JP2009292919A - Energy absorbing component - Google Patents
Energy absorbing component Download PDFInfo
- Publication number
- JP2009292919A JP2009292919A JP2008147363A JP2008147363A JP2009292919A JP 2009292919 A JP2009292919 A JP 2009292919A JP 2008147363 A JP2008147363 A JP 2008147363A JP 2008147363 A JP2008147363 A JP 2008147363A JP 2009292919 A JP2009292919 A JP 2009292919A
- Authority
- JP
- Japan
- Prior art keywords
- thermoplastic resin
- foam
- compression
- energy absorbing
- absorbing member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
本発明は、熱可塑性樹脂発泡体からなるエネルギー吸収部材に関する。 The present invention relates to an energy absorbing member made of a thermoplastic resin foam.
エネルギー吸収部材は、自動車バンパーの芯材、側突材などの様々な用途に使用されており、燃費の向上やコスト削減の観点から軽量化が求められている。 Energy absorbing members are used in various applications such as automobile bumper cores and side projections, and weight reduction is required from the viewpoint of improving fuel consumption and reducing costs.
エネルギー吸収部材は衝撃を受けると、それ自身が部分破壊や変形することによって衝撃エネルギーを吸収するので、被保護物が直接衝撃を受けることはないが、それでも衝撃によって荷重が発生する。この荷重が大きすぎると被保護物が破壊、機能消失してしまうので、発生する最大荷重をできるだけ抑えたエネルギー吸収部材が望ましい。 When the energy absorbing member receives an impact, the energy absorbing member itself absorbs the impact energy by partial destruction or deformation, so that the protected object does not receive the impact directly, but a load is still generated by the impact. If this load is too large, the object to be protected is destroyed and the function is lost. Therefore, an energy absorbing member that suppresses the maximum load generated as much as possible is desirable.
一方、エネルギー吸収量は、衝撃荷重とエネルギー吸収部材の変形量の積算であり、衝撃荷重が大きいほうがより多くのエネルギーを吸収できる。これら2つの相反する事象より、エネルギー吸収部材に要求される最も重要な性能としては、発生する最大荷重を抑えながら、一定の荷重を維持することでより多くのエネルギーを吸収することが挙げられる。 On the other hand, the energy absorption amount is an integration of the impact load and the deformation amount of the energy absorbing member, and a larger impact load can absorb more energy. From these two conflicting events, the most important performance required for the energy absorbing member is to absorb more energy by maintaining a constant load while suppressing the maximum load generated.
このような性能を示すエネルギー吸収部材として、圧縮したときに順次座屈する材料である硬質ポリウレタンフォーム、ハニカム状の構造体が知られている。順次座屈する材料を圧縮し続けた場合、圧縮方向に垂直な面状の座屈が始まった後に順次同様の座屈が連続して起こるので、座屈が開始した後は実質的に一定の荷重が持続する。 As an energy absorbing member exhibiting such performance, a rigid polyurethane foam and a honeycomb-like structure, which are materials that sequentially buckle when compressed, are known. When a material that sequentially buckles continues to be compressed, the same buckling occurs successively after the surface buckling perpendicular to the compression direction starts, so a substantially constant load is applied after the buckling starts. Persists.
特許文献1には、ハニカム構造からなる衝撃吸収体が開示されている。ハニカム構造からなる衝撃吸収体を圧縮した場合、順次座屈することによって大きな圧縮歪まで一定の圧縮応力を示すが、圧縮初期に材料が座屈する際に大きな応力ピークを生じるために、保護すべき対象物に大きな衝撃力が加わり、エネルギー吸収部材として十分な特性とは言いがたい。 Patent Document 1 discloses a shock absorber having a honeycomb structure. When compressing a shock absorber made of a honeycomb structure, a constant compressive stress is exhibited up to a large compressive strain by sequentially buckling, but since a large stress peak is generated when the material buckles in the initial stage of compression, the object to be protected A large impact force is applied to an object, and it is difficult to say that the characteristics are sufficient as an energy absorbing member.
特許文献2には、応力−圧縮歪曲線で降伏点を持たず、圧縮率が10〜65%の範囲で応力が一定であり、圧縮した際に順次セル破壊が生じる硬質ポリウレタンフォームが開示されているが、硬質ポリウレタンフォームは高コストである上、吸湿による体積増加が大きいため、外気にさらされる自動車バンパーの芯材としては不適当である。また、硬質ポリウレタンフォームは一般的な熱可塑性樹脂発泡体と比較して、同じ圧縮応力を得るための発泡体密度が大きいために、軽量化という点で熱可塑性樹脂発泡体に劣る。また、リサイクル困難である。 Patent Document 2 discloses a rigid polyurethane foam that does not have a yield point in a stress-compression strain curve, has a constant stress in a compression rate range of 10 to 65%, and sequentially undergoes cell destruction when compressed. However, rigid polyurethane foam is not suitable as a core material for automobile bumpers exposed to the outside air because of its high cost and large volume increase due to moisture absorption. In addition, the rigid polyurethane foam is inferior to the thermoplastic resin foam in terms of weight reduction because the foam density for obtaining the same compressive stress is larger than that of a general thermoplastic resin foam. It is also difficult to recycle.
特許文献3には、複数の熱可塑性押出ストランド発泡体を合体させることによって、一つの方向において他の方向よりも高い圧縮強度を有する発泡体を得て、この圧縮強度が高い方向に衝撃を加えて衝撃を吸収すること開示されている。この発泡体は同じ材料で同じ密度の発泡体よりも25%歪時の圧縮強度が高くなることが示されている。しかしながら、本文献にはポリオレフィンからなる発泡体しか開示されていない。ポリオレフィンはその機械的特性の温度依存が大きく、比較的高い温度となる自動車内では高温になったときに十分な衝撃吸収性能を発揮できないという欠点がある。 In Patent Document 3, a plurality of thermoplastic extruded strand foams are combined to obtain a foam having a higher compressive strength in one direction than the other, and an impact is applied in the direction in which the compressive strength is higher. To absorb shocks. This foam is shown to have a higher compressive strength at 25% strain than a foam of the same material and density. However, this document only discloses a foam made of polyolefin. Polyolefins have a large temperature dependency of their mechanical properties, and have a drawback that they cannot exhibit sufficient shock absorbing performance when the temperature becomes high in an automobile having a relatively high temperature.
このように、従来技術で圧縮時に順次座屈して変形するエネルギー吸収部材は圧縮初期の大きな応力ピーク、あるいはリサイクル困難、軽量性、吸水したときの寸法変化に問題があった。軽量、リサイクル可能、吸水したときの寸法変化が少ない熱可塑性樹脂発泡体によってなる良好なエネルギー吸収部材が求められている。
本発明の目的は、熱可塑性樹脂発泡体からなり、発生する最大荷重を抑えながら、一定の荷重を維持することで、より多くのエネルギーを吸収する性能を有し、バンパーコア、側突材などに適したエネルギー吸収部材を提供することにある。 The object of the present invention is made of a thermoplastic resin foam and has the ability to absorb more energy by maintaining a constant load while suppressing the maximum load generated, such as a bumper core, a side bumper, etc. It is providing the energy absorption member suitable for.
本発明の第1は、熱可塑性樹脂発泡体からなるエネルギー吸収部材であって、該エネルギー吸収部材を圧縮した場合に、破壊されてなる部位が圧縮方向に実質的に垂直な層状をなし、該部位に隣接した部位が順次破壊されていくことによって圧縮されていくことを特徴とするエネルギー吸収部材に関する。 A first aspect of the present invention is an energy absorbing member made of a thermoplastic resin foam, and when the energy absorbing member is compressed, the broken portion forms a layer shape substantially perpendicular to the compression direction, The present invention relates to an energy absorbing member that is compressed by sequentially destroying a portion adjacent to the portion.
好ましい態様としては、
(1)曲げ破断歪が0.1%以上2.5%以下である熱可塑性樹脂からなることを特徴とする、
(2)前記熱可塑性樹脂が、ポリスチレン系樹脂である、
(3)前記熱可塑性樹脂が、単量体として、芳香族ビニル、不飽和ジカルボン酸無水物、N−アルキル置換マレイミドからなる共重合体と、単量体として、芳香族ビニル、シアン化ビニルからなる共重合体を混合してなる熱可塑性樹脂組成物である、
前記記載のエネルギー吸収部材に関する。
As a preferred embodiment,
(1) It is characterized by comprising a thermoplastic resin having a bending fracture strain of 0.1% to 2.5%,
(2) The thermoplastic resin is a polystyrene resin.
