより行われる。具体的には、発泡粒子を成形型内に充填した後、成形型内にスチーム等の加熱媒体を導入することにより、発泡粒子を加熱して二次発泡させると共に、相互に融着させて成形空間の形状が賦形された成形体を得ることができる。また、加圧成形法(例えば、特公昭51-22951号公報参照)により、発泡粒子を成形することが好ましい。加圧成形法では、まず、発泡粒子を空気等の加圧気体により予め加圧処理して発泡粒子の気泡内の圧力を高めて、発泡粒子内の圧力を大気圧よりも0.01~0.3MPa高い圧力に調製する。次に、大気圧下又は減圧下で発泡粒子を成形型内に充填し、次いで型内にスチーム等の加熱媒体を供給して発泡粒子を加熱融着させる。また、圧縮充填成形法(特公平4-46217号公報参照)により発泡粒子を成形することもできる。圧縮充填成形法では、まず、圧縮ガスにより大気圧以上に加圧した成形型内に、当該圧力以上に加圧した発泡粒子を充填する。次いで、キャビティ内にスチーム等の加熱媒体を供給して発泡粒子の加熱を行い、発泡粒子を加熱融着させる。また、常圧充填成形法(特公平6-49795号公報参照)により発泡粒子を成形することもできる。常圧充填成形法では、まず、特殊な条件にて得られる二次発泡力の高い発泡粒子を、大気圧下又は減圧下で成形型のキャビティ内に充填する。次いで、キャビティ内にスチーム等の加熱媒体を供給して発泡粒子の加熱を行い、発泡粒子を加熱融着させる。また、上記の成形法を組み合わせた方法(特公平6-22919号公報参照)によって、発泡粒子を成形することもできる。
(Manufacturing of molded product)
The molded product can be obtained by in-mold molding (that is, in-mold molding method) of the foamed particles. The in-mold molding method is performed by filling the foam particles in the molding mold and heat-molding using a heating medium such as steam. Specifically, after the foamed particles are filled in the molding mold, a heating medium such as steam is introduced into the molding mold to heat the foamed particles to cause secondary foaming, and the foamed particles are fused to each other for molding. It is possible to obtain a molded product in which the shape of the space is shaped. Further, it is preferable to mold the foamed particles by a pressure molding method (see, for example, Japanese Patent Publication No. 51-22951). In the pressure molding method, first, the foamed particles are pressure-treated in advance with a pressurized gas such as air to increase the pressure inside the bubbles of the foamed particles, and the pressure inside the foamed particles is 0.01 to 0 to 0, which is higher than the atmospheric pressure. .3 MPa Adjust to a higher pressure. Next, the foamed particles are filled in the molding mold under atmospheric pressure or reduced pressure, and then a heating medium such as steam is supplied into the mold to heat-fuse the foamed particles. In addition, foamed particles can also be molded by a compression filling molding method (see Japanese Patent Publication No. 4-46217). In the compression filling molding method, first, foamed particles pressurized to a pressure higher than the atmospheric pressure are filled in a molding mold pressurized to an atmospheric pressure or higher by a compressed gas. Next, a heating medium such as steam is supplied into the cavity to heat the foamed particles, and the foamed particles are heated and fused. In addition, foamed particles can also be molded by a normal pressure filling molding method (see Japanese Patent Publication No. 6-49795). In the normal pressure filling molding method, first, foamed particles having a high secondary foaming force obtained under special conditions are filled into the cavity of the molding mold under atmospheric pressure or reduced pressure. Next, a heating medium such as steam is supplied into the cavity to heat the foamed particles, and the foamed particles are heated and fused. Further, the foamed particles can also be molded by a method in which the above molding methods are combined (see Japanese Patent Publication No. 6-22919).

(成形体)
成形体は、例えば、発泡粒子を型内成形してなり、相互に融着した多数の発泡粒子から構成されている。成形体は、連通した空隙を有する。成形体の連通した空隙は、複数の発泡粒子の貫通孔が相互に連通して形成される空隙や、発泡粒子の貫通孔が発泡粒子間に形成される空隙と連通して形成される空隙や、発泡粒子間の空隙が連通して形成される空隙などが、複雑につながって形成される。
(Molded body)
The molded body is, for example, formed by in-mold molding of foamed particles, and is composed of a large number of foamed particles fused to each other. The molded body has a communication void. The communicating voids of the molded body include voids formed by communicating through holes of a plurality of foamed particles with each other, and voids formed by communicating the through holes of the foamed particles with the voids formed between the foamed particles. , Voids formed by communicating voids between foamed particles are formed by connecting them in a complicated manner.

成形体の空隙率は、外観と機械的物性とをバランスよく両立させる観点、養生工程を省略したときの成形体の著しい収縮、変形をより抑制し易くするという観点から、4%以上12%以下であることが好ましく、5%以上10%以下であることがより好ましい。 The porosity of the molded product is 4% or more and 12% or less from the viewpoint of achieving a good balance between appearance and mechanical properties, and from the viewpoint of making it easier to suppress significant shrinkage and deformation of the molded product when the curing step is omitted. It is preferably 5% or more and 10% or less.

成形体の空隙率は、以下のように求めることができる。まず、成形体の中心部分から直方体形状(縦20mm×横100mm×高さ20mmの試験片を切り出す。ついで、この試験片を、エタノールを入れたメスシリンダー中に沈めてエタノールの液面の上昇分から試験片の真の体積Vc[L]を求める。また、該試験片の外形寸法から見掛けの体積Vd[L]を求める。求められる真の体積Vcと見掛けの体積Vdから下記式(2)により成形体の空隙率を求めることができる。
空隙率(%)=[(Vd-Vc)/Vd]×100・・・(2)
The porosity of the molded product can be determined as follows. First, a rectangular parallelepiped shape (length 20 mm x width 100 mm x height 20 mm test piece is cut out from the central part of the molded body. Then, this test piece is submerged in a measuring cylinder containing ethanol and the rise in the ethanol liquid level is observed. The true volume Vc [L] of the test piece is obtained. Further, the apparent volume Vd [L] is obtained from the external dimensions of the test piece. From the obtained true volume Vc and the apparent volume Vd, the following formula (2) is used. The void ratio of the molded product can be obtained.
Porosity (%) = [(Vd-Vc) / Vd] × 100 ... (2)

成形体の密度は、軽量性と剛性とのバランスの観点から、10kg/m3以上100kg/m3以下であることが好ましく、15kg/m3以上80kg/m3以下がより好ましく、20kg/m3以上50kg/m3以下がさらに好ましい。従来の成形体は、見掛け密度が小さい場合には離型後に著しく収縮、変形しやすいため、養生工程を設けることにより成形体の寸法を回復させる必要があった。本開示における成形体は、見掛け密度が小さい場合であっても、養生工程を設けることなく寸法が安定したものとなる。 From the viewpoint of the balance between lightness and rigidity, the density of the molded body is preferably 10 kg / m 3 or more and 100 kg / m 3 or less, more preferably 15 kg / m 3 or more and 80 kg / m 3 or less, and more preferably 20 kg / m. It is more preferably 3 or more and 50 kg / m 3 or less. When the apparent density of the conventional molded product is small, it tends to shrink and deform significantly after mold release, so it is necessary to restore the dimensions of the molded product by providing a curing step. The molded product in the present disclosure has stable dimensions without a curing step even when the apparent density is small.

