JPWO2008069013A1 - Resin foam suitable for energy absorber - Google Patents

Resin foam suitable for energy absorber Download PDF

Info

Publication number
JPWO2008069013A1
JPWO2008069013A1 JP2008548214A JP2008548214A JPWO2008069013A1 JP WO2008069013 A1 JPWO2008069013 A1 JP WO2008069013A1 JP 2008548214 A JP2008548214 A JP 2008548214A JP 2008548214 A JP2008548214 A JP 2008548214A JP WO2008069013 A1 JPWO2008069013 A1 JP WO2008069013A1
Authority
JP
Japan
Prior art keywords
thermoplastic resin
foam
resin foam
load
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008548214A
Other languages
Japanese (ja)
Inventor
光治 興梠
光治 興梠
杉山 武史
武史 杉山
大原 英一
英一 大原
武石 佐藤
武石 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Publication of JPWO2008069013A1 publication Critical patent/JPWO2008069013A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/12Copolymers of styrene with unsaturated nitriles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2425/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers

Abstract

硬質ポリウレタン発泡体と同等の衝撃吸収特性を備え、吸湿による体積増加が小さく、バンパーコア、側突材等のエネルギー吸収材に適した発泡体を提供すること。本発明の熱可塑性樹脂発泡体は、動的圧縮試験に基づく70%歪時荷重(F70%)と20%歪時の荷重(F20%)の荷重比(F70%)/(F20%)の値が0.70以上1.30以下であり、さらに好ましくはセル形状の異方性比が1.1以上3.0以下であることを特徴とする。To provide a foam having shock absorption characteristics equivalent to that of a rigid polyurethane foam, having a small volume increase due to moisture absorption, and suitable for energy absorbing materials such as a bumper core and a side projection material. The thermoplastic resin foam of the present invention has a load ratio (F70%) / (F20%) of a load at 70% strain (F70%) and a load at 20% strain (F20%) based on a dynamic compression test. Is 0.70 or more and 1.30 or less, and more preferably, the cell-shaped anisotropy ratio is 1.1 or more and 3.0 or less.

Description

本発明は、エネルギー吸収材に好適な樹脂発泡体に関する。   The present invention relates to a resin foam suitable for an energy absorbing material.

自動車用エネルギー吸収材は、バンパーの芯材、側突材等の様々な用途に使用されており、燃費の向上やコスト削減の観点から軽量化が求められている。   BACKGROUND ART Energy absorbing materials for automobiles are used in various applications such as bumper core materials and side projection materials, and weight reduction is required from the viewpoint of improving fuel consumption and reducing costs.

エネルギー吸収材は衝撃を受けると、それ自身が部分破壊や変形することによって衝撃エネルギーを吸収するので、被保護物が直接衝撃を受けることはないが、それでも衝撃によって荷重が発生する。この荷重が大きすぎると被保護物が破壊、機能消失してしまうので、発生する最大荷重をできるだけ抑えたエネルギー吸収材が望ましい。   When the energy absorbing material receives an impact, the energy absorbing material itself absorbs the impact energy by partial destruction or deformation, so that the protected object is not directly impacted, but a load is still generated by the impact. If this load is too large, the object to be protected is destroyed and the function is lost. Therefore, an energy absorbing material that suppresses the maximum generated load as much as possible is desirable.

一方、エネルギー吸収量は、衝撃荷重とエネルギー吸収材の変形量の積算であり、衝撃荷重が大きいほうがより多くのエネルギーを吸収できる。これら2つの相反する事象より、エネルギー吸収材に要求される最も重要な性能としては、発生する最大荷重を抑えながら、一定の荷重を維持することでより多くのエネルギーを吸収することが挙げられる。   On the other hand, the energy absorption amount is an integration of the impact load and the deformation amount of the energy absorbing material, and a larger impact load can absorb more energy. From these two conflicting events, the most important performance required for the energy absorbing material is to absorb more energy by maintaining a constant load while suppressing the maximum load generated.

また、自動車用エネルギー吸収材としては、軽量性の観点から発泡プラスチックを使用することが多い。このような特性を持つ発泡プラスチックとしては、硬質ポリウレタンフォームが広く知られている。硬質ポリウレタンウォームはそのセルが縦長であることと、その脆性破壊を起こしやすいという樹脂の特性によって、動的圧縮試験において圧縮歪が20%から70%までほぼ一定の圧縮応力を示す。かかる特性を有するため、硬質ポリウレタンフォームの衝撃吸収性能は良いが、高コストである上、吸湿による体積増加が大きいため、外気にさらされる自動車バンパーの芯材としては不適当である。   Moreover, as an energy-absorbing material for automobiles, foamed plastic is often used from the viewpoint of lightness. Rigid polyurethane foam is widely known as a foamed plastic having such characteristics. Rigid polyurethane worms exhibit a substantially constant compressive stress from 20% to 70% in the dynamic compression test due to the characteristics of the resin that the cells are vertically long and the brittle fracture is liable to occur. Since it has such characteristics, the impact absorption performance of the rigid polyurethane foam is good, but it is high in cost and has a large volume increase due to moisture absorption, so it is not suitable as a core material for an automobile bumper exposed to the outside air.

特許文献1には、複数の熱可塑性押出ストランド発泡体を合体させることによって、一つの方向において他の方向よりも高い圧縮強度を有する発泡体を得て、この圧縮強度が高い方向に衝撃を加えて衝撃を吸収することが開示されている。この発泡体は同じ材料で同じ密度の発泡体よりも25%歪時の圧縮強度が高くなることが示されている。しかしながら、かかる文献にはポリオレフィンからなる発泡体しか開示されていない。ポリオレフィンはその機械的特性の温度依存が大きく、比較的高い温度となる自動車内では、高温時に十分な衝撃吸収特性を発揮できないという欠点がある。また、ポリオレフィンは樹脂の脆性が乏しいために、硬質ポリウレタンフォーム並みのエネルギー吸収特性は発揮できない。   In Patent Document 1, a plurality of thermoplastic extruded strand foams are combined to obtain a foam having higher compressive strength in one direction than the other direction, and impact is applied in the direction in which the compressive strength is higher. To absorb shocks. This foam is shown to have higher compressive strength at 25% strain than a foam of the same material and density. However, such a document only discloses a foam made of polyolefin. Polyolefins have a large temperature dependency of their mechanical properties, and have a drawback that they cannot exhibit sufficient shock absorbing properties at high temperatures in automobiles that have relatively high temperatures. In addition, since polyolefin is poor in brittleness of the resin, it cannot exhibit energy absorption characteristics similar to rigid polyurethane foam.

特許文献2には、曲げこわさが6000〜14000kgf/cmであるポリオレフィン樹脂からなる発泡体であって、発泡体の厚み方向の気泡径が厚み方向に直行する方向での気泡径に対して大きくなる楕円形状を有する発泡体が開示されている。しかしながら、前述の理由から、ポリオレフィンからなる発泡体は、硬質ポリウレタンフォーム並みのエネルギー吸収特性は期待できない。Patent Document 2 discloses a foam made of a polyolefin resin having a bending stiffness of 6000 to 14000 kgf / cm 2 , and the bubble diameter in the thickness direction of the foam is larger than the bubble diameter in the direction perpendicular to the thickness direction. A foam having an elliptical shape is disclosed. However, for the reasons described above, the foam made of polyolefin cannot be expected to have the same energy absorption characteristics as rigid polyurethane foam.

一方、発泡性ポリスチレン樹脂は安価であり、容易に型内発泡成形品が得られ、吸水による体積増加は小さいが、比較的高い温度となる自動車内のエネルギー吸収材には適さず、衝撃を受けたときの荷重が材料の変形量が大きくなるに従って増加するために、被保護物衝撃が大きくなるという欠点がある。   On the other hand, expandable polystyrene resin is inexpensive and easily obtains an in-mold foam-molded product. Although the volume increase due to water absorption is small, it is not suitable for energy absorbers in automobiles that reach a relatively high temperature and is subject to impact. Since the load at the time increases as the amount of deformation of the material increases, there is a drawback that the impact of the protected object increases.

特許文献3には、衝撃吸収性に優れた発泡成形品として、重量平均分子量が4.5万以上12万以下でありJIS−K7220で定められた圧縮試験において圧縮歪が5%のときの圧縮応力Xと圧縮歪が50%のときの圧縮応力Yの比Y/Xが2.0以下となるポリスチレン発泡体が開示されている。これは、衝撃初期において衝撃応力が小さいことを示しているが、一定の応力を維持することによって多くのエネルギーを吸収することについては開示されていない。一般的にポリスチレン発泡体において、圧縮歪が50%を越えたときの圧縮時の応力は大きく上昇するため、それ以上の圧縮歪が生じる用途では良好な衝撃吸収性を示すとは言えない。多くのエネルギーを吸収するというものでも衝撃吸収材としては、圧縮歪が概ね20%から70%程度までほぼ一定の応力を示すことが要求される。   In Patent Document 3, as a foamed molded article excellent in shock absorption, compression when the weight average molecular weight is 45,000 to 120,000 and the compression strain is 5% in the compression test defined by JIS-K7220. A polystyrene foam in which the ratio Y / X of the compressive stress Y when the stress X and the compressive strain are 50% is 2.0 or less is disclosed. This indicates that the impact stress is small at the initial stage of impact, but it is not disclosed to absorb a lot of energy by maintaining a constant stress. In general, in a polystyrene foam, the stress at the time of compression when the compression strain exceeds 50% greatly increases. Therefore, it cannot be said that good impact absorbability is exhibited in applications in which further compression strain occurs. Even a material that absorbs a lot of energy is required to exhibit a substantially constant stress from about 20% to about 70% as a compressive strain as an impact absorbing material.