(3) The thermoplastic resin is a monomer composed of an aromatic vinyl, an unsaturated dicarboxylic acid anhydride, and an N-alkyl-substituted maleimide, and the monomer is an aromatic vinyl or vinyl cyanide. A thermoplastic resin composition obtained by mixing a copolymer of
The present invention relates to the energy absorbing member described above.
本発明の第2は、前記記載のエネルギー吸収部材からなる自動車用バンパーコアに関し、本発明の第3は、前記記載のエネルギー吸収部材からなる自動車用側突材に関する。 The 2nd of this invention is related with the bumper core for motor vehicles which consists of an energy absorption member of the said description, and the 3rd of this invention is related with the side protrusion material for motor vehicles which consists of the said energy absorption member.
本発明のエネルギー吸収部材は、発生する最大荷重を抑えながら、一定の荷重を維持することでより多くのエネルギーを吸収する性能を有する。また熱可塑性樹脂発泡体からなるため、吸湿による体積増加が小さく、リサイクル可能であり、軽量であるという効果を奏する。 The energy absorbing member of the present invention has a performance of absorbing more energy by maintaining a constant load while suppressing the maximum load generated. Moreover, since it consists of a thermoplastic resin foam, the volume increase by moisture absorption is small, and there exists an effect that it can recycle and is lightweight.
本発明のエネルギー吸収部材は、熱可塑性樹脂発泡体からなり、圧縮した場合に、破壊されてなる部位が圧縮方向に実質的に垂直な層状をなし、該部位に隣接した部位が順次破壊されていくことによって圧縮されていく。 The energy absorbing member of the present invention is made of a thermoplastic resin foam, and when compressed, the part to be destroyed forms a layer substantially perpendicular to the compression direction, and the parts adjacent to the part are sequentially destroyed. It will be compressed by going.
このような圧縮変形挙動を確かめるには、圧縮試験機を用いて一定の速度で圧縮してその挙動を観察する。具体的には、エネルギー吸収部材を円柱形や直方体などの、平面図形をその面に垂直な向きに平行移動させた後にできる立体の形状に切削あるいは成形して試験片とし、剛直な2つの平盤(以下、圧縮板とも称す)の間にこの試験片を置き、試験片の側面に圧縮方向に垂直な向きの直線を10本程度一定間隔で引き、試験片を圧縮歪が80%以上になるまで圧縮して直線を観察し、どの部分が圧縮されるかを見る。 In order to confirm such compression deformation behavior, compression is performed at a constant speed using a compression tester and the behavior is observed. Specifically, the energy absorbing member is cut or molded into a three-dimensional shape formed by translating a plane figure in a direction perpendicular to the surface, such as a cylinder or a rectangular parallelepiped, to obtain a test piece. Place this test piece between panels (hereinafter also referred to as compression plates), draw about 10 straight lines in the direction perpendicular to the compression direction on the side of the test piece at regular intervals, and increase the compression strain to 80% or more. Compress until you see the straight line and see which part is compressed.
本発明のエネルギー吸収部材をこの方法で圧縮した場合、圧縮初期、通常は圧縮歪3%〜20%のとき、直線の間隔が圧縮前の部分と比較して明らかに狭くなる部分が現れ、他の部分と明らかに区別される。この直線の間隔が狭くなった部位は、エネルギー吸収体が破壊された部位であり、この部位は圧縮方向に垂直な層状をなす。この破壊された層状部位は、圧縮板に接触した部分である試験片の端部に生ずることが多いが、直方体の中央部に生ずることもある。 When the energy absorbing member of the present invention is compressed by this method, at the initial stage of compression, usually at a compression strain of 3% to 20%, a portion where the linear interval is clearly narrower than the portion before compression appears. It is clearly distinguished from the part. The part where the distance between the straight lines is narrow is a part where the energy absorber is destroyed, and this part forms a layer perpendicular to the compression direction. This broken layered portion often occurs at the end of the test piece that is in contact with the compression plate, but may also occur at the center of the rectangular parallelepiped.
更に圧縮していくと、層状の破壊された部位に隣接した部位が順次破壊されていくことによって、直線の間隔が狭くなった部分が増えていき、この破壊された部位は、まだ破壊されていない、直線の間隔が圧縮初期と比べてほとんど変わらない部位と明らかに区別され、圧縮方向に垂直な層状を成す。 As the area is further compressed, the area adjacent to the layered destroyed area is sequentially destroyed, increasing the number of parts where the straight line interval becomes narrower, and the destroyed area is still destroyed. It is clearly distinguished from a portion where the interval between the straight lines is almost the same as that in the initial compression, and forms a layer perpendicular to the compression direction.
更に圧縮していき、概ね圧縮歪60%〜90%に達すると破壊された部位が試験片全体に渡り、すなわち直線の間隔が圧縮前の間隔と比較して明らかに狭い部位が全体に渡る。 When the compression is further continued and the compression strain reaches approximately 60% to 90%, the broken portion extends over the entire test piece, that is, the portion where the interval between the straight lines is clearly narrower than the interval before compression extends over the entire test piece.
圧縮した際に、このような挙動を示すためには、樹脂の種類・特性、発泡倍率、セルの構造等様々な要因が想定されるが、代表的には、セル構造に起因することが考えられる。 In order to show such behavior when compressed, various factors such as resin type / characteristics, expansion ratio, cell structure, etc. are assumed. It is done.
一つの態様として、本発明のエネルギー吸収部材は、セル形状に異方性をもつことが好ましい。セル形状に異方性を持つとは、セルが特定の方向に長い形状であるということである。具体的には、互いに直交する3方向のセル径を測定し、最も大きなセル径を最大主寸法D1とし、中間のセル径を中間主寸法D2とし、最も小さいセル径を最小主寸法D3とする。なお、前記3方向の内、最も大きなセル径となる方向を方向1、中間のセル径となる方向を方向2、最も小さいセル径となる方向を方向3と呼ぶ。 As one aspect, the energy absorbing member of the present invention preferably has anisotropy in the cell shape. The anisotropy of the cell shape means that the cell has a shape that is long in a specific direction. Specifically, by measuring the cell size of 3 mutually orthogonal directions, and the maximum principal dimension D 1 of the largest cell diameter, the cell diameter of the intermediate and the intermediate main dimension D 2, the minimum principal dimension of the smallest cell diameter D 3 . Of the three directions, the direction with the largest cell diameter is called direction 1, the direction with the middle cell diameter is called direction 2, and the direction with the smallest cell diameter is called direction 3.
そして、セルの異方性因子R1、R2をそれぞれ
R1=D1/D2
と
R2=D1/D3
と定義したとき、R2の値が1.25より大きいことが好ましい。このような異方性のある熱可塑性樹脂発泡体の場合、も大きなセル径となる方向(方向1)を圧縮方向とすると本発明の順次破壊されるエネルギー吸収部材となる。
And cell anisotropy factors R 1 and R 2 are respectively set to R 1 = D 1 / D 2.
And R 2 = D 1 / D 3
, It is preferable that the value of R 2 is greater than 1.25. In the case of such an anisotropic thermoplastic resin foam, if the direction (direction 1) in which the cell diameter is large is the compression direction, the energy absorbing member is sequentially destroyed according to the present invention.
異方性を有する発泡体の場合、平均セル径Dは100μm以上1000μm以下であることが好ましい。 In the case of a foam having anisotropy, the average cell diameter D is preferably 100 μm or more and 1000 μm or less.
異方性を有する発泡体を得る方法としては、例えば、熱可塑性樹脂を押出機内で溶融混練し、更に発泡剤を圧入して混練し、スリット状のダイから大気中に押出して発泡体を得る押出発泡法がある。 As a method for obtaining a foam having anisotropy, for example, a thermoplastic resin is melt-kneaded in an extruder, and a foaming agent is further injected and kneaded, and then extruded into the atmosphere from a slit die to obtain a foam. There is an extrusion foaming method.