上記発泡粒子は、低い成形加熱温度での成形性に優れるので、成形体の製造時に良好な成形体が得られる成形可能温度範囲が広がる。さらに、養生工程を省略した場合であっても、外観が良好で機械的強度が優れた成形体が得られることから、生産性にも優れる。 Since the foamed particles are excellent in moldability at a low molding heating temperature, the moldable temperature range in which a good molded product can be obtained during the production of the molded product is widened. Further, even when the curing step is omitted, a molded product having a good appearance and excellent mechanical strength can be obtained, so that the productivity is also excellent.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によって何ら限定されるものではない。 Next, the present invention will be described in more detail by way of examples, but the present invention is not limited to these examples.

実施例、比較例に使用した樹脂、発泡粒子、成形体について、以下の測定及び評価を実施した。なお、発泡粒子又は成形体の評価は、これらを相対湿度50%、23℃、1atmの条件にて24時間静置して状態調節した後に行った。 The following measurements and evaluations were carried out on the resins, foamed particles and molded products used in Examples and Comparative Examples. The evaluation of the foamed particles or the molded product was performed after the foamed particles or the molded product were allowed to stand for 24 hours under the conditions of a relative humidity of 50%, 23 ° C. and 1 atm to adjust the state.

<ポリプロピレン系樹脂>
表1に、使用したポリプロピレン系樹脂の性状を示す。なお、本例において使用したエチレン-プロピレン-ブテン共重合体は、いずれもランダム共重合体である。
<Polypropylene resin>
Table 1 shows the properties of the polypropylene-based resin used. The ethylene-propylene-butene copolymer used in this example is a random copolymer.

Figure 2022096231000001
Figure 2022096231000001

(ポリプロピレン系樹脂のモノマー成分含有量)
ポリプロピレン系樹脂(具体的には、エチレン-プロピレン-ブテン共重合体)のモノマー成分含有量は、IRスペクトルにより決定する公知の方法により求めた。具体的には、高分子分析ハンドブック(日本分析化学会高分子分析研究懇談会編、出版年月:1995年1月、出版社:紀伊国屋書店、ページ番号と項目名:615~616「II.2.3 2.3.4 プロピレン/エチレン共重合体」、618~619「II.2.3 2.3.5 プロピレン/ブテン共重合体」)に記載されている方法、つまり、エチレン及びブテンの吸光度を所定の係数で補正した値とフィルム状の試験片の厚み等との関係から定量する方法により求めた。より具体的には、まず、ポリプロピレン系樹脂を180℃環境下でホットプレスしてフィルム状に成形し、厚みの異なる複数の試験片を作製した。次いで、各試験片のIRスペクトルを測定することにより、エチレン由来の722cm-1及び733cm-1における吸光度(A722、A733)と、ブテン由来の766cm-1における吸光度(A766)とを読み取った。次いで、各試験片について、以下の式(3)~(5)を用いてポリプロピレン系樹脂中のエチレン成分含有量を算出した。各試験片について得られたエチレン成分含有量を算術平均した値をポリプロピレン系樹脂中のエチレン成分含有量(単位:wt%)とした。
(K´733=1/0.96{(K´733-0.268(K´722}・・・(3)
(K´722=1/0.96{(K´722-0.268(K´722}・・・(4)
エチレン成分含有量(%)=0.575{(K´722+(K´733}・・・(5)
ただし、式(3)~(5)において、K´:各波数における見かけの吸光係数(K´=A/ρt)、K´:補正後の吸光係数、A:吸光度、ρ:樹脂の密度(単位:g/cm3)、t:フィルム状の試験片の厚み(単位:cm)を意味する。なお、上記式(3)~(5)はランダム共重合体に適用することができる。
また、各試験片について、以下の式(6)を用いてポリプロピレン系樹脂中のブテン成分含有量を算出した。各試験片について得られたブテン成分含有量を算術平均した値をポリプロピレン系樹脂中のエチレン成分含有量(%)とした。
ブテン成分含有量(%)=12.3(A766/L)・・・(6)
ただし、式(6)において、A:吸光度、L:フィルム状の試験片の厚み(mm)を意味する。
(Monomer component content of polypropylene resin)
The monomer component content of the polypropylene-based resin (specifically, ethylene-propylene-butene copolymer) was determined by a known method determined by an IR spectrum. Specifically, the Polymer Analysis Handbook (edited by the Japan Society for Analytical Chemistry, Polymer Analysis Research Council, publication date: January 1995, publisher: Kii Kuniya Bookstore, page numbers and item names: 615-616 "II. 2.3 2.3.4 Propene / Ethylene Copolymer ”, 618-619“ II.2.3 2.3.5 Propene / Butene Copolymer ”), that is, ethylene and butene. The absorbance was determined by a method of quantifying from the relationship between the value corrected by a predetermined coefficient and the thickness of the film-shaped test piece. More specifically, first, a polypropylene-based resin was hot-pressed in an environment of 180 ° C. to form a film, and a plurality of test pieces having different thicknesses were prepared. Then, by measuring the IR spectrum of each test piece, the absorbance at 722 cm -1 and 733 cm -1 derived from ethylene (A 722 , A 733 ) and the absorbance at 766 cm -1 derived from butene (A 766 ) were read. rice field. Next, for each test piece, the ethylene component content in the polypropylene-based resin was calculated using the following formulas (3) to (5). The value obtained by arithmetically averaging the ethylene component contents obtained for each test piece was taken as the ethylene component content (unit: wt%) in the polypropylene resin.
( K'733 ) c = 1 / 0.96 {( K'733 ) a -0.268 (K' 722 ) a } ... (3)
( K'722 ) c = 1 / 0.96 {( K'722 ) a -0.268 (K' 722 ) a } ... (4)
Ethylene component content (%) = 0.575 {( K'722 ) c + ( K'733 ) c } ... (5)
However, in the formulas (3) to (5), K'a : apparent extinction coefficient at each wave number ( K'a = A / ρt), K'c : corrected extinction coefficient, A: absorbance, ρ: resin. Density (unit: g / cm 3 ), t: thickness of film-shaped test piece (unit: cm). The above formulas (3) to (5) can be applied to a random copolymer.
Further, for each test piece, the butene component content in the polypropylene-based resin was calculated using the following formula (6). The value obtained by arithmetically averaging the butene component contents obtained for each test piece was taken as the ethylene component content (%) in the polypropylene resin.
Butene component content (%) = 12.3 (A 766 / L) ... (6)
However, in the formula (6), A: absorbance and L: the thickness (mm) of the film-shaped test piece.

(ポリプロピレン系樹脂の融点)
ポリプロピレン系樹脂の融点は、JIS K7121:1987に基づき求めた。具体的には、状態調節として「(2)一定の熱処理を行なった後、融解温度を測定する場合」を採用し、状態調節された試験片を10℃/minの加熱速度で30℃から200℃まで昇温することによりDSC曲線を取得し、該融解ピークの頂点温度を融点とした。なお、測定装置は、熱流束示差走査熱量測定装置(エスアイアイ・ナノテクノロジー(株)社製、型番:DSC7020)を用いた。
(Melting point of polypropylene resin)
The melting point of the polypropylene resin was determined based on JIS K7121: 1987. Specifically, "(2) When measuring the melting temperature after performing a certain heat treatment" is adopted as the state adjustment, and the state-adjusted test piece is heated from 30 ° C to 200 at a heating rate of 10 ° C / min. The DSC curve was obtained by raising the temperature to ° C., and the peak temperature of the melting peak was taken as the melting point. As the measuring device, a heat flux differential scanning calorimetry device (manufactured by SII Nanotechnology Co., Ltd., model number: DSC7020) was used.