特許文献4には、ポリカーボネート樹脂発泡成形体からなり、該成形体の80℃における50%圧縮時のエネルギー吸収量を該成形体の密度で除した値が30(kg・cm/cm)/(g/cm)以上である自動車用エネルギー吸収材が開示されている。しかし、当該文献では成形体単位質量あたりのエネルギー吸収量が大きいことを示したのみであり、圧縮応力については言及されていないため、たとえ吸収エネルギーが大きくても同時に被保護物が受ける衝撃荷重が極めて大きくなることがあり得る。Patent Document 4 includes a polycarbonate resin foam molded product, and a value obtained by dividing the energy absorption amount of the molded product at 50% compression at 80 ° C. by the density of the molded product is 30 (kg · cm / cm 3 ) / An automobile energy absorber that is (g / cm 3 ) or more is disclosed. However, this document only shows that the amount of energy absorption per unit mass of the compact is large, and does not mention compressive stress. It can be very large.

特許文献5には、ポリスチレン系樹脂からなる発泡体(A)にポリオレフィン系樹脂発泡粒子(B)を分散させることによって、大きな衝撃を受けたときに発泡成形体が破壊される構造を付与し、動的圧縮試験において20%歪時の衝撃荷重と60%歪時の衝撃荷重比が1.6以下となる熱可塑性樹脂発泡成形体が開示されている。本文献は、動的圧縮試験において発泡ポリウレタンに近い性能を示すが、20%歪時から60%歪時に関して一定荷重を維持することが開示されているのみである。更には、より長い間、一定の荷重を維持することが求められている。   Patent Document 5 gives a structure in which a foamed molded body is destroyed when subjected to a large impact by dispersing the polyolefin-based resin expanded particles (B) in a foamed body (A) made of a polystyrene-based resin, A thermoplastic resin foam molded article is disclosed in which the ratio of impact load at 20% strain to impact load at 60% strain is 1.6 or less in a dynamic compression test. This document shows performance close to that of polyurethane foam in a dynamic compression test, but only discloses that a constant load is maintained from the time of 20% strain to the time of 60% strain. Furthermore, it is required to maintain a constant load for a longer time.

また、特許文献6には、3次元的に網目構造をとる少なくとも1つの熱可塑性樹脂発泡粒子と、該熱可塑性樹脂発泡粒子と少なくとも部分的に溶融しない1以上の熱可塑性樹脂粒子から構成される複合樹脂成形体と、エネルギー吸収時に該複合樹脂成形体が散在できる空間からなるエネルギー吸収材が開示されている。かかる文献は動的圧縮試験において10%歪時から60%歪時までほぼ一定の圧縮応力を示すエネルギー吸収材が開示されている。かかる文献では複合樹脂成形体と複合樹脂成形体が散在できる空間からなるために、複合樹脂成形体の切削、穴あけ、接合加工、あるいは散在空間を含んだ形状設計が必要となる。このような後加工や形状設計を加えることなく、発泡成形体そのもので良好な衝撃吸収性能を示す材料が求められている。   Patent Document 6 includes at least one thermoplastic resin foam particle having a three-dimensional network structure and one or more thermoplastic resin particles that are not at least partially melted with the thermoplastic resin foam particle. An energy absorbing material comprising a composite resin molded body and a space in which the composite resin molded body can be scattered during energy absorption is disclosed. This document discloses an energy absorbing material that exhibits a substantially constant compressive stress from 10% strain to 60% strain in a dynamic compression test. In this document, since the composite resin molded body and the space where the composite resin molded body can be scattered, the composite resin molded body needs to be cut, punched, joined, or designed in shape including the scattered space. There is a demand for a material that exhibits good shock absorption performance with the foamed molded product itself without adding such post-processing and shape design.

特表2002−511917号公報JP-T-2002-511917 特開平10−219017号公報Japanese Patent Laid-Open No. 10-219017 特開2002−212322号公報JP 2002-212322 A 特開平11−287277号公報Japanese Patent Laid-Open No. 11-287277 特開2004−142260号公報JP 2004-142260 A 特開2006−68905号公報JP 2006-68905 A

本発明の目的は、硬質ポリウレタン発泡体と同等の衝撃吸収特性を備え、吸湿による体積増加が小さく、バンパーコア、側突材等のエネルギー吸収材に適した発泡体を提供することにある。   An object of the present invention is to provide a foam having shock absorption characteristics equivalent to that of a rigid polyurethane foam, having a small volume increase due to moisture absorption, and suitable for energy absorbing materials such as a bumper core and a side projection material.

すなわち、本発明は、動的圧縮試験に基づく70%歪時荷重(F70%)と20%歪時の荷重(F20%)の荷重比(F70%)/(F20%)の値が0.70以上1.30以下であり、水に24時間浸したときの体積増加率が5%以下である熱可塑性樹脂発泡体に関する。That is, the present invention is a value of a load ratio (F 70% ) / (F 20% ) between a load at 70% strain (F 70% ) and a load at 20% strain (F 20% ) based on a dynamic compression test. The thermoplastic resin foam has a volume increase rate of 5% or less when immersed in water for 24 hours.

好ましい態様としては、
(1)セル形状の異方性比が1.1以上3.0以下である、
(2)芳香族ビニル、不飽和ジカルボン酸無水物およびN−アルキル置換マレイミドからなる共重合体(A)80〜30重量%と芳香族ビニル−シアン化ビニル共重合体(B)20〜70重量%を混合してなる熱可塑性樹脂組成物を発泡させてなる、
(3)前記芳香族ビニルが、スチレンであることを特徴とする、
(4)前記不飽和ジカルボン酸無水物が、無水マレイン酸であることを特徴とする、
(5)N−アルキル置換マレイミドが、N−フェニルマレイミドであることを特徴とする、
(6)シアン化ビニルがアクリロニトリルであることを特徴とする、
(7)熱可塑性樹脂発泡体が押出発泡成形法によって製造されたものであることを特徴とする、
前記記載の熱可塑性樹脂発泡体に関する。
As a preferred embodiment,
(1) The cell-shaped anisotropy ratio is 1.1 or more and 3.0 or less,
(2) Copolymer (A) comprising aromatic vinyl, unsaturated dicarboxylic acid anhydride and N-alkyl-substituted maleimide (A) 80-30% by weight and aromatic vinyl-vinyl cyanide copolymer (B) 20-70% % Of a foamed thermoplastic resin composition formed by mixing
(3) The aromatic vinyl is styrene,
(4) The unsaturated dicarboxylic acid anhydride is maleic anhydride,
(5) The N-alkyl-substituted maleimide is N-phenylmaleimide,
(6) The vinyl cyanide is acrylonitrile,
(7) The thermoplastic resin foam is produced by an extrusion foam molding method,
It relates to the thermoplastic resin foam described above.

また、別の本発明は、前記記載の熱可塑性樹脂発泡体からなる、
(1)自動車用バンパーコア、
(2)自動車用側突パッド、に関する。
Another aspect of the present invention is the thermoplastic resin foam described above.
(1) Automotive bumper core,
(2) The present invention relates to an automobile side collision pad.

本発明によれば、低コストであり、エネルギー吸収特性が優れ、吸水により体積変化が小さい熱可塑性樹脂発泡体を得ることができる。   According to the present invention, it is possible to obtain a thermoplastic resin foam that is low in cost, excellent in energy absorption characteristics, and small in volume change due to water absorption.

本発明の熱可塑性樹脂発泡体は、動的圧縮試験に基づく70%歪時荷重(以下、F70%と表記する)と20%歪時の荷重(以下、F20%と表記する)の荷重比(F70%)/(F20%)の値は、0.70以上1.30以下である。発生する最大荷重をできるだけ抑えてエネルギーを吸収するためには0.75以上1.20以下が好ましい。The thermoplastic resin foam of the present invention has a load at 70% strain (hereinafter referred to as F 70% ) and a load at 20% strain (hereinafter referred to as F 20% ) based on a dynamic compression test. The value of the ratio (F 70% ) / (F 20% ) is 0.70 or more and 1.30 or less. In order to absorb the energy while suppressing the generated maximum load as much as possible, it is preferably 0.75 or more and 1.20 or less.

動的圧縮試験に基づく70%歪時荷重F70%と20%歪時の荷重F20%の荷重比(F70%)/(F20%)は衝撃吸収特性の指標であり、1に近いほど発生する最大荷重をできるだけ抑えて大きなエネルギーを吸収するという良好なエネルギー吸収性能であることを意味する。本発明において、動的圧縮試験に基づく70%歪時荷重(F70%)と20%歪時の荷重(F20%)は以下のようにして求める。The load ratio (F 70% ) / (F 20% ) of 70% strain load F 70% and 20% strain load F 20% based on the dynamic compression test is an index of shock absorption characteristics and is close to 1. This means that the energy absorption performance is such that the maximum load generated is suppressed as much as possible to absorb a large amount of energy. In the present invention, the load at 70% strain (F 70% ) and the load at 20% strain (F 20% ) based on the dynamic compression test are determined as follows.

