JP4276489B2 - Method for producing polypropylene resin expanded particles and polypropylene resin expanded particles - Google Patents

Method for producing polypropylene resin expanded particles and polypropylene resin expanded particles Download PDF

Info

Publication number
JP4276489B2
JP4276489B2 JP2003277723A JP2003277723A JP4276489B2 JP 4276489 B2 JP4276489 B2 JP 4276489B2 JP 2003277723 A JP2003277723 A JP 2003277723A JP 2003277723 A JP2003277723 A JP 2003277723A JP 4276489 B2 JP4276489 B2 JP 4276489B2
Authority
JP
Japan
Prior art keywords
particles
polypropylene resin
foamed
resin
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003277723A
Other languages
Japanese (ja)
Other versions
JP2004068016A (en
Inventor
秀浩 佐々木
正和 坂口
篠原  充
知生 常盤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2003277723A priority Critical patent/JP4276489B2/en
Publication of JP2004068016A publication Critical patent/JP2004068016A/en
Application granted granted Critical
Publication of JP4276489B2 publication Critical patent/JP4276489B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

本発明は、ポリプロピレン系樹脂発泡粒子の製造方法及び該ポリプロピレン系樹脂発泡粒子に関する。   The present invention relates to a method for producing expanded polypropylene resin particles and the expanded polypropylene resin particles.

近年、ポリプロピレン系樹脂は、その機械強度、耐熱性、加工性、価格のバランスが優れていること及び易焼却性、易リサイクル性等の優れた性質を有することから利用分野を拡大しつつある。   In recent years, polypropylene-based resins are expanding their fields of use because of their excellent mechanical strength, heat resistance, processability, price balance, and excellent properties such as easy incineration and easy recyclability.

同様に、無架橋ポリプロピレン系樹脂からなる型内発泡成形体が、上記ポリプロピレン系樹脂の優れた性質を失うことなく、緩衝性、断熱性等の特性が付加されていることから、包装材料、建築材料、断熱材料等として広く利用されている。   Similarly, in-mold foam molded articles made of non-crosslinked polypropylene resins have added cushioning, heat insulation and other characteristics without losing the excellent properties of the above polypropylene resins. Widely used as materials, heat insulating materials, etc.

近年、特に自動車分野で軽量で高剛性の無架橋ポリプロピレン系樹脂からなる型内発泡成形体が要望され、高剛性のポリプロピレン系樹脂を用いて検討されている。高剛性のポリプロピレン系樹脂は、高剛性であるほど融点が高くなる傾向にある。高剛性のポリプロピレン系樹脂は、その融点が145℃以上のものが大半を占める。特に、ポリプロピレン系樹脂の融点が145℃以上となると型内成形に必要なスチーム圧力が高すぎるので、従来の成形機の耐圧性能(0.45MPa(G))を上回る結果、従来の成形機では発泡粒子同士の融着が不十分な成形体しか得ることができなかった。従って、従来のポリプロピレン系樹脂発泡粒子を型内成形するためには、高いスチーム圧力に耐える特別な成形装置が必要であった。更にポリプロピレン系樹脂の融点が145℃以上となる発泡粒子の場合は、成形時に使用するスチーム量が多大なものとなる問題が生じていた。   In recent years, there has been a demand for an in-mold foam-molded article made of a non-crosslinked polypropylene resin that is lightweight and highly rigid, particularly in the automotive field, and has been studied using a highly rigid polypropylene resin. Higher-rigidity polypropylene resins tend to have higher melting points as the rigidity is higher. Most of the high-rigidity polypropylene resins have a melting point of 145 ° C. or higher. In particular, when the melting point of the polypropylene resin is 145 ° C. or higher, the steam pressure required for in-mold molding is too high. As a result, it exceeds the pressure resistance (0.45 MPa (G)) of the conventional molding machine. Only molded articles with insufficient fusion between the expanded particles could be obtained. Therefore, in order to mold the conventional expanded polypropylene resin particles in a mold, a special molding apparatus that can withstand high steam pressure is required. Furthermore, in the case of expanded particles in which the melting point of the polypropylene resin is 145 ° C. or higher, there has been a problem that the amount of steam used at the time of molding becomes enormous.

かかる問題を解決し、従来の成形装置の耐圧以内であっても成形が可能な発泡成形体を得ることが試みられてきた。例えば、本出願人は、先に特許文献1に示すように、140℃以上の融点を有する第一のポリプロピレン系樹脂の粒状発泡体及びその表面に密着した第二のポリプロピレン系樹脂の発泡体よりなり、第二のポリプロピレン系樹脂の融点が第一のポリプロピレン系樹脂の融点より2〜10℃低く、且つ特定の表面積を有するポリプロピレン系樹脂発泡粒子を提案した。しかし、該発泡粒子は、低圧のスチーム圧力で成型できるものの発泡粒子における芯層の剛性が低いため得られた発泡成形体の圧縮強度等の剛性は、低いものであった。   Attempts have been made to solve this problem and obtain a foamed molded product that can be molded even within the pressure resistance of conventional molding apparatuses. For example, the applicant of the present invention, as previously shown in Patent Document 1, from a first polypropylene resin granular foam having a melting point of 140 ° C. or higher and a second polypropylene resin foam closely adhered to the surface thereof Therefore, a polypropylene resin expanded particle having a specific surface area with a melting point of the second polypropylene resin 2 to 10 ° C. lower than the melting point of the first polypropylene resin was proposed. However, although the foamed particles can be molded with a low steam pressure, the foamed molded product obtained has low rigidity such as compression strength because the core layer of the foamed particles has low rigidity.

また、特許文献2には、結晶性の熱可塑性樹脂からなる発泡状態の芯層と、該熱可塑性樹脂より融点が低いエチレン系重合体等から成り、且つ、実質的に非発泡状態である被覆層とから構成されている発泡粒子が提案されている。しかし、この発泡粒子を用いて得られた成形体は、加熱条件下での曲げ特性が低い等の耐熱性が低いという問題があった。   Patent Document 2 discloses a foamed core layer made of a crystalline thermoplastic resin, an ethylene polymer having a melting point lower than that of the thermoplastic resin, and the like, which is substantially non-foamed. Expanded particles composed of layers have been proposed. However, the molded body obtained using the expanded particles has a problem of low heat resistance such as low bending characteristics under heating conditions.

特開昭58−145739号公報JP 58-145739 A 特開平10−77359号公報JP-A-10-77359

本発明は、従来のポリプロピレン系樹脂発泡粒子の加熱成型に必要とされるスチーム圧力よりも低いスチーム圧力にて加熱成型が可能であり、十分な剛性と、耐熱性を有する発泡成形体を得ることができるポリプロピレン系樹脂発泡粒子を提供することを目的とする。   The present invention is capable of being heat-molded at a steam pressure lower than the steam pressure required for heat-molding conventional polypropylene resin foam particles, and obtains a foam-molded article having sufficient rigidity and heat resistance. An object of the present invention is to provide expanded polypropylene resin particles that can be used.

本発明者等は、前記課題を解決すべく鋭意研究を重ねた結果、外層のポリプロピレン系樹脂が芯層のポリプロピレン系樹脂より融点が低く、外層の厚みを特定の値とした多層樹脂粒子に発泡剤を含浸させて、加熱軟化状態の発泡剤含浸多層樹脂粒子を発泡させて、実質的に非発泡の表層部とした発泡粒子は、表層部が発泡した発泡粒子とを比較した場合、実質的に非発泡の表層部とした発泡粒子は、成型する際、ポリプロピレン系樹脂の本来有する剛性等の特性を失うことなく低いスチーム圧力で発泡粒子相互を融着させることができることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventors have foamed multilayer resin particles in which the outer layer polypropylene resin has a lower melting point than the core layer polypropylene resin and the outer layer thickness has a specific value. Foamed particles impregnated with an agent to expand the foamed resin impregnated multilayer resin particles in a heat-softened state to form a substantially non-foamed surface layer portion are substantially It is found that the foamed particles having a non-foamed surface layer part can be fused with each other at a low steam pressure without losing the inherent properties such as rigidity of the polypropylene resin when molding. It came to complete.

即ち、本発明によれば、以下に示す発泡粒子の製造方法及び発泡粒子が提供される。   That is, according to this invention, the manufacturing method and expanded particle of the expanded particle shown below are provided.

[1]ポリプロピレン系樹脂から形成される芯層とポリプロピレン系樹脂から形成される外層とからなり、該外層のポリプロピレン系樹脂の融点(ts)と、該芯層のポリプロピレン系樹脂の融点(ti)との関係が(1)式を満足し、該外層の厚さが30μm以下である多層樹脂粒子に発泡剤を含浸させることにより、加熱軟化状態の発泡剤含浸多層樹脂粒子を発泡させることを特徴とするポリプロピレン系樹脂発泡粒子の製造方法。
(数3)
1.5(℃)≦ti−ts≦30.0(℃)・・・(1)
(但し、式中のti、tsの単位はともに℃である。)
[1] A core layer formed from a polypropylene resin and an outer layer formed from a polypropylene resin, the melting point (ts) of the polypropylene resin of the outer layer, and the melting point (ti) of the polypropylene resin of the core layer The foaming agent-impregnated multilayer resin particles in a heat-softened state are foamed by impregnating the foaming agent into the multilayer resin particles having the relationship of (1) satisfying the formula (1) and the outer layer thickness being 30 μm or less. A method for producing expanded polypropylene resin particles.
(Equation 3)
1.5 (° C.) ≦ ti-ts ≦ 30.0 (° C.) (1)
(However, the unit of ti and ts in the formula is ° C.)

[2]芯層のポリプロピレン系樹脂の引張弾性率が1200MPa以上であることを特徴とする前記[1]記載のポリプロピレン系樹脂発泡粒子の製造方法。 [2] The method for producing expanded polypropylene resin particles according to [1], wherein the tensile modulus of the polypropylene resin of the core layer is 1200 MPa or more.

[3]ポリプロピレン系樹脂から形成される芯層とポリプロピレン系樹脂から形成される外層とからなる多層樹脂粒子を発泡してなる発泡粒子であって、該発泡粒子は、該芯層のポリプロピレン系樹脂が発泡してなる内層部と該外層のポリプロピレン系樹脂からなる実質的に非発泡の表層部とからなり、マイクロ示差熱分析測定によって得られる該表層部の補外融解開始温度(Ts)が該内層部の補外融解開始温度(Ti)より少なくとも2℃低いことを特徴とするポリプロピレン系樹脂発泡粒子。 [3] Foamed particles obtained by foaming multilayer resin particles composed of a core layer formed of a polypropylene resin and an outer layer formed of a polypropylene resin, the foamed particles being a polypropylene resin of the core layer Of the outer layer and a substantially non-foamed surface layer portion made of the polypropylene resin of the outer layer, and the extrapolated melting start temperature (Ts) of the surface layer portion obtained by micro differential thermal analysis measurement is A polypropylene resin expanded particle having a temperature lower by at least 2 ° C. than an extrapolated melting start temperature (Ti) of an inner layer portion.

[4]表層部の補外融解開始温度(Ts)と、内層部の補外融解開始温度(Ti)との関係が(2)式を満足することを特徴とする前記[3]に記載のポリプロピレン系樹脂発泡粒子。
(数4)
3(℃)≦Ti−Ts≦40(℃)・・・(2)
(但し、式中のTi、Tsの単位はともに℃である。)
[4] The relation between the extrapolated melting start temperature (Ts) of the surface layer portion and the extrapolated melting start temperature (Ti) of the inner layer portion satisfies the formula (2), Polypropylene resin foam particles.
(Equation 4)
3 (° C.) ≦ Ti−Ts ≦ 40 (° C.) (2)
(However, the unit of Ti and Ts in the formula is ° C.)

[5]ポリプロピレン系樹脂発泡粒子の示差走査熱量測定によって得られるDSC曲線は、ポリプロピレン系樹脂に固有の吸熱曲線ピークと、該吸熱曲線ピークよりも高温側の吸熱曲線ピークとを少なくとも示し、且つ該高温側の吸熱曲線ピークの熱量が全ての吸熱曲線ピークの熱量の合計に対して15%〜70%であることを特徴とする前記[3]又は[4]に記載のポリプロピレン系樹脂発泡粒子。 [5] The DSC curve obtained by differential scanning calorimetry of the polypropylene resin expanded particles shows at least an endothermic curve peak specific to the polypropylene resin and an endothermic curve peak on the higher temperature side than the endothermic curve peak, and The expanded polypropylene resin particles according to [3] or [4] above, wherein the heat quantity of the endothermic curve peak on the high temperature side is 15% to 70% with respect to the total heat quantity of all endothermic curve peaks.

[6]ポリプロピレン系樹脂発泡粒子の形状が、筒状であることを特徴とする前記[3]〜[5]のいずれかに記載のポリプロピレン系樹脂発泡粒子。 [6] The expanded polypropylene resin particles according to any one of [3] to [5], wherein the expanded polypropylene resin particles have a cylindrical shape.

本発明方法により得られる発泡粒子は、多層樹脂粒子における外層の厚さを特定の値として、外層のポリプロピレン系樹脂の融点(ts)と、芯層のポリプロピレン系樹脂の融点(ti)との関係が特定の関系が成り立つようにすることで、発泡粒子における表層部を実質的に非発泡とするものである。これにより、得られる発泡粒子は、芯層のポリプロピレン系樹脂の融点が外層のポリプロピレン系樹脂の融点より高いものであっても低いスチーム圧力で発泡粒子相互の融着性に優れたものである。 The foamed particles obtained by the method of the present invention have a relationship between the melting point (ts) of the polypropylene resin in the outer layer and the melting point (ti) of the polypropylene resin in the core layer, with the thickness of the outer layer in the multilayer resin particles being a specific value. However, by making the specific relation hold, the surface layer portion of the expanded particles is substantially non-expanded. As a result, the obtained foamed particles are excellent in fusion property between the foamed particles at a low steam pressure even if the melting point of the polypropylene resin of the core layer is higher than the melting point of the polypropylene resin of the outer layer.

さらに、本発明方法により得られる発泡粒子は、芯層のポリプロピレン系樹脂の引張弾性率が特定の値であることから、バンパー等のエネルギー吸収材として使用する場合、優れたエネルギー吸収量を発泡成形体に付与することができる。   Furthermore, the expanded particles obtained by the method of the present invention have a specific value of the tensile modulus of the polypropylene resin of the core layer, and therefore when used as an energy absorbing material such as a bumper, an excellent energy absorption amount is obtained by foam molding. Can be given to the body.

本発明の発泡粒子は、ポリプロピレン系樹脂から形成される芯層とポリプロピレン系樹脂から形成される外層とからなる多層樹脂粒子を発泡してなる発泡粒子であって、該発泡粒子は、該芯層のポリプロピレン系樹脂が発泡してなる内層部と該外層のポリプロピレン系樹脂からなる実質的に非発泡の表層部とからなり、マイクロ示差熱分析測定によって得られる該表層部の補外融解開始温度(Ts)が該内層部の補外融解開始温度(Ti)より少なくとも2℃低いことから芯層のポリプロピレン系樹脂の融点が外層のポリプロピレン系樹脂の融点より高いものであっても低いスチーム圧力にて加熱成形しても発泡粒子相互の融着性に優れた発泡粒子である。   The foamed particle of the present invention is a foamed particle obtained by foaming multilayer resin particles comprising a core layer formed from a polypropylene resin and an outer layer formed from a polypropylene resin, and the foamed particles are An outer layer melting temperature of the outer layer obtained by micro differential thermal analysis measurement (inner layer portion formed by foaming the inner layer portion of the polypropylene resin and a substantially non-foamed surface layer portion comprising the outer layer polypropylene resin ( Since Ts) is at least 2 ° C. lower than the extrapolated melting start temperature (Ti) of the inner layer portion, even if the melting point of the polypropylene resin of the core layer is higher than the melting point of the polypropylene resin of the outer layer, the steam pressure is low Even if it is heat-molded, it is a foamed particle having excellent fusion properties between the foamed particles.

さらに、本発明の発泡粒子は、マイクロ示差熱分析測定によって得られる発泡粒子の表層部の補外融解開始温度(Ts)と、発泡粒子の内層部の補外融解開始温度(Ti)との関係が特定の式を満足する発泡粒子としたため、発泡成形体の耐熱性を低下させることなく、より低いスチーム圧力で成型できる発泡粒子である。   Furthermore, the expanded particles of the present invention have a relationship between the extrapolated melting start temperature (Ts) of the surface layer portion of the expanded particles obtained by micro differential thermal analysis measurement and the extrapolated melting start temperature (Ti) of the inner layer portion of the expanded particles. Is a foamed particle that can be molded at a lower steam pressure without reducing the heat resistance of the foamed molded product.

さらに、本発明の発泡粒子は、発泡粒子が発泡粒子の示差走査熱量測定によって得られるDSC曲線が、特定の構成であるという構成を採用すると、連続気泡率が低く、圧縮強度に優れ、容易に内圧を付与することができ、成形性が良好な発泡粒子を得ることができる。   Furthermore, when the DSC curve obtained by differential scanning calorimetry of the foamed particles is a specific configuration, the expanded particles of the present invention have a low open cell ratio, excellent compressive strength, and easily. Internal pressure can be applied, and foamed particles with good moldability can be obtained.

さらに、本発明の発泡粒子は、発泡粒子の形状が筒状であるという構成を採用すると、発泡成形体を成形する際に筒状の形状を崩さずに発泡粒子相互を融着させることができるので、空隙が高いポリプロピレン系樹脂発泡成形体が得られる。   Furthermore, when the foamed particles of the present invention adopt a configuration in which the shape of the foamed particles is a cylindrical shape, the foamed particles can be fused to each other without breaking the cylindrical shape when the foamed molded article is formed. Therefore, a polypropylene resin foam molded article having high voids can be obtained.

本発明のポリプロピレン系樹脂発泡粒子(以下、単に「発泡粒子」という)の製造方法は、ポリプロピレン系樹脂から形成される芯層とポリプロピレン系樹脂から形成される外層とからなる多層樹脂粒子に発泡剤を含浸させて、加熱軟化状態の発泡剤含浸多層樹脂粒子を発泡させる。   The method for producing expanded polypropylene resin particles (hereinafter, simply referred to as “expanded particles”) of the present invention includes a foaming agent applied to multilayer resin particles comprising a core layer formed from a polypropylene resin and an outer layer formed from a polypropylene resin. The foamed resin-impregnated multilayer resin particles in a heat-softened state are foamed.

本発明の製造方法に用いられる多層樹脂粒子の芯層のポリプロピレン系樹脂としては、例えば、プロピレン単独重合体、またはプロピレン成分単位を60モル%以上含有する(好ましくはプロピレン成分単位を80モル%以上含有する)プロピレンと他のコモノマーとの共重合体のいずれか、あるいはこれらの樹脂の中から選ばれる2種以上の混合物が挙げられる。   The polypropylene resin of the core layer of the multilayer resin particles used in the production method of the present invention includes, for example, a propylene homopolymer or a propylene component unit of 60 mol% or more (preferably a propylene component unit of 80 mol% or more). And a copolymer of propylene and other comonomers, or a mixture of two or more selected from these resins.