発泡体が押出されるときに厚さ方向に拡大するため、セル形状の異方性因子が1.25よりも大きな発泡体を得ることができる。セル異方性因子を格段に大きくするためには、押出発泡時に溶融樹脂を大気中へ発泡させるときの厚み拡大率を大きくすることが好ましい。厚み拡大率を大きくする方法としては、成形時の成形抵抗を大きくするために、成形ロールの速度を遅くする方法がある。 Since the foam expands in the thickness direction when it is extruded, a foam having a cell-shaped anisotropy factor larger than 1.25 can be obtained. In order to significantly increase the cell anisotropy factor, it is preferable to increase the thickness expansion rate when the molten resin is foamed into the atmosphere during extrusion foaming. As a method of increasing the thickness enlargement ratio, there is a method of reducing the speed of the forming roll in order to increase the forming resistance at the time of forming.
また、発泡剤を含浸した発泡性樹脂粒子を作製し、該発泡性樹脂粒子を加熱して予備発泡させて予備発泡粒子を作製し、該予備発泡粒子を型内発泡成形するというビーズ発泡成形法において、予備発泡粒子を金型内に充填し、加熱して予備発泡粒子同士を融着させるとともに膨張させて一旦粒子間の隙間がない発泡体を形作った後に、一方の金型を移動させ、その方向に更に該発泡体を膨張させて、セル形状がその移動方向に長く伸びた成形体を得ることができる。 Also, a bead foam molding method in which foamable resin particles impregnated with a foaming agent are prepared, the foamable resin particles are heated to be prefoamed to produce prefoamed particles, and the prefoamed particles are foamed in-mold. In the above, the pre-expanded particles are filled in a mold, heated to melt the pre-expanded particles and expand to form a foam without any gaps between the particles, and then move one mold, By further expanding the foam in that direction, it is possible to obtain a molded body in which the cell shape is elongated in the moving direction.
本発明のエネルギー吸収部材の別の好ましい態様として、平均セル径Dが大きい熱可塑性樹脂発泡体があげられる。 Another preferred embodiment of the energy absorbing member of the present invention is a thermoplastic resin foam having a large average cell diameter D.
ここで言う平均セル径Dとは、前出の、最大主寸法D1、中間主寸法D2、最小主寸法D3から次式にて定義されるものである。
D=(D1×D2×D3)1/3
この態様においては、平均セル径Dが350μm以上3000μm以下であることが好ましく、より好ましくは400μm以上2500μm以下である。
The average cell diameter D mentioned here is defined by the following equation from the maximum main dimension D 1 , the intermediate main dimension D 2 , and the minimum main dimension D 3 described above.
D = (D 1 × D 2 × D 3 ) 1/3
In this embodiment, the average cell diameter D is preferably 350 μm or more and 3000 μm or less, and more preferably 400 μm or more and 2500 μm or less.
平均セル径が前記範囲の場合、本発明のエネルギー吸収部材のような圧縮時の挙動を示す傾向がある。 When the average cell diameter is in the above range, there is a tendency to exhibit a behavior during compression like the energy absorbing member of the present invention.
平均セル径の大きな熱可塑性樹脂発泡体を作製する方法としては、例えば、発泡剤を含浸した発泡性樹脂粒子を作製し、該発泡性樹脂粒子を加熱して予備発泡させ予備発泡粒子を作製し、該予備発泡粒子を型内発泡成形するという方法において、発泡剤を含浸する際に分散媒しての水を使用せずに、耐圧容器内に揮発性発泡剤と樹脂を入れて発泡剤が液体の状態になるような高圧に保ち、加熱攪拌して発泡剤を含浸させることによって作製した発泡性樹脂粒子を加熱して予備発泡することによって平均セル径Dの大きな予備発泡粒子を作製することができる。更にこの予備発泡粒子を型内成形することによって熱可塑性樹脂発泡体を得ることができる。 As a method for producing a thermoplastic resin foam having a large average cell diameter, for example, foamable resin particles impregnated with a foaming agent are prepared, and the foamable resin particles are heated to be prefoamed to produce prefoamed particles. In the method of foam-molding the pre-expanded particles, a volatile foaming agent and a resin are put in a pressure vessel without using water as a dispersion medium when impregnating the foaming agent. Pre-expanded particles having a large average cell diameter D are prepared by heating and pre-expanding the expandable resin particles prepared by maintaining high pressure so as to be in a liquid state and impregnating the foaming agent by heating and stirring. Can do. Furthermore, a thermoplastic resin foam can be obtained by molding the pre-expanded particles in a mold.
また、ビーズ発泡型内成形において、予備発泡粒子を作製するのに、丸棒状のダイを用いてストランド状の発泡体を押出し、それを一定形状に細かく切ることによって平均セル径Dが大きい予備発泡粒子を作製し、予備発泡粒子を型内で成形する方法がある。 In addition, in pre-expansion molding of beads, pre-foamed particles are prepared by extruding a strand-like foam using a round bar-shaped die and then cutting it into a fixed shape to obtain a large average cell diameter D. There is a method of producing particles and molding pre-expanded particles in a mold.
また、熱可塑性樹脂を押出機内で溶融混練し、更に発泡剤を圧入して混練し、ダイから大気中に押出して発泡成形体を得るという押出成形法において、丸棒状のダイを用いて押出すことによって平均セル径Dが350μm以上3000μm以下である本発明のエネルギー吸収部材を得ることができる傾向がある。 In addition, in a extrusion molding method in which a thermoplastic resin is melt-kneaded in an extruder, a foaming agent is further injected and kneaded, and extruded from the die into the atmosphere to obtain a foamed molded product, extrusion is performed using a round bar-shaped die. Accordingly, there is a tendency that the energy absorbing member of the present invention having an average cell diameter D of 350 μm or more and 3000 μm or less can be obtained.
本発明において熱可塑性樹脂発泡体を構成する熱可塑性樹脂は、曲げ破壊歪が0.1%以上2.5%以下であることが好ましく、より好ましくは、0.1%以上1.5以下である。 In the present invention, the thermoplastic resin constituting the thermoplastic resin foam preferably has a bending fracture strain of 0.1% to 2.5%, more preferably 0.1% to 1.5. is there.
曲げ破断歪が0.1%以上2.5%以下である熱可塑性樹脂からなる熱可塑性樹脂発泡体に曲げ変形を加えた場合、変形が小さいうちに破壊されてなる部位が圧縮方向に実質的に垂直な層状に生じる傾向がある。このような発泡体に圧縮変形を加えた場合、圧縮方向に垂直な層状の破壊された部位が生じ、圧縮歪を大きくするにつれて順次破壊された部位が生じていくために、一定の圧縮応力が持続し、良好なエネルギー吸収特性を発揮する傾向があると考えられる。 When bending deformation is applied to a thermoplastic resin foam made of a thermoplastic resin having a bending fracture strain of 0.1% or more and 2.5% or less, the portion that is destroyed while the deformation is small is substantially in the compression direction. Tends to occur in a layered pattern perpendicular to When compressive deformation is applied to such a foam, a layered broken part perpendicular to the compression direction is generated, and the broken part is sequentially generated as the compressive strain is increased. It is thought that there is a tendency to persist and exhibit good energy absorption properties.
なお曲げ破断歪は、JIS K 7171に準じて測定する。発泡体の基材樹脂を厚さ6mm、幅15mm、長さ120mmの短冊状試験片に成形し、23℃±1℃の恒温室で24時間放置し、曲げ試験用の試験片を得た。引っ張り圧縮試験機を用いて3点曲げ試験を実施した。支点間距離は90mm、試験速度(圧子の降下速度)は2mm/minとした。破断歪εb[%]は、破断時のたわみsb[mm]、試験片の厚さh[mm]、支点間距離L[mm]から次式により与えられる。
εb=(6×h×sb×100)/(L2)
このような特性を有する熱可塑性樹脂として、具体的には、ポリスチレン系樹脂、ポリエチレンナフタレート系樹脂、ポリカーボネート系樹脂、ポリエーテルエーテルケトン系樹脂、フェニレンエーテル系樹脂、及び、前記樹脂とスチレン系樹脂の混合物が挙げられる。また、前記樹脂を構成する単量体と無水マレイン酸、N−アルキル置換マレイミド等との共重合体、芳香族ビニルと無水マレイン酸、N−アルキル置換マレイミド等との共重合体、芳香族ビニル−シアン化ビニル共重合体、及びこれらの樹脂からなる樹脂組成物などが挙げられる。中でも、芳香族ビニル、不飽和ジカルボン酸無水物およびN−アルキル置換マレイミドからなる共重合体と芳香族ビニル−シアン化ビニル共重合体を混合してなる熱可塑性樹脂組成物、またはポリスチレン系樹脂が好ましい。
The bending fracture strain is measured according to JIS K 7171. A foam base resin was molded into a strip-shaped test piece having a thickness of 6 mm, a width of 15 mm, and a length of 120 mm, and left for 24 hours in a thermostatic chamber at 23 ° C. ± 1 ° C. to obtain a test piece for a bending test. A three-point bending test was performed using a tensile compression tester. The distance between fulcrums was 90 mm, and the test speed (indenter descending speed) was 2 mm / min. The breaking strain ε b [%] is given by the following equation from the deflection s b [mm] at break, the thickness h [mm] of the test piece, and the distance L [mm] between fulcrums.