動的圧縮試験は、JIS−K7134に準じて行なう。装置はガイド付き垂直落下型試験機を用い、試験用試料の形状は縦100mm×横100mm×厚み50mmとし、室温23±2℃、湿度50±10%の恒温室で24時間放置したものを試験用試料とする。   The dynamic compression test is performed according to JIS-K7134. The tester uses a vertical drop tester with a guide, and the shape of the test sample is 100 mm long x 100 mm wide x 50 mm thick, and is tested for 24 hours in a constant temperature room at 23 ± 2 ° C and 50 ± 10% humidity. Sample for use.

動的圧縮試験は室温23±2℃、湿度50±10%の恒温室内で行なう。落下高さと重錐重量は、試験用試料の歪が80%以上になるように決定する。試験用試料上に重錐を自由落下させ、試験装置の重錐に取り付けた加速度計により該重錐に生じる加速度aを測定し、時間関数として記録する。   The dynamic compression test is performed in a constant temperature room at 23 ± 2 ° C. and humidity 50 ± 10%. The fall height and the weight of the cone are determined so that the strain of the test sample is 80% or more. A heavy cone is freely dropped on the test sample, and an acceleration a generated in the heavy cone is measured by an accelerometer attached to the heavy cone of the test apparatus, and recorded as a time function.

荷重F[kN]は、加速度a[G]と重錐質量M[kg]の積として次式により与えられる。
F[kN]=(a×M×9.8)/1000
The load F [kN] is given by the following equation as the product of the acceleration a [G] and the heavy cone mass M [kg].
F [kN] = (a × M × 9.8) / 1000

試験用試料が重錐により圧縮されている間の重錐高さHを測定し、時間関数として記録する。試料の変形量は重錐下面と試料上面が接した時点の重錐高さH0とHの差(変形量[mm]=H0−H)であり、変形量を試料の初期厚みで除し、百分率で表したものを歪とする。
歪[%]=(変形量/試験用試料初期厚み)×100
The height of the heavy cone H is measured while the test sample is compressed by the heavy cone and is recorded as a function of time. The deformation amount of the sample is the difference between the height of the heavy cone H0 and H when the lower surface of the heavy cone and the upper surface of the sample are in contact (deformation amount [mm] = H0−H), and the deformation amount is divided by the initial thickness of the sample. The percentage is the strain.
Strain [%] = (deformation amount / initial thickness of test sample) × 100

以上のようにして70%歪時の荷重(F70%)と20%歪時の荷重(F20%)を得ることが出来る。これらの値より次式に従って荷重比を算出する。
荷重比=(F70%)/(F20%
As described above, a load at 70% strain (F 70% ) and a load at 20% strain (F 20% ) can be obtained. The load ratio is calculated from these values according to the following formula.
Load ratio = (F 70% ) / (F 20% )

また、本発明の熱可塑性樹脂発泡体を水に24時間浸したときの体積増加率は5%以下である。体積増加率が5%より大きいと、樹脂発泡体をバンパーコアに使用した場合、車体が水をかぶったときにバンパーフェイスを変形させる恐れがある。体積増加率は、立方体形状に切り出した樹脂発泡体の各辺の寸法を測定して体積を算出し、そのあと樹脂発泡体を24時間水に浸して同様に各辺の寸法を測定して体積を算出し、体積の増加量をもとの樹脂発泡体の体積で除したものである。   Moreover, the volume increase rate when the thermoplastic resin foam of this invention is immersed in water for 24 hours is 5% or less. If the volume increase rate is larger than 5%, when the resin foam is used for the bumper core, the bumper face may be deformed when the vehicle body is covered with water. The volume increase rate is calculated by measuring the dimensions of each side of the resin foam cut into a cubic shape, then calculating the volume, then immersing the resin foam in water for 24 hours and measuring the dimensions of each side in the same manner. And the volume increase is divided by the original volume of the resin foam.

本発明において熱可塑性樹脂発泡体を構成する熱可塑性樹脂として、具体的には、ポリエチレンナフタレート系樹脂、ポリカーボネート系樹脂、ポリエーテルエーテルケトン系樹脂、フェニレンエーテル系樹脂、および、前記樹脂とスチレン系樹脂の混合物が挙げられる。また、前記樹脂を構成する単量体と無水マレイン酸、N−アルキル置換マレイミド等との共重合体、芳香族ビニルと無水マレイン酸、N−アルキル置換マレイミド等との共重合体、芳香族ビニル−シアン化ビニル共重合体、およびこれらの樹脂からなる樹脂組成物等が挙げられる。中でも、芳香族ビニル、不飽和ジカルボン酸無水物およびN−アルキル置換マレイミドからなる共重合体と芳香族ビニル−シアン化ビニル共重合体を混合してなる熱可塑性樹脂組成物が好ましい。かかる熱可塑性樹脂の中でも、曲げ破断歪が0.1%以上2.5%以下である熱可塑性樹脂が好ましい。   As the thermoplastic resin constituting the thermoplastic resin foam in the present invention, specifically, a polyethylene naphthalate resin, a polycarbonate resin, a polyether ether ketone resin, a phenylene ether resin, and the resin and styrene resin A mixture of resins is mentioned. Further, a copolymer of the monomer constituting the resin with maleic anhydride, N-alkyl substituted maleimide, etc., a copolymer of aromatic vinyl with maleic anhydride, N-alkyl substituted maleimide, etc., aromatic vinyl -Vinyl cyanide copolymer and resin compositions comprising these resins. Among these, a thermoplastic resin composition obtained by mixing a copolymer composed of aromatic vinyl, unsaturated dicarboxylic acid anhydride and N-alkyl-substituted maleimide and an aromatic vinyl-vinyl cyanide copolymer is preferable. Among such thermoplastic resins, a thermoplastic resin having a bending fracture strain of 0.1% to 2.5% is preferable.

これらの熱可塑性樹脂は、耐熱性を有していることが好ましい。本発明の熱可塑性樹脂発泡体の耐熱性は、100℃に保った熱風循環乾燥機内に168時間暴露した場合の加熱寸法変化率が3%以下であることが好ましく、120℃に保った熱風循環乾燥機内に168時間暴露した場合の加熱寸法変化率が3%以下であることがより好ましい。   These thermoplastic resins preferably have heat resistance. As for the heat resistance of the thermoplastic resin foam of the present invention, the rate of change in the heating dimension when exposed to a hot air circulating dryer maintained at 100 ° C. for 168 hours is preferably 3% or less, and the hot air circulation maintained at 120 ° C. More preferably, the heating dimensional change when exposed to the dryer for 168 hours is 3% or less.

本発明の熱可塑性樹脂発泡体のセル異方性比は1.1以上3.0以下であることが好ましい。セル異方性比とは、(セル縦幅)/(セル横幅)で定義され、本発明においては発泡体の圧縮方向を縦方向、縦方向に直行する方向を横方向とする。すなわち、セル縦長の方向に圧縮した場合、良好なエネルギー特性を発揮できるのである。縦方向を決めた場合、それに直行する横方向は複数存在し、どの横方向に幅を取るかによってセル横幅が異なり、異方性比が異なる場合がある。そのような場合は、最も横幅が小さくなる方向の幅を採用して異方性比を算出する。   The cell anisotropy ratio of the thermoplastic resin foam of the present invention is preferably 1.1 or more and 3.0 or less. The cell anisotropy ratio is defined by (cell vertical width) / (cell horizontal width). In the present invention, the compression direction of the foam is the vertical direction, and the direction orthogonal to the vertical direction is the horizontal direction. That is, when the cell is compressed in the longitudinal direction, good energy characteristics can be exhibited. When the vertical direction is determined, there are a plurality of horizontal directions perpendicular to the vertical direction, the cell horizontal width differs depending on which horizontal direction the width is taken, and the anisotropy ratio may be different. In such a case, the anisotropy ratio is calculated by adopting the width in the direction in which the lateral width becomes the smallest.

曲げ破断歪が0.1%以上2.5%以下である熱可塑性樹脂は曲げ変形を加えた場合、変形が小さいうちに破壊を生じやすくなる。また、セル異方性比が1.1以上3.0以下の縦長の形状である発泡体はセルの破壊を生じやすくなる。このような発泡体に圧縮変形を加えた場合、圧縮方向に垂直な面の破壊帯が生じ、圧縮歪を大きくするにつれて順次破壊帯が生じていくために、一定の圧縮応力が持続し、良好なエネルギー吸収特性を発揮すると考えられる。   When a thermoplastic resin having a bending fracture strain of 0.1% or more and 2.5% or less is subjected to bending deformation, it tends to break while the deformation is small. In addition, a foam having a vertically long shape with a cell anisotropy ratio of 1.1 or more and 3.0 or less tends to cause cell destruction. When compressive deformation is applied to such a foam, a fracture zone on the surface perpendicular to the compression direction is generated, and as the compressive strain is increased, the failure zone is sequentially generated. It is considered that it exhibits excellent energy absorption characteristics.

本発明の熱可塑性樹脂発泡体は、芳香族ビニル、不飽和ジカルボン酸無水物およびN−アルキル置換マレイミドからなる共重合体(A)80〜30重量%と芳香族ビニル−シアン化ビニル共重合体(B)20〜70重量%を混合してなる熱可塑性樹脂組成物を発泡させてなるものであることが好ましい。   The thermoplastic resin foam of the present invention comprises a copolymer (A) 80 to 30% by weight of an aromatic vinyl, an unsaturated dicarboxylic acid anhydride and an N-alkyl-substituted maleimide, and an aromatic vinyl-vinyl cyanide copolymer. (B) It is preferable that the thermoplastic resin composition obtained by mixing 20 to 70% by weight is foamed.