プロピレン成分単位を60モル%以上含有するプロピレンと他のコモノマーとの共重合体としては、例えば、プロピレン−エチレンランダムコポリマー、プロピレン−エチレンブロックコポリマー、プロピレン−ブテンランダムコポリマー、プロピレン−エチレン−ブテンランダムコポリマーなどが例示される。   Examples of the copolymer of propylene containing 60 mol% or more of propylene component units and other comonomers include, for example, propylene-ethylene random copolymer, propylene-ethylene block copolymer, propylene-butene random copolymer, propylene-ethylene-butene random copolymer. Etc. are exemplified.

芯層のポリプロピレン系樹脂の融点は、最終的なポリプロピレン系樹脂型内発泡成形体(以下、「発泡成形体」という)の耐熱性を高いものとする上で、145℃以上であることが好ましく、155℃以上であることがより好ましく、158℃以上であることが更に好ましく、160℃以上であることが最も好ましい。該融点の上限値は、通常、170℃程度である。   The melting point of the polypropylene resin in the core layer is preferably 145 ° C. or higher in order to increase the heat resistance of the final polypropylene resin in-mold foam molded product (hereinafter referred to as “foam molded product”). It is more preferably 155 ° C. or higher, further preferably 158 ° C. or higher, and most preferably 160 ° C. or higher. The upper limit of the melting point is usually about 170 ° C.

また、芯層のポリプロピレン系樹脂は、発泡成形体の圧縮強度を大きいものとする上で、さらに発泡成形体をバンパー等のエネルギー吸収材として使用する場合のエネルギー吸収量が優れているという点で、引張降伏強さが31MPa以上であることが好ましく、32MPa以上であることがより好ましい。引張降伏強さの上限は特に規定はないが、通常は、大きくても45MPaである。   In addition, the polypropylene-based resin of the core layer is superior in that the compression strength of the foam molded article is large, and further the energy absorption amount when the foam molded article is used as an energy absorbing material such as a bumper is excellent. The tensile yield strength is preferably 31 MPa or more, and more preferably 32 MPa or more. The upper limit of the tensile yield strength is not particularly specified, but is usually 45 MPa at most.

また、芯層のポリプロピレン系樹脂は、多層樹脂粒子を発泡させる際に気泡膜が破れることを防止する上で、更には型内成形に際しての加熱時における気泡膜が破れることを防止する上で、引張破壊伸びが20%以上であることが好ましく、100%以上であることがより好ましく、200〜1000%であることが更に好ましい。   In addition, the polypropylene-based resin of the core layer prevents the bubble film from being broken when foaming the multilayer resin particles, and further prevents the bubble film from being broken at the time of heating in the mold. The tensile elongation at break is preferably 20% or more, more preferably 100% or more, and further preferably 200 to 1000%.

尚、上記引張降伏強さ及び引張破壊伸びは、いずれも、JIS K 6758(1981年)記載の測定方法に基づくものである。   The tensile yield strength and tensile elongation at break are both based on the measurement method described in JIS K 6758 (1981).

特許文献1に記載されている表層部が発泡した発泡粒子は、芯層の剛性が低いことから得られた発泡成形体は、圧縮強度等の剛性が低いものである。より剛性が高いものとする上で本発明方法における芯層のポリプロピレン系樹脂は、引張弾性率が少なくとも1200MPa以上であることが好ましい。かかる構成であると得られる発泡成形体がバンパー等のエネルギー吸収材として使用する場合、優れたエネルギー吸収量を付与する。このような観点から1250MPa以上であることがより好ましく、1300MPa以上であることが更に好ましく、1360MPa〜2500MPaが特に好ましい。引張弾性率が1200MPa以上の高剛性のポリプロピレン系樹脂としては、プロピレンの単独重合体の大半がそのような高剛性を示し、プロピレンと他のコモノマーとの共重合体であってもそのコモノマー成分含有割合が極端に少ないものはそのような高剛性を示す傾向にある。   The foamed particles obtained by foaming the surface layer portion described in Patent Document 1 have low rigidity such as compressive strength in the foamed molded article obtained from the low rigidity of the core layer. In order to make the rigidity higher, the polypropylene resin of the core layer in the method of the present invention preferably has a tensile elastic modulus of at least 1200 MPa. When the foamed molded product obtained with such a configuration is used as an energy absorbing material such as a bumper, an excellent energy absorption amount is imparted. From such a viewpoint, the pressure is more preferably 1250 MPa or more, further preferably 1300 MPa or more, and particularly preferably 1360 MPa to 2500 MPa. As a high-rigidity polypropylene resin having a tensile modulus of 1200 MPa or more, most of the propylene homopolymer exhibits such high rigidity, and even if it is a copolymer of propylene and another comonomer, the comonomer component is contained. Those having an extremely small proportion tend to exhibit such high rigidity.

尚、引張弾性率は、樹脂をJIS K 7161(1994年)にしたがって以下の条件にて測定して求められた値である。
試験片:JIS K 7162(1994年)記載の試験片1A形(射出成形で直接成形)、
引張速度:1mm/分
The tensile elastic modulus is a value obtained by measuring the resin under the following conditions in accordance with JIS K 7161 (1994).
Test piece: Test piece 1A type described in JIS K 7162 (1994) (direct molding by injection molding),
Tensile speed: 1 mm / min

また、芯層のポリプロピレン系樹脂は、MFRと略記されるメルトフローレート(JIS K7210(1976年)の試験条件14)が1g/10分以上100g/10分以下であることが好ましい。該MFRが1g/10分未満であると、型内成形時の成形スチーム温度をより低くする効果が不充分となる虞がある。また、MFRが100g/10分を越えると、得られた発泡成形体が脆くなる虞がある。このような観点から、MFRは10g/10分以上70g/10分以下であることがより好ましい。
前記特性を併せ持つポリプロピレン系樹脂は、種々の方法で製造された市販のポリプロピレン樹脂の中から入手可能である。
The polypropylene resin of the core layer preferably has a melt flow rate (test condition 14 of JIS K7210 (1976)) abbreviated as MFR of 1 g / 10 min to 100 g / 10 min. If the MFR is less than 1 g / 10 min, the effect of lowering the molding steam temperature during in-mold molding may be insufficient. Moreover, when MFR exceeds 100 g / 10min, there exists a possibility that the obtained foaming molding may become weak. From such a viewpoint, the MFR is more preferably 10 g / 10 min or more and 70 g / 10 min or less.
Polypropylene resins having the above characteristics can be obtained from commercially available polypropylene resins produced by various methods.

芯層のポリプロピレン系樹脂には、本発明の所期の効果を損なわない範囲内において、ポリプロピレン系樹脂以外の他の合成樹脂、合成ゴム及び/又はエラストマー等を添加することができる。ポリプロピレン系樹脂以外の他の合成樹脂、合成ゴム及び/又はエラストマーの添加量は、ポリプロピレン系樹脂100重量部当り、多くても35重量部以下であることが好ましく、より好ましは20重量部以下であり、更に好ましは10重量部以下であり、多くても5重量部以下であることが最も好ましい。   To the polypropylene resin of the core layer, other synthetic resins, synthetic rubbers and / or elastomers other than the polypropylene resin can be added within a range that does not impair the intended effect of the present invention. The amount of the synthetic resin other than polypropylene resin, synthetic rubber and / or elastomer added is preferably at most 35 parts by weight, more preferably 20 parts by weight or less, per 100 parts by weight of the polypropylene resin. More preferred is 10 parts by weight or less, and most preferred is 5 parts by weight or less.

前記ポリプロピレン系樹脂以外の他の合成樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、直鎖状超低密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−メタクリル酸共重合体等のエチレン系樹脂、或いはポリスチレン、スチレン−無水マレイン酸共重合体等のスチレン系樹脂等が例示される。   Synthetic resins other than the polypropylene resin include high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, linear ultra-low density polyethylene, ethylene-vinyl acetate copolymer, ethylene- Examples thereof include ethylene resins such as acrylic acid copolymers and ethylene-methacrylic acid copolymers, and styrene resins such as polystyrene and styrene-maleic anhydride copolymers.

前記合成ゴムとしては、エチレン−プロピレンゴム、エチレン−1−ブテンゴム、プロピレン−1−ブテンゴム、スチレン−ブタジエンゴムやその水添物、イソプレンゴム、ネオプレンゴム、ニトリルゴム等が例示される。前記エラストマーとしては、スチレン−ブタジエンブロック共重合体エラストマーやその水添物等が例示される。   Examples of the synthetic rubber include ethylene-propylene rubber, ethylene-1-butene rubber, propylene-1-butene rubber, styrene-butadiene rubber and hydrogenated products thereof, isoprene rubber, neoprene rubber, and nitrile rubber. Examples of the elastomer include styrene-butadiene block copolymer elastomers and hydrogenated products thereof.

なお、芯層のポリプロピレン系樹脂中には、所望に応じて各種添加剤を含有させることができる。このような添加剤としては、たとえば、酸化防止剤、紫外線防止剤、帯電防止剤、難燃剤、金属不活性剤、顔料、染料、核剤、あるいは気泡調整剤等を挙げることができる。気泡調整剤としては、たとえばホウ酸亜鉛、タルク、炭酸カルシウム、ホウ砂、水酸化アルミニウムなどの無機粉体が例示される。   In addition, various additives can be contained in the polypropylene resin of the core layer as desired. Examples of such additives include antioxidants, ultraviolet light inhibitors, antistatic agents, flame retardants, metal deactivators, pigments, dyes, nucleating agents, and bubble regulators. Examples of the air conditioner include inorganic powders such as zinc borate, talc, calcium carbonate, borax, and aluminum hydroxide.

これらの添加剤の含有量は、芯層を形成するポリプロピレン系樹脂等からなる基材樹脂100重量部当り20重量部以下、特に5重量部以下であることが好ましい。特に、気泡調整剤の量は、平均気泡径を20〜300μmとする上で0.005〜1重量部であることが好ましい。   The content of these additives is preferably 20 parts by weight or less, and particularly preferably 5 parts by weight or less, per 100 parts by weight of the base resin composed of a polypropylene resin or the like forming the core layer. In particular, the amount of the bubble regulator is preferably 0.005 to 1 part by weight when the average bubble diameter is 20 to 300 μm.

本発明の製造方法に用いられる多層樹脂粒子の外層のポリプロピレン系樹脂としては、外層のポリプロピレン系樹脂の融点と芯層のポリプロピレン系樹脂の融点との関係が後述する(1)式を満足すること以外は、芯層のポリプロピレン系樹脂と同じものが例示される。   As the outer layer polypropylene resin of the multilayer resin particle used in the production method of the present invention, the relationship between the melting point of the outer layer polypropylene resin and the melting point of the core layer polypropylene resin satisfies the formula (1) described later. Except for the above, the same thing as the polypropylene resin of the core layer is exemplified.

前記外層のポリプロピレン系樹脂の融点は、耐熱性の観点から130℃以上が好ましく、140℃以上がより好ましい。一方、その上限は、低い成形圧力で発泡粒子相互を融着させる観点から155℃以下が好ましく、150℃以下がより好ましく、145℃以下がさらに好ましい。   The melting point of the polypropylene resin in the outer layer is preferably 130 ° C. or higher, more preferably 140 ° C. or higher, from the viewpoint of heat resistance. On the other hand, the upper limit is preferably 155 ° C. or less, more preferably 150 ° C. or less, and further preferably 145 ° C. or less from the viewpoint of fusing the expanded particles with a low molding pressure.

なお、外層のポリプロピレン系樹脂中には、前記芯層のポリプロピレン系樹脂と同様に、必要に応じて各種添加剤を含有させることができる。このような添加剤としては、たとえば、酸化防止剤、紫外線防止剤、帯電防止剤、難燃剤、金属不活性剤、顔料、染料、あるいは結晶核剤等を挙げることができる。中でも、酸化防止剤、紫外線防止剤、帯電防止剤、難燃剤、金属不活性剤、顔料、染料、あるいは結晶核剤等の機能性を付与する添加剤は、外層のみに添加するだけでその効果が得られる点で好ましい。   In addition, in the polypropylene resin of the outer layer, various additives can be contained as necessary, like the polypropylene resin of the core layer. Examples of such additives include antioxidants, ultraviolet inhibitors, antistatic agents, flame retardants, metal deactivators, pigments, dyes, and crystal nucleating agents. Among them, additives that impart functionality such as antioxidants, UV inhibitors, antistatic agents, flame retardants, metal deactivators, pigments, dyes, or crystal nucleating agents can be used only by adding them to the outer layer. Is preferable in that it is obtained.

これらの添加剤の含有量は、外層のポリプロピレン系樹脂等からなる基材樹脂100重量部当りおおよそ20重量部以下、特に5重量部以下であることが好ましい。この下限は、概ね0.01重量部である。   The content of these additives is preferably about 20 parts by weight or less, and particularly preferably 5 parts by weight or less, per 100 parts by weight of the base resin composed of a polypropylene resin or the like of the outer layer. This lower limit is approximately 0.01 parts by weight.

本発明方法においては、前記外層のポリプロピレン系樹脂の融点(ts)と、芯層のポリプロピレン系樹脂の融点(ti)との関係が下記(1)式を満足し、該外層の厚さが特定の値であるように構成される。かかる構成の多層樹脂粒子により、発泡された発泡粒子は、芯層のポリプロピレン系樹脂の融点が外層のポリプロピレン系樹脂の融点より高いものであっても低いスチーム圧力にて加熱成型しても発泡粒子相互の融着性に優れたものである。
さらに、発泡成形体の耐熱性を低下させることなく、より低いスチーム圧力で成型できる発泡粒子が得られる観点から下記(3)式を満足することが好ましく、下記(4)式を満足することがより好ましく、さらに下記(5)式を満足することがより好ましい。但し、式中の(ti)、(ts)の単位はともに℃である。
(数5)
1.5(℃)≦ti−ts≦30.0(℃)・・・(1)
(数6)
1.5(℃)≦ti−ts≦25.0(℃)・・・(3)
(数7)
1.5(℃)≦ti−ts≦20.0(℃)・・・(4)
(数8)
1.5(℃)≦ti−ts≦15.0(℃)・・・(5)
In the method of the present invention, the relationship between the melting point (ts) of the polypropylene resin of the outer layer and the melting point (ti) of the polypropylene resin of the core layer satisfies the following formula (1), and the thickness of the outer layer is specified: Configured to be the value of. With the multilayer resin particles having such a structure, the expanded foamed particles can be foamed particles even if the melting point of the polypropylene resin of the core layer is higher than the melting point of the polypropylene resin of the outer layer or heat-molded at a low steam pressure. It is excellent in mutual fusion property.
Furthermore, it is preferable to satisfy the following formula (3) from the viewpoint of obtaining foamed particles that can be molded at a lower steam pressure without reducing the heat resistance of the foam molded article, and to satisfy the following formula (4). More preferably, it is more preferable that the following expression (5) is satisfied. However, the units of (ti) and (ts) in the formula are both ° C.
(Equation 5)
1.5 (° C.) ≦ ti-ts ≦ 30.0 (° C.) (1)
(Equation 6)
1.5 (° C.) ≦ ti-ts ≦ 25.0 (° C.) (3)
(Equation 7)
1.5 (° C.) ≦ ti-ts ≦ 20.0 (° C.) (4)
(Equation 8)
1.5 (° C.) ≦ ti-ts ≦ 15.0 (° C.) (5)

前記外層のポリプロピレン系樹脂の融点(ts)は、JIS K7122(1987年)に準拠する測定方法により得られた値を採用する。
多層樹脂粒子を作製する際、外層用の原料として用いられるポリプロピレン系樹脂2〜4mgを採取し、示差走査熱量計によって室温(10〜40℃)から220℃まで10℃/分で昇温測定を行なう。その後、40℃まで10℃/分の速度で下げ、40℃となってから再び、220℃まで10℃/分で昇温測定を行なう。かかる測定により得られた2回目の昇温により得られるDSC曲線のピークの頂点を融点とする。なお、ピークが2つ以上ある場合、熱量が最も大きい融解ピークの頂点を採用する。
As the melting point (ts) of the polypropylene resin of the outer layer, a value obtained by a measuring method based on JIS K7122 (1987) is adopted.
When producing multi-layer resin particles, 2 to 4 mg of polypropylene resin used as a raw material for the outer layer is collected, and temperature rise measurement is performed at 10 ° C./min from room temperature (10 to 40 ° C.) to 220 ° C. using a differential scanning calorimeter. Do. Thereafter, the temperature is lowered to 40 ° C. at a rate of 10 ° C./min, and after reaching 40 ° C., the temperature rise measurement is performed again to 220 ° C. at 10 ° C./min. The peak of the DSC curve obtained by the second temperature increase obtained by this measurement is defined as the melting point. In addition, when there are two or more peaks, the peak of the melting peak having the largest amount of heat is adopted.

また、芯層のポリプロピレン系樹脂の融点(ti)は、前記した外層のポリプロピレン系樹脂の融点(ts)の測定方法と同様にして得られた値を採用する。   For the melting point (ti) of the polypropylene resin of the core layer, a value obtained in the same manner as the measuring method of the melting point (ts) of the polypropylene resin of the outer layer is adopted.

本発明方法においては、多層樹脂粒子における芯層のポリプロピレン系樹脂の融点(ti)と前記した外層のポリプロピレン系樹脂の融点(ts)との関係が特定の式を満足し、前記外層の厚さが30μm以下となるように多層樹脂粒子を形成する。かかる構成により、多層樹脂粒子を発泡させた際に芯層は発泡するが外層は発泡しないので、外層が発泡した発泡粒子よりも低いスチーム圧力で成型できる発泡粒子が得られる。
前記した多層樹脂粒子の外層が発泡しないメカニズムについては、定かではないが多層樹脂粒子が発泡する際、発泡力と樹脂の溶融粘度との関係で発泡剤を保持するためにはある程度の樹脂の厚さが必要であると考えられ、多層樹脂粒子の外層の厚さを特定の値し、芯層のポリプロピレン系樹脂の融点(ti)と前記した外層のポリプロピレン系樹脂の融点(ts)との関係が特定の式を満足することで多層樹脂粒子の芯層を発泡させ、外層を実質的に非発泡とすることができると考えられる。
In the method of the present invention, the relationship between the melting point (ti) of the polypropylene resin of the core layer in the multilayer resin particles and the melting point (ts) of the polypropylene resin of the outer layer satisfies a specific formula, and the thickness of the outer layer The multilayer resin particles are formed so that the thickness becomes 30 μm or less. With this configuration, when the multilayer resin particles are foamed, the core layer is foamed but the outer layer is not foamed. Thus, foamed particles that can be molded at a lower steam pressure than the foamed particles in which the outer layer is foamed are obtained.
The mechanism by which the outer layer of the multilayer resin particle does not foam is not clear, but when the multilayer resin particle foams, a certain amount of resin thickness is required to retain the foaming agent in relation to the foaming force and the melt viscosity of the resin. The thickness of the outer layer of the multilayer resin particles is a specific value, and the relationship between the melting point (ti) of the polypropylene resin of the core layer and the melting point (ts) of the polypropylene resin of the outer layer described above However, it is considered that the core layer of the multilayer resin particles can be foamed and the outer layer can be substantially non-foamed by satisfying a specific formula.