(ポリプロピレン系樹脂のメルトフローレイト)
ポリプロピレン系樹脂のメルトフローレイト(つまり、MFR)は、JIS K7210-1:2014に準拠し、温度230℃、荷重2.16kgの条件で測定した。
(Polypropylene resin melt flow rate)
The melt flow rate (that is, MFR) of the polypropylene-based resin was measured in accordance with JIS K7210-1: 2014 under the conditions of a temperature of 230 ° C. and a load of 2.16 kg.

(ポリプロピレン系樹脂の曲げ弾性率)
ポリプロピレン系樹脂を230℃でヒートプレスして4mmのシートを作製し、このシートから長さ80mm×幅10mm×厚さ4mmの試験片を切り出した。この試験片の曲げ弾性率を、JIS K7171:2008に準拠して求めた。なお、圧子の半径R1及び支持台の半径R2は共に5mmであり、支点間距離は64mmであり、試験速度は2mm/minである。
(Bending elastic modulus of polypropylene resin)
A polypropylene resin was heat-pressed at 230 ° C. to prepare a 4 mm sheet, and a test piece having a length of 80 mm × a width of 10 mm × a thickness of 4 mm was cut out from this sheet. The flexural modulus of this test piece was determined in accordance with JIS K7171: 2008. The radius R1 of the indenter and the radius R2 of the support stand are both 5 mm, the distance between the fulcrums is 64 mm, and the test speed is 2 mm / min.

<発泡粒子>
表2に、発泡粒子の性状等を示す。
<Effervescent particles>
Table 2 shows the properties of the foamed particles.

Figure 2022096231000002
Figure 2022096231000002

(貫通孔の平均孔径d)
発泡粒子の貫通孔の平均孔径は、以下のように求めた。状態調節後の発泡粒子群から無作為に選択した100個の発泡粒子について、切断面の面積が最大となる位置で、貫通孔の貫通方向に対して垂直に切断した。各発泡粒子の切断面の写真撮影をし、断面写真における貫通孔部分の断面積(開口面積)を求めた。断面積と同じ面積を有する仮想真円の直径を算出し、これらを算術平均した値を、発泡粒子の貫通孔の平均孔径(d)とした。
(Average hole diameter d of through holes)
The average pore diameter of the through holes of the foamed particles was determined as follows. 100 foamed particles randomly selected from the state-adjusted foamed particle group were cut perpendicular to the penetrating direction of the through hole at the position where the area of the cut surface was maximized. The cut surface of each foamed particle was photographed, and the cross-sectional area (opening area) of the through-hole portion in the cross-sectional photograph was obtained. The diameter of a virtual perfect circle having the same area as the cross-sectional area was calculated, and the value obtained by arithmetically averaging these was taken as the average pore diameter (d) of the through holes of the foamed particles.

(平均外径D)
発泡粒子の平均外径は、以下のように求めた。状態調節後の発泡粒子群から無作為に選択した100個の発泡粒子について、切断面の面積が最大となる位置で、貫通孔の貫通方向に対して垂直に切断した。各発泡粒子の切断面の写真撮影をし、発泡粒子の断面積(貫通孔の開口部も含む)を求めた。断面積と同じ面積を有する仮想真円の直径を算出し、これらを算術平均した値を、発泡粒子の平均外径(D)とした。
(Average outer diameter D)
The average outer diameter of the foamed particles was determined as follows. 100 foamed particles randomly selected from the state-adjusted foamed particle group were cut perpendicular to the penetrating direction of the through hole at the position where the area of the cut surface was maximized. The cut surface of each foamed particle was photographed to determine the cross-sectional area of the foamed particle (including the opening of the through hole). The diameter of a virtual perfect circle having the same area as the cross-sectional area was calculated, and the value obtained by arithmetically averaging these was taken as the average outer diameter (D) of the foamed particles.

(平均肉厚t)
発泡粒子の平均肉厚は、下記式(7)により求めた。
平均肉厚t=(平均外径D-平均孔径d)/2・・・(7)
(Average wall thickness t)
The average wall thickness of the foamed particles was calculated by the following formula (7).
Average wall thickness t = (average outer diameter D-average hole diameter d) / 2 ... (7)

(アスペクト比L/D)
発泡粒子の平均外径D及び貫通孔の平均孔径dを測定する前の、100個の発泡粒子について、貫通孔の貫通方向における最大長をノギスで測定し、これらを算術平均することにより発泡粒子の平均長さLを求め、平均長さLを平均外径Dで除することにより、発泡粒子の平均アスペクト比L/Dを求めた。
(Aspect ratio L / D)
Before measuring the average outer diameter D of the foamed particles and the average pore diameter d of the through holes, the maximum length of 100 foamed particles in the penetration direction of the through holes was measured with a nogis, and these were arithmetically averaged to obtain the foamed particles. The average length L of the foamed particles was obtained, and the average aspect ratio L / D of the foamed particles was obtained by dividing the average length L by the average outer diameter D.

(見掛け密度)
発泡粒子の見掛け密度は、以下のように求めた。まず、温度23℃のエタノールが入ったメスシリンダーを用意し、状態調節後の任意の量の発泡粒子群(発泡粒子群の質量W1[g])をメスシリンダー内のエタノール中に金網を使用して沈めた。そして、金網の体積を考慮し、水位上昇分より読みとられる発泡粒子群の容積V1[L]を測定した。メスシリンダーに入れた発泡粒子群の質量W1[g]を容積V1[L]で除して(W1/V1)、単位を[kg/m3]に換算することにより、発泡粒子の見掛け密度を求めた。
(Apparent density)
The apparent density of the foamed particles was determined as follows. First, prepare a graduated cylinder containing ethanol at a temperature of 23 ° C, and use a wire mesh in the ethanol in the graduated cylinder to put an arbitrary amount of foamed particles (mass W1 [g] of the foamed particles) after adjusting the state. And sank. Then, in consideration of the volume of the wire mesh, the volume V1 [L] of the foamed particle group read from the water level rise was measured. The apparent density of the foamed particles is calculated by dividing the mass W1 [g] of the foamed particles placed in the graduated cylinder by the volume V1 [L] (W1 / V1) and converting the unit to [kg / m 3 ]. I asked.

(嵩密度)
発泡粒子の嵩密度は、以下のように求めた。状態調節後の発泡粒子群から発泡粒子を無作為に取り出して容積1Lのメスシリンダーに入れ、自然堆積状態となるように多数の発泡粒子を1Lの目盛まで収容し、収容された発泡粒子の質量W2[g]を収容体積V2(1[L])で除して(W2/V2)、単位を[kg/m3]に換算することにより、発泡粒子の嵩密度を求めた。
(The bulk density)
The bulk density of the foamed particles was determined as follows. Foamed particles are randomly taken out from the state-adjusted foamed particle group and placed in a measuring cylinder having a volume of 1 L. The bulk density of the foamed particles was determined by dividing W2 [g] by the accommodating volume V2 (1 [L]) (W2 / V2) and converting the unit into [kg / m 3 ].