芳香族ビニル、不飽和ジカルボン酸無水物およびN−アルキル置換マレイミドからなる共重合体(A)を構成する芳香族ビニルとしては、スチレン、α―メチルスチレン、エチルスチレン、イソプロピルスチレン、ジメチルスチレン、ブロモスチレン、クロロスチレン、ビニルトルエン、ビニルキシレン等が挙げられる。   Examples of the aromatic vinyl constituting the copolymer (A) composed of aromatic vinyl, unsaturated dicarboxylic acid anhydride and N-alkyl-substituted maleimide include styrene, α-methylstyrene, ethylstyrene, isopropylstyrene, dimethylstyrene, bromo Examples include styrene, chlorostyrene, vinyl toluene, vinyl xylene and the like.

これらのうち、芳香族ビニル−シアン化ビニル共重合体(B)との相溶性、重合の容易性の点から、スチレン、α−メチルスチレンが好適であり、さらに価格的に安価であるスチレンが最適である。   Of these, styrene and α-methylstyrene are preferred from the viewpoints of compatibility with the aromatic vinyl-vinyl cyanide copolymer (B) and ease of polymerization. Is optimal.

不飽和ジカルボン酸無水物としては、無水マレイン酸、無水イタコン酸、無水シトラコン酸等が挙げられ、共重合体(B)との相溶性、重合の容易性、安価の点から、無水マレイン酸が好適である。   Examples of the unsaturated dicarboxylic acid anhydride include maleic anhydride, itaconic anhydride, citraconic anhydride, etc. From the viewpoints of compatibility with the copolymer (B), ease of polymerization, and low cost, Is preferred.

N−アルキル置換マレイミドとしては、N−メチルマレイミド、N−ブチルマレイミド、N−シクロヘキシルマレイミド、N−フェニルマレイミド、N−4−ジフェニルマレイミド、N−2−クロロフェニルマレイミド、N−4−ブロモフェニルマレイミド、N−1−ナフチルマレイミド等が挙げられ、共重合体(B)との相溶性、重合の容易性、安価の点から、N−フェニルマレイミドが最適である。   Examples of the N-alkyl-substituted maleimide include N-methylmaleimide, N-butylmaleimide, N-cyclohexylmaleimide, N-phenylmaleimide, N-4-diphenylmaleimide, N-2-chlorophenylmaleimide, N-4-bromophenylmaleimide, N-1-naphthylmaleimide and the like are mentioned, and N-phenylmaleimide is most suitable from the viewpoint of compatibility with the copolymer (B), ease of polymerization, and low cost.

芳香族ビニル、不飽和ジカルボン酸無水物およびN−アルキル置換マレイミドからなる共重合体(A)において、芳香族ビニル、不飽和ジカルボン酸無水物およびN−アルキル置換マレイミドの単量体の合計量を100重量%とした場合、N−アルキル置換マレイミドは40重量%以上であることが耐熱性を付与できる点から好ましく、また、耐吸水吸湿性を考慮すると、不飽和ジカルボン酸無水物は5%以下であることが好ましい。   In the copolymer (A) consisting of aromatic vinyl, unsaturated dicarboxylic acid anhydride and N-alkyl substituted maleimide, the total amount of monomers of aromatic vinyl, unsaturated dicarboxylic acid anhydride and N-alkyl substituted maleimide is When the amount is 100% by weight, the N-alkyl-substituted maleimide is preferably 40% by weight or more from the viewpoint of imparting heat resistance, and in consideration of water absorption and moisture absorption resistance, the unsaturated dicarboxylic acid anhydride is 5% or less. It is preferable that

また、本発明で用いられる共重合体(B)は、芳香族ビニル、およびシアン化ビニルからなる。芳香族ビニルとしては、上記記載のとおり、共重合体(A)との相溶性、重合の容易性の点から、スチレン、α−メチルスチレンが好適であり、さらに価格的に安価であるスチレンが最適である。   Moreover, the copolymer (B) used by this invention consists of aromatic vinyl and vinyl cyanide. As the aromatic vinyl, as described above, styrene and α-methylstyrene are preferable from the viewpoint of compatibility with the copolymer (A) and ease of polymerization, and styrene which is inexpensive in price is used. Is optimal.

また、シアン化ビニルとしては、アクリロニトリル、メタクリロニトリル、α―クロロアクリロニトリル等が挙げられ、共重合体(A)との相溶性、重合の容易性の点から、アクリロニトリルが好適である。共重合体(A)との相溶性、重合の容易性、価格的に安価であること等から鑑み、スチレンとアクリロニトリルの共重合体が好ましい。   Examples of vinyl cyanide include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile and the like, and acrylonitrile is preferred from the viewpoint of compatibility with the copolymer (A) and ease of polymerization. In view of compatibility with the copolymer (A), ease of polymerization, and low cost, a copolymer of styrene and acrylonitrile is preferred.

本発明における熱可塑性樹脂組成物は、前記共重合体(A)および前記共重合体(B)を混合してなる。   The thermoplastic resin composition in the present invention is obtained by mixing the copolymer (A) and the copolymer (B).

該樹脂組成物における共重合体(A)と共重合体(B)の重量比は、共重合体(A)が30〜80重量%および共重合体(B)が70〜20重量%が好ましく、共重合体(A)が35〜70重量%および共重合体(B)が65〜30重量%がより好ましく、共重合体(A)が40〜65重量%および共重合体(B)が60〜35重量%がさらに好ましい。   The weight ratio of the copolymer (A) and the copolymer (B) in the resin composition is preferably 30 to 80% by weight of the copolymer (A) and 70 to 20% by weight of the copolymer (B). More preferably, the copolymer (A) is 35 to 70% by weight and the copolymer (B) is 65 to 30% by weight, the copolymer (A) is 40 to 65% by weight and the copolymer (B) is More preferably, it is 60 to 35% by weight.

なお、本発明においては、前記熱可塑性樹脂組成物に必要に応じて、造核剤、安定剤、滑剤、難燃剤、帯電防止剤、可塑剤、吸水剤、輻射抑制剤等の添加剤を配合してもよい。   In the present invention, additives such as a nucleating agent, a stabilizer, a lubricant, a flame retardant, an antistatic agent, a plasticizer, a water absorbing agent, and a radiation inhibitor are blended in the thermoplastic resin composition as necessary. May be.

本発明の熱可塑性樹脂発泡体は、公知の発泡方法により得ることができる。   The thermoplastic resin foam of the present invention can be obtained by a known foaming method.

本発明の熱可塑性樹脂発泡体を得る発泡方法としては、熱可塑性樹脂を押出機内で溶融混練し、更に発泡剤を圧入して混練し、ダイから大気中に押出して発泡成形体を得るという押出発泡成形法がある。   As the foaming method for obtaining the thermoplastic resin foam of the present invention, the thermoplastic resin is melt-kneaded in an extruder, and a foaming agent is further injected and kneaded, and extruded from the die into the atmosphere to obtain a foamed molded product. There is a foam molding method.

押出発泡成形法の場合、板状の押出発泡体を成形するためにスリット状のダイを用いた場合には、樹脂が押出されるときに厚さ方向に拡大するために、セルの異方性比が1.1よりも大きな発泡体を得ることができる。厚さ方向にセル異方性比を格段に大きくするためには、押出発泡時に溶融樹脂を大気中へ発泡させるときの厚み拡大率を大きくする。厚み拡大率を大きくする方法としては、ダイとしてスリット状のダイを使用し、スリット厚みを薄くして押出時の背圧を上げる方法、樹脂の溶融時の弾性を上げる方法、またはダイ流路を変更することによってダイスウェルを大きくする方法等がある。あるいは、成形時の成形抵抗を大きくする方法もある。成形抵抗を大きくするためには、成形ロールの速度を遅くする方法、成型金型と発泡体との間の摩擦抵抗を大きくする方法等がある。   In the case of the extrusion foam molding method, when a slit-shaped die is used to form a plate-like extruded foam, the cell anisotropy expands in the thickness direction when the resin is extruded. Foams with a ratio greater than 1.1 can be obtained. In order to significantly increase the cell anisotropy ratio in the thickness direction, the thickness expansion rate when foaming the molten resin into the atmosphere during extrusion foaming is increased. As a method of increasing the thickness enlargement ratio, a slit-shaped die is used as a die, a method of increasing the back pressure during extrusion by reducing the slit thickness, a method of increasing elasticity at the time of melting the resin, or a die flow path For example, there is a method of increasing the die swell by changing. Alternatively, there is a method of increasing the molding resistance during molding. In order to increase the molding resistance, there are a method of reducing the speed of the molding roll, a method of increasing the frictional resistance between the molding die and the foam, and the like.