ε b = (6 × h × s b × 100) / (L 2 )
Specific examples of the thermoplastic resin having such characteristics include polystyrene resins, polyethylene naphthalate resins, polycarbonate resins, polyether ether ketone resins, phenylene ether resins, and the above resins and styrene resins. Of the mixture. Further, a copolymer of the monomer constituting the resin with maleic anhydride, N-alkyl substituted maleimide, etc., a copolymer of aromatic vinyl with maleic anhydride, N-alkyl substituted maleimide, etc., aromatic vinyl -Vinyl cyanide copolymer and resin compositions comprising these resins. Among them, a thermoplastic resin composition obtained by mixing a copolymer of aromatic vinyl, unsaturated dicarboxylic acid anhydride and N-alkyl-substituted maleimide and an aromatic vinyl-vinyl cyanide copolymer, or a polystyrene resin. preferable.
本発明の熱可塑性樹脂発泡体は、圧縮試験に基づく60%歪時応力(以下、S60%と表記する)と10%歪時の荷重(以下、S10%と表記する)の荷重比(S60%)/(S10%)の値は、0.70以上1.30以下であることが好ましい。発生する最大荷重をできるだけ抑えてエネルギーを吸収するためには0.75以上1.20以下がより好ましい。 The thermoplastic resin foam of the present invention has a load ratio (S60%) of a stress at 60% strain (hereinafter referred to as S60%) and a load at 10% strain (hereinafter referred to as S10%) based on a compression test. ) / (S10%) is preferably 0.70 or more and 1.30 or less. In order to absorb the energy while suppressing the generated maximum load as much as possible, 0.75 or more and 1.20 or less are more preferable.
圧縮試験は、ASTM D1621に準じて行なう。試料を一定速度で圧縮し、(応力)=(圧縮荷重)/(試料断面積)、歪=(圧縮変形量)/(試料初期厚さ)により算出する。 The compression test is performed according to ASTM D1621. The sample is compressed at a constant speed, and calculation is performed by (stress) = (compression load) / (sample cross-sectional area) and strain = (compression deformation amount) / (initial sample thickness).
なお、本発明においては、前記熱可塑性樹脂組成物に必要に応じて、造核剤、安定剤、滑剤、難燃剤、帯電防止剤、可塑剤、吸水剤、輻射抑制剤等の添加剤を配合してもよい。 In the present invention, additives such as a nucleating agent, a stabilizer, a lubricant, a flame retardant, an antistatic agent, a plasticizer, a water absorbing agent, and a radiation inhibitor are blended in the thermoplastic resin composition as necessary. May be.
本発明の熱可塑性樹脂発泡体を得るための発泡剤としては、物理型発泡剤および化学型発泡剤からなる群から選ばれた1種または2種以上混合して使用することができる。 As a foaming agent for obtaining the thermoplastic resin foam of the present invention, one or a mixture of two or more selected from the group consisting of a physical foaming agent and a chemical foaming agent can be used.
物理型発泡剤の具体例としては、例えば、プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、ネオペンタン、シクロペンタン等の炭化水素;1,1−ジフルオロエタン、1,2−ジフルオロエタン、1,1,1−トリフルオロエタン、1,1,2−トリフルオロエタン、1,1,1,2−テトラフルオロエタン、1,1,2,2−テトラフルオロエタン、1,1,1,2,2−ペンタフルオロエタン、ジフルオロメタン、トリフルオロメタン等のフッ素化炭化水素;二酸化炭素、窒素、水、アルゴン、ヘリウム等の無機ガス;ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n−ブチルエーテル、ジイソアミルエーテル等のエーテル類等が挙げられる。これらは、単独で、または2種以上混合して使用することができる。 Specific examples of the physical foaming agent include hydrocarbons such as propane, n-butane, i-butane, n-pentane, i-pentane, neopentane, and cyclopentane; 1,1-difluoroethane, 1,2-difluoroethane 1,1,1-trifluoroethane, 1,1,2-trifluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1 , 2,2-pentafluoroethane, difluoromethane, trifluoromethane and other fluorinated hydrocarbons; carbon dioxide, nitrogen, water, argon, helium and other inorganic gases; dimethyl ether, diethyl ether, methyl ethyl ether, isopropyl ether, n- And ethers such as butyl ether and diisoamyl ether. These can be used alone or in admixture of two or more.
化学型発泡剤の具体例としては、例えば、N,N’−ジニトロソペンタメチレンテトラミン、p,p’−オキシビス−ベンゼンスルホニルヒドラジド、ヒドラゾジカルボンアミド、炭酸ナトリウム、アゾジカルボンアミド、テレフタルアジド、5−フェニルテトラゾール、p−トルエンスルホニルセミカルバジド等が挙げられる。これらは、単独で、または2種以上混合して使用することができる。 Specific examples of the chemical foaming agent include, for example, N, N′-dinitrosopentamethylenetetramine, p, p′-oxybis-benzenesulfonylhydrazide, hydrazodicarbonamide, sodium carbonate, azodicarbonamide, terephthalazide, 5 -Phenyltetrazole, p-toluenesulfonyl semicarbazide and the like. These can be used alone or in admixture of two or more.
本発明のエネルギー吸収部材を構成する熱可塑性樹脂発泡体の密度については、良好なエネルギー吸収特性が得られるという点から、11kg/m3以上110kg/m3以下であることが好ましく、15kg/m3以上100kg/cm3以下であることが更に好ましく、この範囲で所望の衝撃荷重に応じ密度を調整することができる。 The density of the thermoplastic resin foam constituting the energy absorbing member of the present invention is preferably 11 kg / m 3 or more and 110 kg / m 3 or less from the viewpoint of obtaining good energy absorption characteristics, and 15 kg / m The density is more preferably 3 or more and 100 kg / cm 3 or less, and the density can be adjusted in accordance with a desired impact load within this range.
本発明のエネルギー吸収部材に用いる熱可塑性樹脂発泡体は、耐熱性を有していることが好ましい。本発明で言う耐熱性とは、80℃に保った熱風循環乾燥機内に168時間暴露した場合の体積変化率が3%以下であることを言う。 The thermoplastic resin foam used for the energy absorbing member of the present invention preferably has heat resistance. The heat resistance referred to in the present invention means that the volume change rate when exposed to a hot air circulating dryer maintained at 80 ° C. for 168 hours is 3% or less.
本発明のエネルギー吸収部材は、優れた衝撃吸収性能を有しているため、自動車の側突パッド、バンパーの芯材等に好適に用いられる。 Since the energy absorbing member of the present invention has excellent shock absorbing performance, it is suitably used for side impact pads of automobiles, core materials for bumpers, and the like.
以下、本発明のエネルギー吸収部材を具体的な実施例により詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。 Hereinafter, although the energy absorption member of this invention is demonstrated in detail by a specific Example, this invention is not limited only to this Example.
(試験方法)
(圧縮変形挙動の観察)
発泡体から厚さ25mmの直方体形状、或いは、円柱形状を切り出して試験片とし、厚さ方向に垂直な線を発泡体側面に3mm間隔で描き、厚さ方向に一定速度2.5mm/分の速度で圧縮歪88%まで圧縮する試験を行ない、圧縮変形挙動を観察した。
(Test method)
(Observation of compression deformation behavior)
A 25 mm-thick rectangular parallelepiped shape or a cylindrical shape is cut out from the foam as a test piece, lines perpendicular to the thickness direction are drawn at intervals of 3 mm on the side of the foam, and a constant speed of 2.5 mm / min in the thickness direction is drawn. A test was performed to compress the compression strain to 88% at a speed, and the compression deformation behavior was observed.