(発泡粒子のDSC曲線の各ピークの融解熱量)
状態調節を行った後の発泡粒子群から1個の発泡粒子を採取した。この発泡粒子を試験片として用い、試験片を示差熱走査熱量計(具体的には、ティー・エイ・インスツルメント社製DSC.Q1000)によって23℃から200℃まで加熱速度10℃/分で昇温させたときのDSC曲線を得た。図1にDSC曲線の一例を示す。図1に例示されるように、DSC曲線には、樹脂固有ピークΔH1と、樹脂固有ピークΔH1の頂点よりも高温側に頂点を有する高温ピークΔH2とが現れる。
次いで、DSC曲線上における温度80℃での点αと、発泡粒子の融解終了温度Tでの点βとを結び直線L1を得た。次に、上記の樹脂固有ピークΔH1と高温ピークΔH2との間の谷部に当たるDSC曲線上の点γからグラフの縦軸と平行な直線L2を引き、直線L1と直線L2との交わる点をδとした。なお、点γは、樹脂固有ピークΔH1と高温ピークΔH2との間に存在する極大点ということもできる。
樹脂固有ピークΔH1の面積は、DSC曲線の樹脂固有ピークΔH1部分の曲線と、線分α-δと、線分γ-δとによって囲まれる部分の面積であり、これを樹脂固有ピークの融解熱量とした。
高温ピークΔH2の面積は、DSC曲線の高温ピークΔH2部分の曲線と、線分δ-βと、線分γ-δとによって囲まれる部分の面積であり、これを高温ピークの融解熱量とした。
全融解ピークの面積は、DSC曲線の樹脂固有ピークΔH1部分の曲線と高温ピークΔH2部分の曲線と、線分α-β(つまり、直線L1)とによって囲まれる部分の面積であり、これを全融解ピークの融解熱量とした。
上記測定を5個の発泡粒子について行い、算術平均した値を表2に示した。
(The amount of heat of fusion of each peak of the DSC curve of the foamed particles)
One foamed particle was collected from the foamed particle group after the state adjustment. Using these foamed particles as a test piece, the test piece is heated from 23 ° C to 200 ° C at a heating rate of 10 ° C / min by a differential thermal scanning calorimeter (specifically, DSC.Q1000 manufactured by TA Instruments). The DSC curve when the temperature was raised was obtained. FIG. 1 shows an example of a DSC curve. As illustrated in FIG. 1, a resin-specific peak ΔH1 and a high-temperature peak ΔH2 having an apex on the high-temperature side of the apex of the resin-specific peak ΔH1 appear on the DSC curve.
Next, a straight line L1 was obtained by connecting the point α on the DSC curve at a temperature of 80 ° C. and the point β at the melting end temperature T of the foamed particles. Next, a straight line L2 parallel to the vertical axis of the graph is drawn from the point γ on the DSC curve corresponding to the valley between the resin-specific peak ΔH1 and the high-temperature peak ΔH2, and the point where the straight line L1 and the straight line L2 intersect is δ. And said. The point γ can also be said to be a maximum point existing between the resin-specific peak ΔH1 and the high-temperature peak ΔH2.
The area of the resin-specific peak ΔH1 is the area of the curve of the resin-specific peak ΔH1 portion of the DSC curve and the portion surrounded by the line segment α-δ and the line segment γ-δ, which is the heat of fusion of the resin-specific peak. And said.
The area of the high temperature peak ΔH2 is the area of the curve of the high temperature peak ΔH2 portion of the DSC curve and the portion surrounded by the line segment δ-β and the line segment γ-δ, and this is taken as the heat of fusion of the high temperature peak.
The area of the total melting peak is the area of the portion surrounded by the curve of the resin-specific peak ΔH1 portion of the DSC curve, the curve of the high temperature peak ΔH2 portion, and the line segment α-β (that is, the straight line L1). The amount of heat of melting of the melting peak was used.
The above measurements were performed on 5 foamed particles, and the arithmetic mean values are shown in Table 2.

<成形体>
表3に、成形体の性状を示す。
<Molded body>
Table 3 shows the properties of the molded product.

Figure 2022096231000003
Figure 2022096231000003

(型内成形性の評価)
型内成形性は、成形可能範囲を調べることにより評価する。具体的には、まず、後述の<成形体の製造>の方法で、成形スチーム圧を0.20~0.28MPa(G)の間で0.02MPaずつ変化させて成形体を成形した。離型後の成形体を80℃のオーブン中で12時間静置した。オーブン中での12時間の静置が養生工程である。養生工程後、成形体を相対湿度50%、23℃、1atmの条件にて24時間静置することにより、成形体の状態調節を行った。次いで、成形体の融着性、回復性(具体的には、型内成形後の膨張または収縮の回復性)を評価した。その結果、下記基準に達したものを合格とし、全ての項目で合格となったスチーム圧(つまり、合格品が取得可能であったスチーム圧))を成形可能なスチーム圧とした。成形可能なスチーム圧の下限値から上限値までの幅が広いものほど、成形可能な成形加熱温度範囲が広いことを意味する。
(Evaluation of in-mold formability)
In-mold moldability is evaluated by examining the moldable range. Specifically, first, the molded product was molded by changing the molding steam pressure between 0.20 and 0.28 MPa (G) by 0.02 MPa by the method of <Manufacturing the molded product> described later. The molded product after mold release was allowed to stand in an oven at 80 ° C. for 12 hours. The curing process is 12 hours of standing in the oven. After the curing step, the state of the molded product was adjusted by allowing the molded product to stand at a relative humidity of 50%, 23 ° C., and 1 atm for 24 hours. Next, the fusion property and recoverability of the molded product (specifically, the recovery property of expansion or contraction after in-mold molding) were evaluated. As a result, those that met the following criteria were regarded as acceptable, and the steam pressure that passed all the items (that is, the steam pressure that the accepted product could be obtained) was defined as the steam pressure that can be molded. The wider the range from the lower limit value to the upper limit value of the moldable steam pressure, the wider the moldable molding heating temperature range.

(融着性)
成形体を折り曲げて破断させ、破断面に存在する発泡粒子の数C1と破壊した発泡粒子の数C2とを求め、上記発泡粒子に対する破壊した発泡粒子の比率(つまり、材料破壊率)を算出した。材料破壊率は、C2/C1×100という式から算出される。異なる試験片を用いて上記測定を5回行い、材料破壊率をそれぞれ求めた。材料破壊率の算術平均値が80%以上であるときを合格とした。
(Fusionability)
The molded body was bent and broken, the number C1 of the foamed particles present in the fracture surface and the number C2 of the broken foamed particles were obtained, and the ratio of the broken foamed particles to the foamed particles (that is, the material fracture rate) was calculated. .. The material fracture rate is calculated from the formula C2 / C1 × 100. The above measurements were performed 5 times using different test pieces to determine the material fracture rate. When the arithmetic mean value of the material destruction rate was 80% or more, it was regarded as passing.