また、発泡剤を含浸した発泡性樹脂粒子を作製し、該発泡性樹脂粒子を加熱して予備発泡させて予備発泡粒子を作製し、該予備発泡粒子を型内発泡成形するという方法や樹脂粒子を耐圧容器内に分散剤、界面活性剤を含む水性分散液ならびに揮発性発泡剤を仕込み、昇温して樹脂粒子に発泡剤を含浸させた後、低圧雰囲気下に放出して予備発泡粒子を作成し、この予備発泡粒子を型内成形するという方法といったビーズ法型内成形法がある。   Also, a method or resin particle in which foamable resin particles impregnated with a foaming agent are prepared, the foamable resin particles are heated to be prefoamed to produce prefoamed particles, and the prefoamed particles are subjected to in-mold foam molding. In a pressure vessel, an aqueous dispersion containing a dispersant, a surfactant, and a volatile foaming agent are charged. After the temperature is raised and the resin particles are impregnated with the foaming agent, the pre-expanded particles are discharged under a low-pressure atmosphere. There is a bead method in-mold molding method such as a method of preparing and molding the pre-expanded particles in a mold.

ビーズ法型内成形法において、セル異方性比を所望の範囲に調整する方法としては、予備発泡粒子を金型内に充填し、加熱して予備発泡粒子同士を融着させるとともに膨張させて一旦粒子間の隙間がない発泡体を形作った後に、一方の金型を移動させ、その方向にさらに該発泡体を膨張させて、セル形状がその移動方向に長く伸びた成形体を得ることができる。   In the in-mold molding method of beads, the method for adjusting the cell anisotropy ratio to a desired range is to fill the pre-expanded particles in a mold, heat and fuse the pre-expanded particles together and expand them. Once a foam with no gaps between particles is formed, one mold is moved, and the foam is further expanded in that direction to obtain a molded body in which the cell shape extends long in the moving direction. it can.

本発明の熱可塑性樹脂発泡体を得るための発泡剤としては、物理型発泡剤および化学型発泡剤からなる群から選ばれた1種を、または2種以上混合して使用することができる。   As a foaming agent for obtaining the thermoplastic resin foam of the present invention, one kind selected from the group consisting of a physical foaming agent and a chemical foaming agent, or a mixture of two or more kinds can be used.

物理型発泡剤の具体例としては、例えば、プロパン、n−ブタン、i−ブタン、n−ペンタン、i−ペンタン、ネオペンタン、シクロペンタン等の炭化水素;1,1−ジフルオロエタン、1,2−ジフルオロエタン、1,1,1−トリフルオロエタン、1,1,2−トリフルオロエタン、1,1,1,2−テトラフルオロエタン、1,1,2,2−テトラフルオロエタン、1,1,1,2,2−ペンタフルオロエタン、ジフルオロメタン、トリフルオロメタン等のフッ素化炭化水素;二酸化炭素、窒素、水、アルゴン、ヘリウム等の無機ガス;ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、イソプロピルエーテル、n−ブチルエーテル、ジイソアミルエーテル等のエーテル類等が挙げられる。これらは、単独で、または2種以上混合して使用することができる。   Specific examples of the physical foaming agent include, for example, hydrocarbons such as propane, n-butane, i-butane, n-pentane, i-pentane, neopentane, and cyclopentane; 1,1-difluoroethane, 1,2-difluoroethane 1,1,1-trifluoroethane, 1,1,2-trifluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1 , 2,2-pentafluoroethane, difluoromethane, trifluoromethane and other fluorinated hydrocarbons; carbon dioxide, nitrogen, water, argon, helium and other inorganic gases; dimethyl ether, diethyl ether, methyl ethyl ether, isopropyl ether, n- And ethers such as butyl ether and diisoamyl ether. These can be used alone or in admixture of two or more.

化学型発泡剤の具体例としては、例えば、N,N’−ジニトロソペンタメチレンテトラミン、p,p’−オキシビス−ベンゼンスルホニルヒドラジド、ヒドラゾジカルボンアミド、炭酸ナトリウム、アゾジカルボンアミド、テレフタルアジド、5−フェニルテトラゾール、p−トルエンスルホニルセミカルバジド等が挙げられる。これらは、単独で、または2種以上混合して使用することができる。   Specific examples of the chemical foaming agent include, for example, N, N′-dinitrosopentamethylenetetramine, p, p′-oxybis-benzenesulfonylhydrazide, hydrazodicarbonamide, sodium carbonate, azodicarbonamide, terephthalazide, 5 -Phenyltetrazole, p-toluenesulfonyl semicarbazide and the like. These can be used alone or in admixture of two or more.

本発明の熱可塑性樹脂発泡体の密度については、良好なエネルギー吸収特性が得られるという点から、11kg/m以上110kg/m以下であることが好ましく、この範囲で所望の衝撃荷重に応じ密度を調整することができる。The density of the thermoplastic resin foam of the present invention is preferably 11 kg / m 3 or more and 110 kg / m 3 or less from the viewpoint that good energy absorption characteristics can be obtained. The density can be adjusted.

本発明の成形方法で得られた発泡成形体は、自動車用側突パッド、バンパー芯材(コア)等に好適に用いられる。   The foamed molded article obtained by the molding method of the present invention is suitably used for automobile side impact pads, bumper core materials (cores) and the like.

以下、本発明の熱可塑性樹脂発泡体を具体的な実施例により詳細に説明するが、本発明はかかる実施例のみに限定されるものではない。なお、以下、特に断りのない限り、「部」「%」は重量基準である。   Hereinafter, although the thermoplastic resin foam of this invention is demonstrated in detail by a specific Example, this invention is not limited only to this Example. In the following, “part” and “%” are based on weight unless otherwise specified.

(試験方法)
[動的圧縮試験]
樹脂発泡体を縦100mm、横100mm、厚さ50mmの直方体形状に表面スキン層を含まないように切り出し、温度23℃±2℃、湿度50±10%の恒温室で24時間放置し、動的圧縮試験用の試験片とした。
(Test method)
[Dynamic compression test]
The resin foam is cut into a rectangular parallelepiped shape with a length of 100 mm, a width of 100 mm, and a thickness of 50 mm so as not to include the surface skin layer, and left in a constant temperature room at a temperature of 23 ° C. ± 2 ° C. and a humidity of 50 ± 10% for 24 hours. It was set as the test piece for a compression test.

動的圧縮試験は、温度23±2℃、湿度50±10%の恒温室内で、吉田精機(株)製緩衝材用落下衝撃試験機CST−320Sを用いて実施した。該動的圧縮試験において試験片に与えるエネルギーは、落下高さと重錐重量の積で決まる。本発明における落下高さと重錐重量は、評価サンプルの歪が80%以上になるように決定した。   The dynamic compression test was carried out in a temperature-controlled room at a temperature of 23 ± 2 ° C. and a humidity of 50 ± 10% using a shock impact tester CST-320S for shock absorbers manufactured by Yoshida Seiki Co., Ltd. The energy given to the test piece in the dynamic compression test is determined by the product of the drop height and the weight of the heavy cone. The drop height and the weight of the cone in the present invention were determined so that the strain of the evaluation sample was 80% or more.

試験機の重錐に、共和電業(株)製加速度変換機AS−500HAを固定し、該重錐台にかかる加速度Gを計測した。衝撃により発生する荷重F[N]は、加速度a[G]と重錐重量M[kg]との積として次式により与えられる。
F[kN]=(a×M×9.8)/1000
An acceleration converter AS-500HA manufactured by Kyowa Denki Co., Ltd. was fixed to the heavy cone of the test machine, and the acceleration G applied to the heavy frustum was measured. The load F [N] generated by the impact is given by the following equation as the product of the acceleration a [G] and the heavy cone weight M [kg].
F [kN] = (a × M × 9.8) / 1000

評価試験片の変形量はキーエンス(株)製のレーザー変位計を用いて測定した。前記試験機に該変位計を取り付け、これと変位計との距離Hを測定する。評価試験片の変形量を計算する方法は、測定した距離のうち、加速度計の出力が得られる、すなわち落下治具と評価試験片が接した時点の距離H0から次式により算出する。
変形量[mm]=H0−H
The deformation amount of the evaluation specimen was measured using a laser displacement meter manufactured by Keyence Corporation. The displacement meter is attached to the testing machine, and a distance H between the displacement meter and the displacement meter is measured. The method of calculating the deformation amount of the evaluation test piece is calculated from the distance H0 at the time when the output of the accelerometer is obtained out of the measured distance, that is, when the dropping jig and the evaluation test piece are in contact by the following equation.
Deformation amount [mm] = H0−H

該動的圧縮試験に基づく歪とは次式で表すように変形量を試験片の厚みで除し、百分率で表したものである。
歪[%]=(変形量/評価サンプル厚み)×100
The strain based on the dynamic compression test is expressed as a percentage by dividing the amount of deformation by the thickness of the test piece as represented by the following equation.
Strain [%] = (Deformation amount / Evaluation sample thickness) × 100

該動的圧縮試験に基づく70%歪時の荷重F70%と20%歪時の荷重F20%は、文言どおり前記のごとく歪を規定した場合に、該歪時に測定される荷重で定義する。これらの値より次式に従って荷重比を算出した。
荷重比=(F70%)/(F20%
The load F 70% at the time of 70% strain and the load F 20% at the time of 20% strain based on the dynamic compression test are defined by the load measured at the time of the strain when the strain is defined as described above. . The load ratio was calculated from these values according to the following formula.
Load ratio = (F 70% ) / (F 20% )