(平均セル径)
発泡体断面写真の縦/横に線を引き、それぞれの線を横切るセルの数を数え、線の長さをセルの数で割って縦、横それぞれの方向におけるセル1個あたりの幅を算出する。次式に従ってそれぞれの方向のセル径を算出する。
(Average cell diameter)
Draw a line in the vertical / horizontal direction of the foam cross-section, count the number of cells crossing each line, and divide the length of the line by the number of cells to calculate the width per cell in the vertical and horizontal directions. To do. The cell diameter in each direction is calculated according to the following formula.
セル径=1.5×セル1個あたりの幅
始めの断面に直交する1断面の写真上に、先ほどセル径を算出した2方向のどちらに対しても直行する方向の線を引き、セル径を同じ方法で算出する。このようにして求めた、発泡体内の互いに直交する3つの方向のセル径を、大きな順に、最大主寸法D1、中間主寸法D2、最小主寸法D3とする。次式に従って平均セル径Dを算出した。
Cell diameter = 1.5 × width per cell On the photograph of one cross section orthogonal to the first cross section, a line perpendicular to both of the two directions where the cell diameter was calculated is drawn, and the cell diameter Is calculated in the same way. The cell diameters in the three directions perpendicular to each other in the foam are determined in this order as the largest main dimension D 1 , the intermediate main dimension D 2 , and the minimum main dimension D 3 . The average cell diameter D was calculated according to the following formula.
D=(D1×D2×D3)1/3
(異方性因子)
セル形状の異方性因子R1を次式
R1=D1/D2
により算出し、セル形状の異方性因子R2を
R2=D1/D3
により算出した。
D = (D 1 × D 2 × D 3 ) 1/3
(Anisotropy factor)
The cell-shaped anisotropy factor R 1 is represented by the following formula: R 1 = D 1 / D 2
Calculated by the anisotropic factor R 2 of the cell shape R 2 = D 1 / D 3
Calculated by
(圧縮特性)
ASTM D1621に準じて測定し、応力歪曲線を算出した。なお、応力は(圧縮荷重)/(試料断面積)、圧縮歪は(圧縮変形量)/(試料初期厚さ)により算出した。
(Compression characteristics)
Measurement was performed according to ASTM D1621, and a stress strain curve was calculated. The stress was calculated by (compression load) / (sample cross-sectional area), and the compressive strain was calculated by (compression deformation amount) / (initial sample thickness).
(実施例1)
共重合体Aとして、スチレン49重量%、N−フェニルマレイミド50%、無水マレイン酸1重量%の共重合体である電気化学工業(株)製、商品名:デンカIP MS−NA、共重合体Bとして、アクリロニトリル25重量%、スチレン75重量%の共重合体である電気化学工業(株)製、AS−XGSを使用し、共重合体A/共重合体Bを60重量%/40重量%の比率にて混合し、熱可塑性樹脂組成物とした。熱可塑性樹脂塑性物の曲げ破断歪は0.49%であった。この熱可塑性樹脂組成物を、口径65mmの一段目押出機と口径90mmの二段目押出機とを直列に連結した二段連結型押出機へ50kg/時間の割合で供給した。前記口径65mmの押出機に供給した熱可塑性樹脂組成物を、約260℃に加熱して溶融混練した後、一段目押出機の先端付近において、熱可塑性樹脂組成物100重量部に対し、発泡剤としてジメチルエーテル2.5重量部およびn−ブタン3.5重量部を溶融された熱可塑性樹脂組成物に圧入した。その後、これに連結された口径90mmの押出機で樹脂温度が180℃になるように冷却して、口径90mmの押出機の先端に設けた矩形スリットダイから大気中に押出し、密度39.2kg/m3である板状の発泡体を得た。顕微鏡により得られた発泡体のセル構造を観察してセル径の最大主寸法D1、中間主寸法D2,最小主寸法D3を算出し、D1、D2、D3から平均セル径D、セルの異方性因子R1、R2を算出して表1に示す。最大主寸法を与える方向1は板状発泡体の厚さ方向であった。この発泡体から縦50mm、横50mm、厚さ25mmの直方体形状を切り出して試験片とし、厚さ方向に垂直な線を発泡体側面に3mm間隔で描き、厚さ方向に一定速度2.5mm/分の速度で圧縮歪88%まで圧縮する試験を行ない、圧縮変形挙動を観察した。圧縮歪4%までは全体が均等に圧縮され、その後上底面から破壊され始め、上から順次破壊されていった。圧縮中は、直線の間隔が明らかに狭くなった破壊された部位と直線の間隔が圧縮前とほとんど変わらない破壊されていない部位を明確に区別することができた。破壊された部位は圧縮方向にほぼ垂直に層状をなしていた。順次破壊が起こっている間、圧縮力はほぼ一定であった。圧縮歪83%に達するとほぼ全体が破壊されたように見え、ここから圧縮力が急激に上昇した。圧縮試験の応力歪曲線から算出した応力比=(S60%)/(S10%)を表1に示す。圧縮変形挙動の過程の写真を図1に示す。
(Example 1)
Copolymer A is a copolymer of 49% by weight of styrene, 50% of N-phenylmaleimide and 1% by weight of maleic anhydride, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA IP MS-NA, copolymer As B, AS-XGS made by Denki Kagaku Kogyo Co., Ltd., which is a copolymer of 25% by weight of acrylonitrile and 75% by weight of styrene, is used, and 60% by weight / 40% by weight of copolymer A / copolymer B is used. The thermoplastic resin composition was mixed at a ratio of The bending fracture strain of the thermoplastic resin plastic was 0.49%. This thermoplastic resin composition was supplied at a rate of 50 kg / hour to a two-stage connected extruder in which a first-stage extruder having a diameter of 65 mm and a second-stage extruder having a diameter of 90 mm were connected in series. After the thermoplastic resin composition supplied to the 65 mm diameter extruder is melted and kneaded at about 260 ° C., the foaming agent is added to 100 parts by weight of the thermoplastic resin composition near the tip of the first stage extruder. As a result, 2.5 parts by weight of dimethyl ether and 3.5 parts by weight of n-butane were press-fitted into the molten thermoplastic resin composition. Thereafter, the resin is cooled so as to have a resin temperature of 180 ° C. with an extruder having a diameter of 90 mm connected thereto, and is extruded into the atmosphere from a rectangular slit die provided at the tip of the extruder having a diameter of 90 mm. A plate-like foam having m 3 was obtained. The cell structure of the foam obtained by a microscope is observed to calculate the maximum main dimension D 1 , the intermediate main dimension D 2 , and the minimum main dimension D 3 of the cell diameter, and the average cell diameter is calculated from D 1 , D 2 , and D 3. D and cell anisotropy factors R 1 and R 2 are calculated and shown in Table 1. The direction 1 giving the maximum principal dimension was the thickness direction of the plate-like foam. A rectangular parallelepiped shape having a length of 50 mm, a width of 50 mm, and a thickness of 25 mm is cut out from the foam to obtain a test piece, lines perpendicular to the thickness direction are drawn on the side of the foam at intervals of 3 mm, and a constant speed of 2.5 mm / A test of compressing to a compressive strain of 88% at a speed of minutes was performed, and the compression deformation behavior was observed. Up to 4% of the compressive strain, the whole was uniformly compressed, then began to break from the upper bottom surface, and was sequentially broken from the top. During the compression, it was possible to clearly distinguish the destroyed part where the interval between the straight lines was clearly narrowed and the undestructed part where the interval between the lines was almost the same as before the compression. The destroyed part was layered almost perpendicular to the compression direction. The compressive force was almost constant during sequential failure. When the compression strain reached 83%, it seemed that almost the whole was destroyed, and the compression force suddenly increased from here. Table 1 shows the stress ratio calculated from the stress strain curve of the compression test = (S60%) / (S10%). A photograph of the process of compression deformation behavior is shown in FIG.