(回復性)
縦300mm、横250mm、厚み60mmの平板形状の金型を用いて得られた成形体における四隅部付近(具体的には、角より中心方向に10mm内側)の厚みと、中心部(縦方向、横方向とも2等分する部分)の厚みをそれぞれ計測した。次いで、四隅部付近のうち最も厚みの厚い箇所の厚みに対する最も厚みの薄い箇所の厚みの比(単位:%)を算出し、比が95%以上であるときを合格とした。
(Recoverability)
The thickness of the vicinity of the four corners (specifically, 10 mm inside from the corner in the center direction) and the center (vertically, The thickness of each of the portions (parts divided into two equal parts in the horizontal direction) was measured. Next, the ratio (unit:%) of the thickness of the thinnest part to the thickness of the thickest part in the vicinity of the four corners was calculated, and the case where the ratio was 95% or more was regarded as acceptable.

(無養生成形における型内成形性の評価)
養生工程を行うことなく、離型後の成形体を23℃で12時間静置した以外は上述の型内成形性の評価と同様にして融着性及び回復性を評価した。評価結果に基づき、以下の基準で判定を行った。
○:いずれかの成形スチーム圧において、合格品を取得することができた。
×:いずれの成形スチーム圧においても合格品を取得できなかった。
(Evaluation of in-mold formability in non-cultivated form)
The meltability and recoverability were evaluated in the same manner as in the above-mentioned evaluation of in-mold moldability, except that the molded product after mold release was allowed to stand at 23 ° C. for 12 hours without performing a curing step. Based on the evaluation results, the judgment was made according to the following criteria.
◯: A passing product could be obtained at any of the molding steam pressures.
X: No accepted product could be obtained at any of the molding steam pressures.

後述の<成形体の製造>において、0.24MPa(G)の成形圧で得られた成形体を相対湿度50%、23℃、1atmの条件にて24時間静置して状態調節しものについて、成形体の空隙率、成形体密度、50%圧縮応力の測定、表面性評価を行った。なお、比較例3においては0.20MPa(G)の成形圧で得られた成形体を状態調節したものを各測定、評価に用いた。 In <Manufacturing of a molded product> described later, a molded product obtained at a molding pressure of 0.24 MPa (G) is allowed to stand for 24 hours at a relative humidity of 50%, 23 ° C., and 1 atm to adjust the state. , The void ratio of the molded body, the density of the molded body, the measurement of 50% compressive stress, and the surface property evaluation were performed. In Comparative Example 3, a molded product obtained at a molding pressure of 0.20 MPa (G) whose state was adjusted was used for each measurement and evaluation.

(成形体の空隙率)
成形体の空隙率は、以下のように求めた。成形体の中心部分から切り出した直方体形状(縦20mm×横100mm×高さ20mmの試験片を、エタノールを入れたメスシリンダー中に沈めてエタノールの液面の上昇分から試験片の真の体積Vc[L]を求めた。また、該試験片の外形寸法から見掛けの体積Vd[L]を求めた。求められた真の体積Vcと見掛けの体積Vdから下記式(8)により成形体の空隙率を求めた。
空隙率(%)=[(Vd-Vc)/Vd]×100・・・(8)
(Porosity of molded product)
The porosity of the molded product was determined as follows. A rectangular parallelepiped shape (length 20 mm x width 100 mm x height 20 mm) cut out from the center of the molded body is submerged in a measuring cylinder containing ethanol, and the true volume of the test piece is Vc [ L] was obtained. Further, the apparent volume Vd [L] was obtained from the external dimensions of the test piece. From the obtained true volume Vc and the apparent volume Vd, the void ratio of the molded body was obtained by the following formula (8). Asked.
Porosity (%) = [(Vd-Vc) / Vd] × 100 ... (8)

(成形体密度)
成形体密度(kg/m3)は、成形体の重量(g)を成形体の外形寸法から求められる体積(L)で除し、単位換算することにより算出される。
(Molded body density)
The molded body density (kg / m 3 ) is calculated by dividing the weight (g) of the molded body by the volume (L) obtained from the external dimensions of the molded body and converting the unit.

(50%歪時圧縮応力)
成形体の表面にあるスキン層が試験片に含まれないように、成形体の中心部から縦50mm×横50mm×厚み25mmの試験片を切り出した。JIS K6767:1999に基づき、圧縮速度10mm/分にて圧縮試験を行い成形体の50%圧縮応力を求めた。
(Compressive stress at 50% strain)
A test piece having a length of 50 mm, a width of 50 mm, and a thickness of 25 mm was cut out from the center of the molded body so that the skin layer on the surface of the molded body was not included in the test piece. Based on JIS K6767: 1999, a compression test was performed at a compression rate of 10 mm / min to determine a 50% compressive stress of the molded product.

(表面性評価)
下記基準に基づいて評価した。
A:発泡粒子成形体の表面に粒子間隙が少なく、かつ貫通孔等に起因する凹凸が目立たない良好な表面状態を示す
B:発泡粒子成形体の表面に粒子間隙および/または貫通孔等に起因する凹凸がやや認められる
C:発泡粒子成形体の表面に粒子間隙および/または貫通孔等に起因する凹凸が著しく認められる
(Surface evaluation)
Evaluation was made based on the following criteria.
A: Shows a good surface condition with few particle gaps on the surface of the foamed particle molded body and inconspicuous unevenness due to through holes, etc. B: Due to particle gaps and / or through holes, etc. on the surface of the foamed particle molded body. Some unevenness is observed C: Unevenness due to particle gaps and / or through holes is significantly observed on the surface of the foamed particle molded body.

(水冷時間の評価)
後述の<成形体の製造>において、加熱終了後、放圧し、成形型内面に取付けられた面圧計の値が0.04MPa(G)に低下するまで水冷する際に要した時間(つまり、水冷時間)を測定し、測定された水冷時間をもとに以下の基準で評価した。なお、水冷時間の評価は、成形圧0.26MPa(G)での成形における水冷時間で評価した。水冷時間の評価として成形圧0.26MPa(G)の条件を採用した理由は、成形圧が高くなるほど水冷時間が長くなりやすいためである。
A:水冷時間が70秒以下
B:水冷時間が70秒超120秒以下
C:水冷時間が120秒超
(Evaluation of water cooling time)
In the <manufacturing of the molded body> described later, after the heating is completed, the pressure is released and the time required for water cooling until the value of the surface pressure gauge attached to the inner surface of the molding mold drops to 0.04 MPa (G) (that is, water cooling). Time) was measured and evaluated according to the following criteria based on the measured water cooling time. The water cooling time was evaluated by the water cooling time in molding at a molding pressure of 0.26 MPa (G). The reason why the condition of the molding pressure of 0.26 MPa (G) is adopted for the evaluation of the water cooling time is that the higher the molding pressure, the longer the water cooling time tends to be.
A: Water cooling time is 70 seconds or less B: Water cooling time is over 70 seconds and 120 seconds or less C: Water cooling time is over 120 seconds