[曲げ破断歪]
曲げ破断歪の測定は、JIS−K7171に準じて行う。発泡体の基材樹脂を厚さ6mm、幅15mm、長さ120mmの短冊状試験片に成形し、23℃±1℃の恒温室で24時間放置し、曲げ試験用の試験片を得た。ミネベア(株)製の引っ張り圧縮試験機を用いて3点曲げ試験を実施した。支点間距離は90mm、試験速度(圧子の降下速度)は2mm/minとした。破断歪ε[%]は、破断時のたわみs[mm]、試験片の厚さh[mm]、支点間距離L[mm]から次式により与えられる。
ε=(6×h×s×100)/(L
[Bending fracture strain]
The measurement of bending fracture strain is performed according to JIS-K7171. The foam base resin was molded into a strip-shaped test piece having a thickness of 6 mm, a width of 15 mm, and a length of 120 mm, and left for 24 hours in a thermostatic chamber at 23 ° C. ± 1 ° C. to obtain a test piece for a bending test. A three-point bending test was performed using a tensile compression tester manufactured by Minebea Co., Ltd. The distance between fulcrums was 90 mm, and the test speed (indenter descending speed) was 2 mm / min. The breaking strain ε b [%] is given by the following equation from the deflection s b [mm] at break, the thickness h [mm] of the test piece, and the distance L [mm] between fulcrums.
ε b = (6 × h × s b × 100) / (L 2 )

[セル異方性比]
発泡体断面写真の縦/横それぞれに線を引き、その線を横切るセルの数を数え、線の長さをセルの数で割ってセル1個あたりの幅を算出した。次式に従ってセル異方性比を算出した。なお、発泡体厚さ方向を縦、それに垂直な方向を横とした。
セル異方性比=(セル縦幅)/(セル横幅)
[Cell anisotropy ratio]
A line was drawn in each of the vertical and horizontal directions of the foam cross-sectional photograph, the number of cells crossing the line was counted, and the width per cell was calculated by dividing the length of the line by the number of cells. The cell anisotropy ratio was calculated according to the following formula. The foam thickness direction was vertical and the direction perpendicular thereto was horizontal.
Cell anisotropy ratio = (cell vertical width) / (cell horizontal width)

[吸水による体積変化試験]
樹脂発泡体を縦25mm、横25mm、高さ25mmの立方体形状に表面スキン層を含まないように切り出し、23℃±1℃の恒温室で24時間放置し、体積変化測定用の試験片を得た。該試験片の縦、横、高さを測定し、次式より試験片の体積Vを算出した。
=縦×横×高さ
[Volume change test by water absorption]
A resin foam is cut out into a cube shape of 25 mm in length, 25 mm in width, and 25 mm in height so as not to include the surface skin layer, and left for 24 hours in a temperature-controlled room at 23 ° C. ± 1 ° C. to obtain a test piece for volume change measurement. It was. The length, width, and height of the test piece were measured, and the volume V 1 of the test piece was calculated from the following formula.
V 1 = vertical x horizontal x height

樹脂発泡体を水中に完全に浸し、23℃±1℃の恒温室で24時間放置した後の試験片の縦、横、高さを測定し、次式より24時間水に浸漬した後の試験片の体積を算出した。
=縦×横×高さ
The test after the resin foam is completely immersed in water and the length, width and height of the test piece are measured for 24 hours in a constant temperature room at 23 ° C. ± 1 ° C. The volume of the piece was calculated.
V 2 = Vertical x Horizontal x Height

次式により体積増加率を算出した。
体積増加率[%]={(V−V)/V}×100
The volume increase rate was calculated by the following formula.
Volume increase rate [%] = {(V 2 −V 1 ) / V 1 } × 100

[耐熱性試験]
JIS−K6767に準じて加熱寸法変化率を測定した。長さ100mm、幅100mm、厚さ25mmの平板上の発泡成形体に、縦および横方向にそれぞれお互いに平行となる3本の直線を33.3mmの等間隔になるように記入し、直線の寸法を測定し加熱前寸法(L1)とした。次に、120℃に保った熱風循環乾燥機内にかかる発泡体を水平に置き、168時間加熱したあと、取り出し、試料の寸法を測定し、加熱後寸法(L2)とした。加熱寸法変化率は以下の式から算出した。
加熱寸法変化率(%)=((L2−L1)/L1)×100
また、熱風循環乾燥機の温度を100℃として同様の試験を行い、同じ式で100℃の加熱寸法変化率を算出した。
[Heat resistance test]
The heating dimensional change rate was measured according to JIS-K6767. On a foamed molded product on a flat plate of length 100mm, width 100mm, and thickness 25mm, three straight lines that are parallel to each other in the vertical and horizontal directions are entered at equal intervals of 33.3mm. The dimension was measured and it was set as the dimension (L1) before a heating. Next, the foam was placed horizontally in a hot air circulating drier kept at 120 ° C., heated for 168 hours, then taken out, measured for the dimensions of the sample, and defined as the dimension after heating (L2). The heating dimensional change rate was calculated from the following equation.
Heating dimensional change rate (%) = ((L2−L1) / L1) × 100
Moreover, the same test was done by setting the temperature of the hot air circulating dryer to 100 ° C., and the heating dimensional change rate at 100 ° C. was calculated by the same formula.

(実施例1)
共重合体(A)としてスチレン49%、N−フェニルマレイミド50%、無水マレイン酸1%の共重合体である電気化学工業(株)製、商品名:デンカIP MS−NA、共重合体(B)として、アクリロニトリル25%、スチレン75%の共重合体である電気化学工業(株)製AS−XGSを使用し、共重合体(A)/共重合体(B)を80%/20%の比率にて混合し、熱可塑性樹脂組成物とした。該熱可塑性樹脂組成物を成形して曲げ試験を実施した結果、曲げ破断歪は0.32%であった。
Example 1
Copolymer (A) as a copolymer of 49% styrene, 50% N-phenylmaleimide, and 1% maleic anhydride, manufactured by Denki Kagaku Kogyo Co., Ltd., trade name: DENKA IP MS-NA, copolymer ( As B), AS-XGS manufactured by Denki Kagaku Kogyo Co., Ltd., which is a copolymer of acrylonitrile 25% and styrene 75%, was used, and the copolymer (A) / copolymer (B) was 80% / 20%. The thermoplastic resin composition was mixed at a ratio of As a result of molding the thermoplastic resin composition and conducting a bending test, the bending breaking strain was 0.32%.

この樹脂組成物100部に対して、造核剤としてタルク(林化成(株)製、商品名:タルカンパウダー)0.5部をドライブレンドし、得られた樹脂組成物を、口径65mmの一段目押出機と口径90mmの二段目押出機とを直列に連結した二段連結型押出機へ50kg/時間の割合で供給した。前記口径65mmの押出機に供給した樹脂組成物を、約280℃に加熱して溶融混練した後、一段目押出機の先端付近において、発泡剤としてジメチルエーテル2.5部およびn−ブタン3.5部を溶融された熱可塑性樹脂組成物に圧入した。   To 100 parts of this resin composition, 0.5 part of talc (trade name: Talcan powder, manufactured by Hayashi Kasei Co., Ltd.) is dry blended as a nucleating agent, and the resulting resin composition is a single stage having a diameter of 65 mm. This was fed at a rate of 50 kg / hour to a two-stage connection type extruder in which a first-stage extruder and a second-stage extruder having a diameter of 90 mm were connected in series. The resin composition supplied to the extruder having a diameter of 65 mm was melted and kneaded by heating to about 280 ° C., and then 2.5 parts of dimethyl ether and 3.5 parts of n-butane were used as blowing agents near the tip of the first stage extruder. The part was pressed into the molten thermoplastic resin composition.

その後、これに連結された口径90mmの押出機で樹脂温度が200℃になるように冷却して、口径90mmの押出機の先端に設けた矩形スリットダイのダイリップから大気中に押出し、密度42kg/cmである押出発泡体を得た。顕微鏡により得られた発泡体のセル構造を観察して算出したセルの異方性比を表1に示す。得られた発泡体の動的圧縮試験を行い、算出した荷重比=(F70%)/(F20%)を表1に示す。さらに、得られた発泡体の水浸漬時の体積変化率、および100℃と120℃の加熱寸法変化率の測定結果を表1に示す。Thereafter, the resin is cooled so that the resin temperature becomes 200 ° C. with an extruder having a diameter of 90 mm connected thereto, and extruded from the die lip of a rectangular slit die provided at the tip of the extruder having a diameter of 90 mm to a density of 42 kg / An extruded foam of cm 3 was obtained. Table 1 shows the anisotropy ratio of the cells calculated by observing the cell structure of the foam obtained by a microscope. The resulting foam was subjected to a dynamic compression test, and the calculated load ratio = (F 70% ) / (F 20% ) is shown in Table 1. Furthermore, Table 1 shows the measurement results of the volume change rate when the obtained foam was immersed in water and the heating dimensional change rate at 100 ° C and 120 ° C.