本発明方法において、多層樹脂粒子の外層の厚さの下限値は、発泡粒子相互の融着性が優れているという観点から1μm以上が好ましく、2μm以上がより好ましく、3μm以上が特に好ましい。一方、上限値は、発泡させない観点から25μm以下が好ましく、18μm以下がより好ましく、15μm以下が特に好ましい。   In the method of the present invention, the lower limit of the thickness of the outer layer of the multilayer resin particles is preferably 1 μm or more, more preferably 2 μm or more, and particularly preferably 3 μm or more from the viewpoint of excellent fusion properties between the expanded particles. On the other hand, the upper limit is preferably 25 μm or less, more preferably 18 μm or less, and particularly preferably 15 μm or less from the viewpoint of preventing foaming.

本明細書の多層樹脂粒子における外層の厚みは、多層樹脂粒子を、二等分して断面を顕微鏡下にて断面が全て入るようになるべく大きく拡大し、さらに該多層樹脂粒子を二等分した垂直な断面において外層が全周に写るように光学顕微鏡にて撮影した写真から測定される。具体的には、写真上で断面がおおよそ二等分となるように直線を引き、さらにその直線に直角となるように直線を引き、それらの直線と外層部分とが接する4箇所の長さを求め、その平均を一つの多層樹脂粒子の外層の厚みとする。この作業を合わせて10個の発泡粒子について行い、相加平均した値を多層樹脂粒子における外層の厚みとする。多層樹脂粒子における外層の厚みが分かりづらいときは予め外層を構成する樹脂に着色剤を添加して多層樹脂粒子を製造することが好ましい。   The thickness of the outer layer in the multilayer resin particles of the present specification was divided into two equal parts and the cross section was enlarged as much as possible so that the entire cross section could be entered under a microscope, and the multilayer resin particles were further divided into two equal parts. It is measured from a photograph taken with an optical microscope so that the outer layer appears on the entire circumference in a vertical section. Specifically, a straight line is drawn on the photograph so that the cross section is approximately bisected, and a straight line is drawn so as to be perpendicular to the straight line. The average is obtained as the thickness of the outer layer of one multilayer resin particle. This operation is performed for 10 foamed particles, and the arithmetic average value is taken as the thickness of the outer layer in the multilayer resin particles. When it is difficult to understand the thickness of the outer layer in the multilayer resin particles, it is preferable to produce the multilayer resin particles by adding a colorant to the resin constituting the outer layer in advance.

本発明方法において得られる発泡粒子は、通常の発泡粒子(多層構造でない発泡粒子)と比較して成型する際、発泡粒子の二次発泡性が劣り、得られる発泡成形体は金型と同じ形状となる金型転写性が低いことから平均気泡径が20μm以上とすることが好ましい。前述した観点から25μm以上がより好ましく、30μm以上がさらに好ましい。一方、その上限値は、得られる発泡成形体が圧縮応力により気泡が破泡することがなく、そのため歪が残らず繰り返し使用することができる観点から300μm以下が好ましい。上記観点から250μm以下がより好ましく、200μmがさらに好ましい。
なお、平均気泡径の測定方法は、発泡粒子を、二等分して断面を顕微鏡下にて断面が全て入るようになるべく大きく拡大してその断面を撮影する。その写真に基づき写真上で断面がおおよそ二等分となるように直線を引き、直線の長さを直線に接するすべての気泡の数で除した値をひとつの発泡粒子の平均気泡径とし、同様にして20個の発泡粒子について求め、その相加平均を発泡粒子の平均気泡径として採用した。
When the foamed particles obtained in the method of the present invention are molded as compared with ordinary foamed particles (foamed particles not having a multilayer structure), the foamed particles are inferior in secondary foamability, and the resulting foamed molded product has the same shape as the mold. The average bubble diameter is preferably 20 μm or more because the mold transferability is low. From the viewpoint described above, it is more preferably 25 μm or more, and further preferably 30 μm or more. On the other hand, the upper limit value is preferably 300 μm or less from the viewpoint that the foamed molded product obtained does not break bubbles due to compressive stress and can be used repeatedly without distortion. From the above viewpoint, 250 μm or less is more preferable, and 200 μm is further preferable.
In addition, the measurement method of an average bubble diameter divides an expanded particle into two equal parts, expands as much as possible so that a cross section may enter all under a microscope, and the cross section is image | photographed. Based on the photograph, a straight line is drawn on the photograph so that the cross section is approximately bisected, and the value obtained by dividing the length of the straight line by the number of all bubbles in contact with the straight line is taken as the average bubble diameter of one foamed particle. Thus, 20 foam particles were obtained, and the arithmetic average thereof was adopted as the average cell diameter of the foam particles.

本発明方法において用いる多層樹脂粒子の形状としては、例えば、円柱状、ラクビーボール状、球状、筒状が挙げられる。かかる多層樹脂粒子を発泡して得られる発泡粒子は、発泡前の形状に応じて円柱状、球状、ラクビーボール状、筒状となる。これらの形状の中では、筒状を選択すると空隙率の高い発泡成形体を得ることができ、かかる発泡成形体は透水性に優れたものである。   Examples of the shape of the multilayer resin particles used in the method of the present invention include a cylindrical shape, a rugby ball shape, a spherical shape, and a cylindrical shape. Foamed particles obtained by foaming such multilayer resin particles have a cylindrical shape, a spherical shape, a rugby ball shape, or a cylindrical shape according to the shape before foaming. Among these shapes, when a cylindrical shape is selected, a foam molded body having a high porosity can be obtained, and such a foam molded body is excellent in water permeability.

本発明において前記したポリプロピレン系樹脂発泡粒子の形状が筒状であるとは、円柱、楕円柱、角柱等の柱状発泡粒子の柱の上下方向を貫通する1又は2以上の貫通孔を有する形状のもの(例えば、特開平7−137063号の図2の(ア)乃至(カ))のみならず、上記貫通孔を有する形状に加え、外表面の一部に羽根状の突起を有する中空状のもの(例えば、特開平7−137063号の図3の(チ)乃至(ナ))や、上記貫通孔を有する形状に加え、一部に断裂部を有する中空円形状のもの(例えば、特開平7−137063号の図2の(キ))や上記貫通孔を有する形状に加え、一部に断裂部を有する中空多角形状のもの(例えば、特開平7−137063号の図2の(ク))をも包含する。   In the present invention, the shape of the polypropylene resin expanded particles described above is cylindrical. The shape having one or two or more through holes penetrating in the vertical direction of the columnar expanded particles such as a cylinder, an elliptical column, and a prism. In addition to the shape having the above-mentioned through-holes as well as the one (for example, Japanese Patent Laid-Open No. 7-137063 (A) to (F)), a hollow shape having a blade-like protrusion on a part of the outer surface In addition to the shape having the through hole in addition to the shape having the through hole (for example, Japanese Patent Laid-Open No. 7-137063). In addition to the shape having a through hole in addition to the shape having a through hole in FIG. 2 of FIG. 7-137063 (for example, FIG. 2 in FIG. 2 of JP-A-7-137063). ).

次に、本発明の多層樹脂粒子を製造する方法の一例について説明する。   Next, an example of a method for producing the multilayer resin particles of the present invention will be described.

まず、芯層を構成する前記ポリプロピレン系樹脂と必要に応じて配合される他の樹脂と添加剤とをひとつの押出機に供給し、加熱し混練して芯層形成用の第一の混合溶融樹脂を形成する。同時に、外層を構成する前記ポリプロピレン系樹脂と必要に応じて配合される他の樹脂と添加剤とを他の押出機に供給し、加熱し混練して外層形成用の第二の混合溶融樹脂を形成する。   First, the polypropylene resin constituting the core layer and other resins and additives blended as necessary are supplied to one extruder, heated and kneaded to form a first mixed melt for core layer formation Form a resin. At the same time, the polypropylene resin constituting the outer layer and other resins and additives blended as necessary are supplied to another extruder, heated and kneaded to obtain a second mixed molten resin for forming the outer layer. Form.

次に、第一の混合溶融樹脂と第二の混合溶融樹脂とを共押出ダイに供給し、該ダイ内において、第二の混合溶融樹脂の流れが第一の混合溶融樹脂のストランド状の流れの周囲を覆うように、第一の混合溶融樹脂の流れと第二の混合溶融樹脂の流れとを合流させ、両者を積層する。次に、積層された混合溶融樹脂を、ダイからストランド状に押出して冷却してから切断することにより、多層樹脂粒子を製造することができる。   Next, the first mixed molten resin and the second mixed molten resin are supplied to the co-extrusion die, and the flow of the second mixed molten resin is a strand-shaped flow of the first mixed molten resin in the die. The flow of the first mixed molten resin and the flow of the second mixed molten resin are merged so as to cover the periphery of the substrate, and both are laminated. Next, multilayer resin particles can be produced by extruding the laminated mixed molten resin into a strand shape from a die, cooling it, and then cutting.

なお、多層樹脂粒子における外層の厚さの調整は、芯層の吐出量と外層の吐出量とのバランスの調整や、ストランド状の押出物を引き取る速度を調整することにより行なう。   In addition, the adjustment of the thickness of the outer layer in the multilayer resin particles is performed by adjusting the balance between the discharge amount of the core layer and the discharge amount of the outer layer and adjusting the speed at which the strand-shaped extrudate is taken.

このように、ストランド状に共押出してから切断することが、外層が芯層に積層された多層樹脂粒子を得ることができるので好ましい。但し、本発明においては、芯層を形成する樹脂に外層を形成する樹脂が積層された多層シートを押出し、該シートを裁断して粒状にする方法を採用してもよい。   Thus, it is preferable to cut the material after coextrusion into a strand shape, because multilayer resin particles in which the outer layer is laminated on the core layer can be obtained. However, in the present invention, a method may be employed in which a multilayer sheet in which a resin for forming an outer layer is laminated on a resin for forming a core layer is extruded and the sheet is cut into granules.

多層樹脂粒子の表面積における外層の占める面積は、多層樹脂粒子を発泡させて得られた発泡粒子に優れた融着性を付与し、さらには曲げ強度に優れた発泡成形体を得ることができる点で表面積の全体の50%以上を占めることが好ましく、60%以上がより好ましく、70%以上が特に好ましい。なお、多層樹脂粒子の表面積における外層が線状に被覆されていても構わない。   The area occupied by the outer layer in the surface area of the multilayer resin particles is that the foamed particles obtained by foaming the multilayer resin particles are imparted with excellent fusing properties, and furthermore, a foam molded article with excellent bending strength can be obtained. It preferably accounts for 50% or more of the entire surface area, more preferably 60% or more, and particularly preferably 70% or more. Note that the outer layer on the surface area of the multilayer resin particles may be linearly coated.

次に、前記多層樹脂粒子を用いて、発泡粒子を発泡する方法の好ましい一例を説明する。   Next, a preferred example of a method for foaming foamed particles using the multilayer resin particles will be described.

まず、前記多層樹脂粒子を発泡剤等と共にオートクレーブ等の密閉容器内において水やアルコール等の水性媒体に分散させ、芯層を形成するポリプロピレン系樹脂の軟化温度以上の温度に加熱し、多層樹脂粒子に発泡剤を含浸させる。次に、密閉容器内の圧力を発泡剤の蒸気圧以上の圧力に保持しながら、密閉容器内の水面下の一端を開放し、多層樹脂粒子と水性媒体とを同時に容器内よりも低圧の雰囲気下に放出する(以下、分散媒放出発泡方法という)。通常、取り扱い上の観点から前記した水性媒体は水が好ましい。   First, the multilayer resin particles are dispersed in an aqueous medium such as water or alcohol in a closed container such as an autoclave together with a foaming agent, and heated to a temperature equal to or higher than the softening temperature of the polypropylene resin that forms the core layer. Is impregnated with a blowing agent. Next, while maintaining the pressure in the sealed container at a pressure equal to or higher than the vapor pressure of the foaming agent, one end below the water surface in the sealed container is opened, and the multilayer resin particles and the aqueous medium are simultaneously at a lower pressure than in the container. Released downward (hereinafter referred to as dispersion medium release foaming method). Usually, from the viewpoint of handling, the above-mentioned aqueous medium is preferably water.

分散媒放出発泡方法においては、容器内で加熱された場合に多層樹脂粒子同士が容器内で互いに融着しないように、分散媒体中に分散剤を添加することが好ましい。そのような分散剤としては、多層樹脂粒子の容器内での融着を防止するものであればよく、有機系、無機系を問わず使用可能であるが、取り扱いのし易さから微粒状無機物が好ましい。例えば、アムスナイト、カオリン、マイカ、クレー等の天然又は合成粘土鉱物や、酸化アルミニウム、酸化チタン、塩基性炭酸マグネシウム、塩基性炭酸亜鉛、炭酸カルシウム、酸化鉄等を1種または数種の組み合わせで使用してもよい。尚、分散剤は、通常多層樹脂粒子100重量部当り、0.001〜5重量部程度使用される。   In the dispersion medium releasing foaming method, it is preferable to add a dispersant to the dispersion medium so that the multilayer resin particles are not fused to each other in the container when heated in the container. As such a dispersant, any agent that prevents fusion of the multilayer resin particles in the container may be used, and it can be used regardless of whether it is organic or inorganic. Is preferred. For example, natural or synthetic clay minerals such as amusnite, kaolin, mica, clay, aluminum oxide, titanium oxide, basic magnesium carbonate, basic zinc carbonate, calcium carbonate, iron oxide and the like in one kind or a combination of several kinds May be used. In addition, a dispersing agent is normally used about 0.001-5 weight part per 100 weight part of multilayer resin particles.

更に、分散媒放出発泡方法においては、分散剤の分散力を強化する分散強化剤(分散剤の添加量が少ない場合であっても、容器内における多層樹脂粒子同士の融着を防止する機能を有する。)を分散媒体中に添加してもよい。このような分散強化剤としては、40℃の水100ccに対して少なくとも1mg以上溶解し得る無機化合物であって、該化合物の陰イオンまたは陽イオンの少なくとも一方が2価または3価の無機物質が好ましい。このような無機物質としては、たとえば、塩化マグネシウム、硝酸マグネシウム、硫酸マグネシウム、塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム、塩化鉄、硫酸鉄、硝酸鉄等が例示される。見かけ密度が100g/L以上の低発泡の発泡粒子を製造する場合には、分散強化剤を使用することが好ましい。
尚、分散強化剤は、通常多層樹脂粒子100重量部当り0.0001〜1重量部程度使用される。
Furthermore, in the dispersion medium releasing foaming method, a dispersion strengthening agent that strengthens the dispersing power of the dispersing agent (the function of preventing the fusion of the multilayer resin particles in the container even when the amount of the dispersing agent is small). May be added to the dispersion medium. Such a dispersion strengthening agent is an inorganic compound that can be dissolved in at least 1 mg or more in 100 cc of water at 40 ° C., and at least one of the anion or cation of the compound is a divalent or trivalent inorganic substance. preferable. Examples of such inorganic substances include magnesium chloride, magnesium nitrate, magnesium sulfate, aluminum chloride, aluminum nitrate, aluminum sulfate, iron chloride, iron sulfate, and iron nitrate. When producing low-expanded expanded particles having an apparent density of 100 g / L or more, it is preferable to use a dispersion strengthening agent.
The dispersion strengthener is usually used in an amount of about 0.0001 to 1 part by weight per 100 parts by weight of the multilayer resin particles.

分散媒放出発泡方法において用いる発泡剤としては、例えば、プロパン、ブタン、ヘキサン、ヘプタン等の脂肪族炭化水素類、シクロブタン、シクロヘキサン等の環式脂肪族炭化水素類、クロロフロロメタン、トリフロロメタン、1,2−ジフロロエタン、1,2,2,2−テトラフロロエタン、メチルクロライド、エチルクロライド、メチレンクロライド等のハロゲン化炭化水素などの有機系物理発泡剤や、窒素、酸素、空気、二酸化炭素、水といったいわゆる無機系物理発泡剤が例示される。また有機系物理発泡剤と無機系物理発泡剤を併用することもできる。前記した物理発泡剤は低密度の発泡粒子が容易に得られる点から好ましい。
上記物理発泡剤の中でも、窒素、酸素、空気、二酸化炭素、水の群から選択される1又は2以上の無機系物理発泡剤を主成分とするものが好適である。更に、これらの中でも発泡粒子の見かけ密度の安定性、環境負荷やコストなどを考慮すると、窒素や空気が好ましい。また発泡剤として水を使用する場合は、多層樹脂粒子を密閉容器中に分散させるための分散媒体として使用する水をそのまま利用すればよい。
Examples of the blowing agent used in the dispersion medium releasing foaming method include aliphatic hydrocarbons such as propane, butane, hexane, and heptane, cyclic aliphatic hydrocarbons such as cyclobutane and cyclohexane, chlorofluoromethane, trifluoromethane, Organic physical foaming agents such as halogenated hydrocarbons such as 1,2-difluoroethane, 1,2,2,2-tetrafluoroethane, methyl chloride, ethyl chloride, methylene chloride, nitrogen, oxygen, air, carbon dioxide, A so-called inorganic physical foaming agent such as water is exemplified. An organic physical foaming agent and an inorganic physical foaming agent can also be used in combination. The physical foaming agent described above is preferable because low-density foamed particles can be easily obtained.
Among the above physical foaming agents, those mainly composed of one or more inorganic physical foaming agents selected from the group of nitrogen, oxygen, air, carbon dioxide and water are preferred. Further, among these, nitrogen and air are preferable in consideration of the stability of the apparent density of the expanded particles, the environmental load and the cost. When water is used as the foaming agent, the water used as a dispersion medium for dispersing the multilayer resin particles in the sealed container may be used as it is.

分散媒放出発泡方法における物理発泡剤の容器内への充填量は、使用する発泡剤の種類と発泡温度と目的とする発泡粒子の見かけ密度に応じて適宜選択される。具体的には、例えば発泡剤として窒素を使用し、分散媒体として水を使用した場合、発泡開始直前の安定した状態にある密閉容器内の圧力、すなわち密閉容器内空間部の圧力(ゲージ圧)が、0.6〜6MPaとなるように選定することが好ましい。尚、一般的に、目的とする発泡粒子の見かけ密度が小さいほど前記容器内の空間部の圧力は高くすることが望ましく、目的とする発泡粒子の見かけ密度が大きいほど空間部の圧力は低くすることが望ましい。   The filling amount of the physical foaming agent in the dispersion medium releasing foaming method is appropriately selected according to the type of foaming agent to be used, the foaming temperature, and the apparent density of the intended foamed particles. Specifically, for example, when nitrogen is used as the foaming agent and water is used as the dispersion medium, the pressure in the sealed container immediately before the start of foaming, that is, the pressure in the space in the sealed container (gauge pressure) However, it is preferable to select so that it may become 0.6-6 MPa. In general, the smaller the apparent density of the target foam particles, the higher the pressure in the space in the container. The higher the apparent density of the target foam particles, the lower the pressure in the space. It is desirable.