(実施例2)
共重合体Aとして、スチレン49重量%、N−フェニルマレイミド50重量%、無水マレイン酸1重量%の共重合体である電気化学工業(株)製、商品名:デンカIP MS−NA、共重合体Bとして、アクリロニトリル25重量%、スチレン75重量%の共重合体である電気化学工業(株)製、AS−XGSを使用し、共重合体A/共重合体Bを30重量%/70重量%の比率にて混合し、熱可塑性樹脂組成物とした。熱可塑性樹脂塑性物の曲げ破断歪は0.74%であった。口径65mmの一段目押出機と口径90mmの二段目押出機とを直列に連結した二段連結型押出機へ50kg/時間の割合で供給した。前記口径60mmの押出機に供給した樹脂組成物を、約240℃に加熱して溶融混練した後、一段目押出機の先端付近において、熱可塑性樹脂組成物100重量部に対して、発泡剤としてジメチルエーテル2.5重量部およびn−ブタン3.5重量部を溶融された熱可塑性樹脂組成物に圧入した。その後、これに連結された口径90mmの押出機で樹脂温度が140℃になるように冷却して、口径90mmの押出機の先端に設けた矩形スリットダイのダイリップから大気中に押出し、密度28.8kg/m3の板状の発泡体を得た。顕微鏡により得られた発泡体のセル構造を観察してセル径D1、D2、D3、平均セル径D、セルの異方性比R1、R2を表1に示す。最も大きなセル径となる方向1は板状発泡体の厚さ方向であった。この発泡体から切り出した縦50mm、横50mm、厚さ25mmの直方体を試験片とし、実施例1と同様に圧縮試験を行ない、圧縮変形挙動を観察した。このとき発泡体は中央から順次破壊される挙動を示し、圧縮中は破壊された部位と破壊されていない部位を明確に区別することができた。破壊された部位は圧縮方向にほぼ垂直な層状であった。応力歪曲線から算出した荷重比=(S60%)/(S10%)を表1に示す。
(Example 2)
Copolymer A is a copolymer of 49% by weight of styrene, 50% by weight of N-phenylmaleimide and 1% by weight of maleic anhydride, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA IP MS-NA, As the blend B, AS-XGS made by Denki Kagaku Kogyo Co., Ltd., which is a copolymer of acrylonitrile 25% by weight and styrene 75% by weight, was used, and the copolymer A / copolymer B was 30% by weight / 70% by weight. % Was mixed to obtain a thermoplastic resin composition. The bending fracture strain of the thermoplastic resin plastic was 0.74%. The first stage extruder having a diameter of 65 mm and the second stage extruder having a diameter of 90 mm were supplied to a two-stage connected extruder connected in series at a rate of 50 kg / hour. After the resin composition supplied to the extruder having a diameter of 60 mm is heated to about 240 ° C. and melt-kneaded, the foam composition is used as a foaming agent with respect to 100 parts by weight of the thermoplastic resin composition near the tip of the first-stage extruder. 2.5 parts by weight of dimethyl ether and 3.5 parts by weight of n-butane were pressed into the molten thermoplastic resin composition. Thereafter, the resin is cooled so as to have a resin temperature of 140 ° C. with an extruder having a diameter of 90 mm connected thereto, and extruded from the die lip of a rectangular slit die provided at the tip of the extruder having a diameter of 90 mm, to a density of 28. A plate-like foam of 8 kg / m 3 was obtained. Table 1 shows cell diameters D 1 , D 2 , D 3 , average cell diameter D, and cell anisotropy ratios R 1 , R 2 by observing the cell structure of the foam obtained by a microscope. The direction 1 with the largest cell diameter was the thickness direction of the plate-like foam. A rectangular parallelepiped having a length of 50 mm, a width of 50 mm, and a thickness of 25 mm cut out from the foam was used as a test piece, a compression test was performed in the same manner as in Example 1, and the compression deformation behavior was observed. At this time, the foam exhibited a behavior of breaking sequentially from the center, and during the compression, the broken portion and the unbroken portion could be clearly distinguished. The destroyed part was layered almost perpendicular to the compression direction. The load ratio calculated from the stress strain curve = (S60%) / (S10%) is shown in Table 1.
(実施例3)
実施例2と同じ熱可塑性樹脂組成物を、口径40mmの一段目押出機と口径50mmの二段目押出機とを直列に連結した二段連結型押出機へ12kg/時間の割合で供給した。前記口径40mmの押出機に供給した樹脂組成物を、約250℃に加熱して溶融混練した後、一段目押出機の先端付近において、熱可塑性樹脂100重量部に対し、発泡剤としてジメチルエーテル4.0重量部およびn−ブタン2.0重量部を溶融された熱可塑性樹脂組成物に圧入した。その後、これに連結された口径50mmの押出機で樹脂温度が180℃になるように冷却して、口径50mmの押出機の先端に設けた丸棒ダイから大気中に押出し、密度67.6kg/m3である棒状の発泡体を得た。顕微鏡により得られた発泡体のセル構造を観察してセル径の最大主寸法D1、中間主寸法D2,最小主寸法D3を算出し、D1、D2、D3から平均セル径D、セルの異方性因子R1、R2を算出して表1に示す。R1、R2とも1.18以下であり、実質的に異方性はなかった。直径25mm、高さ25mmの円柱形状を試験片とし、実施例1と同様に圧縮試験を行ない、圧縮変形挙動を観察した。このとき発泡体は下底面から順次破壊されていく挙動を示し、圧縮中は直線の間隔が明らかに狭くなった破壊された部位と直線の間隔が圧縮前とほとんど変わらない破壊されていない部位を明確に区別することができた。破壊された部位は圧縮方向にほぼ垂直な層状であった。圧縮試験の応力歪曲線から算出した応力比=(S60%)/(S10%)を表1に示す。
(Example 3)
The same thermoplastic resin composition as in Example 2 was supplied at a rate of 12 kg / hour to a two-stage connected extruder in which a first-stage extruder having a diameter of 40 mm and a second-stage extruder having a diameter of 50 mm were connected in series. After the resin composition supplied to the 40 mm diameter extruder is melted and kneaded at about 250 ° C., dimethyl ether as a blowing agent is used in the vicinity of the tip of the first-stage extruder as a blowing agent with respect to 100 parts by weight of the thermoplastic resin. 0 part by weight and 2.0 parts by weight of n-butane were press-fitted into the molten thermoplastic resin composition. Thereafter, the resin is cooled so that the resin temperature becomes 180 ° C. with an extruder having a diameter of 50 mm connected thereto, and is extruded into the atmosphere from a round bar die provided at the tip of the extruder having a diameter of 50 mm. to obtain a rod-shaped foam is m 3. The cell structure of the foam obtained by a microscope is observed to calculate the maximum main dimension D 1 , the intermediate main dimension D 2 , and the minimum main dimension D 3 of the cell diameter, and the average cell diameter is calculated from D 1 , D 2 , and D 3. D and cell anisotropy factors R 1 and R 2 are calculated and shown in Table 1. Both R 1 and R 2 were 1.18 or less, and there was substantially no anisotropy. A cylindrical shape having a diameter of 25 mm and a height of 25 mm was used as a test piece, and a compression test was performed in the same manner as in Example 1 to observe the compression deformation behavior. At this time, the foam shows the behavior of breaking sequentially from the bottom surface.During compression, the broken part where the distance between the straight lines is clearly narrowed and the part where the straight line is not broken are almost the same as before compression. A clear distinction could be made. The destroyed part was layered almost perpendicular to the compression direction. Table 1 shows the stress ratio calculated from the stress strain curve of the compression test = (S60%) / (S10%).