(実施例2)
共重合体(A)/共重合体(B)の混合比率を60%/40%に変更し、さらに口径65mmの押出機での加熱混練温度を260℃、口径90mmでの押出機での冷却温度を180℃に変更した以外は、実施例1と同様の条件にて密度39kg/cmの押出発泡体を得た。顕微鏡により得られた発泡体のセル構造を観察して算出したセルの異方性比を表1に示す。得られた発泡体の動的圧縮試験を行い、算出した荷重比=(F70%)/(F20%)を表1に示す。さらに、得られた発泡体の水浸漬時の体積変化率、および100℃と120℃の加熱寸法変化率の測定結果を表1に示す。なお、実施例2で使用した熱可塑性樹脂組成物(共重合体(A)/共重合体(B)の混合比率が60%/40%)を成形して曲げ試験を実施した結果、曲げ破断歪は0.49%であった。
(Example 2)
The mixing ratio of copolymer (A) / copolymer (B) was changed to 60% / 40%, and the heating and kneading temperature in an extruder with a diameter of 65 mm was 260 ° C., and cooling with an extruder at a diameter of 90 mm. Extruded foam having a density of 39 kg / cm 3 was obtained under the same conditions as in Example 1 except that the temperature was changed to 180 ° C. Table 1 shows the anisotropy ratio of the cells calculated by observing the cell structure of the foam obtained by a microscope. The resulting foam was subjected to a dynamic compression test, and the calculated load ratio = (F 70% ) / (F 20% ) is shown in Table 1. Furthermore, Table 1 shows the measurement results of the volume change rate when the obtained foam was immersed in water and the heating dimensional change rate at 100 ° C and 120 ° C. The thermoplastic resin composition used in Example 2 (copolymer (A) / copolymer (B) mixing ratio: 60% / 40%) was molded and subjected to a bending test. The strain was 0.49%.

(実施例3)
共重合体(A)/共重合体(B)の混合比率を30%/70%に変更し、さらに口径65mmの押出機での加熱混練温度を240℃、口径90mmでの押出機での冷却温度を140℃に変更した以外は、実施例1と同様の条件にて密度28kg/cmの押出発泡体を得た。顕微鏡により得られた発泡体のセル構造を観察して算出したセルの異方性比を表1に示す。得られた発泡体の動的圧縮試験を行い、算出した荷重比=(F70%)/(F20%)を表1に示す。さらに、得られた発泡体の水浸漬時の体積変化率、および100℃と120℃の加熱寸法変化率の測定結果を表1に示す。なお、実施例3で使用した熱可塑性樹脂組成物(共重合体(A)/共重合体(B)の混合比率が30%/70%)を成形して曲げ試験を実施した結果、曲げ破断歪は0.74%であった。
(Example 3)
The mixing ratio of copolymer (A) / copolymer (B) was changed to 30% / 70%, and the heating and kneading temperature in an extruder with a diameter of 65 mm was 240 ° C., and cooling with an extruder at a diameter of 90 mm. Extruded foam having a density of 28 kg / cm 3 was obtained under the same conditions as in Example 1 except that the temperature was changed to 140 ° C. Table 1 shows the anisotropy ratio of the cells calculated by observing the cell structure of the foam obtained by a microscope. The resulting foam was subjected to a dynamic compression test, and the calculated load ratio = (F 70% ) / (F 20% ) is shown in Table 1. Furthermore, Table 1 shows the measurement results of the volume change rate when the obtained foam was immersed in water and the heating dimensional change rate at 100 ° C and 120 ° C. The thermoplastic resin composition used in Example 3 (copolymer (A) / copolymer (B) mixing ratio was 30% / 70%) was molded and subjected to a bending test. The strain was 0.74%.

(実施例4)
PSジャパン(株)製、ポリスチレンG9401を、口径65mmの押出機での加熱混練温度を200℃、口径90mmの押出機での冷却温度を120℃に変更した以外は、実施例1と同様の条件にて密度31kg/cmの押出発泡体を得た。顕微鏡により得られた発泡体のセル構造を観察して算出したセルの異方性比を表1に示す。得られた発泡体の動的圧縮試験を行い、算出した荷重比=(F70%)/(F20%)を表1に示す。さらに、得られた発泡体の水浸漬時の体積変化率、および100℃と120℃の加熱寸法変化率の測定結果を表1に示す。なお、実施例4で使用した熱可塑性樹脂(PSジャパン(株)製、ポリスチレンG9401)を成形して曲げ試験を実施した結果、曲げ破断歪は0.92%であった。
Example 4
PS Japan Co., Ltd., polystyrene G9401, the same conditions as in Example 1 except that the heating and kneading temperature in an extruder with a diameter of 65 mm was changed to 200 ° C. and the cooling temperature in an extruder with a diameter of 90 mm was changed to 120 ° C. To obtain an extruded foam having a density of 31 kg / cm 3 . Table 1 shows the anisotropy ratio of the cells calculated by observing the cell structure of the foam obtained by a microscope. The resulting foam was subjected to a dynamic compression test, and the calculated load ratio = (F 70% ) / (F 20% ) is shown in Table 1. Furthermore, Table 1 shows the measurement results of the volume change rate when the obtained foam was immersed in water and the heating dimensional change rate at 100 ° C and 120 ° C. In addition, as a result of shaping | molding the thermoplastic resin (PS Japan Co., Ltd. product, polystyrene G9401) used in Example 4, and performing the bending test, the bending fracture | rupture distortion was 0.92%.

(比較例1)
実施例1と同じ方法で得た押出発泡体を、その押出方向、すなわち厚さ方向に直行する方向に圧縮されるように試験片を切削して動的圧縮試験を行った。また、押出方向を縦方向としてセル異方性比を算出した。結果を表1に示す。得られた発泡体の動的圧縮試験を行い、算出した荷重比=(F70%)/(F20%)を表1に示す。さらに、得られた発泡体の水浸漬時の体積変化率、および100℃と120℃の加熱寸法変化率の測定結果を表1に示す。なお、比較例1で使用した熱可塑性樹脂組成物を成形して曲げ試験を実施した結果、曲げ破断歪は0.49%であった。
(Comparative Example 1)
A test piece was cut so that the extruded foam obtained by the same method as in Example 1 was compressed in the extrusion direction, that is, the direction orthogonal to the thickness direction, and a dynamic compression test was performed. The cell anisotropy ratio was calculated with the extrusion direction as the longitudinal direction. The results are shown in Table 1. The resulting foam was subjected to a dynamic compression test, and the calculated load ratio = (F 70% ) / (F 20% ) is shown in Table 1. Furthermore, Table 1 shows the measurement results of the volume change rate when the obtained foam was immersed in water and the heating dimensional change rate at 100 ° C and 120 ° C. In addition, as a result of shaping | molding the thermoplastic resin composition used by the comparative example 1 and implementing the bending test, the bending fracture | rupture distortion was 0.49%.

(比較例2)
実施例2と同じ方法で得た熱可塑性樹脂組成物100重量部を単軸押出機に供給し、溶融混練して一粒あたり重量0.8mgの樹脂粒子を得た。
(Comparative Example 2)
100 parts by weight of the thermoplastic resin composition obtained by the same method as in Example 2 was supplied to a single screw extruder and melt kneaded to obtain 0.8 mg of resin particles per grain.

攪拌機のついた6Lオートクレーブに、得られた熱可塑性樹脂粒子100部、水100部、リン酸カルシウム0.2部、α−オレフィンスルホン酸塩0.006部を仕込んだ。次に、ノルマルブタンを10部加え、攪拌しながら125℃に昇温し、その温度を9.5時間保って熱可塑性樹脂粒子中に発泡剤を含浸させ、発泡性熱可塑性樹脂粒子を得た。   A 6 L autoclave equipped with a stirrer was charged with 100 parts of the obtained thermoplastic resin particles, 100 parts of water, 0.2 part of calcium phosphate, and 0.006 part of an α-olefin sulfonate. Next, 10 parts of normal butane was added, the temperature was raised to 125 ° C. while stirring, and the temperature was maintained for 9.5 hours to impregnate the thermoplastic resin particles with a foaming agent to obtain expandable thermoplastic resin particles. .

加熱水蒸気発生装置により発生させた190℃の水蒸気で2分40秒間加熱し、嵩倍率25倍の予備発泡粒子を得た。得られた予備発泡粒子を縦450mm×横350mm×厚さ40mmの金型内に充填し、0.38MPaの水蒸気で10秒間加熱して融着させて成形し、冷却して密度45kg/mの発泡成形体を得た。得られた発泡体のセル構造を顕微鏡により観察して算出したセルの異方性比を表1に示す。得られた発泡体の動的圧縮試験を行い、算出した荷重比=(F70%)/(F20%)を表1に示す。さらに、得られた発泡体の水浸漬時の体積変化率、および100℃と120℃の加熱寸法変化率の測定結果を表1に示す。なお、比較例2で使用した熱可塑性樹脂組成物を成形して曲げ試験を実施した結果、曲げ破断歪は0.49%であった。The mixture was heated with 190 ° C. steam generated by a heated steam generator for 2 minutes and 40 seconds to obtain pre-expanded particles having a bulk magnification of 25 times. The obtained pre-expanded particles were filled in a mold having a length of 450 mm × width of 350 mm × thickness of 40 mm, molded by heating with 0.38 MPa steam for 10 seconds, and cooled to a density of 45 kg / m 3. The foamed molded product was obtained. Table 1 shows the anisotropy ratio of the cells calculated by observing the cell structure of the obtained foam with a microscope. The resulting foam was subjected to a dynamic compression test, and the calculated load ratio = (F 70% ) / (F 20% ) is shown in Table 1. Furthermore, Table 1 shows the measurement results of the volume change rate when the obtained foam was immersed in water and the heating dimensional change rate at 100 ° C and 120 ° C. In addition, as a result of shaping | molding the thermoplastic resin composition used by the comparative example 2 and implementing the bending test, the bending fracture | rupture distortion was 0.49%.