分散媒放出発泡方法における物理発泡剤の容器内への充填は、昇温と同時に充填しても、昇温の途中に充填しても、発泡開始直前の安定した状態に充填しても多層樹脂粒子に発泡剤が含浸していれば構わない。   In the dispersion medium releasing foaming method, the physical foaming agent may be filled into the container at the same time as the temperature rise, filled in the middle of the temperature rise, or filled in a stable state immediately before the start of foaming. It does not matter if the particles are impregnated with a foaming agent.

本発明方法において発泡剤を含浸させた多層樹脂粒子を加熱軟化し発泡させる方法としては、以上説明した分散媒放出発泡方法に限定されるものでなく、前記した発泡剤を用いて、特開平4−372630号に記載されているように発泡剤を含浸させた発泡性多層樹脂粒子を加熱蒸気や、熱風等の加熱媒体により発泡させる方法でもよい。   The method for heat-softening and foaming the multilayer resin particles impregnated with the foaming agent in the method of the present invention is not limited to the dispersion medium releasing foaming method described above. As described in Japanese Patent No. 372630, a method may be used in which foamable multilayer resin particles impregnated with a foaming agent are foamed with a heating medium such as heated steam or hot air.

本発明の発泡粒子は、前述した方法により好ましく製造され、ポリプロピレン系樹脂から形成される芯層とポリプロピレン系樹脂から形成される外層とからなる多層樹脂粒子を発泡してなる発泡粒子であって、該発泡粒子は、該芯層のポリプロピレン系樹脂が発泡してなる内層部と該外層のポリプロピレン系樹脂からなる実質的に非発泡の表層部とからなり、マイクロ示差熱分析測定によって得られる該表層部の補外融解開始温度が該内層部の補外融解開始温度より少なくとも2℃低いものである。
このように構成されていると、芯層のポリプロピレン系樹脂の融点が外層のポリプロピレン系樹脂の融点より高いものであっても低いスチーム圧力にて加熱成形しても発泡粒子相互の融着性に優れた発泡粒子である。
The foamed particles of the present invention are preferably produced by the method described above, and are foamed particles obtained by foaming multi-layer resin particles composed of a core layer formed from a polypropylene resin and an outer layer formed from a polypropylene resin, The foam particles are composed of an inner layer portion formed by foaming the polypropylene resin of the core layer and a substantially non-foamed surface layer portion formed of the polypropylene resin of the outer layer, and the surface layer obtained by micro differential thermal analysis measurement. The extrapolated melting start temperature of the part is at least 2 ° C. lower than the extrapolated melting start temperature of the inner layer part.
With such a configuration, the melting point of the polypropylene resin in the core layer is higher than the melting point of the polypropylene resin in the outer layer, and even if it is heat-molded at a low steam pressure, the foam particles can be fused to each other. Excellent expanded particles.

なお、本明細書において外層のポリプロピレン系樹脂からなる実質的に非発泡の表層部であるとは、100個の発泡粒子における表層部の断面写真(拡大倍率200倍)を100枚撮影して、その内、表層部が発泡している断面写真は10枚以下が好ましく、5枚以下がより好ましい。   In the present specification, the substantially non-foamed surface layer portion made of a polypropylene resin as an outer layer is taken by photographing 100 cross-sectional photographs (magnification 200 times) of the surface layer portion of 100 expanded particles, Among them, the cross-sectional photograph in which the surface layer portion is foamed is preferably 10 sheets or less, and more preferably 5 sheets or less.

本発明の発泡粒子の外層を形成するポリプロピレン系樹脂は、前述した本発明方法で用いる発泡粒子の外層を形成するポリプロピレン系樹脂と同様なポリプロピレン系樹脂が挙げられる。本発明の発泡粒子の芯層を形成するポリプロピレン系樹脂は、前述した本発明方法で用いる発泡粒子の芯層を形成するポリプロピレン系樹脂と同様なポリプロピレン系樹脂が挙げられる。   Examples of the polypropylene resin that forms the outer layer of the expanded particles of the present invention include the same polypropylene resins as the polypropylene resin that forms the outer layer of the expanded particles used in the above-described method of the present invention. Examples of the polypropylene resin that forms the core layer of the expanded particles of the present invention include the same polypropylene resin as the polypropylene resin that forms the core layer of the expanded particles used in the above-described method of the present invention.

本発明の発泡粒子は、内層部のポリプロピレン系樹脂と該表層部のポリプロピレン系樹脂と異なる樹脂が好ましい。本明細書でいう異なる樹脂とは、融点、融解開始温度、MFR及びビカット軟化温度のいずれかひとつが異なることをいう。前記した融点、補外融解開始温度及びビカット軟化温度の値は、表層部の値が内層部の値よりも小さいものである。また、MFRの値は、表層部の値が内層部の値よりも大きいものである。上記物性値は、発泡粒子の表層部をカッターなどで切り取った樹脂を用いることとし、発泡粒子の内層部は、表層部が入らないように切り取り、脱泡させた樹脂を用いることとする。   The expanded particles of the present invention are preferably a resin different from the polypropylene resin in the inner layer portion and the polypropylene resin in the surface layer portion. The different resin referred to in this specification means that any one of melting point, melting start temperature, MFR and Vicat softening temperature is different. The values of the melting point, extrapolation melting start temperature, and Vicat softening temperature described above are such that the value of the surface layer portion is smaller than the value of the inner layer portion. Further, the value of MFR is such that the value of the surface layer portion is larger than the value of the inner layer portion. For the physical property values, a resin obtained by cutting the surface layer portion of the expanded particles with a cutter or the like is used, and for the inner layer portion of the expanded particles, a resin that is cut and defoamed so that the surface layer portion does not enter is used.

本発明の発泡粒子においてはマイクロ示差熱分析測定を行った場合、表層部の補外融解開始温度(Ts)と、内層部の補外融解開始温度(Ti)との関係が下式を満足する発泡粒子であることが発泡成形体の耐熱性を低下させることなく、より低いスチーム圧力で成型できる発泡粒子となる観点から好ましい。但し、式中のTi、Tsの単位はともに℃である。
(数9)
3(℃)≦Ti−Ts≦40(℃)・・・(2)
In the expanded particle of the present invention, when micro differential thermal analysis measurement is performed, the relationship between the extrapolated melting start temperature (Ts) of the surface layer portion and the extrapolated melting start temperature (Ti) of the inner layer portion satisfies the following equation: The expanded particles are preferable from the viewpoint of forming expanded particles that can be molded at a lower steam pressure without reducing the heat resistance of the expanded molded article. However, the unit of Ti and Ts in the formula is both ° C.
(Equation 9)
3 (° C.) ≦ Ti−Ts ≦ 40 (° C.) (2)

低いスチーム圧でも加熱成型することができると共に、得られる発泡成形体の耐熱性の低下を防ぐという観点からは、下記(6)式を満足することが好ましく、下記(7)式を満足することがより好ましく、下記(8)式を満足することがさらに好ましく、下記(9)式を満足することが特に好ましくい。但し、式中のTi、Tsの単位はともに℃である。
(数10)
3(℃)≦Ti−Ts≦40(℃)・・・(6)
(数11)
5(℃)≦Ti−Ts≦40(℃)・・・(7)
(数12)
7(℃)≦Ti−Ts≦40(℃)・・・(8)
(数13)
9(℃)≦Ti−Ts≦40(℃)・・・(9)
From the viewpoint of being able to be heat-molded even at a low steam pressure and preventing the heat resistance of the resulting foamed molded product from being lowered, it is preferable to satisfy the following formula (6), and to satisfy the following formula (7) Is more preferable, it is more preferable that the following formula (8) is satisfied, and it is particularly preferable that the following formula (9) is satisfied. However, the unit of Ti and Ts in the formula is both ° C.
(Equation 10)
3 (° C.) ≦ Ti−Ts ≦ 40 (° C.) (6)
(Equation 11)
5 (° C.) ≦ Ti−Ts ≦ 40 (° C.) (7)
(Equation 12)
7 (° C.) ≦ Ti−Ts ≦ 40 (° C.) (8)
(Equation 13)
9 (° C.) ≦ Ti−Ts ≦ 40 (° C.) (9)

表層部の補外融解開始温度(Ts)と、内層部の補外融解開始温度(Ti)との関係が前述した式(2)等を満足するように構成するためには、予め多層樹脂粒子の芯層と外層を形成するポリプロピレン系樹脂の融点を前述した示差走査熱量計によって測定し、前述した(1)式のように好ましい樹脂の組合せを選択することが好ましい。   In order to configure such that the relationship between the extrapolation melting start temperature (Ts) of the surface layer part and the extrapolation melting start temperature (Ti) of the inner layer part satisfies the above-described formula (2), etc., the multilayer resin particles It is preferable to measure the melting point of the polypropylene resin forming the core layer and the outer layer with the above-mentioned differential scanning calorimeter and select a preferable resin combination as shown in the above-described equation (1).

本明細書におけるマイクロ示差熱分析(μDTA)は、ティ・エイ・インスツルメント・ジャパン社のマイクロ熱分析システム「2990型マイクロサーマルアナライザー」を使用し、25℃から250℃まで昇温速度10℃/秒の条件にて測定することとする。   The micro differential thermal analysis (μDTA) in this specification uses a micro thermal analysis system “2990 type micro thermal analyzer” manufactured by T.A. Instruments Japan, Inc., and the temperature rising rate is 10 ° C. from 25 ° C. to 250 ° C. Measured under the conditions of / sec.

図3及び図4は発泡粒子の表面に対するμDTA曲線の一例を示すものであり、これらの図を使用して発泡粒子の表層部の補外融解開始温度の求め方を説明する。図3は、多層発泡粒子の表層部と単層の発泡粒子の表層部のそれぞれに対するμDTA曲線の一例を示す。図3において、曲線Cmが多層発泡粒子の表層部に対するμDTA曲線の一例であり、曲線Cm上のPm点が融解開始温度であり、Pme点がベースライン(BL)と接線(TL)との交点である補外融解開始温度である。一方、曲線Cnmが単層の発泡粒子の表層部に対するμDTA曲線の一例であり、曲線Cnm上のPnm点が融解開始温度であり、Pnme点がベースライン(BL)と接線(TL)との交点である補外融解開始温度である。また図4は、多層発泡粒子(図3のものよりも多少表層部の補外融解開始温度が高いもの)の表面に対するμDTA曲線の一例を示す。図4において、曲線CmがμDTA曲線であり、曲線Cm上のPm点がその融解開始温度であり、Pme点がベースライン(BL)と接線(TL)との交点である補外融解開始温度である。   FIG. 3 and FIG. 4 show an example of the μDTA curve with respect to the surface of the expanded particles, and these figures will be used to explain how to determine the extrapolated melting start temperature of the surface layer portion of the expanded particles. FIG. 3 shows an example of the μDTA curve for each of the surface layer portion of the multilayer expanded particle and the surface layer portion of the single layer expanded particle. In FIG. 3, the curve Cm is an example of a μDTA curve for the surface layer portion of the multilayer foamed particle, the Pm point on the curve Cm is the melting start temperature, and the Pme point is the intersection of the base line (BL) and the tangent line (TL). Is the extrapolated melting start temperature. On the other hand, the curve Cnm is an example of a μDTA curve with respect to the surface layer portion of the single-layer expanded particle, the Pnm point on the curve Cnm is the melting start temperature, and the Pnme point is the intersection of the base line (BL) and the tangent line (TL). Is the extrapolated melting start temperature. FIG. 4 shows an example of a μDTA curve with respect to the surface of the multilayer foamed particles (those having a surface layer part extrapolation melting start temperature slightly higher than that of FIG. 3). In FIG. 4, the curve Cm is a μDTA curve, the Pm point on the curve Cm is its melting start temperature, and the Pme point is the extrapolation melting start temperature at the intersection of the baseline (BL) and the tangent (TL). is there.

尚、ここでいう融解開始温度とは、マイクロ示差熱分析によって得られるμDTA曲線におけるベースライン(BL)からμDTA曲線が下方に変化し始めた(時間当りの比熱が変化し始めた)温度を意味し、補外融解開始温度とは、上記μDTA曲線の前記ベースライン(BL)を高温側に延長した直線と、融解開始温度より高温側のμDTA曲線上における各点から引いた接線の内、該接線と上記ベースライン(BL)を高温側に延長した直線との間の角度が最大となる接線(TL)との交点の温度をいう。 The melting start temperature here means the temperature at which the μDTA curve starts to change downward from the baseline (BL) in the μDTA curve obtained by micro differential thermal analysis (specific heat per hour starts to change). The extrapolated melting start temperature is a straight line obtained by extending the baseline (BL) of the μDTA curve to the high temperature side, and a tangent drawn from each point on the μDTA curve on the high temperature side from the melting start temperature. The temperature at the intersection of the tangent and the tangent (TL) that maximizes the angle between the tangent and the straight line extending from the base line (BL) to the high temperature side.

上記マイクロ示差熱分析は、発泡粒子を装置のサンプルステージに固定し(1個の発泡粒子がそのままでは大きすぎる場合は例えば半分に切断する等して適当な大きさにして固定する)、次いで、発泡粒子の表面において無作為に選択した箇所に向けて、プローブチップ(発泡粒子の表層部に接触させる部分は縦横各0.2μmの先端部を持つ)を下降させて発泡粒子の表層部に接触させた状態で実施される。   In the micro differential thermal analysis, the expanded particles are fixed to the sample stage of the apparatus (if one expanded particle is too large as it is, it is fixed to an appropriate size, for example, by cutting in half), and then The probe tip (the part to be in contact with the surface layer part of the foamed particle has a tip of 0.2 μm in length and width) is lowered to contact the surface layer part of the foamed particle toward the randomly selected location on the surface of the foamed particle. It is carried out in the state of letting.

前記マイクロ示差熱分析による多層発泡粒子の表層部の補外融解開始温度は、異なる測定点10点の測定結果より、最大値と最小値を除く8点の相加平均値が採用される。尚、最大値と最小値がそれぞれ複数ある場合はそれらを除く数点の相加平均値が採用される。また、平均10点の測定値が全て同じ場合や、最大値と最小値の値しか得られなかった場合であって最大値と最小値の差が10℃以内の場合には、10点の相加平均値が採用される。尚、最大値と最小値の値しか得られなかった場合であって最大値と最小値の差が10℃を超える場合には、更に異なる表面の10点に対し測定して上記したと同じ要領で相加平均値を求め、それを採用すればよい。それでも条件に合わない場合には更に同じ操作を繰り返す。
以上のμDTAによる結果は、多層発泡粒子の表層部の補外融解開始温度の低下が、成形時に必要な最低融着温度の低下に寄与していることを示している。
As the extrapolated melting start temperature of the surface layer portion of the multilayer expanded particle by the micro differential thermal analysis, an arithmetic average value of 8 points excluding the maximum value and the minimum value is adopted from the measurement results of 10 different measurement points. In addition, when there are a plurality of maximum values and minimum values, an arithmetic average value of several points excluding them is adopted. In addition, when all 10 measured values on the average are the same, or when only the maximum and minimum values are obtained and the difference between the maximum and minimum values is within 10 ° C., the 10-point phase An arithmetic mean value is adopted. If only the maximum and minimum values were obtained, and the difference between the maximum and minimum values exceeded 10 ° C, the same procedure as described above was performed by measuring 10 points on different surfaces. The arithmetic average value can be obtained by and adopted. If the condition is still not met, repeat the same operation.
The above μDTA results indicate that the decrease in the extrapolated melting start temperature of the surface layer portion of the multilayer foamed particles contributes to the decrease in the minimum fusion temperature required during molding.

また、多層発泡粒子の表層部の補外融解開始温度が低下するメカニズムは定かではないが多層樹脂粒子を発泡する際、芯層を構成する樹脂の融点を基準に発泡させる。多層樹脂粒子の外層は、外層を構成する樹脂の融点よりも高い温度から急冷されることとなるから低融点結晶のスメチカ構造が多くなり、多層発泡粒子の表層部の補外融解開始温度が低下すると考えられる。   In addition, the mechanism by which the extrapolation melting start temperature of the surface layer portion of the multilayer foam particles is not clear is not certain, but when the multilayer resin particles are foamed, the foam is foamed based on the melting point of the resin constituting the core layer. Since the outer layer of the multilayer resin particles is rapidly cooled from a temperature higher than the melting point of the resin constituting the outer layer, the Smeltica structure of low-melting-point crystals increases, and the extrapolated melting start temperature of the surface layer portion of the multilayer foam particles decreases. I think that.

発泡粒子の型内成形においては、発泡粒子相互の融着は発泡粒子表面同士で行なわれるため、発泡粒子の表面のみを熱分析する意義は大きい。発泡粒子の表面のみの融解開始の傾向をDSC法で知ることは不可能と思われる。それを可能にするのがμDTAである。また、μDTAで昇温速度を1秒あたり10℃としているが、この速度は、実際の型内成形に際して発泡粒子を加熱する際の昇温速度に近いものである(このような速い昇温速度はDSC法では困難である)。従って、このような実際の型内成形に近似した昇温速度で分析する意義は大きい。このような理由から本発明では、多層発泡粒子の表層部に対するマイクロ示差熱分析(μDTA)を採用した。この測定に基づく補外融解開始温度は、厳密な意味での融解開始の温度を示していないかもしれないが、補外融解開始温度の温度の高低の傾向と成形温度の高低の傾向とはよく一致している。また、補外融解開始温度は誤差が少ないのでより再現性に優れる。   In the in-mold molding of the foamed particles, the fusion of the foamed particles is performed between the surfaces of the foamed particles. Therefore, it is significant to perform a thermal analysis only on the surfaces of the foamed particles. It seems impossible to know the tendency of melting start only on the surface of the expanded particles by the DSC method. It is μDTA that makes this possible. Moreover, although the temperature rising rate is 10 ° C. per second with μDTA, this speed is close to the temperature rising rate when heating the foamed particles in actual in-mold molding (such a high temperature rising rate). Is difficult with the DSC method). Therefore, it is significant to analyze at a heating rate approximate to such actual in-mold molding. For this reason, the present invention employs micro differential thermal analysis (μDTA) for the surface layer portion of the multilayer foamed particles. The extrapolated melting start temperature based on this measurement may not indicate the exact melting start temperature, but the tendency of the extrapolated melting start temperature to be higher or lower than the molding temperature Match. In addition, the extrapolation melting start temperature is excellent in reproducibility since there are few errors.