以下、実施例1~3、比較例1~4における、発泡粒子の製造方法及び成形体の製造方法を説明する。
(実施例1)
<ポリプロピレン系発泡粒子の製造>
ポリプロピレン系樹脂1(略称PP1)を押出機内で最高設定温度230℃にて溶融混練して樹脂溶融物を得た。なお、PP1は、エチレン-プロピレン-ブテン共重合体であり、ブテン成分含有量9.0質量%、エチレン成分含有量1.0質量%である。PP1の特性を表1に示す。次いで、樹脂溶融物を押出機先端に付設されたダイの小孔から、貫通孔を有す筒形状を有するストランド状に押し出し、ストランド状物を引取ながら水冷した後、ペレタイザーで質量が約1.5mgとなるように切断した。このようにして、貫通孔を有する円筒状のポリプロピレン系樹脂粒子を得た。ポリプロピレン系樹脂粒子のアスペクト比は2.5である。なお、樹脂粒子の製造に際し、気泡調製剤としてのホウ酸亜鉛を押出機に供給し、ポリプロピレン系樹脂中にホウ酸亜鉛500質量ppmを含有させた。
Hereinafter, the method for producing the foamed particles and the method for producing the molded product in Examples 1 to 3 and Comparative Examples 1 to 4 will be described.
(Example 1)
<Manufacturing of polypropylene-based foam particles>
Polypropylene resin 1 (abbreviated as PP1) was melt-kneaded in an extruder at a maximum set temperature of 230 ° C. to obtain a resin melt. PP1 is an ethylene-propylene-butene copolymer having a butene component content of 9.0% by mass and an ethylene component content of 1.0% by mass. The characteristics of PP1 are shown in Table 1. Next, the resin melt is extruded into a strand shape having a tubular shape having a through hole from a small hole of a die attached to the tip of the extruder, and after cooling with water while taking the strand shape, the mass is about 1. It was cut to 5 mg. In this way, cylindrical polypropylene-based resin particles having through holes were obtained. The aspect ratio of the polypropylene-based resin particles is 2.5. In the production of the resin particles, zinc borate as a bubble adjusting agent was supplied to the extruder, and 500 mass ppm of zinc borate was contained in the polypropylene-based resin.

ポリプロピレン系樹脂粒子1kgを、分散媒としての水3Lともに5Lの密閉容器内に仕込み、更に樹脂粒子100質量部に対し、分散剤としてカオリン0.3質量部、界面活性剤(アルキルベンゼンスルホン酸ナトリウム)0.004質量部を密閉容器内に添加した。発泡剤としてドライアイス70gを密閉容器内に添加した後、密閉容器を密閉し、密閉容器内を攪拌しながら発泡温度143.2℃まで加熱した。このときの容器内圧力(含浸圧力)は3.1MPa(G)であった。同温度(つまり、143.2℃)で15分保持した後、容器内容物を大気圧下に放出して発泡粒子を得た。この発泡粒子を23℃で24時間乾燥させた。 1 kg of polypropylene-based resin particles are charged in a closed container of 5 L together with 3 L of water as a dispersion medium, and 0.3 parts by mass of kaolin as a dispersant and a surfactant (sodium alkylbenzene sulfonate) are further charged with respect to 100 parts by mass of the resin particles. 0.004 parts by mass was added into the closed container. After adding 70 g of dry ice as a foaming agent into the closed container, the closed container was sealed and heated to a foaming temperature of 143.2 ° C. while stirring the inside of the closed container. The pressure inside the container (impregnation pressure) at this time was 3.1 MPa (G). After holding at the same temperature (that is, 143.2 ° C.) for 15 minutes, the contents of the container were released under atmospheric pressure to obtain foamed particles. The foamed particles were dried at 23 ° C. for 24 hours.

次いで、耐圧容器内に発泡粒子を入れ、耐圧容器内に空気を圧入することにより、容器内の圧力を高め、空気を気泡内に含浸させて発泡粒子の気泡内の内圧を高めた。次いで、耐圧容器から取り出した発泡粒子(一段発泡粒子)に耐圧容器内の圧力が表2に示す圧力となるようスチームを供給し、大気圧下で加熱した。耐圧容器から取り出した一段発泡粒子における気泡内の圧力(ただし、ゲージ圧)は表2に示す値であった。以上により、一段発泡粒子の見掛け密度を低下させ、発泡粒子(二段発泡粒子)を得た。 Next, the foamed particles were put into the pressure-resistant container, and air was press-fitted into the pressure-resistant container to increase the pressure inside the container, and the air was impregnated into the bubbles to increase the internal pressure of the foamed particles in the bubbles. Next, steam was supplied to the foamed particles (one-stage foamed particles) taken out from the pressure-resistant container so that the pressure in the pressure-resistant container became the pressure shown in Table 2, and the particles were heated under atmospheric pressure. The pressure inside the bubbles (however, the gauge pressure) in the one-stage foamed particles taken out from the pressure-resistant container was the value shown in Table 2. As a result, the apparent density of the one-stage foamed particles was reduced to obtain foamed particles (two-stage foamed particles).

<成形体の製造>
成形体の製造には、上記二段発泡により得られた発泡粒子を23℃で24時間乾燥させたものを用いた。乾燥後の発泡粒子を加圧空気により加圧し、発泡粒子内の内圧を0.10MPa(G)とした。次いで、クラッキング量を6mmに調節した、縦300mm×横250mm×厚さ60mmの平板成形型に発泡粒子を充填し、型締めして金型両面からスチームを5秒供給して予備加熱する排気工程を行った。その後、所定の成形圧より0.08MPa(G)低い圧力に達するまで、金型の一方の面側からスチームを供給して一方加熱を行った。次いで、成形圧より0.04MPa(G)低い圧力に達するまで金型の他方の面側よりスチームを供給して一方加熱を行った後、所定の成形圧に達するまで加熱(つまり、本加熱)を行った。加熱終了後、放圧し、成形体の発泡力による表面圧力が0.04MPa(G)になるまで水冷した後、型を開放して成形体を取り出した。次いで、成形体を80℃のオーブン中で12時間静置する養生工程を行った。このようにして成形体を製造した。
<Manufacturing of molded products>
For the production of the molded product, the foamed particles obtained by the above two-stage foaming were dried at 23 ° C. for 24 hours. The effervescent particles after drying were pressurized with pressurized air, and the internal pressure in the effervescent particles was set to 0.10 MPa (G). Next, an exhaust process in which a flat plate molding die having a cracking amount adjusted to 6 mm, length 300 mm × width 250 mm × thickness 60 mm is filled with foamed particles, molded, and steam is supplied from both sides of the die for 5 seconds for preheating. Was done. Then, steam was supplied from one side of the mold until the pressure reached 0.08 MPa (G) lower than the predetermined molding pressure, and heating was performed on the other side. Next, steam is supplied from the other surface side of the mold until the pressure reaches 0.04 MPa (G) lower than the molding pressure, and then heating is performed on one side, and then heating is performed until the predetermined molding pressure is reached (that is, main heating). Was done. After the heating was completed, the pressure was released, and after water cooling until the surface pressure due to the foaming force of the molded product became 0.04 MPa (G), the mold was opened and the molded product was taken out. Next, a curing step was performed in which the molded product was allowed to stand in an oven at 80 ° C. for 12 hours. The molded product was manufactured in this way.

(実施例2)
ポリプロピレン系樹脂1をポリプロピレン系樹脂2(略称PP2)に変更し、発泡温度を表2に示す値に変更した以外は実施例1と同様にして発泡粒子を得た。また、実施例1と同様にして成形体を得た。なお、PP2は、エチレン-プロピレン-ブテン共重合体であり、そのモノマー成分含有量などを表1に示す。
(Example 2)
Foamed particles were obtained in the same manner as in Example 1 except that the polypropylene-based resin 1 was changed to the polypropylene-based resin 2 (abbreviated as PP2) and the foaming temperature was changed to the values shown in Table 2. Further, a molded product was obtained in the same manner as in Example 1. PP2 is an ethylene-propylene-butene copolymer, and its monomer component content and the like are shown in Table 1.