(実施例4)
実施例2と同じ熱可塑性樹脂組成物を口径40mmでの加熱混練温度を250℃、口径50mmでの冷却温度を200℃、発泡剤としてジメチルエーテル4.0重量部と変更した以外は、実施例1と同様の条件にて密度95.8kg/m3の棒状の発泡体を得た。顕微鏡により得られた発泡体のセル構造を観察してセル径の最大主寸法D1、中間主寸法D2,最小主寸法D3を算出し、D1、D2、D3から平均セル径D、セルの異方性因子R1、R2を算出して表1に示す。R1、R2とも1.18以下であり、実質的に異方性はなかった。直径25mm、高さ25mmの円筒形状を試験片とし、実施例1と同様に圧縮試験を行ない、圧縮変形挙動を観察した。このとき発泡体は上底面から順次破壊されていく挙動を示し、圧縮中は破壊された部位と破壊されていない部位を明確に区別することができた。破壊された部位は圧縮方向にほぼ垂直な層状であった。応力歪曲線から算出した応力比=(S60%)/(S10%)を表1に示す。
(Example 4)
Example 1 except that the same thermoplastic resin composition as in Example 2 was changed to a heat kneading temperature of 40 ° C. at a diameter of 40 mm, a cooling temperature of 200 ° C. at a diameter of 50 mm, and 4.0 parts by weight of dimethyl ether as a foaming agent. A rod-like foam having a density of 95.8 kg / m 3 was obtained under the same conditions as above. The cell structure of the foam obtained by a microscope is observed to calculate the maximum main dimension D 1 , the intermediate main dimension D 2 , and the minimum main dimension D 3 of the cell diameter, and the average cell diameter is calculated from D 1 , D 2 , and D 3. D and cell anisotropy factors R 1 and R 2 are calculated and shown in Table 1. Both R 1 and R 2 were 1.18 or less, and there was substantially no anisotropy. A compression test was performed in the same manner as in Example 1 using a cylindrical shape having a diameter of 25 mm and a height of 25 mm as a test piece, and the compression deformation behavior was observed. At this time, the foam showed a behavior of breaking sequentially from the upper bottom surface, and during the compression, it was possible to clearly distinguish the broken portion and the non-broken portion. The destroyed part was layered almost perpendicular to the compression direction. The stress ratio calculated from the stress strain curve = (S60%) / (S10%) is shown in Table 1.
(実施例5)
曲げ破断歪が0.92%であるPSジャパン製ポリスチレン樹脂 製品名:G9401を、口径65mmの一段目押出機と口径90mmの二段目押出機とを直列に連結した二段連結型押出機へ50kg/時間の割合で供給した。前記口径60mmの押出機に供給した熱可塑性樹脂組成物を、約200℃に加熱して溶融混練した後、一段目押出機の先端付近において、熱可塑性樹脂組成物100重量部に対し、発泡剤としてジメチルエーテル4.0重量部およびi−ブタン3.0重量部を溶融された熱可塑性樹脂組成物に圧入した。その後、これに連結された口径90mmの押出機で樹脂温度が130℃になるように冷却して、口径90mmの押出機の先端に設けた矩形スリットダイのダイリップから大気中に押出し、密度32.1kg/m3の板状の発泡体を得た。顕微鏡により得られた発泡体のセル構造を観察してセル径D1、D2、D3、平均セル径D、セルの異方性比R1、R2を表1に示す。最も大きなセル径となる方向1は板状発泡体の厚さ方向であった。この発泡体から切り出した縦50mm、横50mm、厚さ25mmの直方体を試験片とし、実施例1と同様に圧縮試験を行ない、圧縮変形挙動を観察した。このとき発泡体は中央から順次破壊されていく挙動を示し、圧縮中は破壊された部位と破壊されていない部位を明確に区別することができた。破壊された部位は圧縮方向にほぼ垂直な層状であった。応力歪曲線から算出した荷重比=(S60%)/(S10%)を表1に示す。
(Example 5)
PS Japan polystyrene resin with a bending fracture strain of 0.92% Product name: G9401 to a two-stage connected extruder in which a first-stage extruder with a diameter of 65 mm and a second-stage extruder with a diameter of 90 mm are connected in series It was fed at a rate of 50 kg / hour. After the thermoplastic resin composition supplied to the extruder having a diameter of 60 mm is heated to about 200 ° C. and melt-kneaded, the foaming agent is added to 100 parts by weight of the thermoplastic resin composition near the tip of the first-stage extruder. As a result, 4.0 parts by weight of dimethyl ether and 3.0 parts by weight of i-butane were pressed into the melted thermoplastic resin composition. Thereafter, the resin is cooled so as to have a resin temperature of 130 ° C. with an extruder having a diameter of 90 mm connected thereto, and extruded from the die lip of a rectangular slit die provided at the tip of the extruder having a diameter of 90 mm to a density of 32. A plate-like foam of 1 kg / m 3 was obtained. Table 1 shows cell diameters D 1 , D 2 , D 3 , average cell diameter D, and cell anisotropy ratios R 1 , R 2 by observing the cell structure of the foam obtained by a microscope. The direction 1 with the largest cell diameter was the thickness direction of the plate-like foam. A rectangular parallelepiped having a length of 50 mm, a width of 50 mm, and a thickness of 25 mm cut out from the foam was used as a test piece, a compression test was performed in the same manner as in Example 1, and the compression deformation behavior was observed. At this time, the foam showed a behavior of breaking sequentially from the center, and during the compression, it was possible to clearly distinguish the broken portion and the non-broken portion. The destroyed part was layered almost perpendicular to the compression direction. The load ratio calculated from the stress strain curve = (S60%) / (S10%) is shown in Table 1.
(比較例1)
実施例1と同じ方法で得た熱可塑性樹脂塑性物100重量部を単軸押出機に供給し、溶融混練して1粒あたり重量0.8mgの樹脂粒子を得た。攪拌機のついた6Lオートクレーブに、得られた熱可塑性樹脂粒子100重量部、水100重量部、リン酸カルシウム0.2重量部、α−オレフィンスルホン酸塩0.006重量部を仕込んだ。次に、ノルマルブタンを10重量部加え、攪拌しながら125℃に昇温し、その温度を9.5時間保って熱可塑性樹脂粒子中に発泡剤を含浸させ、発泡性熱可塑性樹脂粒子を得た。
(Comparative Example 1)
100 parts by weight of a thermoplastic resin plastic obtained by the same method as in Example 1 was supplied to a single screw extruder and melt kneaded to obtain resin particles having a weight of 0.8 mg per grain. A 6 L autoclave equipped with a stirrer was charged with 100 parts by weight of the obtained thermoplastic resin particles, 100 parts by weight of water, 0.2 parts by weight of calcium phosphate, and 0.006 parts by weight of α-olefin sulfonate. Next, 10 parts by weight of normal butane is added, the temperature is raised to 125 ° C. with stirring, the temperature is maintained for 9.5 hours, and the foaming agent is impregnated into the thermoplastic resin particles to obtain expandable thermoplastic resin particles. It was.
過熱水蒸気発生装置により発生させた190℃の水蒸気で2分40秒間加熱し、嵩倍率25倍の予備発泡粒子を得た。得られた予備発泡粒子を縦450mm×横350mm×厚さ40mmの金型内に充填し、0.38MPaの飽和水蒸気で10秒間加熱して融着させて成形し、冷却して密度45kg/cm3の発泡成形体を得た。顕微鏡により得られた発泡体のセル構造を観察したところ、約30〜100μmの大セルと約2〜10μmの小セルが混在する複合セル構造であった。実質的に異方性はなかった。この発泡体から切り出した縦50mm、横50mm、厚さ25mmの直方体を試験片とし、厚さ方向に垂直な線を発泡体側面に3mm間隔で描き、実施例1と同様に圧縮試験を行ない、圧縮変形挙動を観察した。圧縮歪5%までは全体が均等に圧縮され、その後破壊に由来すると思われる、直線がゆがんだ部分が発泡体中にランダムに生じ、上部、下部、中央部ともほぼ同時に圧縮されていった。この間圧縮力は徐々に上昇し、歪60%を越えたあたりから圧縮力上昇の傾きが急になっていった。実施例1のように層状に破壊されるのとは明らかに異なった、全体圧縮と言える圧縮変形挙動を示した。応力歪曲線から算出した荷重比=(S60%)/(S10%)を表1に示す。圧縮変形挙動の過程の写真を図2に示す。 The mixture was heated with 190 ° C. steam generated by an overheated steam generator for 2 minutes and 40 seconds to obtain pre-expanded particles having a bulk magnification of 25 times. The obtained pre-expanded particles were filled in a mold having a length of 450 mm × width of 350 mm × thickness of 40 mm, and heated and fused with saturated steam of 0.38 MPa for 10 seconds, and cooled to a density of 45 kg / cm. 3 foam molded articles were obtained. When the cell structure of the foam obtained by a microscope was observed, it was a composite cell structure in which a large cell of about 30 to 100 μm and a small cell of about 2 to 10 μm were mixed. There was substantially no anisotropy. A rectangular parallelepiped having a length of 50 mm, a width of 50 mm, and a thickness of 25 mm cut out from the foam is used as a test piece, lines perpendicular to the thickness direction are drawn at intervals of 3 mm on the side of the foam, and a compression test is performed in the same manner as in Example 1. The compression deformation behavior was observed. Up to a compression strain of 5%, the whole was uniformly compressed, and then a straight line-distorted portion, which seems to be derived from fracture, was randomly generated in the foam, and the upper, lower and central portions were compressed almost simultaneously. During this time, the compressive force gradually increased, and the slope of the increase in compressive force became steep after the strain exceeded 60%. The compression deformation behavior which can be said to be the whole compression was clearly different from that in the case of being broken into layers as in Example 1. The load ratio calculated from the stress strain curve = (S60%) / (S10%) is shown in Table 1. A photograph of the process of compression deformation behavior is shown in FIG.