以上のμDTAによる結果は、発泡粒子における表層部の補外融解開始温度が内層部の補外融解開始温度より低くなる。このことから、成型時に必要な最低融着温度の低下に寄与していることを示している。   As a result of the above μDTA, the extrapolated melting start temperature of the surface layer portion of the expanded particles is lower than the extrapolated melting start temperature of the inner layer portion. This shows that it contributes to the lowering of the minimum fusing temperature required at the time of molding.

本発明の発泡粒子は、見かけ密度が10g/L〜500g/Lであることが好ましい。見かけ密度が10g/L未満の場合は、発泡粒子が連続気泡化となり発泡成形体を得ることができない虞がある。一方、見かけ密度が500g/Lを超える場合は、得られた発泡成形体の密度が大きすぎて、断熱性、緩衝性、軽量性等の発泡体特有の物性が失われる虞がある。   The foamed particles of the present invention preferably have an apparent density of 10 g / L to 500 g / L. When the apparent density is less than 10 g / L, the foamed particles become open-celled and there is a possibility that a foamed molded product cannot be obtained. On the other hand, when the apparent density exceeds 500 g / L, the density of the obtained foamed molded product is too high, and there is a possibility that physical properties peculiar to the foam such as heat insulating properties, buffer properties, and lightness may be lost.

上記発泡粒子の見かけ密度(g/L)は、発泡粒子の重量(g)をその見かけ体積(L)で除すことにより算出される。発泡粒子の見かけ体積(L)は、23℃、大気圧下に48時間以上放置された発泡粒子約5gを23℃の水100cm3が収容されたメスシリンダー内の水に水没させたときの排除体積を読み取り、これをリットル単位に換算することにより求まる。この測定には発泡粒子重量が0.5000〜10.0000g、かつ発泡粒子の見かけ体積が50〜90cm3となる量の複数個の発泡粒子が使用される。 The apparent density (g / L) of the expanded particles is calculated by dividing the weight (g) of the expanded particles by the apparent volume (L). The apparent volume (L) of the expanded particles is excluded when about 5 g of expanded particles left at 23 ° C. and atmospheric pressure for 48 hours or more are submerged in water in a measuring cylinder containing 100 cm 3 of water at 23 ° C. It is obtained by reading the volume and converting this to liters. For this measurement, a plurality of foamed particles are used in such an amount that the weight of the foamed particles is 0.5000 to 10.0000 g and the apparent volume of the foamed particles is 50 to 90 cm 3 .

本発明の発泡粒子は、実質的に無架橋である。実質的に無架橋であるとは、特定条件下における沸騰キシレンに対する不溶分の割合が、試料の1重量%以下の場合をいう。   The expanded particles of the present invention are substantially non-crosslinked. The term “substantially non-crosslinked” refers to a case where the ratio of insoluble matter to boiling xylene under a specific condition is 1% by weight or less of the sample.

即ち、多層樹脂粒子における芯層のポリプロピレン系樹脂、外層のポリプロピレン系樹脂、内層部及び表層部からなる発泡粒子、加熱成型により得られた発泡成形体を問わず、それぞれを試料とし(キシレン100g当たり試料1g使用)、これを常圧において沸騰キシレン中に8時間浸漬後、JIS Z 8801(1966年)に定められている74μmの金網で速やかに濾過し、該金網上に残った沸騰キシレン不溶分の重量を測定し、この不溶分の割合が試料の1重量%以下の場合を実質的に無架橋という。   That is, regardless of whether the core layer polypropylene resin, the outer layer polypropylene resin, the foam particles composed of the inner layer portion and the surface layer portion, or the foam molded body obtained by heat molding are used as samples (per 100 g of xylene). 1 g of sample) was immersed in boiling xylene at normal pressure for 8 hours, and then quickly filtered through a 74 μm wire mesh defined in JIS Z 8801 (1966), and the remaining boiling xylene insoluble matter remaining on the wire mesh When the ratio of the insoluble matter is 1% by weight or less of the sample, it is called substantially non-crosslinked.

不溶分の含有率P(%)を式(10)で表すと下式の通りである。
(数14)
P(%)=(M÷L)×100・・・(10)
ただし、Mは不溶分の重量(g)、Lは試料の重量(g)である
The content P (%) of the insoluble matter is expressed by the following formula (10).
(Equation 14)
P (%) = (M ÷ L) × 100 (10)
However, M is the weight (g) of insoluble matter, and L is the weight (g) of the sample.

本発明において発泡粒子の示差走査熱量測定によって得られるDSC曲線は、ポリプロピレン系樹脂に固有の吸熱曲線ピーク(以下、単に「固有ピーク」という)と、該吸熱曲線ピークよりも高温側の吸熱曲線ピーク(以下、単に「高温ピーク」という)とを少なくとも示し、且つ該高温側の吸熱曲線ピークの熱量が全ての吸熱曲線ピークの熱量の合計に対して15%〜70%であることが好ましい。かかる発泡粒子は、独立気泡率が高く、加熱成型に好適な発泡粒子である。   In the present invention, the DSC curve obtained by differential scanning calorimetry of the expanded particles includes an endothermic curve peak inherent to the polypropylene resin (hereinafter simply referred to as “inherent peak”), and an endothermic curve peak higher than the endothermic curve peak. (Hereinafter, simply referred to as “high temperature peak”), and the amount of heat of the endothermic curve peak on the high temperature side is preferably 15% to 70% with respect to the total amount of heat of all endothermic curve peaks. Such foamed particles have a high closed cell ratio and are suitable for heat molding.

前記した高温ピークの熱量が全ての吸熱曲線ピークの熱量の合計に対して15%未満の場合は、成型する際のスチーム圧力を低くできるものの、得られる発泡成形体の圧縮強度、エネルギー吸収量などが低下する虞がある。また70%を超える場合は、発泡粒子を成形するに先立ち発泡粒子内に付与しなければならない空気圧が高くなりすぎたり、成形サイクルが長くなる虞れがある。   When the amount of heat at the high temperature peak is less than 15% with respect to the total amount of heat at all the endothermic curve peaks, the steam pressure at the time of molding can be lowered, but the compression strength, energy absorption amount, etc. of the resulting foam molded article May decrease. If it exceeds 70%, the air pressure that must be applied to the foamed particles prior to molding the foamed particles may become too high, or the molding cycle may be prolonged.

かかる観点より、内層部を形成するポリプロピレン系樹脂がプロピレン−エチン共重合体である場合は、高温ピークの熱量が全ての吸熱曲線ピークの熱量の合計に対して20%以上が好ましく、25%以上がより好ましく、30%以上がさらに好ましい。又、その上限値は、上記観点から60%以下であることが好ましく、50%以下がより好ましい。   From this point of view, when the polypropylene resin forming the inner layer portion is a propylene-ethyne copolymer, the heat amount of the high temperature peak is preferably 20% or more, and preferably 25% or more with respect to the total heat amount of all endothermic curve peaks. Is more preferable, and 30% or more is more preferable. In addition, the upper limit is preferably 60% or less, more preferably 50% or less from the above viewpoint.

また、かかる観点より、内層部を形成するポリプロピレン系樹脂がプロピレン単独重合体である場合は、高温ピークの熱量が全ての吸熱曲線ピークの熱量の合計に対して20%以上が好ましく、25%以上がより好ましく、30%以上がさらに好ましい。又、その上限値は60%以下であることが好ましく、50%以下であることがより好ましい。   Further, from this viewpoint, when the polypropylene resin forming the inner layer portion is a propylene homopolymer, the heat amount of the high temperature peak is preferably 20% or more, and preferably 25% or more with respect to the total heat amount of all endothermic curve peaks. Is more preferable, and 30% or more is more preferable. Further, the upper limit is preferably 60% or less, and more preferably 50% or less.

本発明における発泡粒子の全ての吸熱曲線ピークの熱量の合計(全熱量)は、60J/g〜150J/gであることが好ましい。該熱量が60J/g未満の場合は、圧縮などの物性が低下する虞がある。一方、150J/gを超える場合は、成形する際の二次発泡性が悪く隙間の多い発泡成形体となる虞がある。   The total heat amount (total heat amount) of all endothermic curve peaks of the expanded particles in the present invention is preferably 60 J / g to 150 J / g. When the amount of heat is less than 60 J / g, physical properties such as compression may be reduced. On the other hand, when it exceeds 150 J / g, the secondary foamability at the time of molding may be poor and a foamed molded product having many gaps may be formed.

更に、内層部を形成するポリプロピレン系樹脂がプロピレン−エチレン共重合体である場合は、吸熱曲線ピークの全熱量は、60J/g〜100J/gであることが好ましい。
また、内層部を形成するポリプロピレン系樹脂がプロピレン単独重合体である場合は、吸熱曲線ピークの全熱量は、60J/g〜150J/gであることが好ましい。
Furthermore, when the polypropylene resin forming the inner layer portion is a propylene-ethylene copolymer, the total heat quantity of the endothermic curve peak is preferably 60 J / g to 100 J / g.
Moreover, when the polypropylene resin forming the inner layer portion is a propylene homopolymer, the total heat quantity of the endothermic curve peak is preferably 60 J / g to 150 J / g.

吸熱曲線ピークの全熱量と、高温ピークの熱量の測定は、JIS K7122(1987年)に準拠する測定方法により次のように行なう。
まず、発泡粒子2〜10mgを採取し、示差走査熱量計によって室温(10〜40℃)から220℃まで10℃/分で昇温測定を行なう。かかる測定により得られたDSC曲線の一例を図1に示す。
The total calorific value of the endothermic curve peak and the calorific value of the high temperature peak are measured as follows by a measuring method based on JIS K7122 (1987).
First, 2 to 10 mg of expanded particles are collected, and the temperature rise is measured at 10 ° C./min from room temperature (10 to 40 ° C.) to 220 ° C. using a differential scanning calorimeter. An example of a DSC curve obtained by such measurement is shown in FIG.

図1のDSC曲線には、発泡粒子を構成するポリプロピレン系樹脂に由来する固有ピークaと、高温ピークbが示され、高温ピークbの熱量はそのピーク面積に相当するものであり、具体的には次のようにして求めることができる。   The DSC curve in FIG. 1 shows an intrinsic peak a derived from the polypropylene resin constituting the expanded particles and a high temperature peak b, and the amount of heat of the high temperature peak b corresponds to the peak area. Can be obtained as follows.

まず、DSC曲線上の80℃に相当する点αと、発泡粒子の融解終了温度Tに相当するDSC曲線上の点βとを結ぶ直線(α−β)を引く。尚、上記融解終了温度Tとは、高温ピークbの高温側におけるDSC曲線と高温側ベースラインとの交点をいう。   First, a straight line (α−β) connecting a point α corresponding to 80 ° C. on the DSC curve and a point β on the DSC curve corresponding to the melting end temperature T of the expanded particles is drawn. The melting end temperature T is the intersection of the DSC curve on the high temperature side of the high temperature peak b and the high temperature side baseline.

次に上記の固有ピークaと高温ピークbとの間の谷部に当たるDSC曲線上の点γからグラフの縦軸と平行な直線を引き、前記直線(α−β)と交わる点をδとする。高温ピークbの面積は、DSC曲線の高温ピークb部分の曲線と、線分(δ−β)と、線分(γ−δ)とによって囲まれる部分(図1において斜線を付した部分)の面積であり、これが高温ピークの熱量に相当する。
また、本発明でいう全ての吸熱曲線ピークの熱量の合計は、図1の固有ピークaと高温ピークbとのDSC曲線と直線(α−β)とによって囲まれる部分の面積であり、これが吸熱曲線ピークの全熱量に相当する。
Next, a straight line parallel to the vertical axis of the graph is drawn from the point γ on the DSC curve corresponding to the valley between the intrinsic peak a and the high temperature peak b, and the point intersecting with the straight line (α−β) is defined as δ. . The area of the high-temperature peak b is the portion surrounded by the curve of the high-temperature peak b portion of the DSC curve, the line segment (δ-β), and the line segment (γ-δ) (the portion hatched in FIG. 1). This is the area, which corresponds to the amount of heat at the high temperature peak.
Further, the total heat quantity of all endothermic curve peaks referred to in the present invention is the area of the portion surrounded by the DSC curve and the straight line (α-β) of the intrinsic peak a and the high temperature peak b in FIG. It corresponds to the total heat of the curve peak.

尚、高温ピークbは、上記のようにして測定した第1回目のDSC曲線には認められるが、第2回目に昇温して得られたDSC曲線には認められない。第2回目のDSC曲線には、図2に示すように、発泡粒子を構成するポリプロピレン系樹脂に固有の吸熱曲線ピーク(固有ピークa)のみが認められる。   The high temperature peak b is observed in the first DSC curve measured as described above, but not in the DSC curve obtained by raising the temperature in the second time. In the second DSC curve, as shown in FIG. 2, only the endothermic curve peak (inherent peak a) unique to the polypropylene resin constituting the expanded particles is observed.

尚、発泡粒子の固有ピークと高温ピークを上記の通り示差走査熱量測定装置によって測定するに際しては、発泡粒子1個当たりの重量が2mg未満の場合は、総重量が2〜10mgとなる複数個の発泡粒子をそのまま測定に使用すればよく、また、発泡粒子1個当たりの重量が2〜10mgの場合には、発泡粒子1個をそのまま測定に使用すればよく、また、発泡粒子1個当たりの重量が10mgを超える場合には、1個の発泡粒子を、複数個に切断して得た重量が2〜10mgとなる切断試料1個を測定に使用すればよい。ただし、この切断試料は、1個の発泡粒子をカッター等を使用して切断されたものであるが、故意に発泡粒子の非発泡の部分が多く含まれるなど、発泡粒子全体における非発泡の部分と発泡の部分との割合が大きく変わるように試料を切り出して切断試料とすることは当然避けるべきである。切断試料の作製例としては発泡粒子1個当たりの重量が18mgの場合には、任意の方向に向けた発泡粒子を垂直方向の真中より水平に切断すれば2個のほぼ同じ形状の約9mgの切断試料が得られ、各切断試料は、当初から有する発泡粒子の表層部と内層部との割合は変わらない。このようにして得られた2個の切断試料の内の1個を上記の通り固有ピークと高温ピークの測定に使用すればよい。   In the measurement of the intrinsic peak and the high temperature peak of the expanded particles with the differential scanning calorimeter as described above, when the weight per expanded particle is less than 2 mg, a plurality of the total weight is 2 to 10 mg. The foamed particles may be used as they are for the measurement, and when the weight per foamed particle is 2 to 10 mg, the foamed particles may be used for the measurement as they are. When the weight exceeds 10 mg, one cut sample with a weight of 2 to 10 mg obtained by cutting one expanded particle into a plurality of particles may be used for the measurement. However, this cut sample is obtained by cutting one foamed particle using a cutter or the like, but the non-foamed part of the whole foamed particle, such as intentionally containing many non-foamed parts of the foamed particle. Of course, it should be avoided to cut the sample so that the ratio between the foamed portion and the foamed portion changes greatly. As an example of preparation of a cut sample, when the weight per expanded particle is 18 mg, if the expanded particle oriented in an arbitrary direction is cut horizontally from the middle of the vertical direction, two approximately 9 mg of approximately the same shape can be obtained. A cut sample is obtained, and the ratio between the surface layer portion and the inner layer portion of the expanded particles that each cut sample has from the beginning does not change. One of the two cut samples thus obtained may be used for the measurement of the intrinsic peak and the high temperature peak as described above.

次に、本発明の発泡粒子における高温ピークの技術的な意味、及び高温ピークの熱量と本発明の構成との関系について説明する。   Next, the technical meaning of the high temperature peak in the expanded particles of the present invention and the relationship between the heat quantity of the high temperature peak and the configuration of the present invention will be described.

高温ピーク熱量は、前記の通り第1回目のDSC曲線に現れることから、ポリプロピレン系樹脂の結晶構造に起因するものであり、この高温ピーク熱量、即ち結晶構造は樹脂の融点と発泡温度の差に強く影響されることが経験的に分かっている。   Since the high temperature peak heat amount appears in the first DSC curve as described above, it is caused by the crystal structure of the polypropylene resin, and this high temperature peak heat amount, that is, the crystal structure is caused by the difference between the melting point of the resin and the foaming temperature. Experience has shown that it is strongly influenced.

又、一般的に発泡粒子を型内に充填してスチームで加熱成型する際に、発泡粒子相互が型内で二次発泡して融着するために必要な最低の飽和スチーム圧力(以下、最低スチーム圧力)が存在することが分かっている。尚、最低スチーム圧力に相当する温度を、最低融着温度という。   In general, when filling the foamed particles into the mold and heat-molding with steam, the minimum saturated steam pressure (hereinafter referred to as the minimum) Steam pressure) is known to exist. The temperature corresponding to the lowest steam pressure is called the lowest fusion temperature.

前記高温ピークの熱量は、上記最低融着温度と密接な関係にあり、最低融着温度を決定する因子として作用することが経験的に知られている。又、同一のポリプロピレン系樹脂を用いた場合、高温ピーク熱量値が小さくなると最低融着温度が低くなるといった傾向がある。また、この高温ピークの熱量の値は発泡粒子の製造段階における発泡温度の高低の影響を強く受け、同一のポリプロピレン系樹脂を用いた場合、発泡温度が高くなると高温ピークの熱量値が小さくなる傾向がある。   It has been empirically known that the amount of heat at the high temperature peak is closely related to the minimum fusing temperature and acts as a factor for determining the minimum fusing temperature. Further, when the same polypropylene resin is used, the minimum fusing temperature tends to decrease as the high-temperature peak heat value decreases. In addition, the value of the calorific value of the high temperature peak is strongly influenced by the level of the foaming temperature in the production stage of the foamed particles, and when the same polypropylene resin is used, the calorific value of the high temperature peak tends to decrease as the foaming temperature increases. There is.

ところが、高温ピークの熱量が小さい発泡粒子を用いて発泡成形体を加熱成型すると、最低融着温度は相対的に低くなる傾向があるものの、発泡成形体の圧縮強度(剛性)等の強度物性等が相対的に低下する傾向がある。一方、高温ピーク熱量が大きい発泡粒子を用いて発泡成形体を加熱成型すると、発泡成形体の圧縮強度等の強度物性等が相対的に高くなる傾向があるものの、最低融着温度が相対的に高くなり、前述のように発泡成形体を製造する際に高いスチーム圧力を必要とするという問題が発生する。   However, when foam moldings are thermoformed using foam particles with a small amount of heat at the high temperature peak, the minimum fusing temperature tends to be relatively low, but the strength properties such as compression strength (rigidity) of the foam moldings, etc. Tends to decrease relatively. On the other hand, when a foam molded article is heat-molded using foam particles having a high high-temperature peak heat, strength properties such as compression strength of the foam molded article tend to be relatively high, but the minimum fusion temperature is relatively As described above, a problem arises in that a high steam pressure is required when producing a foamed molded article.