(実施例3)
ポリプロピレン系樹脂1をポリプロピレン系樹脂3(略称PP3)に変更し、含浸圧力と発泡温度を表2に示す値に変更した以外は実施例1と同様にして発泡粒子を得た。また、実施例1と同様にして成形体を得た。なお、PP3は、エチレン-プロピレン-ブテン共重合体であり、そのモノマー成分含有量などを表1に示す。
(Example 3)
Foamed particles were obtained in the same manner as in Example 1 except that the polypropylene-based resin 1 was changed to the polypropylene-based resin 3 (abbreviated as PP3) and the impregnation pressure and the foaming temperature were changed to the values shown in Table 2. Further, a molded product was obtained in the same manner as in Example 1. PP3 is an ethylene-propylene-butene copolymer, and its monomer component content and the like are shown in Table 1.

(比較例1)
ポリプロピレン系樹脂粒子の製造時に、貫通孔を有さない樹脂粒子を製造した以外は実施例1と同様にして発泡粒子を得た。本例の発泡粒子は、貫通孔を有さない略球形の発泡粒子であった。また、実施例1と同様にして成形体を得た。
(Comparative Example 1)
Effervescent particles were obtained in the same manner as in Example 1 except that the resin particles having no through holes were produced during the production of the polypropylene-based resin particles. The foamed particles of this example were substantially spherical foamed particles having no through holes. Further, a molded product was obtained in the same manner as in Example 1.

(比較例2)
ポリプロピレン系樹脂粒子の製造にあたり、貫通孔を形成するためのダイの小孔の孔径を変更し、二酸化炭素圧力と発泡温度を表2に示す値に変更した以外は実施例1と同様にして発泡粒子を得た。また、実施例1と同様にして成形体を得た。
(Comparative Example 2)
In the production of polypropylene-based resin particles, foaming was carried out in the same manner as in Example 1 except that the pore diameters of the small holes of the die for forming the through holes were changed and the carbon dioxide pressure and the foaming temperature were changed to the values shown in Table 2. Obtained particles. Further, a molded product was obtained in the same manner as in Example 1.

(比較例3)
ポリプロピレン系樹脂1をポリプロピレン系樹脂4(略称PP4)に変更し、含浸圧力と発泡温度を表2に示す値に変更した以外は実施例1と同様にして発泡粒子を得た。また、実施例1と同様にして成形体を得た。なお、PP4は、エチレン-プロピレン-ブテン共重合体であり、そのモノマー成分含有量などを表1に示す。
(Comparative Example 3)
Foamed particles were obtained in the same manner as in Example 1 except that the polypropylene-based resin 1 was changed to the polypropylene-based resin 4 (abbreviated as PP4) and the impregnation pressure and the foaming temperature were changed to the values shown in Table 2. Further, a molded product was obtained in the same manner as in Example 1. PP4 is an ethylene-propylene-butene copolymer, and its monomer component content and the like are shown in Table 1.

(比較例4)
ポリプロピレン系樹脂1をポリプロピレン系樹脂5(略称PP5)に変更し、含浸圧力と発泡温度を表2に示す値に変更した以外は実施例1と同様にして発泡粒子を得た。また、実施例1と同様にして成形体を得た。なお、PP5は、エチレン-プロピレン共重合体であり、そのモノマー成分含有量などを表1に示す。
(Comparative Example 4)
Foamed particles were obtained in the same manner as in Example 1 except that the polypropylene-based resin 1 was changed to the polypropylene-based resin 5 (abbreviated as PP5) and the impregnation pressure and the foaming temperature were changed to the values shown in Table 2. Further, a molded product was obtained in the same manner as in Example 1. PP5 is an ethylene-propylene copolymer, and its monomer component content and the like are shown in Table 1.

表2~表3より理解されるように、実施例1~3の発泡粒子によれば、外観が良好であるとともに、圧縮時の強度にも優れる成形体を幅広い成形圧で作製できる。さらに、養生工程を省略しても外観が良好で、機械的強度に優れた成形体を作製できる。 As can be understood from Tables 2 to 3, according to the foamed particles of Examples 1 to 3, it is possible to produce a molded product having a good appearance and excellent strength at the time of compression under a wide range of molding pressures. Further, even if the curing step is omitted, a molded body having a good appearance and excellent mechanical strength can be produced.

Claims (10)

貫通孔を有する筒形状のポリプロピレン系樹脂発泡粒子であって、
上記発泡粒子の上記貫通孔の平均孔径dが1mm未満であるとともに、上記発泡粒子の平均外径Dに対する上記平均孔径dの比d/Dが0.4以下であり、
上記発泡粒子を構成するポリプロピレン系樹脂がエチレン-プロピレン-ブテン共重合体であり、
上記エチレン-プロピレン-ブテン共重合体におけるブテン成分含有量とエチレン成分含有量との合計量が2質量%以上15質量%以下であるとともに、上記エチレン成分含有量[質量%]に対する上記ブテン成分含有量[質量%]の比が2以上であり、
上記ポリプロピレン系樹脂の曲げ弾性率が800MPa以上である、ポリプロピレン系樹脂発泡粒子。
Cylindrical polypropylene-based resin foam particles with through holes.
The average pore diameter d of the through holes of the foamed particles is less than 1 mm, and the ratio d / D of the average pore diameter d to the average outer diameter D of the foamed particles is 0.4 or less.
The polypropylene-based resin constituting the foamed particles is an ethylene-propylene-butene copolymer.
The total amount of the butene component content and the ethylene component content in the ethylene-propylene-butene copolymer is 2% by mass or more and 15% by mass or less, and the butene component is contained with respect to the ethylene component content [mass%]. The ratio of amount [mass%] is 2 or more,
Polypropylene-based resin foamed particles having a flexural modulus of the polypropylene-based resin of 800 MPa or more.
上記エチレン-プロピレン-ブテン共重合体における上記ブテン成分含有量と上記エチレン成分含有量との合計量が6質量%を超え15質量%以下であるとともに、上記ブテン成分含有量が6質量%以上15質量%未満である、請求項1に記載のポリプロピレン系樹脂発泡粒子。 The total amount of the butene component content and the ethylene component content in the ethylene-propylene-butene copolymer is more than 6% by mass and 15% by mass or less, and the butene component content is 6% by mass or more and 15%. The polypropylene-based resin foamed particles according to claim 1, which are less than mass%. 上記エチレン成分含有量[質量%]に対する上記ブテン成分含有量[質量%]の比が6以上である、請求項1又は2に記載のポリプロピレン系樹脂発泡粒子。 The polypropylene-based resin foamed particles according to claim 1 or 2, wherein the ratio of the butene component content [mass%] to the ethylene component content [mass%] is 6 or more. 上記エチレン-プロピレン-ブテン共重合体における上記エチレン成分含有量が0.05質量%以上3質量%以下である、請求項1~3のいずれか一項に記載のポリプロピレン系樹脂発泡粒子。 The polypropylene-based resin foamed particles according to any one of claims 1 to 3, wherein the ethylene component content in the ethylene-propylene-butene copolymer is 0.05% by mass or more and 3% by mass or less. 上記ポリプロピレン系樹脂の融点が135℃以上145℃以下である、請求項1~4のいずれか一項に記載のポリプロピレン系樹脂発泡粒子。 The polypropylene-based resin foamed particles according to any one of claims 1 to 4, wherein the polypropylene-based resin has a melting point of 135 ° C. or higher and 145 ° C. or lower. 上記平均外径Dが2mm以上5mm以下である、請求項1~5のいずれか一項に記載のポリプロピレン系樹脂発泡粒子。 The polypropylene-based resin foamed particles according to any one of claims 1 to 5, wherein the average outer diameter D is 2 mm or more and 5 mm or less. 上記ポリプロピレン系樹脂発泡粒子の平均肉厚tが1.2mm以上2mm以下である、請求項1~6のいずれか一項に記載のポリプロピレン系樹脂発泡粒子。 The polypropylene-based resin foamed particles according to any one of claims 1 to 6, wherein the polypropylene-based resin foamed particles have an average wall thickness t of 1.2 mm or more and 2 mm or less. 上記比d/Dが0.25以下である、請求項1~7のいずれか一項に記載のポリプロピレン系樹脂発泡粒子。 The polypropylene-based resin foamed particles according to any one of claims 1 to 7, wherein the ratio d / D is 0.25 or less. 上記発泡粒子の見掛け密度が、10kg/m3以上100kg/m3以下である、請求項1~8のいずれか一項に記載のポリプロピレン系樹脂発泡粒子。 The polypropylene-based resin foamed particles according to any one of claims 1 to 8, wherein the apparent density of the foamed particles is 10 kg / m 3 or more and 100 kg / m 3 or less. 請求項1~9のいずれか一項に記載されたポリプロピレン系樹脂発泡粒子が相互に融着した発泡粒子成形体であって、連通した空隙を有する、発泡粒子成形体。 A foamed particle molded body in which the polypropylene-based resin foamed particles according to any one of claims 1 to 9 are fused to each other and have communicating voids.
JP2020209224A 2020-12-17 2020-12-17 Polypropylene-based resin foam particle, and foam particle molding Pending JP2022096231A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020209224A JP2022096231A (en) 2020-12-17 2020-12-17 Polypropylene-based resin foam particle, and foam particle molding
CN202110276047.0A CN113045827B (en) 2020-12-17 2021-03-15 Polypropylene resin foam particles and molded article of the foam particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020209224A JP2022096231A (en) 2020-12-17 2020-12-17 Polypropylene-based resin foam particle, and foam particle molding