(比較例3)
ジフェニルメタン―4,4’−ジイソシアネートとポリプロピレングリコールを原材料とする密度が58kg/cmの硬質ポリウレタンフォームの動的圧縮試験を行い、算出した荷重比=(F70%)/(F20%)を表1に示す。顕微鏡により得られた発泡体のセル構造を観察して算出したセルの異方性比を表1に示す。さらに、得られた発泡体の水浸漬時の体積変化率、および100℃と120℃の加熱寸法変化率の測定結果を表1に示す。
(Comparative Example 3)
A dynamic compression test was performed on a rigid polyurethane foam having a density of 58 kg / cm 3 using diphenylmethane-4,4′-diisocyanate and polypropylene glycol as raw materials, and the calculated load ratio = (F 70% ) / (F 20% ) Table 1 shows. Table 1 shows the anisotropy ratio of the cells calculated by observing the cell structure of the foam obtained by a microscope. Furthermore, Table 1 shows the measurement results of the volume change rate when the obtained foam was immersed in water and the heating dimensional change rate at 100 ° C and 120 ° C.

(比較例4)
ジフェニルメタン−4,4’−ジイソシアネートとポリプロピレングリコールを原材料とする密度が79kg/cmの硬質ポリウレタンフォームの動的圧縮試験を行い、算出した荷重比=(F70%)/(F20%)を表1に示す。顕微鏡により得られた発泡体のセル構造を観察して算出したセルの異方性比を表1に示す。さらに、得られた発泡体の水浸漬時の体積変化率、および100℃と120℃の加熱寸法変化率の測定結果を表1に示す。
(Comparative Example 4)
A dynamic compression test was performed on a rigid polyurethane foam having a density of 79 kg / cm 3 using diphenylmethane-4,4′-diisocyanate and polypropylene glycol as raw materials, and the calculated load ratio = (F 70% ) / (F 20% ) Table 1 shows. Table 1 shows the anisotropy ratio of the cells calculated by observing the cell structure of the foam obtained by a microscope. Furthermore, Table 1 shows the measurement results of the volume change rate when the obtained foam was immersed in water and the heating dimensional change rate at 100 ° C and 120 ° C.

Figure 2008069013
Figure 2008069013

Claims (10)

動的圧縮試験に基づく70%歪時荷重(F70%)と20%歪時の荷重(F20%)の荷重比(F70%)/(F20%)の値が0.70以上1.30以下であり、水に24時間浸したときの体積増加率が5%以下である熱可塑性樹脂発泡体。The load ratio (F 70% ) / (F 20% ) between the load at 70% strain (F 70% ) and the load at 20% strain (F 20% ) based on the dynamic compression test is 0.70 or more and 1 Thermoplastic resin foam having a volume increase rate of 5% or less when immersed in water for 24 hours. セル形状の異方性比が1.1以上3.0以下である請求項1記載の熱可塑性樹脂発泡体。   The thermoplastic resin foam according to claim 1, wherein the cell-shaped anisotropy ratio is 1.1 or more and 3.0 or less. 芳香族ビニル、不飽和ジカルボン酸無水物およびN−アルキル置換マレイミドからなる共重合体(A)80〜30重量%と芳香族ビニル−シアン化ビニル共重合体(B)20〜70重量%を混合してなる熱可塑性樹脂組成物を発泡させてなる請求項1または2に記載の熱可塑性樹脂発泡体。   80-80% by weight of copolymer (A) composed of aromatic vinyl, unsaturated dicarboxylic anhydride and N-alkyl-substituted maleimide and 20-70% by weight of aromatic vinyl-vinyl cyanide copolymer (B) are mixed The thermoplastic resin foam according to claim 1 or 2, wherein the thermoplastic resin composition is foamed. 前記芳香族ビニルが、スチレンであることを特徴とする請求項3に記載の熱可塑性樹脂発泡体。   The thermoplastic resin foam according to claim 3, wherein the aromatic vinyl is styrene. 前記不飽和ジカルボン酸無水物が、無水マレイン酸であることを特徴とする請求項3に記載の熱可塑性樹脂発泡体。   The thermoplastic resin foam according to claim 3, wherein the unsaturated dicarboxylic acid anhydride is maleic anhydride. 前記N−アルキル置換マレイミドが、N−フェニルマレイミドであることを特徴とする請求項3に記載の熱可塑性樹脂発泡体。   The thermoplastic resin foam according to claim 3, wherein the N-alkyl-substituted maleimide is N-phenylmaleimide. 前記シアン化ビニルがアクリロニトリルであることを特徴とする請求項3に記載の熱可塑性樹脂発泡体。   The thermoplastic resin foam according to claim 3, wherein the vinyl cyanide is acrylonitrile. 熱可塑性樹脂発泡体が押出発泡成形法によって製造されたものであることを特徴とする請求項1〜7何れか一項に記載の熱可塑性樹脂発泡体。   The thermoplastic resin foam according to any one of claims 1 to 7, wherein the thermoplastic resin foam is produced by an extrusion foam molding method. 請求項1〜8何れか一項に記載の熱可塑性樹脂発泡体からなる自動車用バンパーコア。   The bumper core for motor vehicles which consists of a thermoplastic resin foam as described in any one of Claims 1-8. 請求項1〜8何れか一項に記載の熱可塑性樹脂発泡体からなる自動車用側突パッド。   An automobile side bump pad comprising the thermoplastic resin foam according to any one of claims 1 to 8.
JP2008548214A 2006-12-05 2007-11-16 Resin foam suitable for energy absorber Pending JPWO2008069013A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006327823 2006-12-05
JP2006327823 2006-12-05
PCT/JP2007/072249 WO2008069013A1 (en) 2006-12-05 2007-11-16 Resin foam suitable as energy absorption material

Publications (1)

Publication Number Publication Date
JPWO2008069013A1 true JPWO2008069013A1 (en) 2010-03-18

Family

ID=39491917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008548214A Pending JPWO2008069013A1 (en) 2006-12-05 2007-11-16 Resin foam suitable for energy absorber

Country Status (2)

Country Link
JP (1) JPWO2008069013A1 (en)
WO (1) WO2008069013A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156468A (en) * 2006-12-22 2008-07-10 Denki Kagaku Kogyo Kk Heat-resistant extrusion foam board and production method thereof
DE102009040203A1 (en) * 2009-09-07 2011-03-10 Puren Gmbh Molded foam element with at least two distinguishable geometry structures

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02261834A (en) * 1989-03-31 1990-10-24 Tokai Rubber Ind Ltd Water-absorptive resin composition
JPH03203921A (en) * 1989-12-28 1991-09-05 Sumitomo Seika Chem Co Ltd Water absorbing polyurethane foam and cold reservoir
JPH0425532A (en) * 1990-05-21 1992-01-29 Denki Kagaku Kogyo Kk Expandable resin composition and its molded item
US20030225172A1 (en) * 2002-05-31 2003-12-04 Miller Larry M. To enhance the thermal insulation of polymeric foam by reducing cell anisotropic ratio and the method for production thereof
JP4202716B2 (en) * 2002-10-24 2008-12-24 株式会社カネカ Thermoplastic resin foam molding and method for producing the same
JP4708315B2 (en) * 2005-11-25 2011-06-22 株式会社カネカ Thermoplastic resin foam

Also Published As

Publication number Publication date
WO2008069013A1 (en) 2008-06-12

Similar Documents

Publication Publication Date Title
ES2456294T3 (en) Article and method for producing a mixture of low density foam of styrenic polymer and polyolefin
JP7326023B2 (en) Thermoplastic elastomer foamed particles and molded products thereof
WO2011118706A1 (en) Expanded polystyrene resin particle and method of manufacture for same, polystyrene resin pre-expansion particle, polystyrene resin expanded form, thermoplastic resin pre-expansion particle and method of manufacture for same, and thermoplastic expanded form
WO2016047382A1 (en) Composite resin particles, process for producing same, expandable beads, expanded beads, foamed molded object, and automotive interior trim
KR20090077977A (en) Styrene-modified polyethylene resin beads, styrene-modified polyethylene resin expandable beads, processes for production of both, pre-expanded beads, and products of expansion molding
JP5630591B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
WO2018088429A1 (en) Foam particle moulded article and sole member
JP4779330B2 (en) Polypropylene resin pre-expanded particles and in-mold expanded molded body
JP5591965B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JPWO2008069013A1 (en) Resin foam suitable for energy absorber
JP6862152B2 (en) Manufacturing method of foamed particles
US6214896B1 (en) Water-containing polypropylene resin composition and pre-expanded particles made thereof
JP3970188B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam
JP2014189769A (en) Modified polystyrenic foamable resin particles, method for manufacturing the same, foam particles, and foam molding
JP4202716B2 (en) Thermoplastic resin foam molding and method for producing the same
JP6670850B2 (en) Method for producing expanded polypropylene resin particles, expanded polypropylene resin particles and in-mold expanded molded article
KR20230156906A (en) Polypropylene-based resin foamed particles and method for producing polypropylene-based resin expanded particles
JP5739057B2 (en) Automotive parts
CN112955499B (en) Foamed particles
JP4653321B2 (en) Expandable rubber-modified acrylonitrile / styrene-based resin particles, process for producing the same, and foam molded article
JP7225038B2 (en) Expanded polypropylene resin particles and expanded polypropylene resin particles
JP4940688B2 (en) Method for producing polypropylene resin pre-expanded particles
JP2018100380A (en) Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same
JP5315759B2 (en) Method for producing foamed molded product in polypropylene resin mold
JP5216353B2 (en) Method for producing expanded polypropylene resin particles