即ち、最も好ましい発泡粒子は、最低融着温度が低いにも拘わらず、発泡成形体の圧縮強度等の強度物性等が相対的に高いという相反する性質を同時に有するものである。本発明の発泡粒子はかかる矛盾する性質を同時に満足するものであって、強度物性等に優れるポリプロピレン系樹脂の最低融着温度が効果的に低下されたものである。従って、本発明の発泡粒子を用いて発泡成形体の加熱成型を行なえば、圧縮強度等の機械的物性において実用的強度を有する成形体を従来の成型装置を用いて製造することができる。   That is, the most preferred foamed particles are those having the contradictory properties that the strength properties such as the compression strength of the foamed molded product are relatively high although the minimum fusing temperature is low. The foamed particles of the present invention satisfy the contradictory properties at the same time, and the minimum fusing temperature of a polypropylene resin excellent in strength properties and the like is effectively reduced. Accordingly, if the foamed molded article is heat-molded using the foamed particles of the present invention, a molded article having practical strength in mechanical properties such as compressive strength can be produced using a conventional molding apparatus.

次に、本発明の発泡粒子の高温ピークの熱量を、前述した分散媒放出発泡方法において調整する方法について説明する。即ち、発泡粒子は、前述したように、密閉容器内で水に多層樹脂粒子を発泡剤と共に分散させて加熱し、発泡剤を多層樹脂粒子に含浸させてから、低圧下に放出する方法により得ることができる。   Next, a method for adjusting the amount of heat at the high temperature peak of the foamed particles of the present invention in the above-described dispersion medium releasing foaming method will be described. That is, as described above, the foamed particles are obtained by a method in which the multilayer resin particles are dispersed in water together with the foaming agent in a sealed container, heated, impregnated with the foaming agent in the multilayer resin particles, and then released under low pressure. be able to.

かかる分散媒放出発泡方法により前記多層樹脂粒子を発泡させる場合、芯層を構成するポリプロピレン系樹脂の融点を基準として、加熱温度、加熱時間を設定すれば、高温ピークの熱量が大きくすることができ、得られた発泡粒子は圧縮強度等の強度物性等の優れたものとすることができる。   When the multilayer resin particles are foamed by such a dispersion medium releasing foaming method, if the heating temperature and heating time are set based on the melting point of the polypropylene resin constituting the core layer, the amount of heat at the high temperature peak can be increased. The obtained expanded particles can be excellent in strength properties such as compressive strength.

分散媒放出発泡方法における高温ピークの具体的な調節方法としては、多層樹脂粒子を水性媒体に分散させて加熱する際に、芯層のポリプロピレン系樹脂の融解終了温度(tie)以上とならないように昇温し、該樹脂の融点(ti)より20℃低い温度以上、融解終了温度(tie)未満の範囲内の任意の温度(Ta)で止めてその温度(Ta)で十分な時間、好ましくは10〜60分程度保持し、その後、融点(ti)より15℃低い温度から融解終了温度(tie)+10℃の範囲の任意の温度(Tb)に加熱し、その温度で止め、当該温度でさらに十分な時間、好ましくは10〜60分程度、保持してから多層樹脂粒子を密閉容器内から低圧下に放出して発泡させることが好ましい。   As a specific method for adjusting the high temperature peak in the dispersion medium releasing foaming method, when the multilayer resin particles are dispersed in an aqueous medium and heated, the melting end temperature (tie) of the polypropylene resin in the core layer is not exceeded. The temperature is raised and stopped at an arbitrary temperature (Ta) within a range of 20 ° C. lower than the melting point (ti) of the resin and less than the melting end temperature (tie), preferably at that temperature (Ta), preferably Hold for about 10 to 60 minutes, then heat to a temperature (Tb) in the range of 15 ° C. lower than the melting point (ti) to the end of melting temperature (tie) + 10 ° C., stop at that temperature, It is preferable to hold the foam for a sufficient period of time, preferably about 10 to 60 minutes, and then release the multilayer resin particles from the sealed container under low pressure to cause foaming.

分散媒放出発泡方法において、温度Ta、Tb、及び保持時間を上記のように設定することが好ましいのは、発泡粒子の高温ピークの熱量の大小が、主として、発泡粒子を製造する際の樹脂粒子に対する上記温度Taと該温度における保持時間および上記温度Tbと該温度における保持時間、ならびに昇温速度に依存するからである。   In the dispersion medium releasing foaming method, it is preferable to set the temperatures Ta and Tb and the holding time as described above, because the amount of heat at the high temperature peak of the foamed particles is mainly the resin particles when producing the foamed particles. This is because it depends on the temperature Ta and the holding time at the temperature, the temperature Tb and the holding time at the temperature, and the temperature rising rate.

一般的に、発泡粒子の上記高温ピークの熱量は、温度TaまたはTbが上記温度範囲内において低い程、保持時間が長い程、大きくなる傾向を示す。通常、昇温速度は0.5〜5℃/分が採用される。これらの点を考慮して予備実験を繰り返すことにより、所望の高温ピーク熱量を示す発泡粒子の製造条件を容易に知ることができる。   In general, the amount of heat at the high temperature peak of the expanded particles tends to increase as the temperature Ta or Tb decreases within the above temperature range or as the holding time increases. Usually, the temperature rising rate is 0.5 to 5 ° C./min. By repeating the preliminary experiment in consideration of these points, it is possible to easily know the production conditions for the expanded particles exhibiting a desired high-temperature peak heat quantity.

尚、以上説明した発泡時の温度範囲は、発泡剤として無機系物理発泡剤を使用した場合の適切な温度範囲である。有機系物理発泡剤が併用された場合には、その種類や使用量に応じてその適切な温度範囲は上記温度範囲よりもそれぞれ低温側にシフトする傾向がある。   In addition, the temperature range at the time of foaming demonstrated above is a suitable temperature range at the time of using an inorganic type physical foaming agent as a foaming agent. When an organic physical foaming agent is used in combination, the appropriate temperature range tends to shift to a lower temperature side than the above temperature range depending on the type and amount of use.

本発明の発泡粒子は、大気圧下で熟成した後、必要に応じて気泡内圧を高めてから、加熱成型することが発泡粒子相互の隙間がない発泡成形体を得ることができるので好ましく、又得られる発泡成形体の圧縮強度等の物性も向上するので好ましい。   In the foamed particles of the present invention, after aging under atmospheric pressure, it is preferable to increase the bubble internal pressure as necessary, and then heat molding to obtain a foamed molded article having no gap between the foamed particles. It is preferable because physical properties such as compression strength of the obtained foamed molded article are improved.

尚、発泡粒子の気泡内圧を高める場合には、密閉容器に発泡粒子を入れ、該容器内に加圧空気を供給した状態で適当な時間放置して発泡粒子内に加圧空気を浸透させればよい。かかる方法で製造される発泡成形体の見かけ密度は目的によって任意に選定できるが、通常は9g/L〜600g/Lの範囲である。なお、発泡成形体の見かけ密度は、試験片の外寸法(L)とその重量(g)により求められる。   In order to increase the bubble internal pressure of the foamed particles, the foamed particles can be placed in a sealed container and left for an appropriate period of time in a state where pressurized air is supplied into the container to allow the pressurized air to penetrate into the foamed particles. That's fine. The apparent density of the foamed molded product produced by such a method can be arbitrarily selected depending on the purpose, but is usually in the range of 9 g / L to 600 g / L. In addition, the apparent density of a foaming molding is calculated | required by the external dimension (L) and its weight (g) of a test piece.

又、上記気泡内圧が高められた発泡粒子は、水蒸気や熱風を用いて加熱することによって、より高発泡倍率の発泡粒子とすることが好ましい。かかる高発泡倍率の発泡粒子を用いて加熱成型を行なうと、高発泡倍率の発泡成形体を容易に得ることができる。   Moreover, it is preferable to make the foamed particles having an increased bubble internal pressure into foamed particles having a higher expansion ratio by heating with water vapor or hot air. When heat molding is performed using the expanded particles having a high expansion ratio, a foamed molded body having a high expansion ratio can be easily obtained.

発泡成形体は、前記発泡粒子を必要に応じて内圧を高めてから、加熱及び冷却が可能であってかつ開閉し密閉できる型内に充填し、飽和スチームを供給して型内で発泡粒子同士を加熱して膨張させて融着させ、次いで冷却して型内から取り出すバッチ式の型内加熱成形法を採用して製造することが好ましい。   The foamed molded article is filled with a foam that can be heated and cooled and opened and closed and sealed after increasing the internal pressure of the foamed particles as necessary. It is preferable to manufacture by adopting a batch-type in-mold thermoforming method in which is heated and expanded to be fused, and then cooled and taken out from the mold.

該バッチ式の型内加熱成形法で使用される成形機としては、既に数多くの成形機が世界中に存在し、国によって多少異なるものの、その耐圧は、0.41MPa(G)又は0.45MPa(G)のものが多い。従って、発泡粒子同士を膨張させて融着させる際の飽和スチームの圧力は、0.45MPa(G)以下であることが好ましく、0.41MPa(G)以下であることがより好ましい。   As a molding machine used in the batch-type in-mold heating molding method, many molding machines already exist all over the world, and the pressure resistance is 0.41 MPa (G) or 0.45 MPa although it varies slightly depending on the country. There are many things of (G). Therefore, the pressure of the saturated steam when the expanded particles are expanded and fused is preferably 0.45 MPa (G) or less, and more preferably 0.41 MPa (G) or less.

本発明の発泡粒子は、連続式成形法によって発泡成形体にすることもできる。
該連続式成形法においては、前記発泡粒子を必要に応じて気泡内圧を高めてから、通路内の上下に沿って連続的に移動するベルト間に連続的に供給し、飽和スチーム供給領域(加熱領域)を通過する際に発泡粒子同士を膨張融着させ、その後冷却領域を通過させて冷却し、次いで得られた成形体を通路内から取り出し、適宜の長さに順次切断することにより発泡成形体が得られる。そのような連続式成形法は、例えば特開平9−104026号、特開平9−104027号及び特開平10−180888号等に記載されている。
The foamed particles of the present invention can be made into a foamed molded article by a continuous molding method.
In the continuous molding method, the foamed particles are continuously supplied between belts that continuously move along the upper and lower sides of the passage after increasing the bubble internal pressure as necessary, and a saturated steam supply region (heating The foamed particles are expanded and fused with each other when passing through the region), and then cooled by passing through the cooling region, and then the obtained molded product is taken out from the passage and sequentially cut to an appropriate length. The body is obtained. Such continuous molding methods are described, for example, in JP-A-9-104026, JP-A-9-104027 and JP-A-10-180888.

又、本発明の発泡粒子を用いて得られる発泡成形体は、ASTM−D2856−70の手順Cに基づく連続気泡率が40%以下であることが好ましく、30%以下であることがより好ましく、25%以下であることが特に好ましい。連続気泡率が小さい成形体ほど、機械的強度に優れるものとなる。   Further, the foamed molded article obtained using the foamed particles of the present invention preferably has an open cell ratio of 40% or less based on ASTM-D2856-70 procedure C, more preferably 30% or less, It is particularly preferably 25% or less. A molded body having a smaller open cell ratio is excellent in mechanical strength.

また、本発明の発泡粒子を用いて得られる発泡成形体にはその表面の少なくとも一部に、表面装飾材を積層一体化することができる。そのようなラミネート複合タイプの型内発泡成形体の製造方法は、米国特許第5928776号、米国特許第6096417号、米国特許第6033770号、米国特許第5474841号、ヨーロッパ特許477476号、WO98/34770号、WO98/00287号、日本特許第3092227号等の各公報に詳細に記載されている。   In addition, a surface decoration material can be laminated and integrated on at least a part of the surface of the foamed molded article obtained by using the foamed particles of the present invention. US Pat. No. 5,928,776, US Pat. No. 6,096,417, US Pat. No. 6,033,770, US Pat. No. 5,474,841, European Patent 477476, WO 98/34770 , WO98 / 00287, Japanese Patent No. 3092227 and the like.

また、本発明によって得られる発泡成形体中には、インサート材の全部または一部が埋設されるようにして該インサート材を複合一体化することができる。そのようなインサート複合タイプの型内発泡成形体の製造方法は、米国特許第6033770号、米国特許第5474841号、特開昭59−1277714号、日本特許第3092227号等の各公報に詳細に記載されている。   Further, in the foamed molded article obtained by the present invention, the insert material can be combined and integrated such that all or part of the insert material is embedded. A method for producing such an insert composite type in-mold foam molded article is described in detail in US Pat. No. 6,033,770, US Pat. No. 5,474,841, JP-A-59-1277714, Japanese Patent No. 3092227, and the like. Has been.

以下に本発明について実施例および比較例を挙げて詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to examples and comparative examples.

実施例1〜8、比較例1〜3において使用するポリプロピレン系樹脂の種類、示差走査熱量測定による樹脂の融解熱量(J/g)、メルトフローレイト(MFR)を表1に示した。   Table 1 shows the types of polypropylene resins used in Examples 1 to 8 and Comparative Examples 1 to 3, the heat of fusion (J / g) of the resin by differential scanning calorimetry, and the melt flow rate (MFR).

Figure 0004276489
Figure 0004276489

実施例1〜8
表2に示すポリプロピレン系樹脂(表中では樹脂(y))100重量部とホウ酸亜鉛粉末(気泡調整剤)0.05重量部を押出機に供給し、加熱溶融混練して芯層形成用の第一の混合溶融樹脂を形成した。同時に、表2に示すポリプロピレン系樹脂(表中では樹脂(x))を他の押出機に供給し、加熱溶融混練して外層形成用の第二の混合溶融樹脂を形成した。
Examples 1-8
100 parts by weight of a polypropylene resin (resin (y) in the table) and 0.05 parts by weight of zinc borate powder (cell regulator) are supplied to an extruder, heated and melt-kneaded for core layer formation. A first mixed molten resin was formed. At the same time, the polypropylene resin (resin (x) in the table) shown in Table 2 was supplied to another extruder and heated, melted and kneaded to form a second mixed molten resin for outer layer formation.

次に、前記芯層形成用の第一の混合溶融樹脂と外層形成用の第二の混合溶融樹脂とを共押出ダイに供給し、該ダイ内において、第二の混合溶融樹脂が第一の混合溶融樹脂のストランド状の周囲を覆うように、第一の混合溶融樹脂に第二の混合溶融樹脂を積層した。尚、第一の混合溶融樹脂の吐出量(y)と第二の混合溶融樹脂の吐出量(x)の比(y/x)は、20/1で設定した。 Next, the first mixed molten resin for forming the core layer and the second mixed molten resin for forming the outer layer are supplied to a coextrusion die, and in the die, the second mixed molten resin is the first mixed molten resin. The second mixed molten resin was laminated on the first mixed molten resin so as to cover the periphery of the mixed molten resin strand. The ratio (y A / x B ) between the discharge amount (y A ) of the first mixed molten resin and the discharge amount (x B ) of the second mixed molten resin was set to 20/1.

次に積層された混合溶融樹脂を、共押出ダイからストランド状に押出し、直径が約1mmであり、長さが直径の略1.5となるように切断して、1粒子当りの平均重量が2mgの多層樹脂粒子を得た。該多層樹脂粒子の外層の表面積は、多層樹脂粒子の表面全体の86%であった。該多層樹脂粒子の外層の厚みを表2に示した。多層樹脂粒子の外層厚みの測定は、前述した測定法に従って行なった。   Next, the laminated mixed molten resin is extruded in a strand form from a coextrusion die and cut so that the diameter is about 1 mm and the length is about 1.5 of the diameter, and the average weight per particle is 2 mg of multilayer resin particles were obtained. The surface area of the outer layer of the multilayer resin particles was 86% of the entire surface of the multilayer resin particles. The thickness of the outer layer of the multilayer resin particle is shown in Table 2. The thickness of the outer layer of the multilayer resin particles was measured according to the measurement method described above.

前記多層樹脂粒子を用いて下記により発泡粒子を製造した。
400リットルのオートクレーブに、前記多層樹脂粒子100重量部、水220重量部、ドデシルベンゼンスルホン酸ナトリウム(界面活性剤)0.05重量部とカオリン(分散剤)0.3重量部、表2に示す炭酸ガス(発泡剤)を添加し、攪拌しながら表2に示す発泡温度よりも5℃低い温度まで昇温してからその温度で15分間保持した。次いで、発泡温度まで昇温して同温度で15分間保持した。次いで、オートクレーブの一端を開放してオートクレーブ内容物を大気圧下に放出して発泡粒子を得た。
Using the multilayer resin particles, foamed particles were produced as follows.
In a 400 liter autoclave, 100 parts by weight of the multilayer resin particles, 220 parts by weight of water, 0.05 parts by weight of sodium dodecylbenzenesulfonate (surfactant) and 0.3 parts by weight of kaolin (dispersant) are shown in Table 2. Carbon dioxide gas (foaming agent) was added, the temperature was raised to a temperature 5 ° C. lower than the foaming temperature shown in Table 2 with stirring, and the temperature was maintained for 15 minutes. Next, the temperature was raised to the foaming temperature and held at that temperature for 15 minutes. Next, one end of the autoclave was opened, and the contents of the autoclave were released under atmospheric pressure to obtain expanded particles.

尚、多層樹脂粒子をオートクレーブから放出する間、オートクレーブ内の圧力が放出直前のオートクレーブ内の圧力に保たれるように、オートクレーブ内に炭酸ガスを供給しながら放出を行った。   During the release of the multilayer resin particles from the autoclave, the release was performed while supplying carbon dioxide gas into the autoclave so that the pressure in the autoclave was maintained at the pressure in the autoclave immediately before the release.

得られた発泡粒子を水洗し遠心分離機にかけてから、24時間大気圧下に放置して養生した後、発泡粒子の見かけ密度、高温ピーク熱量、全体の熱量に対して高温ピーク熱量の割合、平均気泡径、表層部の補外融解開始温度(Ts)、内層部の補外融解開始温度(Ti)、表層部の補外融解開始温度(Ts)と内層部の融解開始温度(Ti)との差(表3中では、「Ti−Ts」とした)等を測定した。その結果を表3に示した。   The obtained foamed particles are washed with water and subjected to a centrifuge, and then left to stand at atmospheric pressure for 24 hours. After curing, the apparent density of the foamed particles, the high temperature peak heat, the ratio of the high temperature peak heat to the total heat, the average Bubble diameter, surface layer extrapolation melting start temperature (Ts), inner layer extrapolation melting start temperature (Ti), surface layer extrapolation melting start temperature (Ts) and inner layer melting start temperature (Ti) Differences ("Ti-Ts" in Table 3) were measured. The results are shown in Table 3.

尚、発泡粒子群の見かけ密度(g/L)、発泡粒子の高温ピーク熱量(J/g)及び平均気泡径の測定方法は、前述した方法に従って行なった。   In addition, the measuring method of the apparent density (g / L) of a foamed particle group, the high temperature peak calorie | heat amount (J / g) of a foamed particle, and an average bubble diameter was performed according to the method mentioned above.