Publications (1)

Publication Number Publication Date
JP2022096231A true JP2022096231A (en) 2022-06-29

Family

ID=76512277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020209224A Pending JP2022096231A (en) 2020-12-17 2020-12-17 Polypropylene-based resin foam particle, and foam particle molding

Country Status (2)

Country Link
JP (1) JP2022096231A (en)
CN (1) CN113045827B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120623A (en) * 2023-03-23 2023-05-16 无锡会通轻质材料股份有限公司 Conical microporous polypropylene foaming beads and molded parts thereof
EP4310134A1 (en) * 2022-07-22 2024-01-24 JSP Corporation Polypropylene-based resin expanded beads and molded article thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4157399B2 (en) * 2002-03-15 2008-10-01 株式会社ジェイエスピー Method for producing expanded polypropylene resin particles, expanded polypropylene resin particles, and expanded foam in polypropylene resin mold
DE10230583A1 (en) * 2002-07-05 2004-01-15 Basf Ag Open-cell polypropylene particle foams
JP4172685B2 (en) * 2002-08-20 2008-10-29 株式会社ジェイエスピー Method for producing foam molded article with skin material
KR101004337B1 (en) * 2003-02-24 2010-12-28 마쓰모토유시세이야쿠 가부시키가이샤 Thermoexpansible microsphere, process for producing the same and method of use thereof
JP4883681B2 (en) * 2005-03-29 2012-02-22 株式会社ジェイエスピー POLYPROPYLENE RESIN FOAM PARTICLE, METHOD FOR PRODUCING POLYPROPYLENE RESIN FOAM PARTICLE MOLDED BODY, AND POLYPROPYLENE RESIN FOAM PARTICLE MOLDED BODY
JP5664143B2 (en) * 2010-11-09 2015-02-04 株式会社ジェイエスピー Expandable composite thermoplastic resin particles, composite thermoplastic resin foam particles, and composite thermoplastic resin foam particles
JP5909368B2 (en) * 2012-01-13 2016-04-26 株式会社カネカ Polypropylene resin-in-mold foam-molded article and method for producing the same
WO2014084165A1 (en) * 2012-11-27 2014-06-05 株式会社カネカ Polypropylene resin foamed particles, polypropylene resin in-mold foam molded article, and method for producing same
CN109721801A (en) * 2017-10-27 2019-05-07 中国石油化工股份有限公司 A kind of polypropylene base-material for gas infiltration saturation foaming

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4310134A1 (en) * 2022-07-22 2024-01-24 JSP Corporation Polypropylene-based resin expanded beads and molded article thereof
CN116120623A (en) * 2023-03-23 2023-05-16 无锡会通轻质材料股份有限公司 Conical microporous polypropylene foaming beads and molded parts thereof
CN116120623B (en) * 2023-03-23 2024-03-15 无锡会通轻质材料股份有限公司 Conical microporous polypropylene foaming beads and molded parts thereof

Also Published As

Publication number Publication date
CN113045827A (en) 2021-06-29
CN113045827B (en) 2023-07-04

Similar Documents

Publication Publication Date Title
JP7326023B2 (en) Thermoplastic elastomer foamed particles and molded products thereof
JP4276489B2 (en) Method for producing polypropylene resin expanded particles and polypropylene resin expanded particles
JP2022127578A (en) Foamed particle and method for producing the same
WO2016111017A1 (en) Propylene resin foam particles and foam particle molded article
US20240279421A1 (en) Polypropylene-based resin expanded bead, method for producing same, and molded article of polypropylene-based resin expanded beads
JP2022096231A (en) Polypropylene-based resin foam particle, and foam particle molding
KR20160107163A (en) Propylene-based resin foam particle and foam particle molded body
US20240124674A1 (en) Molded article of polypropylene-based resin expanded beads and method for producing same
JP5630591B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP6961607B2 (en) Foamed particle molded product
JP2021028363A (en) Polypropylene-based resin foam particle, and molded article of polypropylene-based resin foam particle
JP5591965B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP2013100555A (en) Pre-expanded particle of polyolefin resin, and method for producing the same
CN115427487B (en) Polypropylene resin foam beads and polypropylene resin foam bead molded article
JP7225038B2 (en) Expanded polypropylene resin particles and expanded polypropylene resin particles
JP5220486B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
WO2023063081A1 (en) Expanded polypropylene-based-resin particles and method for producing molded expanded-particle object
JP2023019516A (en) Polypropylene-based resin foam particle and method for producing the same
JP2023048463A (en) Multilayer foam particle
JP2024014407A (en) Polypropylene-based resin foamed particles and polypropylene-based resin foamed particles molded article
JP2022167218A (en) Multilayer foamed particle
TWI667273B (en) Propylene-based resin foamed particles and foamed particles molded body
JP2000219766A (en) Foamed polypropylene resin molding and automotive interior furnishing material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240806