(比較例2)
実施例3と同じ熱可塑性樹脂塑性物を口径40mmでの加熱混練温度を250℃、口径50mmでの冷却温度を160℃、熱可塑性樹脂組成物100重量部に対し、発泡剤としてジメチルエーテル4.0重量部とn−ブタン3.5重量部とした以外は実施例3と同様の条件にて密度33.8kg/m3の棒状の発泡体を得た。顕微鏡により得られた発泡体のセル構造を観察して算出したセル径D1、D2、D3、平均セル径D、セルの異方性比R1、R2を表1に示す。実質的に異方性はなかった。直径25mm、高さ25mmの円筒形状を試験片とし、実施例1と同じ方法で圧縮試験を行ない、圧縮変形挙動を観察した。全体にわたりほぼ均等に圧縮されていった。算出した荷重比=(S60%)/(S10%)を表1に示す。
(Comparative Example 2)
The same thermoplastic resin as in Example 3 was heated and kneaded at a diameter of 40 mm at 250 ° C., the cooling temperature at a diameter of 50 mm was 160 ° C., and 100 parts by weight of the thermoplastic resin composition was dimethyl ether 4.0 as a foaming agent. A rod-like foam having a density of 33.8 kg / m 3 was obtained under the same conditions as in Example 3 except that the amount was 3.5 parts by weight and n-butane. Table 1 shows the cell diameters D 1 , D 2 , D 3 , the average cell diameter D, and the cell anisotropy ratios R 1 , R 2 calculated by observing the cell structure of the foam obtained by a microscope. There was substantially no anisotropy. A cylindrical shape having a diameter of 25 mm and a height of 25 mm was used as a test piece, a compression test was performed in the same manner as in Example 1, and the compression deformation behavior was observed. It was compressed almost uniformly throughout. Table 1 shows the calculated load ratio = (S60%) / (S10%).
(比較例3)
実施例5と同じ熱可塑性樹脂組成物を口径65mmの一段目押出機と口径90mmの二段目押出機とを直列に連結した二段連結型押出機へ50kg/時間の割合で供給した。前記口径60mmの押出機に供給した熱可塑性樹脂組成物を、約200℃に加熱して溶融混練した後、一段目押出機の先端付近において、熱可塑性樹脂組成物100重量部に対して、発泡剤としてジメチルエーテル2.5重量部およびi−ブタン4.5重量部を溶融された熱可塑性樹脂組成物に圧入した。その後、これに連結された口径90mmの押出機で樹脂温度が130℃になるように冷却して、口径90mmの押出機の先端に設けた矩形スリットダイのダイリップから大気中に押出し、密度31.4kg/m3の板状の発泡体を得た。顕微鏡により得られた発泡体のセル構造を観察してセル径D1、D2、D3、平均セル径D、セルの異方性比R1、R2を表1に示す。実質的に異方性はなかった。この発泡体から切り出した縦50mm、横50mm、厚さ25mmの直方体を試験片とし、実施例1と同様な圧縮試験を行い、圧縮変形挙動を観察した。このとき発泡体は全体にわたりほぼ均等に圧縮されていった。応力歪曲線から算出した荷重比=(S60%)/(S10%)を表1に示す。
(Comparative Example 3)
The same thermoplastic resin composition as in Example 5 was supplied at a rate of 50 kg / hour to a two-stage connected extruder in which a first-stage extruder having a diameter of 65 mm and a second-stage extruder having a diameter of 90 mm were connected in series. The thermoplastic resin composition supplied to the extruder having a diameter of 60 mm is heated to about 200 ° C. and melt-kneaded, and then foamed with respect to 100 parts by weight of the thermoplastic resin composition in the vicinity of the tip of the first-stage extruder. As an agent, 2.5 parts by weight of dimethyl ether and 4.5 parts by weight of i-butane were press-fitted into the molten thermoplastic resin composition. Thereafter, the resin is cooled so that the resin temperature becomes 130 ° C. with an extruder having a diameter of 90 mm connected thereto, and extruded into the atmosphere from a die lip of a rectangular slit die provided at the tip of the extruder having a diameter of 90 mm. A plate-like foam of 4 kg / m 3 was obtained. Table 1 shows cell diameters D 1 , D 2 , D 3 , average cell diameter D, and cell anisotropy ratios R 1 , R 2 by observing the cell structure of the foam obtained by a microscope. There was substantially no anisotropy. A rectangular parallelepiped having a length of 50 mm, a width of 50 mm, and a thickness of 25 mm cut out from the foam was used as a test piece, and a compression test similar to that of Example 1 was performed to observe the compression deformation behavior. At this time, the foam was almost uniformly compressed throughout. The load ratio calculated from the stress strain curve = (S60%) / (S10%) is shown in Table 1.
表1に示すごとく、本発明のエネルギー吸収部材は、圧縮時の応力比(S60%)/(S10%)の値が0.75〜1.20の範囲にあり、良好なエネルギー吸収特性を示す。 As shown in Table 1, in the energy absorbing member of the present invention, the value of the stress ratio (S60%) / (S10%) at the time of compression is in the range of 0.75 to 1.20 and exhibits good energy absorption characteristics. .
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008147363A JP2009292919A (en) | 2008-06-04 | 2008-06-04 | Energy absorbing component |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008147363A JP2009292919A (en) | 2008-06-04 | 2008-06-04 | Energy absorbing component |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009292919A true JP2009292919A (en) | 2009-12-17 |
Family
ID=41541405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008147363A Pending JP2009292919A (en) | 2008-06-04 | 2008-06-04 | Energy absorbing component |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2009292919A (en) |
-
2008
- 2008-06-04 JP JP2008147363A patent/JP2009292919A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2291167C2 (en) | Multimodal polymeric absorbing clay-containing foamed plastic, method for preparation thereof, and an article based thereon | |
CN100467523C (en) | Anisotropic polymer foam | |
JP3380816B2 (en) | Ultra-low density polyolefin foams, foamable polyolefin compositions and methods of making them | |
JP2010530499A (en) | Energy absorbing member | |
WO2011118706A1 (en) | Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form | |
TW201807034A (en) | Thermoplastic polyurethane foamed particles | |
WO2002072691A1 (en) | Blends of ethylenic polymers with improved modulus and melt strength and articles fabricated from these blends | |
JP5563442B2 (en) | Low solubility hydrofluorocarbon containing alkenyl aromatic foam | |
JP5681120B2 (en) | Extruded polymer foam process with stepwise molding | |
JP4835002B2 (en) | Polypropylene resin pre-expanded particles and foam-molded article obtained from the pre-expanded particles | |
JP2018100380A (en) | Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same | |
JP5026827B2 (en) | Expandable polystyrene resin particles and polystyrene resin foam molded article comprising the expandable polystyrene resin particles | |
JP6670850B2 (en) | Method for producing expanded polypropylene resin particles, expanded polypropylene resin particles and in-mold expanded molded article | |
JP6026814B2 (en) | Polyolefin resin expanded particles and molded articles thereof | |
JP2009292919A (en) | Energy absorbing component | |
JPWO2008069013A1 (en) | Resin foam suitable for energy absorber | |
JP4940688B2 (en) | Method for producing polypropylene resin pre-expanded particles | |
JP5739057B2 (en) | Automotive parts | |
JP2006297807A (en) | Polypropylene-based resin in-mold foam-molding body | |
JP5315759B2 (en) | Method for producing foamed molded product in polypropylene resin mold | |
JP4910337B2 (en) | Sound absorbing material composed of composite foam molding | |
JP2009286898A (en) | Thermoplastic resin foam suitable for energy absorber | |
JP4001669B2 (en) | Olefinic resin foamable particles and method for producing the same | |
JP2004292489A (en) | Styrenic resin expandable particle, method for producing the same, expanded particle and expansion molded product | |
JP2003082150A (en) | Polylactic acid expandable resin particle |