表層部の補外融解開始温度(Ts)と内層部の補外融解開始温度(Ti)の測定方法は、前述した方法で測定した。   The methods for measuring the extrapolated melting start temperature (Ts) of the surface layer portion and the extrapolated melting start temperature (Ti) of the inner layer portion were measured by the methods described above.

外層に着色剤を入れて着色した多層樹脂粒子を作製し、実施例1〜8と同様に発泡させて発泡粒子を顕微鏡で観察したところ、着色された外層に相当する部分(発泡粒子の表層部)は発泡していなかった。   A multilayer resin particle colored by adding a colorant to the outer layer was prepared, and foamed in the same manner as in Examples 1 to 8 and the foamed particle was observed with a microscope. A portion corresponding to the colored outer layer (surface layer portion of the foamed particle) ) Was not foamed.

実施例1〜8で得られた発泡粒子を用いて下記により発泡成形体を成形した。耐圧容器内において加圧空気を用いて表4に示す加熱成型時の内圧に高めた後、0.59MPa(G)の飽和スチーム圧力に耐えうる小スケールの成形機を用いて、250mm×200mm×50mmの成形空間を持つ金型内に、金型を完全に閉鎖せずに僅かな隙間(約1mm)を開けた状態で充填し、次いでスチーム圧力で金型内の空気を排気した後に完全に型締めし、表4に示す圧力のスチーム圧力を金型内に供給することによって加熱成型した。   Using the foamed particles obtained in Examples 1 to 8, foamed molded articles were molded as follows. After increasing the internal pressure at the time of heat molding shown in Table 4 using pressurized air in a pressure vessel, using a small-scale molding machine capable of withstanding a saturated steam pressure of 0.59 MPa (G), 250 mm × 200 mm × After filling the mold with a molding space of 50 mm with a small gap (about 1 mm) without completely closing the mold, and then exhausting the air in the mold with steam pressure completely The mold was clamped and heat-molded by supplying the steam pressure shown in Table 4 into the mold.

加熱成型後、金型内の成形体の面圧が0.059MPa(G)となるまで水冷した後、成形体を金型から取り出し、60℃で24時間養生した後、室温まで冷却して発泡成形体を得た。   After heat molding, after water cooling until the surface pressure of the molded body in the mold reaches 0.059 MPa (G), the molded body is taken out from the mold, cured at 60 ° C. for 24 hours, then cooled to room temperature and foamed. A molded body was obtained.

表4に本実施例における加熱成型時のスチーム圧力、融着率を示した。   Table 4 shows the steam pressure and the fusion rate at the time of heat molding in this example.

前記した融着率の具体的な測定は、まず、得られた発泡成形体を、カッターナイフで成形体の厚み方向に約10mmの切り込みを入れた後、手で切り込み部から発泡成形体を破断した。次に、破断面に存在する発泡粒子の個数(n)と、材料破壊した発泡粒子の個数(b)を測定し、(n)と(b)の比(b/n)×100(%)の値を融着率とした。   The specific measurement of the fusion rate described above is as follows. First, the obtained foamed molded product was cut with a cutter knife in the thickness direction of the molded product, and then the foamed molded product was broken by hand from the cut portion. did. Next, the number (n) of the expanded particles existing on the fracture surface and the number (b) of the expanded material particles were measured, and the ratio (b / n) × 100 (%) of (n) and (b). Was the fusion rate.

表4に示す加熱成型時の発泡粒子の内圧の測定は次のように行なった。
内圧が高められた加熱成型直前の発泡粒子群を加圧タンク内から取り出してから60秒以内に、発泡粒子は通過させないが空気は自由に通過できるサイズの針穴を多数穿設した70mm×100mm程度のポリエチレン製袋の中に収容して気温23℃、相対湿度50%の大気圧下の恒温室に移動する。続いてその恒温内の秤に載せて重量を読み取った。その重量の測定は、上記した発泡粒子群を加圧タンク内から取出してから120秒後とした。このときの重量をQ(g)とした。続いてその袋を同恒温室に48時間放置した。発泡粒子内の加圧空気は時間の経過と共に気泡膜を透過して外部に抜け出すため発泡粒子群の重量はそれに伴って減少し、48時間後では平衡に達しているため実質的にその重量は安定した。上記48時間後に再度その袋の重量を測定し、このときの重量をU(g)とした。続いて直ちに同恒温室内にて袋から発泡粒子群の全てを取り出して袋のみの重量を読み取った。その重量をZ(g)とした。上記のいずれの重量も0.0001gまで読み取った。Q(g)とU(g)の差を増加空気量W(g)とし、次式より発泡粒子の内圧P(MPa)が計算される。尚、この内圧Pはゲージ圧に相当する。
(数15)
P=(W÷M)×R×T÷V・・・(11)
Measurement of the internal pressure of the foamed particles during the heat molding shown in Table 4 was performed as follows.
Within 70 seconds after taking out the foam particles just before heat molding with increased internal pressure from the pressurized tank, 70mm x 100mm with many needle holes of a size that allows the foam particles to pass but not allow the air to pass freely. It is housed in a polyethylene bag with a temperature of 23 ° C. and moved to a temperature-controlled room under atmospheric pressure with a relative humidity of 50%. Subsequently, the weight was read on the balance in the constant temperature. The measurement of the weight was 120 seconds after taking out the above expanded particle group from the pressurized tank. The weight at this time was defined as Q (g). Subsequently, the bag was left in the same greenhouse for 48 hours. Since the pressurized air in the expanded particles permeates through the cell membrane and escapes to the outside as time passes, the weight of the expanded particles decreases accordingly, and after 48 hours, the weight has reached equilibrium. Stable. After 48 hours, the weight of the bag was measured again, and the weight at this time was defined as U (g). Subsequently, all of the foam particles were taken out of the bag immediately in the same temperature chamber and the weight of the bag alone was read. The weight was defined as Z (g). Any of the above weights were read to 0.0001 g. The difference between Q (g) and U (g) is the increased air amount W (g), and the internal pressure P (MPa) of the expanded particles is calculated from the following equation. The internal pressure P corresponds to a gauge pressure.
(Equation 15)
P = (W ÷ M) × R × T ÷ V (11)

ただし、上式中、Mは空気の分子量であり、ここでは28.8(g/モル)の定数を採用する。Rは気体定数であり、ここでは0.0083(MPa・L/(K・mol))の定数を採用する。Tは絶対温度を意味し、23℃の雰囲気が採用されているので、ここでは296(K)の定数である。Vは発泡粒子群の見かけ体積から発泡粒子群中に占める基材樹脂の体積を差し引いた体積(L)を意味する。   However, in the above formula, M is the molecular weight of air, and here, a constant of 28.8 (g / mol) is adopted. R is a gas constant, and here, a constant of 0.0083 (MPa · L / (K · mol)) is adopted. T means an absolute temperature, and since an atmosphere of 23 ° C. is adopted, it is a constant of 296 (K) here. V means the volume (L) obtained by subtracting the volume of the base resin in the expanded particle group from the apparent volume of the expanded particle group.

実施例1〜8において得られた発泡成形体の圧縮強度、見かけ密度及び耐熱性を測定し、その結果を表4に示した。   The compression strength, apparent density, and heat resistance of the foamed molded products obtained in Examples 1 to 8 were measured, and the results are shown in Table 4.

表4より実施例1〜8において加熱成型条件のスチーム圧力は、0.45MPa(G)以下であり、さらに融着率が50%以上であった。さらに実施例3〜8において加熱成型条件のスチーム圧力は、0.41MPa(G)以下であった。このため、従来の成形機で充分成形できる発泡粒子であった。   From Table 4, in Examples 1-8, the steam pressure of the heat molding conditions was 0.45 MPa (G) or less, and the fusion rate was 50% or more. Furthermore, in Examples 3 to 8, the steam pressure under the heat molding conditions was 0.41 MPa (G) or less. For this reason, it was the expanded particle which can be fully shape | molded with the conventional molding machine.

発泡成形体の圧縮強度の測定は次のように行った。
まず、得られた発泡成形体から縦50mm、横50mm、厚み25mmの試験片(全面の表皮がカットされたもの)を切出した。次に、該試験片について、JIS Z 0234−1976 A法に従って試験片温度23℃、荷重速度10mm/分の条件で歪が55%に至るまで圧縮試験を行い、得られた応力−歪線図より50%歪時の応力を読みとり、これを圧縮強度とした。
The compression strength of the foamed molded product was measured as follows.
First, a test piece having a length of 50 mm, a width of 50 mm, and a thickness of 25 mm was cut out from the obtained foamed molded article (the entire skin was cut). Next, the test piece was subjected to a compression test according to JIS Z 0234-1976 A method at a test piece temperature of 23 ° C. and a load speed of 10 mm / min until the strain reached 55%, and the obtained stress-strain diagram Further, the stress at the time of 50% strain was read, and this was taken as the compressive strength.

発泡成形体の見かけ密度の測定は前述した方法に従って行なった。   The apparent density of the foamed molded product was measured according to the method described above.

実施例1〜8の発泡粒子を用いて得られた発泡成形体の耐熱性の評価を行なった。
得られた発泡成形体から試験片サイズ厚み10mm×幅40mm×長さ200mmを切り取り、支持台の半径Rが1.25mmの高さ100mm、スパン間距離150mmの三点曲げに用いられる冶具に前記試験片を載せて、直径5mm、長さ50mmの円柱状の棒5gの重りを試験片の中央部に載せ、140℃のオーブン中に22時間放置した。
加熱する前の冶具の下面から試験片の長さ方向の中央部分までの高さをHbとした加熱後の高さをHaとして変形率は下式(12)で求め、その値によって評価を行なった。結果を表4に示した。
(数16)
変形率(%)=(Hb−Ha)/Hb ×100・・・(12)
※ ・・・変形率が10%以下である。
○ ・・・変形率が10%を超え、30%以下である。
× ・・・変形率が30%を超える。
The heat resistance of the foamed molded articles obtained using the foamed particles of Examples 1 to 8 was evaluated.
Cut the specimen size thickness 10 mm × width 40 mm × length 200 mm from the obtained foamed molded article, and the jig used for three-point bending with a support base radius R of 1.25 mm and a height of 100 mm and a span distance of 150 mm. A test piece was placed and a weight of 5 g of a cylindrical rod having a diameter of 5 mm and a length of 50 mm was placed on the center of the test piece and left in an oven at 140 ° C. for 22 hours.
The deformation rate is obtained by the following equation (12), where Ha is the height after heating, where Hb is the height from the lower surface of the jig before heating to the central portion in the length direction of the test piece, and evaluation is performed based on the value. It was. The results are shown in Table 4.
(Equation 16)
Deformation rate (%) = (Hb−Ha) / Hb × 100 (12)
* ... Deformation rate is 10% or less.
O ... Deformation rate exceeds 10% and is 30% or less.
X: Deformation rate exceeds 30%.

実施例3と実施例4、実施例5と実施例6の結果より、同じ多層樹脂粒子であっても発泡温度が高くなると得られる発泡粒子における内層部の補外融解開始温度と表層部の補外融解開始温度との差が広くなる傾向があった。   From the results of Example 3 and Example 4, Example 5 and Example 6, even when the same multilayer resin particle is used, if the foaming temperature is high, the extrapolated melting start temperature of the inner layer part and the compensation of the surface layer part in the obtained foamed particle are obtained. There was a tendency for the difference from the external melting start temperature to become wide.

実施例3と実施例8とを比較すると、発泡粒子の見かけ密度がほぼ同じであるが、実施例8の発泡粒子は高温ピーク熱量が大きいにもかかわらず、内層部と芯層部との融点差が大きいため(表2、実施例3:2.1℃、実施例8:21℃)、実施例3の発泡粒子よりも低いスチーム圧力で成形できた。   When Example 3 is compared with Example 8, the apparent density of the expanded particles is almost the same, but the expanded particles of Example 8 have a high melting point between the inner layer portion and the core layer portion even though the high-temperature peak heat amount is large. Since the difference was large (Table 2, Example 3: 2.1 ° C., Example 8: 21 ° C.), molding was possible at a steam pressure lower than that of the expanded particles of Example 3.

Figure 0004276489
Figure 0004276489

Figure 0004276489
Figure 0004276489

Figure 0004276489
Figure 0004276489

比較例1〜3
表5に示したポリプロピレン系樹脂(表中では樹脂(y))とポリプロピレン系樹脂(表中では樹脂(x))を使用し、表5に示した多層樹脂粒子の外層の厚みとし、第一の混合溶融樹脂の吐出量(y)と第二の混合溶融樹脂の吐出量(x)の比(y/x)は、3.5/1で設定した以外は、実施例1〜8と同様に多層樹脂粒子を得た。なお、該多層樹脂粒子の外層の表面積は、多層樹脂粒子の表面全体の86%であった。
Comparative Examples 1-3
Using the polypropylene resin (resin (y) in the table) and the polypropylene resin (resin (x) in the table) shown in Table 5, the thickness of the outer layer of the multilayer resin particles shown in Table 5 is used. Example 1 except that the ratio (y A / x B ) between the discharge amount (y A ) of the mixed molten resin and the discharge amount (x B ) of the second mixed molten resin was set to 3.5 / 1 Multilayer resin particles were obtained in the same manner as in -8. The surface area of the outer layer of the multilayer resin particle was 86% of the entire surface of the multilayer resin particle.

前記多層樹脂粒子を用いて表5に示した炭酸ガスの添加量、発泡温度以外は実施例と同様に発泡粒子を製造した。
得られた発泡粒子を、実施例1〜8と同様に、発泡粒子を水洗し遠心分離機にかけてから、24時間大気圧下に放置して養生した後、発泡粒子の見かけ密度、高温ピーク熱量、全体の熱量に対する高温ピーク熱量の割合、平均気泡径、表層部の補外融解開始温度(Ts)、内層部の補外融解開始温度(Ti)、表層部の融解開始温度(Ts)と内層部の補外融解開始温度(Ti)との差(表6中では、「Ti−Ts」とした)等を測定した。その結果を表6に示した。
Using the multilayer resin particles, expanded particles were produced in the same manner as in Examples except for the addition amount of carbon dioxide gas and the expansion temperature shown in Table 5.
The obtained foamed particles were washed with water and centrifuged in the same manner as in Examples 1 to 8, and then allowed to stand at atmospheric pressure for 24 hours. After that, the apparent density of the foamed particles, the high temperature peak heat amount, Ratio of high-temperature peak heat quantity to total heat quantity, average bubble diameter, extrapolated melting start temperature (Ts) of surface layer part, extrapolated melting start temperature (Ti) of inner layer part, melting start temperature (Ts) of inner layer part and inner layer part The difference from the extrapolated melting start temperature (Ti) of (Ti-Ts in Table 6) and the like were measured. The results are shown in Table 6.

外層に着色剤を入れて着色した多層樹脂粒子を作製し、比較例と同様に発泡させて発泡粒子を顕微鏡で観察したところ、比較例1〜3は、着色された外層に相当する部分(発泡粒子の表層部)は発泡していた。   A multilayer resin particle colored by adding a colorant to the outer layer was prepared, and the foamed particles were observed in a microscope in the same manner as in the comparative example. When the foamed particles were observed with a microscope, Comparative Examples 1 to 3 were portions corresponding to the colored outer layer (foamed) The surface layer portion of the particles was foamed.

比較例1〜3で得られた発泡粒子を用い、表7に示す加熱成型時の内圧に高めたこと、表7に示すスチーム圧力で加熱成型したこと以外、実施例1〜8と同様に加熱成型を行なった。
その結果、比較例1は、融着率が80%であって、成形機の耐えうる飽和スチーム圧力が従来成型機の耐圧である0.45MPa(G)を超える0.50MPa(G)であった。
また、比較例2は、比較例1の発泡粒子を用いて飽和スチーム圧力を0.43MPa(G)とした場合、成型後、金型を開けた際に発泡粒子相互が融着しておらず発泡成形体は得られなかった。
比較例3は、高温ピーク熱量が26J/gと低いことからスチーム圧力は0.43MPa(G)と従来成型機の耐圧である0.45MPa(G)以下であったが発泡成形体の見かけ密度が同じである比較例1の圧縮強度と比較すると比較例3の圧縮強度は、約22%も圧縮強度が低下するものであった。
なお、表7中における比較例3の融着率の※印は、得られた発泡成形体は、発泡粒子相互の融着はしているものの、発泡成形体を、カッターナイフで発泡成形体の厚み方向に約10mmの切り込みを入れた後、手で切り込み部から発泡成形体を破断し、破断面を電子顕微鏡で観察したところ、芯層部と表層部との界面で剥離していることが分かった。
Heating was carried out in the same manner as in Examples 1 to 8 except that the foamed particles obtained in Comparative Examples 1 to 3 were used, and the internal pressure at the time of heat molding shown in Table 7 was increased, and the heat molding was performed at the steam pressure shown in Table 7. Molding was performed.
As a result, in Comparative Example 1, the fusion rate was 80%, and the saturated steam pressure that the molding machine could withstand was 0.50 MPa (G), which exceeds the pressure resistance of the conventional molding machine, 0.45 MPa (G). It was.
In Comparative Example 2, when the foamed particles of Comparative Example 1 were used and the saturation steam pressure was 0.43 MPa (G), the foamed particles were not fused when the mold was opened after molding. An expanded molded article was not obtained.
In Comparative Example 3, the high-temperature peak heat amount is as low as 26 J / g, so the steam pressure was 0.43 MPa (G), which is less than the pressure resistance of the conventional molding machine, 0.45 MPa (G). Compared with the compressive strength of Comparative Example 1 in which the compression strength is the same, the compressive strength of Comparative Example 3 was about 22% lower.
In addition, the * mark of the fusion rate of Comparative Example 3 in Table 7 indicates that although the obtained foamed molded product is fused to the foamed particles, the foamed molded product is After making an incision of about 10 mm in the thickness direction, the foamed molded body was broken by hand from the incision part, and the fracture surface was observed with an electron microscope. As a result, it was found that peeling occurred at the interface between the core layer part and the surface layer part. I understood.

Figure 0004276489
Figure 0004276489

Figure 0004276489
Figure 0004276489

Figure 0004276489
Figure 0004276489

実施例9
表8に示すポリプロピレン系樹脂(表中では樹脂(y))とポリプロピレン系樹脂(表中では樹脂(x))を用いて外層にポリプロピレン系樹脂(x)を用いて、断面が円筒状となる共押出ダイからストランド状に押出し、直径が約1.0mmであり、直径と長さの比が略2.0になるように切断して、1粒子当りの平均重量が2mgの円筒状の多層樹脂粒子を得た。得られた円筒状の多層樹脂粒子の表面は表層部で積層されていた。該多層樹脂粒子の外層の表面積は、多層樹脂粒子の表面全体の89%であった。
Example 9
Using the polypropylene resin (resin (y) in the table) and the polypropylene resin (resin (x) in the table) shown in Table 8, the outer layer is made of polypropylene resin (x), and the cross section is cylindrical. A cylindrical multilayer having an average weight of 2 mg per particle, extruded from a coextrusion die in a strand shape and cut to a diameter of about 1.0 mm and a diameter to length ratio of about 2.0. Resin particles were obtained. The surface of the obtained cylindrical multilayer resin particles was laminated at the surface layer portion. The surface area of the outer layer of the multilayer resin particles was 89% of the entire surface of the multilayer resin particles.

比較例4
表9に示すポリプロピレン系樹脂を用いて、断面が円筒状となる押出ダイからストランド状に押出し、直径が約1.0mmであり、直径と長さの比が略2.0になるように切断して、1粒子当りの平均重量が2mgの円筒状の多層樹脂粒子を得た。
Comparative Example 4
Using polypropylene resin shown in Table 9, extruded from an extrusion die having a cylindrical cross section into a strand shape, cut so that the diameter is about 1.0 mm and the ratio of diameter to length is about 2.0. Thus, cylindrical multilayer resin particles having an average weight per particle of 2 mg were obtained.

実施例9、比較例4
前記円筒状の多層脂粒子を用いて以下のように円筒状の発泡粒子を製造した。
400リットルのオートクレーブに、上記円筒状多層樹脂粒子50重量部、水220重量部、ドデシルベンゼンスルホン酸ナトリウム(界面活性剤)0.05重量部とカオリン(分散剤)0.3重量部、表8に示す炭酸ガス(発泡剤)を添加し、攪拌しながら表8及び表9に示す発泡温度よりも5℃低い温度まで昇温してからその温度で15分間保持した。次いで、発泡温度まで昇温して同温度で15分間保持した。次いで、オートクレーブの一端を開放してオートクレーブ内容物を大気圧下に放出して円筒状の発泡粒子を得た。それ以外は実施例1〜8と同様に行なった。
Example 9, Comparative Example 4
Using the cylindrical multilayer fat particles, cylindrical foam particles were produced as follows.
In a 400 liter autoclave, 50 parts by weight of the above cylindrical multilayer resin particles, 220 parts by weight of water, 0.05 parts by weight of sodium dodecylbenzenesulfonate (surfactant) and 0.3 parts by weight of kaolin (dispersant), Table 8 The carbon dioxide gas (foaming agent) shown in FIG. 5 was added, and the temperature was raised to a temperature 5 ° C. lower than the foaming temperature shown in Tables 8 and 9 while stirring, and then kept at that temperature for 15 minutes. Next, the temperature was raised to the foaming temperature and held at that temperature for 15 minutes. Next, one end of the autoclave was opened, and the contents of the autoclave were released under atmospheric pressure to obtain cylindrical expanded particles. Other than that was performed like Example 1-8.

得られた円筒状の発泡粒子を水洗し遠心分離機にかけてから、24時間大気圧下に放置して養生した後、該円筒状の発泡粒子の見掛け密度、高温ピーク熱量、全体の熱量に対する高温ピーク熱量の割合、平均気泡径、表層部の補外融解開始温度(Ts)、内層部の補外融解開始温度(Ti)、表層部の補外融解開始温度(Ts)と内層部の補外融解開始温度(Ti)との差(表10中では、「Ti−Ts」とした)等を測定した。その結果を表10及び表11に示した。   The obtained cylindrical foamed particles were washed with water and centrifuged, and then allowed to stand at atmospheric pressure for 24 hours. After curing, the apparent density of the cylindrical foamed particles, the high-temperature peak heat quantity, and the high-temperature peak relative to the total heat quantity. Heat ratio, average bubble diameter, surface extrapolation start temperature (Ts), inner layer extrapolation start temperature (Ti), surface extrapolation start temperature (Ts) and inner layer extrapolation A difference from the starting temperature (Ti) (in Table 10, “Ti-Ts”) and the like were measured. The results are shown in Table 10 and Table 11.

次に、実施例9、比較例4で得られた円筒状の発泡粒子を用いて発泡成形体を製造した。   Next, a foamed molded article was produced using the cylindrical foamed particles obtained in Example 9 and Comparative Example 4.

気泡内圧を表12に示す値に高め、金型を完全に閉鎖せずに僅かな隙間(約1mm)を開けた状態で充填し、次いでスチームで金型内の空気を排気した後に完全に型締めし、表12に示す圧力のスチームを金型内に供給することによって加熱した以外は実施例1〜8と同様に加熱成型を行なった。得られた発泡成形体の圧縮強度、見かけ密度、空隙率を測定した結果を表12に示した。   The bubble internal pressure was raised to the value shown in Table 12, and the mold was not completely closed and filled with a small gap (about 1 mm), and then the mold was completely exhausted after the air in the mold was exhausted with steam. Fastening was performed in the same manner as in Examples 1 to 8 except that heating was performed by supplying steam having a pressure shown in Table 12 into the mold. Table 12 shows the results of measuring the compressive strength, apparent density, and porosity of the obtained foamed molded article.

空隙率の測定は次のように行った。
発泡成形体の空隙率(%)は、発泡成形体サンプルの外形寸法(25mm×25mm×100mm)より求めた体積をa(cm3)、該サンプルをアルコールを入れた目盛り付き容器のアルコール中に沈めた時の、目盛りの上昇分から求められるサンプルの真の体積をb(cm3 )とし、下記式より求めた。
(数17)
空隙率(%)={1−(b/a)}×100・・・(13)
The porosity was measured as follows.
The porosity (%) of the foamed molded product is a (cm 3 ) based on the volume obtained from the external dimensions (25 mm × 25 mm × 100 mm) of the foamed molded product, and the sample is placed in the alcohol of a graduated container containing alcohol. The true volume of the sample obtained from the increment of the scale when submerged was defined as b (cm 3 ) and obtained from the following formula.
(Equation 17)
Porosity (%) = {1- (b / a)} × 100 (13)

表12より実施例9と比較例4とを比較すると、実施例9においては、スチーム圧力が低く、発泡粒子相互の融着も良好であった。比較例4についてはスチーム圧力が0.55MPa(G)となり従来の成形機の0.45MPa(G)を超えるものであった。又、実施例9で得られた発泡成形体は比較例4で得られた発泡成形体と比較すると空隙率が高いものであった。   From Table 12, when Example 9 and Comparative Example 4 were compared, in Example 9, the steam pressure was low and the fusion between the expanded particles was good. In Comparative Example 4, the steam pressure was 0.55 MPa (G), which exceeded 0.45 MPa (G) of the conventional molding machine. Further, the foamed molded product obtained in Example 9 had a higher porosity than the foamed molded product obtained in Comparative Example 4.

Figure 0004276489
Figure 0004276489

Figure 0004276489
Figure 0004276489

Figure 0004276489
Figure 0004276489

Figure 0004276489
Figure 0004276489

Figure 0004276489
Figure 0004276489

比較例5
表13に示したポリプロピレン系樹脂(表中では樹脂(y))とポリエチレン系樹脂(表中では樹脂(x))を使用した以外は、実施例1〜8と同様に行なったが積層された混合溶融樹脂を、共押出ダイからストランド状に押出し、直径が約1mmであり、長さが直径の略1.5となるように切断した際に、芯層のポリプロピレン系樹脂と外層のポリエチレン系樹脂との接着性が低いため、芯層のポリプロピレン系樹脂が抜けてしまい多層樹脂粒子は得られなかった。
Comparative Example 5
Although it carried out similarly to Examples 1-8 except having used the polypropylene resin (resin (y) in a table) and polyethylene resin (resin (x) in a table) shown in Table 13, it was laminated. When the mixed molten resin is extruded into a strand from a coextrusion die and cut to have a diameter of approximately 1 mm and a length of approximately 1.5 of the diameter, the core layer polypropylene resin and the outer layer polyethylene resin Since the adhesiveness with the resin was low, the polypropylene resin in the core layer was lost and multilayer resin particles could not be obtained.

Figure 0004276489
Figure 0004276489

本発明の発泡粒子の第1回目のDSC曲線のチャートの一例を示す図である。It is a figure which shows an example of the chart of the 1st DSC curve of the expanded particle of this invention. 本発明の発泡粒子の第2回目のDSC曲線のチャートの一例を示す図である。It is a figure which shows an example of the chart of the 2nd time DSC curve of the expanded particle of this invention. マイクロ示差熱分析測定によって得られる曲線のチャートの一例を示す図である。It is a figure which shows an example of the chart of the curve obtained by micro differential thermal analysis measurement. マイクロ示差熱分析測定によって得られる曲線のチャートの一例を示す図である。It is a figure which shows an example of the chart of the curve obtained by micro differential thermal analysis measurement.

Claims (6)

ポリプロピレン系樹脂から形成される芯層とポリプロピレン系樹脂から形成される外層とからなり、該外層のポリプロピレン系樹脂の融点(ts)と、該芯層のポリプロピレン系樹脂の融点(ti)との関係が(1)式を満足し、該外層の厚さが30μm以下である多層樹脂粒子に発泡剤を含浸させて、加熱軟化状態の発泡剤含浸多層樹脂粒子を発泡させることを特徴とするポリプロピレン系樹脂発泡粒子の製造方法。
(数1)
1.5(℃)≦ti−ts≦30.0(℃)・・・(1)
(但し、式中のti、tsの単位はともに℃である。)
A core layer formed from a polypropylene resin and an outer layer formed from a polypropylene resin, and the relationship between the melting point (ts) of the polypropylene resin of the outer layer and the melting point (ti) of the polypropylene resin of the core layer In which the foaming agent-impregnated multilayer resin particles in a heat-softened state are foamed by impregnating the foaming agent into the multilayer resin particles having the outer layer thickness of 30 μm or less. A method for producing resin foam particles.
(Equation 1)
1.5 (° C.) ≦ ti-ts ≦ 30.0 (° C.) (1)
(However, the unit of ti and ts in the formula is ° C.)
芯層のポリプロピレン系樹脂の引張弾性率が1200MPa以上であることを特徴とする請求項1記載のポリプロピレン系樹脂発泡粒子の製造方法。 The method for producing expanded polypropylene resin particles according to claim 1, wherein the tensile modulus of the polypropylene resin of the core layer is 1200 MPa or more. ポリプロピレン系樹脂から形成される芯層とポリプロピレン系樹脂から形成される外層とからなる多層樹脂粒子を発泡してなる発泡粒子であって、該発泡粒子は、該芯層のポリプロピレン系樹脂が発泡してなる内層部と該外層のポリプロピレン系樹脂からなる実質的に非発泡の表層部とからなり、マイクロ示差熱分析測定によって得られる該表層部の補外融解開始温度(Ts)が該内層部の補外融解開始温度(Ti)より少なくとも2℃低いことを特徴とするポリプロピレン系樹脂発泡粒子。 Foamed particles obtained by foaming multi-layer resin particles composed of a core layer formed from a polypropylene resin and an outer layer formed from a polypropylene resin, wherein the foamed particles are foamed from the polypropylene resin in the core layer. And an outer layer melting point of the outer layer obtained by micro-differential thermal analysis measurement is the outer layer melting start temperature (Ts) of the inner layer part. Polypropylene-based resin expanded particles characterized by being at least 2 ° C. lower than the extrapolated melting start temperature (Ti). 表層部の補外融解開始温度(Ts)と、内層部の補外融解開始温度(Ti)との関係が(2)式を満足することを特徴とする請求項3に記載のポリプロピレン系樹脂発泡粒子。
(数2)
3(℃)≦Ti−Ts≦40(℃)・・・(2)
(但し、式中のTi、Tsの単位はともに℃である。)
4. The polypropylene resin foam according to claim 3, wherein the relationship between the extrapolation melting start temperature (Ts) of the surface layer portion and the extrapolation melting start temperature (Ti) of the inner layer portion satisfies the formula (2). particle.
(Equation 2)
3 (° C.) ≦ Ti−Ts ≦ 40 (° C.) (2)
(However, the unit of Ti and Ts in the formula is ° C.)
ポリプロピレン系樹脂発泡粒子の示差走査熱量測定によって得られるDSC曲線は、ポリプロピレン系樹脂に固有の吸熱曲線ピークと、該吸熱曲線ピークよりも高温側の吸熱曲線ピークとを少なくとも示し、且つ該高温側の吸熱曲線ピークの熱量が全ての吸熱曲線ピークの熱量の合計に対して15%〜70%であることを特徴とする請求項3又は4に記載のポリプロピレン系樹脂発泡粒子。 The DSC curve obtained by differential scanning calorimetry of the polypropylene resin expanded particles shows at least an endothermic curve peak unique to the polypropylene resin and an endothermic curve peak higher than the endothermic curve peak, and 5. The expanded polypropylene resin particle according to claim 3, wherein the heat quantity of the endothermic curve peak is 15% to 70% with respect to the total heat quantity of all the endothermic curve peaks. ポリプロピレン系樹脂発泡粒子の形状が、筒状であることを特徴とする請求項3〜5のいずれかに記載のポリプロピレン系樹脂発泡粒子。 The expanded polypropylene resin particles according to any one of claims 3 to 5, wherein the expanded polypropylene resin particles are cylindrical.
JP2003277723A 2002-07-22 2003-07-22 Method for producing polypropylene resin expanded particles and polypropylene resin expanded particles Expired - Fee Related JP4276489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003277723A JP4276489B2 (en) 2002-07-22 2003-07-22 Method for producing polypropylene resin expanded particles and polypropylene resin expanded particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002212275 2002-07-22
JP2003277723A JP4276489B2 (en) 2002-07-22 2003-07-22 Method for producing polypropylene resin expanded particles and polypropylene resin expanded particles

Publications (2)

Publication Number Publication Date
JP2004068016A JP2004068016A (en) 2004-03-04
JP4276489B2 true JP4276489B2 (en) 2009-06-10

Family

ID=32032666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003277723A Expired - Fee Related JP4276489B2 (en) 2002-07-22 2003-07-22 Method for producing polypropylene resin expanded particles and polypropylene resin expanded particles

Country Status (1)

Country Link
JP (1) JP4276489B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090169895A1 (en) * 2007-12-27 2009-07-02 Jsp Corporation Foamed polyolefin resin beads
JP5161593B2 (en) * 2008-01-11 2013-03-13 株式会社カネカ Method for producing expanded polypropylene resin particles
WO2010150466A1 (en) 2009-06-26 2010-12-29 株式会社ジェイエスピー Expanded polypropylene resin beads and expanded bead molding
JP5399146B2 (en) * 2009-07-08 2014-01-29 株式会社ジェイエスピー Polypropylene resin foamed particles and foamed particle molded body comprising the foamed particles
JP5727210B2 (en) 2010-12-15 2015-06-03 株式会社ジェイエスピー Method for producing polyolefin resin expanded particle molded body, and polyolefin resin expanded resin molded body
JP5717198B2 (en) * 2012-03-05 2015-05-13 株式会社ジェイエスピー Polypropylene resin expanded particles and molded polypropylene resin expanded particles
JP6026814B2 (en) * 2012-08-21 2016-11-16 株式会社ジェイエスピー Polyolefin resin expanded particles and molded articles thereof
JP6170765B2 (en) 2013-07-08 2017-07-26 株式会社ジェイエスピー Method for producing polyolefin resin foam molding with skin
WO2015107847A1 (en) 2014-01-17 2015-07-23 株式会社ジェイエスピー Propylene-based resin foam particle and foam particle molded body
WO2016060162A1 (en) * 2014-10-15 2016-04-21 株式会社カネカ Polypropylene resin foamed particles, in-mold foam molded body of polypropylene resin, and method for manufacturing same
WO2016111017A1 (en) * 2015-01-09 2016-07-14 株式会社ジェイエスピー Propylene resin foam particles and foam particle molded article
JP6060220B1 (en) * 2015-07-15 2017-01-11 株式会社ジェイエスピー Propylene-based resin expanded particles and expanded molded articles
JP6765798B2 (en) * 2015-10-16 2020-10-07 矢崎エナジーシステム株式会社 Calorimeter
WO2017135456A1 (en) * 2016-02-04 2017-08-10 株式会社ジェイエスピー Vehicle seat sheet core material
CN106336522A (en) * 2016-08-31 2017-01-18 无锡会通轻质材料股份有限公司 Preparation method for multilayer gradient porous polypropylene beads
JP7252859B2 (en) * 2019-08-09 2023-04-05 株式会社ジェイエスピー Expanded polypropylene resin particles and expanded polypropylene resin particles
JP7453840B2 (en) * 2020-04-22 2024-03-21 積水化学工業株式会社 multilayer pipe
JP2020160077A (en) * 2020-06-09 2020-10-01 矢崎エナジーシステム株式会社 Calorimeter
JP2022127578A (en) * 2021-02-19 2022-08-31 株式会社ジェイエスピー Foamed particle and method for producing the same
JP7553403B2 (en) 2021-04-22 2024-09-18 株式会社ジェイエスピー Multi-layer foam particles
JP2023071381A (en) * 2021-11-11 2023-05-23 株式会社ジェイエスピー Production method of polypropylene resin foamed particle molding

Also Published As

Publication number Publication date
JP2004068016A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
JP4276489B2 (en) Method for producing polypropylene resin expanded particles and polypropylene resin expanded particles
JP5512672B2 (en) Polypropylene resin expanded particles and expanded molded articles
JP5727210B2 (en) Method for producing polyolefin resin expanded particle molded body, and polyolefin resin expanded resin molded body
WO1996031558A1 (en) Foamed particles of propylene homopolymer and moldings of said particles
EP2940070B1 (en) Molded article of polylactic acid-based resin expanded beads
JP6170765B2 (en) Method for producing polyolefin resin foam molding with skin
US20220267552A1 (en) Expanded bead and method for producing the same
US20240279421A1 (en) Polypropylene-based resin expanded bead, method for producing same, and molded article of polypropylene-based resin expanded beads
US20240124674A1 (en) Molded article of polypropylene-based resin expanded beads and method for producing same
JP4157399B2 (en) Method for producing expanded polypropylene resin particles, expanded polypropylene resin particles, and expanded foam in polypropylene resin mold
JP2022096231A (en) Polypropylene-based resin foam particle, and foam particle molding
JP7553403B2 (en) Multi-layer foam particles
JP2002248645A (en) Method for manufacturing thermoplastic resin foamed small piece molded object
JP4347942B2 (en) Polypropylene resin foam particles for molding
JP2005325179A (en) Method for producing polypropylene-based resin expanded particle molding
WO2024135414A1 (en) Polyethylene resin foam particle molded body and method for producing same
JP2023048463A (en) Multilayer foam particle
JP7519323B2 (en) Expanded bead molding
EP4306583A1 (en) Thermoplastic resin expanded bead and molded article of thermoplastic resin expanded beads

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R150 Certificate of patent or registration of utility model

Ref document number: 4276489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140313

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees