WO2008068900A1 - Spatial phase modulation element and projector - Google Patents

Spatial phase modulation element and projector Download PDF

Info

Publication number
WO2008068900A1
WO2008068900A1 PCT/JP2007/001345 JP2007001345W WO2008068900A1 WO 2008068900 A1 WO2008068900 A1 WO 2008068900A1 JP 2007001345 W JP2007001345 W JP 2007001345W WO 2008068900 A1 WO2008068900 A1 WO 2008068900A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase modulation
spatial phase
modulation element
light
mirror surface
Prior art date
Application number
PCT/JP2007/001345
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiaki Horikawa
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Publication of WO2008068900A1 publication Critical patent/WO2008068900A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/72Controlling or varying light intensity, spectral composition, or exposure time in photographic printing apparatus
    • G03B27/725Optical projection devices wherein the contrast is controlled electrically (e.g. cathode ray tube masking)
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto

Definitions

  • the present invention relates to a novel spatial phase modulation element that can be used in a projection apparatus. Also
  • a projection device using the spatial phase modulation element is provided.
  • transmissive liquid crystals Liquid Grysta to LG
  • reflective liquid crystals Liquid Crystal On Si I icon COS
  • DMD Digtal Micro-mirror Device
  • a projector using a conventional LG or LG0S the image to be projected on the LG or LG0S liquid crystal is displayed, the liquid crystal is illuminated with the irradiating light, and the transmitted or reflected light from the liquid crystal is transmitted through the projection lens.
  • the image was displayed by magnifying it onto the screen.
  • binary control of 0N / 0FF is applied to the voltage applied to the electrode corresponding to the micromirror that constitutes the mirror element of DMD according to the image to be projected. Then, the state of the micromirror was switched, and the incident light was reflected on the projection optical path and the image was projected onto the screen via the projection lens.
  • a projector using a liquid crystal or a DMD as described above has a light source, an illumination optical system, and a projection lens.
  • the illumination light from the light source is temporarily displayed on a liquid crystal or the like and transmitted or transmitted.
  • a method of enlarging the reflected image light with a projection lens was used.
  • a color sequential method is used to display the color of an image
  • a color filter that switches the color of the light source is used.
  • a multi-plate method using multiple elements for each color is adopted, a color separation / synthesis optical system is required.
  • a simple illumination optical system using a spatial phase modulator (SPM) as shown in FIG. A small projection device that can be completed with a simple projection lens is disclosed.
  • SPM spatial phase modulator
  • linearly polarized light emitted from the light source (laser) 201 is incident on a PBS (polarized beam splitter) 203, reflected in the PBS203, and incident on an L COS202 as a spatial phase modulation element.
  • a ⁇ / 4 plate (not shown) is provided between the PBS 203 and the L COS 202.
  • the diffracted light 204 phase-modulated by the LCOS 202 according to the image information to be projected passes through the ⁇ / 4 plate again, further passes through the PBS 203, and passes through the projection lens 205 to the screen 206. Project an image and display it.
  • binary modulation with a phase difference of ⁇ can be obtained by the presence or absence of phase modulation of L COS202.
  • the L COS202 since the L COS202 is used, the amount of light is reduced when the light reciprocates in the liquid crystal, and the light use efficiency is low. There is a technical problem that the light source becomes darker or that the light source needs to be enlarged to ensure the brightness of the displayed image. In addition, there was no mention of the focus on the resolution of the displayed image or the improvement. In addition, since the removal of the 0th-order diffracted light 207 is insufficient, the 0th-order diffracted light 207 is mixed in the image on the screen 206 and the influence remains, so that the image is not clear. There was also a problem.
  • the conventional projection apparatus using the spatial phase modulation element has some technical problems.
  • an object of the present invention is to provide a spatial phase modulation element capable of ensuring a sufficient resolution of an image to be projected and displayed while the configuration of the apparatus is simple. It is another object of the present invention to provide a novel projection apparatus that can skillfully avoid the influence of 0th-order diffracted light.
  • Patent Document 1 International Publication No. WO / 2005/059881 Pamphlet
  • the first spatial phase modulation element of the present invention performs projection display of an image by emitting diffracted light that has undergone phase modulation via light from a light source.
  • a spatial phase modulation element equal to or greater than the number of pixels is provided.
  • the number of vertical columns and the number of horizontal columns of the partition portion are set so that the number of vertical columns and the horizontal number of pixels of the displayed image are Desirably equal to or greater than the number of columns.
  • the first spatial phase modulation element of the present invention or the spatial phase modulation element of the first form is the second form, wherein the number of vertical columns and the number of horizontal columns of the partition portion are two. A power is preferable.
  • the first spatial phase modulation element of the present invention or the spatial phase modulation element in the first mode or the second mode is, as the third mode, all of the partition portions for performing phase modulation. It is further desirable that the contour shape in the phase modulation section formed by the above is a square having the same aspect ratio and does not depend on the aspect ratio of the displayed image.
  • the first spatial phase modulation element of the present invention or any one of the first to third modes—the spatial phase modulation element in one of the forms is the light from the light source as the fourth mode.
  • a mirror surface for performing phase modulation when reflecting light, and an elastic member disposed on the mirror surface corresponding to each partition portion for performing phase modulation and a corresponding elastic member It is also possible to provide an electrode for moving or deforming the mirror surface against the restoring force of the elastic member by applying a voltage, and a substrate on which the electrode is arranged.
  • the mirror surface moves in response to the application of voltage to the electrode, and the amount of movement or deformation is The phase modulation amount may be determined accordingly.
  • the movement control or deformation control of the one surface of the mirror is performed as described above. It may be determined only by whether or not voltage is applied to the electrodes.
  • the amount of movement or deformation of the mirror surface is the light of the incident light source
  • the phase difference corresponding to 1 ⁇ 2 wavelength may be formed in the emitted diffracted light.
  • the control of the movement amount or deformation amount of the mirror surface is applied to the electrode.
  • the amount of change in the applied voltage may be controlled to increase or decrease continuously and sequentially.
  • the maximum amount of movement or deformation of the mirror surface is the light of the incident light source It is preferable that the phase difference formed in the emitted diffracted light is within one wavelength.
  • the spatial phase modulation element according to the fourth aspect of the present invention the spatial phase modulation element according to any one of the first aspect to the third aspect, or the spatial phase modulation element capable of the first or second control,
  • One side of the mirror is formed from an integral mirror.
  • the elastic member and the electrode may be arranged corresponding to each partition portion for performing phase modulation of the mirror surface in the body-shaped mirror.
  • the spatial phase modulation element of the fourth aspect of the present invention the spatial phase modulation element of any one of the first aspect to the third aspect or the spatial phase modulation element capable of the first or second control
  • the mirror surface may be formed as an individual mirror in each partition for performing phase modulation, and an elastic member and an electrode may be arranged for each mirror.
  • the surface accuracy of the mirror surface is preferably 50 nm or less.
  • the surface roughness of the mirror surface is preferably 5 nm or less.
  • the first projection device of the present invention includes a light source, a condensing optical system that collects light emitted from the light source, and a light that is emitted from the light source collects via the condensing optical system. Is the number of sections of each section for phase modulation arranged in two dimensions arranged in the middle of the light condensing position equal to the number of pixels of the projected image displayed? There is also provided a projection device comprising: a large number of spatial phase modulation elements; and a shielding member that shields 0th-order diffracted light that is emitted without being diffracted from the spatial phase modulation elements and collected at the light collection position.
  • each partition portion of the spatial phase modulation element is based on spatial phase information generated corresponding to image information that is projected and displayed.
  • the phase to be modulated is controlled, and each pixel of the projected and displayed image is preferably formed by diffracted light emitted from all the partition portions of the spatial phase modulation element.
  • the light source is disposed at a position separated from the optical axis of the condensing optical system, and the shielding member is emitted from the spatial phase modulation element Therefore, it is desirable to dispose the light beam outside the diffracted light beam that forms the projected image.
  • the number of vertical columns and the number of horizontal columns of the partition portion in the spatial phase modulation element are equal to the number of vertical columns and horizontal columns of pixels of the image displayed by projection. Or more.
  • the first projection device of the present invention, the projection device of the first embodiment or the second embodiment, or the projection device according to the first aspect, as a second aspect, is the longitudinal of the partition portion in the spatial phase modulation element. It is preferable that the number of columns and the number of horizontal columns are powers of 2.
  • the first projection device of the present invention, the projection device of the first embodiment or the second embodiment, or the projection device according to the first embodiment or the second embodiment is a spatial phase modulation element of the third embodiment.
  • the contour shape in the phase modulation section formed by all of the partition portions for performing the phase modulation is a square having the same aspect ratio, and may not depend on the aspect ratio of the displayed image.
  • the first projection device of the present invention, the projection device of the first mode or the second mode, or any one of the projection devices according to the first mode to the third mode may be a space.
  • the phase modulation element has a mirror surface for performing phase modulation when reflecting light from the light source, and is arranged corresponding to each partition portion for performing phase modulation provided on the mirror surface.
  • a member, an electrode arranged corresponding to each elastic member, and piled on the restoring force of the elastic member by applying a voltage to move or deform the mirror surface; and a substrate on which the electrode is arranged It may be composed of,.
  • the mirror surface of the spatial phase modulation element moves in response to the application of voltage to the electrode, and the amount of movement or deformation It is preferable that the phase modulation amount is determined according to the above.
  • the movement control or deformation control of the mirror surface in the spatial phase modulation element is performed only in the presence or absence of voltage application to the electrode. It may be determined by.
  • the amount of movement or deformation of the mirror surface in the spatial phase modulation element is incident light. It may be equivalent to a quarter wavelength of the source light, and a phase difference corresponding to a half wavelength may be formed in the emitted diffracted light.
  • the control of the movement amount or deformation amount of the mirror surface in the spatial phase modulation element depends on the voltage value applied to the electrode.
  • the amount of change in the applied voltage may be controlled to be continuously increased or decreased.
  • the maximum movement amount or deformation amount of the mirror surface in the spatial phase modulation element is 1 of the light of the incident light source. It is preferable that the phase difference formed within the diffracted light to be output is within one wavelength.
  • the projection device in the fourth aspect of the present invention, the projection device according to any one of the first to third aspects, or the projection device capable of the first or second control, the mirror in the spatial phase modulation element It is desirable that one surface is formed from an integrated mirror, and an elastic member and an electrode are arranged corresponding to each partition portion for performing phase modulation of the mirror surface in the integrated mirror.
  • the projection device in the spatial phase modulation element
  • the surface is preferably formed as an individual mirror in each partition portion for performing phase modulation, and an elastic member and an electrode are preferably arranged for each mirror.
  • the surface accuracy of the mirror surface in the spatial phase modulation element is 50 nm or less.
  • the surface roughness of the mirror surface of the spatial phase modulation element be 5 nm or less.
  • FIG. 1 shows an embodiment of a projection apparatus using a transmissive spatial phase modulation element.
  • FIG. 2 is a flowchart of signal processing for a signal input to a spatial phase modulation element in one embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a switch circuit provided on a substrate of a spatial phase modulation element as one embodiment of the present invention.
  • FIG. 4 As an example of displaying images in color by color sequential light source control, the relationship between the operation of the spatial phase modulator and the light emission operations of the red, green, and blue light sources is the same time axis. It is the figure which showed the timing chart expressed as
  • FIG. 5 is a schematic diagram showing how the readout light is diffracted by the spatial phase information displayed by the spatial phase modulation element, and the diffracted light is projected onto the screen.
  • FIG. 7 is a plan view of a projection apparatus including a condensing optical system, a transmissive spatial phase modulation element, and a shielding member in one embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a real domain corresponding to an image to be projected.
  • FIG. 9A The real domain in Fig. 8 is equal in length and width in the spatial phase modulator.
  • ⁇ It is the schematic diagram of the Fourier domain which carried out Fourier transform.
  • FIG. 9B is a schematic diagram of the Fourier domain of FIG. 9A in which the number of columns in the vertical partition portion is the same as the number of columns in the horizontal partition portion.
  • FIG. 9G is a schematic diagram of the Fourier domain of FIG. 9A in which the number of columns in the horizontal partition portion is the same as the number of columns in the vertical partition portion.
  • FIG. 10A A diagram showing a graph in which g ( ⁇ ) is an image to be projected.
  • FIG. 10 0 is a diagram showing a graph obtained by performing a one-dimensional Fourier transform of g ( ⁇ ) on the image to be projected and converting the coordinates to G (v).
  • FIG. 1 1 In another embodiment of the present invention, a condensing optical system and a reflective spatial phase modulation It is a top view of the projection apparatus provided with the element and the shielding member.
  • FIG. 12 is a plan view of a projection apparatus configured differently from FIG. 11 as still another embodiment of the present invention.
  • FIG. 13A is a plan view of a projection apparatus that includes a reflective spatial phase modulation element and a shielding member and performs full-color display of an image in one embodiment of the present invention.
  • FIG. 13B is a side view of the projection device of FIG.
  • FIG. 14A As an embodiment of the present invention, a mirror composed of one surface of an integrated mirror.
  • FIG. 3 is a perspective view of an M M D element in which — is arranged on a substrate.
  • FIG. 14B is a perspective view of an MMD element in which a plurality of substantially square mirrors are two-dimensionally arranged on a substrate in another embodiment of the present invention.
  • FIG. 15A is a cross-sectional view taken along line XV-A of the MMD element shown in FIG. 14A as one embodiment of the present invention.
  • FIG. 15B is a cross-sectional view of the MMD element in FIG. 15A during phase modulation of light.
  • FIG. 16A is a cross-sectional view taken along line X V I — A of the MMD element shown in FIG. 14B as another embodiment of the present invention.
  • FIG. 16B is a cross-sectional view of the MMD element in FIG. 16A during phase modulation of light.
  • FIG. 17A is a diagram in which the electrodes of the MMD elements shown in FIG. 15A and FIG. 15B are arranged differently in one embodiment of the present invention.
  • FIG. 17B is a diagram in which the electrodes of the MMD elements shown in FIG. 16A and FIG. 16B are arranged differently in one embodiment of the present invention.
  • FIG. 18 is a schematic diagram showing the overall arrangement of the support and elastic members of the MMD element of the present invention on a substrate.
  • FIG. 19A is a diagram showing the shape of a column used in the MMD element of the present invention in one embodiment.
  • FIG. 19B As another embodiment, it is used for the MMD element of the present invention different from FIG. 19A. It is a figure which shows the shape of the support
  • FIG. 20 is a schematic diagram of a conventional projection apparatus using L C O S as a spatial phase modulation element, and the best mode for carrying out the invention
  • a spatial phase modulation element capable of simplifying the configuration of the apparatus and ensuring sufficient resolution for an image that is projected and displayed.
  • a projection device including a spatial phase modulation element that can avoid the influence of 0th-order diffracted light on a projected image.
  • a reflection type capable of obtaining the optimum diffraction pattern by improving the light utilization efficiency and diffraction efficiency with a simple configuration.
  • An MMD (Magnetic Micro Device) element which is a spatial phase modulation element (SPM) is provided.
  • a spatial phase modulation element and a shielding member that shields the 0th-order diffracted light that is emitted from the spatial phase modulation element without being diffracted and collected at the light collection position.
  • a plurality of partition portions are provided on the spatial phase modulation element.
  • This partition part is obtained by dividing the area on the spatial phase modulation element into a large number of fine sections, and each of the partition parts controls the desired phase by independently controlling the physical state of each partition part.
  • the diffracted light can be emitted.
  • This section is a concept that corresponds to a pixel in terms of a photoelectric conversion element such as a CCD or an image display element such as a liquid crystal, but the pixel of the CCD or liquid crystal itself becomes a part of the visible image. While the pixels of the projected image are one-to-one as they are, the relationship between each section and the actually displayed image is completely different from that of a CCD or liquid crystal display.
  • the projected image is displayed.
  • the image is converted to a visible image on the screen.
  • each of these pixels is all on the spatial phase modulation element. It is formed by the sum of the diffracted light emitted from this section. That is, diffracted light from all sections is required to form one pixel to be displayed. Similarly, all displayed individual pixels are each formed by the sum of diffracted light emitted from all sections.
  • the phase modulation section referred to in the present application means the entire contour in which this section is provided.
  • a condensing lens is used as a condensing optical system for condensing light emitted from a light source
  • a transmissive spatial phase modulation element is used as a spatial phase modulation element
  • FIG. 1 shows one embodiment of the projection apparatus of the present invention that includes a condensing lens, a transmissive spatial phase modulation element, and a shielding member.
  • an illumination light beam 15 of illumination light emitted from a light source is collected by a condenser lens 11 and then incident on a transmissive spatial phase modulation element 12.
  • a transmissive spatial phase modulation element 12 shows a projection apparatus 10 that projects diffracted light 17 that is phase-modulated and diffracted by a transmissive spatial phase modulation element 12 onto a screen 14.
  • 0 in Fig. 1 represents the diffraction angle.
  • an image is formed by projecting and displaying the diffracted light emitted from the spatial phase modulation element on the screen.
  • the phase is controlled based on the spatial phase information generated corresponding to the image information projected and displayed.
  • the light source in the projection device of the present invention is disposed at a position separated from the optical axis of the condensing optical system, and forms a projected image by emitting the shielding member from the spatial phase modulation element. Yes It is configured to be placed outside the diffracted light beam.
  • the illumination light beam 15 is focused by the collecting lens 11 1, so that the 0th-order diffracted light 16 can be supplemented by the shielding member 13, and the screen By preventing the 0th-order diffracted light from being projected onto 14 It is possible to prevent the trust from being lowered.
  • the screen 14 is drawn in the vicinity of the transmissive spatial phase modulation element 12, but actually, it is sufficiently far away from the transmissive spatial phase modulation element 12.
  • the projection apparatus When the projection apparatus is configured as shown in Fig. 1, basically no projection lens is required, but when adjusting the distance from the screen 14 or changing the spread angle of the diffracted light 17. In some cases, a projection lens may be provided. Even when a projection lens is provided, unlike a conventional projection device that projects an image drawn on the display element, it is configured to project phase-modulated diffracted light, so a simple projection lens can be used. .
  • FIG. 2 shows a flowchart of signal processing of signals input to the spatial phase modulation element in the projection apparatus of the present invention.
  • image data 21 of an image to be projected is acquired.
  • the image data (image) 21 is subjected to Fourier transform to become spatial phase distribution information.
  • random phase information 22 in advance in the image data 21 is obtained. Is superimposed.
  • Fourier transform 23 is performed. This method of superimposing random phase information is a technique known as kinoform, such as W. H. Lee:
  • the PM driver 25 creates a drive signal for driving the spatial phase modulation element (SPM). Next, by applying this drive signal to the spatial phase modulation element, spatial phase information corresponding to an image to be projected onto the spatial phase modulation element (SPM) can appear as a phase distribution.
  • a mirror for performing phase modulation when reflecting light from a light source and an elastic member disposed corresponding to each partition portion for performing phase modulation on the mirror surface of the mirror And an electrode for moving the mirror surface by applying a voltage to pile up the restoring force of the elastic member by applying a voltage, and a substrate on which the electrode is arranged, which will be described later
  • the section of the reflective spatial phase modulation element of the present invention is 3 ⁇ 3
  • the operation of the spatial phase modulation element by signal input will be briefly described.
  • FIG. 3 only 2 X 2 transistor circuits, which are the switch circuits 30 provided on the substrate corresponding to the spatial phase modulation elements in the 3 X 3 section, are shown.
  • the drive circuit of the spatial phase modulation element sequentially sends drive signals from Y 1 to Y 3 of the signal lines 31 of each section, while sequentially from X 1 to X 3 of the scan lines 32 of each section.
  • X_Y scanning that sends a scanning signal is performed.
  • the transistor 33 in the section (X 1, Y 1) is turned on, and the electrode 34 is applied to the electrode 34 according to the signal on the signal line Y 1.
  • a voltage is applied.
  • electric charge is accumulated between the elastic member 36 of the spatial phase modulation element and the electrode 34 by being a capacitor 35, and Coulomb force is generated according to the electric charge.
  • the spatial phase modulation element (S PM) It is possible to express the spatial phase distribution information of an image to be projected onto.
  • the elastic member 36 returns the mirror to the original when the voltage is applied to the electrode 34 connected to the switch circuit and the Coulomb force generated by the charge being accumulated in the capacitor 35 is released. It is provided to return to the state.
  • the correction processing 24 based on the optical arrangement here is, for example, in the case of the optical arrangement shown in FIG. 1, irradiated on the transmissive spatial phase modulation element 12 by the condenser lens 11. This means that the spatial phase information appearing on the spatial phase modulation element is corrected so that the incident light is diffracted toward the screen 14 at a diffraction angle 0.
  • FIG. 4 shows the operation of the spatial phase modulation element and the light emission operations of the red light source, the green light source, and the blue light source when performing color-sequential light source control and displaying an image with a power error in the projector of the present invention.
  • This is a timing chart showing the relationship as the same time axis t.
  • operations of a red light source, a green light source, a blue light source, and a spatial phase modulation element based on the progress of time t are shown.
  • the red light source is turned on and is incident on the spatial phase modulator.
  • the spatial phase modulation element diffracts the red light source based on the spatial phase information reproduced on the element, and generates red diffracted light corresponding to the red light source for obtaining an appropriate image. In this way, the red part of the image to be projected can be displayed.
  • the spatial phase modulator rewrites from the spatial phase information corresponding to the red light source to the spatial phase information corresponding to the green light source.
  • a color sequential method using one spatial phase modulation element is used.
  • the spatial phase information is different for each color light source. Therefore, in the rewrite time width 41 of the spatial phase information of the spatial phase modulation element, a diffraction pattern completely different from the image information to be projected is obtained.
  • all displayed display screens become color noise screens, and the displayed image quality is significantly reduced. Therefore, it is necessary to avoid the incidence of light at this timing.
  • the time width 41 during which the spatial phase modulation element is rewriting the spatial phase information it is necessary to turn off all the light sources. By doing this, there is no moment to display the noise screen, and if the displayed image is a moving image, an image with high contrast can be displayed.
  • the spatial phase modulating element is completely after completing rewriting of the spatial phase information corresponding to the green light source is turned ON the green light source from the time t 2 to t 3. In this way, green diffracted light can be generated and the green portion of the image to be projected can be displayed.
  • the spatial light modulating element rewriting from the spatial phase information corresponding to the green light source to the spatial phase information corresponding to the blue light source.
  • the spatial phase modulation element has completely rewritten the spatial phase information corresponding to the blue light source, the blue light source is turned on from time t 4 to t 5 . In this way, blue diffracted light can be generated and the blue portion of the image to be projected can be displayed.
  • L D laser diode
  • the ON period is shown for each color light source.
  • the laser diode if light is pulsed during this ON period, light is emitted. You may do it.
  • diffracted light is generated by making readout light incident on the spatial phase information displayed on the transmission type spatial phase modulation element shown in FIG. 5, and an image is displayed on the screen.
  • the method of projecting is described.
  • FIG. 5 shows how the readout light is diffracted by the transmissive spatial phase modulation element.
  • the spatial phase modulation element here displays spatial phase information of an image to be projected, for example, Fourier transform information.
  • reference light that is, illumination light beam 52
  • signal light that is, diffracted light (diffraction light) 53
  • An image can be obtained by projecting the diffracted light 53 onto a screen 54 arranged at an appropriate distance.
  • the wavelength ⁇ of the readout light 52 is 0.5 m
  • the correspondence shown in FIG. 6 is obtained between the distance d of the diffraction grating 51 and the exit angle of the diffraction light 53, that is, the diffraction angle 0 S. .
  • FIG. 6 is a diagram showing a correspondence relationship between the exit angle of the diffracted light 53, that is, the diffraction angle S s, and the interval d of the diffraction grating 51.
  • the exit angle of the diffracted light 53 that is, the diffraction angle 0 S can be increased.
  • Equation 3 It is represented by This represents the definition of the image that can be projected onto the screen 53 by the spatial phase modulation element whose phase modulation section width is D.
  • D the width of the phase modulation section in the spatial phase modulation element
  • X 4/5 X 25.4 1.2.2 mm
  • the diffraction wavelength is ⁇ when the readout light wavelength ⁇ is 0.5 m.
  • the conditions imposed on the spatial phase modulation element necessary for expressing the number of pixels of the image to be projected are examined.
  • NTS C National Television Standard Committee
  • the change in the diffraction angle of the diffracted light is at least 2.
  • 35 X 1 0- 3 x 720 1. 7 degrees required.
  • HDTV High Definition Television
  • the spatial phase modulation element needs to have the ability to display spatial phase information with such a fine lattice spacing d.
  • P is the pitch between the partition portions constituting the spatial phase modulation element
  • the width of one section of the spatial phase modulation element corresponding to each of NTSC, HDTV, and Super Hi-Vision is preferably about 8.5 m, 3.2 m, and 0.8 m.
  • a spatial phase modulation element with a pitch P between each section cannot display a diffraction grating with a grating spacing d smaller than that in Eq. (4), so the diffraction angular force expressed by Eq. (2) This is the largest diffraction angle at which an image can be projected. For simplicity, assuming that the diffraction angle of the diffracted light is not so large, Equation (2) is
  • Equation 5 And can be approximated. Furthermore, in order to display the image by avoiding the 0th order diffracted light, where N is the number of pixels in the horizontal direction of the pixel of the image to be projected and displayed here, the number of horizontal columns N of the pixel of the image to be projected is displayed. It is necessary that the diffracted light spreading angle N 1 ⁇ required for the diffraction is smaller than the diffraction angle 0 S. Therefore, to project and display an image while avoiding 0th order diffracted light,
  • the number of horizontal columns M of the partition portion of the spatial phase modulation element is set to the number of horizontal columns N of the pixels of the image to be projected and displayed.
  • the pitch P between the respective partition portions constituting the spatial phase modulation element is
  • a projection apparatus including a condensing optical system, a spatial phase modulation element that satisfies the necessary conditions for realizing the above-described spatial phase information, and a shielding member will be described.
  • FIG. 7 shows a condensing optical system that condenses illumination light from a light source and makes it incident on a spatial phase modulation element, and satisfies the necessary conditions for realizing the above-described spatial phase information as a phase distribution. And a shielding member that shields the 0th-order diffracted light that is emitted and collected without being diffracted from the spatial phase modulation element. A plan view is shown.
  • a projection apparatus 70 having a transmission type spatial phase modulation element in FIG. 7 includes a light source 71, a spatial filter 72 for removing noise of illumination light, a collimator 73, a condensing lens 74, and a transmission type
  • the spatial phase modulation element 75 and the shielding member 76 are included. In such a configuration, a configuration without a ⁇ plate or PBS can be performed, so that a simple optical configuration is required, and a projection lens is not required.
  • illumination light from a light source 71 passes through a spatial filter 72 and a collimator 73, becomes an illumination light beam, and is collected by a condenser lens 74 and then transmitted through a spatial phase.
  • the light enters the modulation element 75.
  • the illumination light incident on the transmissive spatial phase modulation element 75 is phase-modulated and emits diffracted light 79.
  • the spatial phase modulation element 75 embodies the spatial phase information generated based on the image data as a phase distribution on the element to perform phase modulation.
  • the diffracted light 79 from the transmissive spatial phase modulation element 75 is projected onto the screen 77, and a desired image can be displayed on the screen 77.
  • the light is condensed and emitted from the spatial phase modulation element 75 without being diffracted through the condenser lens 74, and the 0th-order diffracted light is condensed and shielded by the shielding member 76 at the condensing position.
  • the device is designed so as not to adversely affect the image being displayed.
  • the shielding member 76 is arranged in the light beam of the diffracted light 79 emitted from the spatial phase modulation element 75.
  • the screen 77 is sufficiently far from the position of the shielding member 76. As such, it has little adverse effect on the image displayed on the screen.
  • the correction processing 94 shown in FIG. 2 performed during this series of operation processing is performed corresponding to the arrangement position of each optical element, and the spatial phase distribution embodied on the spatial phase modulation element. This means that the spatial phase distribution obtained by the Fourier transform is corrected so as to be diffracted toward the screen 77.
  • the diffracted light 79 is generated with the 0th-order diffracted light sandwiched therebetween. Therefore, it is necessary to consider not only the positive first order but also the negative first order diffracted light.
  • Fig. 1 in Embodiment 1 it is imposed on the transmissive spatial phase modulation element 12 for obtaining a desired image based on the diffracted light of only one of the plus 1st order or the minus 1st order.
  • the condition was derived.
  • FIG. 7 it can be considered that the diffraction angle 0 s in FIG. 1 is doubled.
  • the number M of columns in the horizontal direction of the partition portion of the transmissive spatial phase modulation element 75 is preferably 1,920 or more.
  • the width D of the phase modulation part of the spatial phase modulation element is 0.6 inch and the aspect ratio of each division part is 4/5, one division part of the transmission type spatial phase modulation element 75
  • the size of the minute is 6.4 m.
  • the size of the partition portion in FIG. 7 may be twice the size of one partition portion of the spatial phase modulation element shown in FIG.
  • the size of one partition portion in the transmission type spatial phase modulation element 75 is 17 m, and in the case of Super Hi-Vision, the size of the transmission type spatial phase modulation element 75 The size of one section is 1.6 m.
  • the number of horizontal columns M of the partition portion of the transmissive spatial phase modulation element is set to the number of horizontal columns N of the pixels of the image to be projected.
  • phase information display surface of the spatial phase modulation element 75 that is, the horizontal width D of the phase modulation unit, the number N of pixel columns in the horizontal direction of the image to be projected, the partition partial pitch P of the transmission type spatial phase modulation element 75.
  • an optimum spatial phase modulation element for a projection apparatus can be provided by setting the pitch P between the partition portions of the spatial phase modulation element 75 to 6.4 m to 3.2 m.
  • the real domain is, for example, image data to be displayed or an image on the screen that is displayed.
  • the portion represented as one pixel 81 to be projected is indicated by the shaded portion of the real domain.
  • the Fourier transform of this real domain 80 creates basic data of spatial phase information. Since the maximum spatial frequency of the image to be projected is the same in the vertical and horizontal directions, it is efficient to make the vertical length K and the horizontal length J of the phase modulation part in the spatial phase modulation element in the Fourier domain equal. Whatever aspect ratio of the projected image is displayed, it does not depend on that ratio.
  • FIG. 9A shows a case where the vertical length K and the horizontal length J of the phase modulation part of the spatial phase modulation element are equal in the Fourier domain 90 obtained by Fourier transforming the real domain 80 of FIG. .
  • the number of horizontal columns M or the number of vertical columns L of the partition portion of the spatial phase modulation element is the number of horizontal columns N of the pixels of the image to be projected or the vertical direction. It is desirable to be equal to or greater than the number of columns of Q.
  • the number of horizontal columns M or the number of vertical columns L of the partition portion of the spatial phase modulation element is equal to the number of horizontal columns N or the number of vertical columns Q of the pixels of the image to be projected.
  • FIG. 9A shows that the interval in the horizontal section of the spatial phase modulation element is smaller than the interval in the vertical section.
  • FIG. 9 shows a Fourier domain 91 smaller than A. In FIG. 9G, contrary to FIG.
  • Figure 9C The reproducibility of the low-frequency image in the horizontal direction is slightly degraded in theory, with the advantage that the number of spatial phase modulation elements can be reduced. Therefore, a plurality of partition parts for performing phase modulation in the spatial phase modulation element are two-dimensionally arranged, and the number of sections in each partition part is equal to or greater than the number of pixels of the projected image. It is desirable.
  • Equation (14) is the image you want to display, and k and I are understood to be pixel addresses in the image.
  • NXP the number of pixels in Equation (14) is NXP.
  • the fast Fourier transform (FFT) can be used for the discrete Fourier transform of Equation (1 4). This fast Fourier transform By using, the image you want to project
  • the amount of information can be further increased if the number of columns in the partition portion is larger than the number of pixels to be projected and displayed.
  • N and P there is an advantage that the calculation of the powers of 2 is shaky. Therefore, the number of vertical columns and horizontal columns of the partition portion in the spatial phase modulation element is , By making it a power of 2, it is possible to speed up the arithmetic processing.
  • the number of vertical columns and the number of horizontal columns of the partition portion for performing phase modulation in the spatial phase modulation element are on the screen.
  • Optimal for projecting images that are equal to or greater than the number of vertical and horizontal columns of pixels of the projected image displayed on the screen, and sufficiently satisfy the number of images displayed on the screen. It can be a spatial phase modulation element.
  • the vertical and horizontal lengths of the spatial phase modulation elements equal, the vertical and horizontal spatial frequencies (resolutions) in the image can be displayed equally. Even when the vertical and horizontal lengths of images to be displayed are different, the minimum necessary spatial frequency can be output while the vertical and horizontal lengths of the spatial phase modulation elements remain the same.
  • an image can be projected by diffracting light with a projection apparatus equipped with spatial phase modulation elements with equal length and width. Therefore, the contour shape in the phase modulation part formed by all the partition parts for performing the phase modulation of the spatial phase modulation element is a square having the same aspect ratio, and does not depend on the aspect ratio of the projected image.
  • the image can be projected on the screen.
  • light is diffracted by a projection device having a spatial phase modulation element in which the number of vertical and horizontal columns of pixels of the image displayed on the screen is equal to the number of vertical and horizontal columns of the phase modulation section of the spatial phase modulation element.
  • FIG. 1 OA an image g (x) to be projected is shown as a graph G (u) by one-dimensional Fourier transform as an example.
  • Figure 11 shows the converging optical system that collects the illumination light from the light source and makes it incident on the spatial phase modulation element, the reflective spatial phase modulation element, and the light emitted from the spatial phase modulation element without being diffracted.
  • 1 shows a projection device provided with a shielding member that shields the diffracted 0-order diffracted light at its condensing position.
  • the projection apparatus 1 10 in FIG. 11 includes a light source 1 1 1, a reflective spatial phase modulation element 1 13, a shielding member 1 14, and a condensing lens 1 12 as a condensing optical system. .
  • the spatial filter is omitted.
  • This optical configuration is an illumination optical system that does not require the use of a ⁇ plate, is very simple, can be reduced in cost, and can be downsized.
  • this projection apparatus 110 emits diffracted light 118 that has been phase-modulated by a reflective spatial phase modulation element 113.
  • the diffracted light is projected onto the screen 1 15 through the condenser lens 1 12.
  • the 0th-order diffracted light 1 1 7 is also reflected, but the reflected 0th-order diffracted light 1 1 7 is shielded by the shielding member 1 14
  • the image projected on the screen 115 is not adversely affected.
  • the light source 1 1 1 is placed outside the optical path of the diffracted light as shown in FIG. Unlike the projection device shown in FIG. 7, the light beam of the diffracted light beam can be placed outside the diffracted light beam projected to the screen by placing the shielding member 1 1 4 at an oblique direction.
  • the shielding member can be excluded from the inside, and the shadow of the diffracted light generated by the shielding member can be made zero.
  • the optical arrangement of Fig. 11 also requires correction corresponding to the arrangement position of each optical element, and this correction is such that the irradiation light irradiated to the spatial phase modulation element is directed toward the screen 115. This means that the spatial phase distribution displayed on the spatial phase modulation element obtained by Fourier transformation is corrected so that it is diffracted and projected.
  • FIG. 12 shows still another embodiment of a projection apparatus including a reflective spatial phase modulation element.
  • the projection device 120 in FIG. 12 includes a light source 121 and a condensing lens 1 as a condensing optical system. 22, a reflective spatial phase modulation element 123, a shielding member 124, and a screen 125 for projecting the diffracted light 128.
  • the spatial filter is omitted. Even in this optical configuration, the illumination optical system that does not require the use of the ⁇ plate is very simple, can be reduced in cost, and can be downsized.
  • illumination light from a light source 121 for example, a laser beam
  • a condensing optical system condensing lens 122 is converted into an illumination light beam 126 by a condensing optical system condensing lens 122 and is incident on a reflective spatial phase modulation element 123.
  • the phase-modulated diffracted light 128 is emitted by the reflective spatial phase modulation element 123 and projected onto the screen 125, and an image is displayed on the screen.
  • the 0th-order diffracted light 127 is also reflected and emitted into the light beam of the diffracted light 128, but the screen 125 is configured to be shielded by the shielding member 124.
  • the image displayed above is not adversely affected by practical use.
  • the optical arrangement shown in Fig. 12 also requires correction corresponding to the arrangement position of each optical element.
  • the irradiation light applied to the spatial phase modulation element is directed toward the screen 125. This means that the spatial phase distribution obtained by Fourier transform is corrected so as to be diffracted.
  • a projection lens may be provided without providing the projection lens. That is, when the projection distance to the screen is long with respect to the size of the spatial phase modulation element, it is not necessary to adjust the focus, so that the projection lens can be eliminated. On the other hand, if the projection distance to the screen is close to the size of the spatial phase modulation element, a projection lens may be required for focus adjustment. In addition, if you want to add a zoom function as a projection device, you need a projection lens that carries the zoom function. However, even the projection lens added at this time can use a cheaper and smaller object than the projection lens used in the conventional projection apparatus.
  • illumination light from red light source R, green light source G, and blue light source B for example, light from red light source, green light source G, and laser from blue light source B, is used to illuminate each color in a time-sequential manner.
  • Full color display is possible.
  • the normal one-color image display is 60 Hz, so when switching between the three colors, 180 Hz is the minimum required.
  • the switching speed of the spatial phase distribution corresponding to the image of the spatial phase modulation element in the case of performing full color display needs to be at least 1800 Hz, and preferably 5400 Hz or more.
  • FIGS. 13A and 13B are each a projection device 130 that includes a plurality of reflective spatial phase modulation elements and a shielding member, has a multi-plate configuration, and performs full-color display of an image. Is shown.
  • FIG. 13A is a plan view of the projector 130
  • FIG. 13B is a view of the portion including the spatial phase modulation element 133b corresponding to the blue light source of FIG. A side view of the hour is shown.
  • the projection device 130 in FIG. 1A includes a light source of each color of red light source R, green light source G, and blue light source B, collimators 131 r, 131 g, 131 b corresponding to the light sources of each color, Total reflection prisms 132r, 132g, 132b corresponding to the light sources, reflective spatial phase modulation elements 133r, 133g, 133b corresponding to the light sources of the respective colors, and shielding members 1 36r, 136g, 136b corresponding to the light sources of the respective colors A color synthesizing prism 137 for synthesizing the diffracted lights of the respective colors, and a projection lens 138.
  • the projection lens 138 shown in FIG. 13A is a concave lens, it may be a convex lens.
  • the blue illumination light emitted from the blue light source 134b for example, a blue laser beam
  • the total reflection prism 132b passes through the collimator 131b, and corresponds to the blue light source 134b.
  • the light enters the reflective spatial phase modulation element 133b.
  • the blue diffracted light modulated and emitted by the spatial phase information for the blue image corresponding to the reflective spatial phase modulation element 133b passes through the collimator 131b again, becomes a substantially parallel light beam, and becomes a color synthesis prism. Incident on 137.
  • the blue zero-order diffracted light here is emitted from the spatial phase modulation element 133b, then again passes through the collimator 131b, is totally reflected by the total reflection prism 132b, and is blocked by reaching the shielding member 136b. .
  • the portions corresponding to the spatial phase modulation elements 133g and 133r of the green light source and the red light source in FIG. 13A also have the same configuration as the portions corresponding to the spatial phase modulation element 133b of the blue light source 134b.
  • Red and green diffracted light can be obtained, and diffracted light emitted from the spatial phase modulation element corresponding to each color is incident on the color synthesis prism 137.
  • the 0th-order diffracted light of the red light source and the green light source is removed by the shielding members 136g and 133r in the same manner as the 0th-order diffracted light of the blue light source.
  • the shielding members 136g and 133r is removed by the shielding members 136g and 133r in the same manner as the 0th-order diffracted light of the blue light source.
  • each illumination light is always illuminated, and there is no need to switch the light source of each color as in the color sequential method in Fig. 4, so there is no worry of a color break phenomenon.
  • L C and L C O S can be applied as a transmissive spatial phase modulation element.
  • D M D cannot be used as a reflective spatial phase modulation element, but can be used as a spatial intensity modulation element that can realize the spatial phase as an amplitude diffraction element. However, in this case, the diffraction efficiency cannot be increased.
  • MM D (Spatial Phase Modu later: S PM) is a reflection type spatial phase modulation element that can improve the light utilization efficiency and diffraction efficiency with a simpler structure and obtain an optimum diffraction pattern.
  • Magic Mirror Device is provided. An image can be projected by using the MMD element of the present invention for the above-described projection apparatus.
  • FIGS. 14A and 14B are perspective views showing the MMD elements 150 and 160.
  • FIG. 14A is a perspective view showing the MMD elements 150 and 160.
  • Mirrors 151 and 161 of an MM D (Magic Mirror Device) element include partition portions for phase-modulating light from a light source, and elastic members disposed corresponding to the partition portions, Each electrode is arranged corresponding to each elastic member, and has an electrode for moving the mirror by applying a voltage to the restoring force of the elastic member, and a substrate on which the electrode is arranged.
  • FIGS. 14 and 14B the section 93 for performing phase modulation in the MMD elements 150 and 160 is shown shaded.
  • the MMD element which is a spatial phase modulation element that emits phase-modulated diffracted light from light from the light source of the present invention, has a plurality of partition portions 93 for performing phase modulation arranged in two dimensions,
  • the number of sections of each section 93 is set equal to or greater than the number of pixels of the projected image.
  • the number of vertical columns and the number of horizontal columns of the partition part 93 in the MMD element is equal to or larger than the number of vertical columns and horizontal columns of pixels of the projected image.
  • the number of vertical columns and the number of horizontal columns of the partition portion 93 in the MMD element is a power of two.
  • the contour shape in the phase modulation section formed by all of the partition sections 93 for performing phase modulation of the MMD element is a square having the same aspect ratio, and does not depend on the aspect ratio of the projected image.
  • the MM D elements 150 and 160 have electrodes (not shown), elastic members (not shown), pillars (not shown), and mirrors 151 and 161 arranged on the substrate 157. is doing.
  • the mirror used for the MMD element may be an integral type mirror surface, or may be a mirror surface obtained by dividing the integral type into a plurality of mirror surfaces.
  • the mirror When controlling an integrated mirror with multiple electrodes, the mirror must be flexible.
  • Fig. 14 A multiple electrodes are associated with one integrated mirror 151. It shows how it works.
  • one elastic member is made to correspond to each partition portion 93 for performing phase modulation in the integrated mirror 151.
  • FIG. 14A one elastic member is made to correspond to each partition portion 93 for performing phase modulation in the integrated mirror 151.
  • one electrode is made to correspond to one substantially square mirror 161, and a plurality of mirrors 161 are arranged in the vertical and horizontal directions while maintaining a constant spacing between the mirrors, so-called pitch.
  • a state in which the element 160 is configured is shown.
  • the partition part 93 for performing phase control in the MMD element 160 is shown shaded.
  • the pitch of the mirror 161 does not have to be constant. It is desirable that the distance between the mirrors be as close as possible to the extent that the mirrors do not interfere with each other during operation.
  • this MMD element since this MMD element only needs to have a function capable of phase modulation, a desired function can be exhibited by performing control capable of forming a height position difference of about a fraction of the wavelength of light. Therefore, the surface accuracy of the mirror surface of the MMD element needs to be about one-tenth of a wavelength.
  • the surface roughness of the mirror of the MMD element is preferably about 1 / 100th of the wavelength. Therefore, when used with visible light, the surface accuracy of the mirror surface of the MMD element is preferably 5 Onm or less, and the surface roughness of the mirror surface is preferably 5 nm or less. The accuracy here may be achieved at rms or peak-to-peak. By setting the mirror surface accuracy to 5 Onm or less, images with high fidelity can be displayed. Also, by setting the mirror surface roughness to 5 nm or less, the scattered light can be reduced and an image with high contrast wrinkles can be displayed.
  • FIG. 15A shows a cross-sectional view along line XV—A of the MMD element 150 of FIG. 14A.
  • An insulating layer 156 is overlaid on the substrate 157 of the MMD element 150, and a conductive elastic member 154 disposed corresponding to each partition portion 93 is provided on the insulating layer 156. ing. Below each elastic member 154, an electrode 155 is provided above the insulating layer so as to correspond to each section and connected to the switch circuit.
  • a support column 153 is coupled to the upper portion of the elastic member 154, and the upper portion of the support column 153 is further coupled to the thin film 152, and a mirror 151 is disposed on the thin film 152.
  • FIG. 15A shows a cross-sectional view along line XV—A of the MMD element 150 of FIG. 14A.
  • An insulating layer 156 is overlaid on the substrate 157 of the MMD element 150, and a conductive elastic member 154 disposed corresponding to each partition portion
  • the mirror 151 is integrally connected, and the support 153, the elastic member 154, and the electrode 155 are arranged corresponding to each partition portion of the single mirror 151.
  • the mirror 151 here has flexibility and can be easily deformed so as to bend.
  • the mirror 151 is formed of a highly reflective metal or dielectric multilayer film.
  • the thin film 152 can be formed using a material having high flexibility and durability.
  • As the thin film 152 a flexible organic film, Si 2 N 3 or the like is preferably used.
  • the thin film 152 may be omitted. Also, it struts 153 may be used as convenient in the manufacturing process, such as S i and S i 0 2.
  • a flexible metal or a conductive organic film can be used. Further, a material obtained by coating this organic film with a conductive material may be used.
  • AI, Cu, W, or the like can be used as a conductor.
  • S i 0 2 or 3 i C can be used for the insulating layer 156, and S i can be used for the substrate 157.
  • the mirror surface in FIG. 15A is formed from an integral mirror, and the elastic member and the electrode correspond to each partition portion for phase modulation of the mirror surface in the integral mirror.
  • FIG. 15 B shows a cross-sectional view of the MMD element of FIG. 15 A during phase modulation of light.
  • FIG. 15B by applying a voltage to the electrode 155 from the initial state of FIG. 15A, a Coulomb force acts between the elastic member 154 and the electrode 155 in the corresponding partition portion 93.
  • the elastic member 154 approaches the electrode 155 and is bent so that the surface of the flexible integrated mirror 151 is depressed, and a movement amount ⁇ h of the mirror surface is generated.
  • the phase difference is caused by the difference in the optical path between the incident light reflected by the other non-curved mirror surface and the incident light reflected by the curved mirror surface, due to the difference in the movement amount ⁇ h of the mirror surface. Modulation is possible.
  • the mirror surface is curved and recessed, that is, the amount of deformation of the mirror surface is Ah force 1/4 wavelength, the incident light reflected by the curved mirror is half a wavelength in the round trip. That is, it is possible to create a phase difference of ⁇ compared to the reflected light reflected by other non-curved mirror surfaces.
  • the phase can be reversed by a binary operation of applying a voltage of 0N / 0FF to the electrode.
  • the deformation amount ⁇ h of the mirror surface is curved by a maximum of 1/2 wavelength, the reflected light reflected by the curved mirror surface is reflected by other uncurved mirror surfaces. Compared to the reflected light, it can create a phase difference of up to one wavelength by reciprocation.
  • the mirror surface is curved in response to the application of a voltage to the electrode, so that the phase difference that can be produced according to the amount of deformation is determined.
  • the control of the curvature of the mirror surface that is, the deformation
  • the control can be determined only by the presence or absence of voltage application to the electrodes, so the control is simple. Control is not limited to binary control.
  • the maximum deformation amount of the mirror surface should be within the half wavelength equivalent of the light of the incident light source, and the voltage value when this maximum deformation amount can be generated is the maximum value and a voltage within that range is applied.
  • the amount of deformation of the mirror surface can be set to an arbitrary amount.
  • the control may be analog control, or the voltage from zero to the maximum voltage value may be divided into several voltage steps in advance, and the control may be increased or decreased sequentially one by one. good.
  • the maximum deformation may be 1/4 wavelength. Even if the maximum deformation of the mirror surface is within half the wavelength equivalent to the light from the incident light source, the phase difference formed in the emitted diffracted light is one wavelength, and all phase differences can be created. . Of course, more than one wavelength is acceptable.
  • the depression of the elastic member 154 that is, it is possible to control the deformation amount ⁇ h of the mirror surface due to the curvature of the mirror surface.
  • the amount of deformation ⁇ h on the mirror surface is controlled to increase and decrease sequentially, and by changing the amount of deformation of the integrated mirror 151 continuously and slowly. It is possible to suppress unnecessary diffraction orders.
  • the elastic member 154 can return to the initial state by the restoring force of the elastic member 154 by setting the voltage to zero after the voltage is applied and the electrode is depressed.
  • phase modulation can be performed by applying a voltage to the specific electrode 155 and selectively bending the specific portion of the mirror 151 connected to the integral type. By continuously and gently changing the height of the mirror 151, generation of unnecessary diffraction orders can be suppressed, and higher diffraction efficiency than binary one modulation can be obtained.
  • Fig. 16A shows a cross-sectional view of the MMD element of Fig. 14B taken along line XVI-A.
  • the integrated mirror as shown in Fig. 1 5-8 is divided into a plurality of mirrors 161, and each of the divided mirrors 16 1
  • the support 153, the elastic member 154, and the electrode 155 are arranged so as to have a one-to-one correspondence.
  • the configuration is the same as that of the MMD element 150 in FIGS. 15-8 and 15B.
  • a hard organic film or Si may be used for the thin film 162.
  • the mirror 161 and the thin film 162 are assumed to be substantially square, and the details will be described below.
  • each section 93 for performing phase modulation is one mirror.
  • FIG. 16B shows a cross-sectional view of the MMD element of FIG. 16 A during phase modulation of light.
  • FIG. 16B by applying a voltage to the electrode 155 from the state of FIG. 16A, a Coulomb force acts between each elastic member 154 and each electrode 155, and the elastic member 154 becomes the electrode 155.
  • the mirror 161 on the elastic member 154 moves downward via the support column 153.
  • the amount of movement A h 2 that is, the optical path difference is generated, which enables the phase modulation of light.
  • the mirror is the height change amount, or moving amount delta h 2 mirrors are moving downward, if it is 1/4-wavelength of the phase of the incident light, reciprocal 1/2-wavelength, i.e. the voltage
  • a phase difference of ⁇ can be created in a reciprocating manner in the incident light between the other mirror that is not applied and the mirror that is moving downward by applying a voltage.
  • the control is not limited to binary one control.
  • the maximum amount of movement on one side of the mirror is set to be within a half wavelength equivalent of the light from the incident light source, and the voltage within the range is applied with the maximum voltage value when this maximum amount of movement can be generated.
  • the amount of movement of the mirror surface can be set to an arbitrary amount.
  • the control may be analog control, or the voltage from zero to the maximum voltage value may be divided into several voltage steps in advance, and the control may be made to increase or decrease this step sequentially one by one. Even if the maximum amount of movement of the mirror surface is within 1/2 wavelength equivalent of the light from the incident light source, the phase difference formed in the emitted diffracted light is one wavelength, and all phase differences can be created. Of course, it may be more than one wavelength.
  • the depression of the elastic member 154 by selecting appropriately the elastic constant of the elastic member 154, i.e. it is possible to control the movement amount ⁇ h 2 of one surface mirror. Also, the amount of movement of the mirror surface ⁇ h 2 is controlled so as to increase and decrease sequentially, and the amount of movement of the mirror 161 is changed continuously and gently, resulting in binary one-phase modulation by binary operation. Unnecessary diffraction orders can be suppressed.
  • the elastic member 154 can return to the initial state by the restoring force of the elastic member 154 by setting the voltage to zero after the voltage is applied and the electrode is depressed.
  • a voltage is applied to a specific electrode 155 to select a specific mirror 161.
  • phase modulation can be performed.
  • generation of unnecessary diffraction orders can be suppressed, and furthermore, a diffraction efficiency higher than that of binary modulation can be obtained.
  • the spatial phase modulation element in the color sequential light source control sequence of FIG. Spatial phase information rewrite time 41 corresponds to the time during the movement or deformation operation of the section of each MMD element.
  • US-patent 5, 835, 255 and US-patent 6, 040, 937 can be referred to.
  • these documents describe a technique related to an element that performs color display using the principle of the Fabry-Perot etalon, which is different from the present invention.
  • FIG. 17A shows an example in which the arrangement of electrodes in the MMD elements of FIG. 15A and FIG. 15B is different.
  • FIG. 17A shows a configuration in which the electrode 155 provided above the insulating layer 156 in FIGS. 15A and 15B is provided on the insulating layer 156.
  • FIG. All are the same except that the arrangement of the upper electrode 155 in the insulating layer is changed to the arrangement of the electrode 171 on the insulating layer 156.
  • FIG. 17B shows an example in which the electrode arrangements in the MMD elements of FIGS. 16A and 16B are different.
  • FIG. 17B shows a configuration in which an electrode 155 provided above the insulating layer in FIGS. 16A and 16B is provided on the insulating layer 156.
  • FIG. All are the same except that the arrangement of the upper electrode 155 in the insulating layer 156 is changed to the arrangement of the electrode 171 on the insulating layer.
  • FIG. 18 is a schematic view showing the overall arrangement of the support 153 and the elastic member 154 on the substrate 157 of the MMD element in the reflective spatial phase modulation element of the present invention.
  • FIG. 15A and 15B and FIGS. 16A and 16B are shown in FIG. A state in which the two-dimensional arrangement is vertically and horizontally is schematically shown.
  • the cross section of the support 153 in the MMD element is circular.
  • the cross section of the support 153a in the MMD element is rectangular.
  • the cross-sectional shape of the column in the MMD element may be other shapes, and an arbitrary cross-section such as an oval or a rectangle may be appropriately selected.
  • the elastic member 154 has a target shape centered on the support column with respect to the substrate 157 as shown in FIG. 15A and the like. However, the elastic member 154 may have an asymmetric shape. In addition, the contact portion with the substrate 157 may be formed on only one side centered on the support column.
  • the configuration of the apparatus is simplified, and the projection apparatus provided with the spatial phase modulation element that can avoid the influence of the 0th-order diffracted light, and the light use efficiency and the diffraction efficiency are improved.
  • a reflective spatial phase modulation element that can simplify the optical system is described.
  • the projection apparatus of the present invention can be configured with a simple optical system that can eliminate the ⁇ plate, and can be projected and displayed while simplifying the configuration of the projection apparatus itself. It is possible to provide a spatial phase modulation element capable of ensuring a sufficient resolution.
  • a condensing optical system such as a condensing lens
  • the 0th-order diffracted light is shielded by the shielding member, so that the 0th-order diffracted light is not mixed in the image projected on the screen, and the image contrast is reduced. Can be prevented.
  • the projection apparatus of the present invention can be made inexpensive by having a simpler configuration than the conventional projection apparatus.
  • the new reflective spatial phase modulation element of the present invention has a simple configuration, is inexpensive to produce, has a mirror, and has almost no light loss. Use efficiency is good. Furthermore, by using an elastic member and an electrode to continuously control the amount of movement or deformation of the mirror surface depending on the voltage applied to the electrode, unnecessary diffraction orders can be suppressed and diffraction efficiency can be improved. be able to.

Abstract

A spatial phase modulation element (12) performing projection display of a video image by passing light from a light source and exiting phase modulated diffraction light. A plurality of sectional parts for performing phase modulation are arranged two-dimensionally, and the number of sections in each sectional part is equal to or larger than that of the pixels.

Description

明 細 書  Specification
空間位相変調素子および投影装置  Spatial phase modulation element and projection apparatus
技術分野  Technical field
[0001] 本発明は、 投影装置に利用可能な新規な空間位相変調素子に関する。 また The present invention relates to a novel spatial phase modulation element that can be used in a projection apparatus. Also
、 この空間位相変調素子を利用した投影装置を提供する。 A projection device using the spatial phase modulation element is provided.
背景技術  Background art
[0002] 一般的な投影装置には、 透過型液晶(Liquid Grystaに LG)や反射型液晶(Liq uid Crystal On Si I icon丄 COS)、 または DMD(Digtal Micro-mirror Device)な どを用いたものがある。  [0002] For general projectors, transmissive liquid crystals (Liquid Grysta to LG), reflective liquid crystals (Liquid Crystal On Si I icon COS), or DMD (Digtal Micro-mirror Device) are used. There is something.
[0003] 従来の LGや LG0Sを用いた投影装置では、 LGや LG0Sの液晶に投影したい画像 を表示し、 照射光で液晶を照らし、 液晶からの透過光または反射光を投影レ ンズを介してスクリーンに拡大投影することで画像を表示していた。 一方で 、 DMDを用いた投影装置では、 投影したい画像に従って DMDのミラ一素子を構 成しているマイクロミラ一に対応する電極への電圧の印加を 0N/0FFのバイナ リ一制御をすることでマイクロミラーの状態を切り替え、 入射光を投影光路 に反射して投影レンズを介して画像をスクリーンに投影していた。  [0003] In a projector using a conventional LG or LG0S, the image to be projected on the LG or LG0S liquid crystal is displayed, the liquid crystal is illuminated with the irradiating light, and the transmitted or reflected light from the liquid crystal is transmitted through the projection lens. The image was displayed by magnifying it onto the screen. On the other hand, in a projection device using DMD, binary control of 0N / 0FF is applied to the voltage applied to the electrode corresponding to the micromirror that constitutes the mirror element of DMD according to the image to be projected. Then, the state of the micromirror was switched, and the incident light was reflected on the projection optical path and the image was projected onto the screen via the projection lens.
[0004] 上記のような液晶や DMDを用いた投影装置は、 光源と、 照明光学系と、 投影 レンズとを有しており、 光源からの照明光を液晶などにいったん画像表示し 、 透過あるいは反射した画像光を投影レンズによって拡大表示をするという 方法を採用していた。 また、 このような投影装置において、 画像のカラ一表 示を行う為に色順次式を採用した場合、 光源の色を切り替えるカラーフィル タを用いていた。 一方で、 色毎に複数の素子を用いる多板方式を採用した場 合は、 色分離■合成光学系が必要になる。  [0004] A projector using a liquid crystal or a DMD as described above has a light source, an illumination optical system, and a projection lens. The illumination light from the light source is temporarily displayed on a liquid crystal or the like and transmitted or transmitted. A method of enlarging the reflected image light with a projection lens was used. In addition, in such a projector, when a color sequential method is used to display the color of an image, a color filter that switches the color of the light source is used. On the other hand, if a multi-plate method using multiple elements for each color is adopted, a color separation / synthesis optical system is required.
[0005] また、 従来の投影装置では、 一般的に光源として高圧水銀ランプなどのィ ンコヒ一レント光源を用いていた。 この場合、 液晶等の画像表示素子に効率 良く、 かつ、 均一に光源からの光を照明する為に複雑な照明光学系を必要と しており、 その結果、 照明光学系が複雑かつ大型化すると言う技術的問題が あった。 さらに、 高精細な画像を投影する場合には、 より高精度の投影レン ズが必要であり、 投影レンズが大型化し、 それにともない投影装置自体も大 型化すると言う技術的問題があった。 その上、 高品質画像をカラー表示する ことに伴い、 カラーフィルタを設けたり、 複雑な色合成■分離光学系が必要 となり、 投影装置がさらに大型になると言う技術的問題があった。 したがつ て、 これら投影装置における光学構成の大型化や複雑化に伴い、 生産コスト も高くなつてしまうという問題があった。 [0005] In addition, conventional projectors generally use an incoherent light source such as a high-pressure mercury lamp as a light source. In this case, a complex illumination optical system is required to illuminate the light from the light source efficiently and uniformly on the image display element such as a liquid crystal. As a result, if the illumination optical system becomes complicated and large The technical problem to say there were. In addition, when projecting high-definition images, a more accurate projection lens is required, and there has been a technical problem that the projection lens becomes larger and the projection apparatus itself becomes larger. In addition, with the color display of high-quality images, there are technical problems that a color filter is provided and a complicated color synthesis / separation optical system is required, which further increases the size of the projection apparatus. Therefore, there has been a problem that the production cost increases as the optical configuration of these projection apparatuses becomes larger and more complicated.
[0006] これらの技術的問題の一つの解決手段として、 例えば、 特許文献 1におい て図 20に示すような空間位相変調素子(Spatial Phase Modulater :SPM)を用 いた簡単な照明光学系を使用し、 簡易的な投影レンズで済ますことができる 小型の投影装置を開示している。  [0006] As one solution to these technical problems, for example, a simple illumination optical system using a spatial phase modulator (SPM) as shown in FIG. A small projection device that can be completed with a simple projection lens is disclosed.
[0007] 以下において、 回折光で画像を投影する投影装置の一つの従来例として、 図 20の投影装置 200の原理を簡単に示す。  [0007] In the following, as a conventional example of a projection apparatus that projects an image with diffracted light, the principle of the projection apparatus 200 of FIG.
[0008] 図 20では、 光源 (レーザ一) 201で射出した直線偏光の光を P BS (偏光 ビームスプリッタ) 203に入射させ、 P BS203内で反射させて空間位相変調 素子としての L COS202に入射させる。 この P BS203と L COS202の間に は図示されていない λ/4板が設けられている。 ここで、 投影される画像情 報に従つて L C O S 202で位相変調を受けた回折光 204は、 λ / 4板を再び通 過し、 さらに P BS203を透過して投影レンズ 205を介しスクリーン 206に画像 を投影して表示する。 なお、 図 20においては、 L COS202の位相変調の有 無により位相差が πのバイナリー変調を得ることができる。  [0008] In FIG. 20, linearly polarized light emitted from the light source (laser) 201 is incident on a PBS (polarized beam splitter) 203, reflected in the PBS203, and incident on an L COS202 as a spatial phase modulation element. Let A λ / 4 plate (not shown) is provided between the PBS 203 and the L COS 202. Here, the diffracted light 204 phase-modulated by the LCOS 202 according to the image information to be projected passes through the λ / 4 plate again, further passes through the PBS 203, and passes through the projection lens 205 to the screen 206. Project an image and display it. In FIG. 20, binary modulation with a phase difference of π can be obtained by the presence or absence of phase modulation of L COS202.
[0009] しかし、 図 20のような投影装置 200では、 L COS202を使用している為 に光が液晶内を往復する事で光量の低下が生じ、 光の利用効率が低く、 表示 される画像が暗くなつたり、 あるいは表示される画像の明るさを確保するた めには光源の大型化が必要になると言う技術的問題があった。 さらには、 表 示される画像の解像度への着目やその向上に関する記載なども全く存在して いなかった。 また、 0次回折光 207の除去も不十分である為にスクリーン 206 の画像内に 0次回折光 207が混入して影響が残ることで画像の鮮明さに欠ける と言う問題もあった。 However, in the projection apparatus 200 as shown in FIG. 20, since the L COS202 is used, the amount of light is reduced when the light reciprocates in the liquid crystal, and the light use efficiency is low. There is a technical problem that the light source becomes darker or that the light source needs to be enlarged to ensure the brightness of the displayed image. In addition, there was no mention of the focus on the resolution of the displayed image or the improvement. In addition, since the removal of the 0th-order diffracted light 207 is insufficient, the 0th-order diffracted light 207 is mixed in the image on the screen 206 and the influence remains, so that the image is not clear. There was also a problem.
[0010] 以上のように、 従来の空間位相変調素子を用いた投影装置には、 いくつか の技術的問題があった。  [0010] As described above, the conventional projection apparatus using the spatial phase modulation element has some technical problems.
[0011 ] 本発明の目的は、 上記の問題に鑑み、 装置の構成が簡素でありながら、 投 影されて表示される画像の十分な解像度が確保できる空間位相変調素子を提 供できることにある。 また、 0次回折光の影響をも巧みに回避できる新規な 投影装置を提供することを課題とする。  In view of the above problems, an object of the present invention is to provide a spatial phase modulation element capable of ensuring a sufficient resolution of an image to be projected and displayed while the configuration of the apparatus is simple. It is another object of the present invention to provide a novel projection apparatus that can skillfully avoid the influence of 0th-order diffracted light.
特許文献 1 : 国際公開第 WO/2005/059881パンフレツト  Patent Document 1: International Publication No. WO / 2005/059881 Pamphlet
発明の開示  Disclosure of the invention
[0012] 上記課題を解決するために、 本発明の第 1の空間位相変調素子として、 光 源からの光を経由させ位相変調を行つた回折光を出射させることによって映 像の投影表示を行わしめるための空間位相変調素子であって、 この空間位相 変調素子における位相変調を行うための区画部分が 2次元に複数配置されて いると共に、 各区画部分の区画数が投影されて表示される画像の画素数に等 しいか、 または多い空間位相変調素子を提供する。  [0012] In order to solve the above-described problem, the first spatial phase modulation element of the present invention performs projection display of an image by emitting diffracted light that has undergone phase modulation via light from a light source. Spatial phase modulation element for fastening, and an image in which a plurality of partition parts for performing phase modulation in this spatial phase modulation element are arranged two-dimensionally and the number of sections in each partition part is projected and displayed A spatial phase modulation element equal to or greater than the number of pixels is provided.
[0013] また、 本発明の第 1の空間位相変調素子における第 1の形態として、 区画 部分の縦の列数および横の列数が、 表示される画像の画素の縦の列数および 横の列数に等しい、 または多いことが望ましい。  [0013] Further, as a first form of the first spatial phase modulation element of the present invention, the number of vertical columns and the number of horizontal columns of the partition portion are set so that the number of vertical columns and the horizontal number of pixels of the displayed image are Desirably equal to or greater than the number of columns.
[0014] さらに、 本発明の第 1の空間位相変調素子または第 1の形態の空間位相変 調素子は、 第 2の形態として、 区画部分の縦の列数および横の列数が、 2の べき乗であることが好ましい。  [0014] Furthermore, the first spatial phase modulation element of the present invention or the spatial phase modulation element of the first form is the second form, wherein the number of vertical columns and the number of horizontal columns of the partition portion are two. A power is preferable.
[0015] その上、 本発明の第 1の空間位相変調素子または第 1の形態もしくは第 2 の形態における空間位相変調素子は、 第 3の形態として、 位相変調を行うた めの区画部分の全てで形成される位相変調部における輪郭形状が、 縦横比の 等しい正方形であり、 表示される画像の縦横比に依存しないとすること力《さ らに望ましい。  [0015] Moreover, the first spatial phase modulation element of the present invention or the spatial phase modulation element in the first mode or the second mode is, as the third mode, all of the partition portions for performing phase modulation. It is further desirable that the contour shape in the phase modulation section formed by the above is a square having the same aspect ratio and does not depend on the aspect ratio of the displayed image.
[0016] そして、 本発明の第 1の空間位相変調素子または第 1から第 3のいずれか —つの形態における空間位相変調素子は、 第 4の形態として、 光源からの光 を反射する際に位相変調を行う為のミラー面を有し、 ミラー面上に設けられ た位相変調を行う為の各区画部分に対応して配置された弾性部材と、 弾性部 材にそれぞれ対応して配置され、 電圧を印加することで弾性部材の復元力に 抗してミラー面を移動または変形させるための電極と、 電極が配置される基 板を備えるように構成してもよい。 [0016] Then, the first spatial phase modulation element of the present invention or any one of the first to third modes—the spatial phase modulation element in one of the forms is the light from the light source as the fourth mode. A mirror surface for performing phase modulation when reflecting light, and an elastic member disposed on the mirror surface corresponding to each partition portion for performing phase modulation and a corresponding elastic member It is also possible to provide an electrode for moving or deforming the mirror surface against the restoring force of the elastic member by applying a voltage, and a substrate on which the electrode is arranged.
[0017] また、 本発明の第 4の形態の空間位相変調素子は、 第 1の態様として、 ミ ラー面が、 電極への電圧の印加に対応して移動し、 その移動量または変形量 に応じて位相変調量が決定されるようにしてもよい。  [0017] Further, in the spatial phase modulation element according to the fourth aspect of the present invention, as a first aspect, the mirror surface moves in response to the application of voltage to the electrode, and the amount of movement or deformation is The phase modulation amount may be determined accordingly.
[0018] さらに、 本発明の第 4の形態の空間位相変調素子における第 1の態様の空 間位相変調素子において、 第 2の態様として、 ミラ一面の面の移動制御また は変形制御が、 前記電極への電圧の印加の有無のみで決定されるようにして もよい。  [0018] Further, in the spatial phase modulation element according to the first aspect of the spatial phase modulation element of the fourth aspect of the present invention, as the second aspect, the movement control or deformation control of the one surface of the mirror is performed as described above. It may be determined only by whether or not voltage is applied to the electrodes.
[0019] 本発明の第 4の形態の空間位相変調素子における第 2の態様の空間位相変 調素子において、 第 1の制御として、 ミラ一面の移動量または変形量は、 入 射する光源の光の 1 / 4波長相当分であり、 出射する回折光において 1 / 2 波長分の位相差を形成するとしてもよい。  In the spatial phase modulation element according to the second aspect of the spatial phase modulation element of the fourth aspect of the present invention, as the first control, the amount of movement or deformation of the mirror surface is the light of the incident light source The phase difference corresponding to ½ wavelength may be formed in the emitted diffracted light.
[0020] 本発明の第 4の形態の空間位相変調素子における第 1の態様の空間位相変 調素子において、 第 3の態様として、 ミラ一面の移動量または変形量の制御 は、 電極に印加される電圧値に依存して決定されると共に、 印加される電圧 の変化量は連続的に順次増加または減少されるべく制御されるとしてもよい  [0020] In the spatial phase modulation element of the first aspect of the spatial phase modulation element of the fourth aspect of the present invention, as a third aspect, the control of the movement amount or deformation amount of the mirror surface is applied to the electrode. And the amount of change in the applied voltage may be controlled to increase or decrease continuously and sequentially.
[0021 ] 本発明の第 4の形態の空間位相変調素子における第 3の態様の空間位相変 調素子において、 第 2の制御として、 ミラ一面の最大移動量または変形量が 、 入射する光源の光の 1 / 2波長相当分以内であり、 出射する回折光におい て形成される位相差は 1波長分以内であることが好ましい。 In the spatial phase modulation element according to the third aspect of the spatial phase modulation element of the fourth aspect of the present invention, as the second control, the maximum amount of movement or deformation of the mirror surface is the light of the incident light source It is preferable that the phase difference formed in the emitted diffracted light is within one wavelength.
[0022] 本発明の第 4の形態の空間位相変調素子または第 1の態様から第 3の態様 のいずれか一つの空間位相変調素子または第 1もしくは第 2の制御ができる 空間位相変調素子において、 ミラ一面は、 一体型のミラ一から形成され、 一 体型のミラーにおけるミラー面の位相変調を行う為の各区画部分に対応して それぞれ弾性部材及び電極が配置されるように構成してもよい。 [0022] In the spatial phase modulation element according to the fourth aspect of the present invention, the spatial phase modulation element according to any one of the first aspect to the third aspect, or the spatial phase modulation element capable of the first or second control, One side of the mirror is formed from an integral mirror. The elastic member and the electrode may be arranged corresponding to each partition portion for performing phase modulation of the mirror surface in the body-shaped mirror.
[0023] 本発明の第 4の形態の空間位相変調素子または第 1の態様から第 3の態様 のいずれか一つの空間位相変調素子または第 1もしくは第 2の制御ができる 空間位相変調素子において、 ミラー面は、 位相変調を行うための各区画部分 において、 それぞれ個別のミラ一として形成され、 各ミラ一に対してそれぞ れ弾性部材及び電極が配置されるようにしてもよい。  [0023] In the spatial phase modulation element of the fourth aspect of the present invention, the spatial phase modulation element of any one of the first aspect to the third aspect or the spatial phase modulation element capable of the first or second control, The mirror surface may be formed as an individual mirror in each partition for performing phase modulation, and an elastic member and an electrode may be arranged for each mirror.
[0024] 本発明の第 4の形態の空間位相変調素子においてミラー面の面精度が、 5 0 n m以下であることが好ましい。  [0024] In the spatial phase modulation element according to the fourth aspect of the present invention, the surface accuracy of the mirror surface is preferably 50 nm or less.
[0025] 本発明の第 4の形態の空間位相変調素子においてミラー面の面粗さが、 5 n m以下であることが望ましい。  [0025] In the spatial phase modulation element according to the fourth aspect of the present invention, the surface roughness of the mirror surface is preferably 5 nm or less.
[0026] さらに、 本発明の第 1の投影装置は、 光源と、 光源から出射される光を集 光する集光光学系と、 光源から出射された光が集光光学系を経由して集光さ れる集光位置までの途中位置に配置された 2次元に複数配置された位相変調 を行う為の各区画部分の区画数が、 投影されて表示される画像の画素数に等 しいか、 または多い空間位相変調素子と、 空間位相変調素子から回折されず に出射して集光する 0次回折光をその集光位置で遮蔽する遮蔽部材と、 を備 える投影装置を提供する。  [0026] Furthermore, the first projection device of the present invention includes a light source, a condensing optical system that collects light emitted from the light source, and a light that is emitted from the light source collects via the condensing optical system. Is the number of sections of each section for phase modulation arranged in two dimensions arranged in the middle of the light condensing position equal to the number of pixels of the projected image displayed? There is also provided a projection device comprising: a large number of spatial phase modulation elements; and a shielding member that shields 0th-order diffracted light that is emitted without being diffracted from the spatial phase modulation elements and collected at the light collection position.
[0027] 本発明の第 1の投影装置は、 第 1の形態として、 空間位相変調素子の各区 画部分は、 投影されて表示される画像情報に対応して生成される空間位相情 報に基づいて変調する位相が制御され、 投影されて表示される画像の各画素 はそれぞれ空間位相変調素子のすべての区画部分から出射される回折光によ つて形成されるようにすることが好ましい。  [0027] In the first projection device of the present invention, as a first embodiment, each partition portion of the spatial phase modulation element is based on spatial phase information generated corresponding to image information that is projected and displayed. The phase to be modulated is controlled, and each pixel of the projected and displayed image is preferably formed by diffracted light emitted from all the partition portions of the spatial phase modulation element.
[0028] 本発明の第 1の投影装置は、 第 2の形態として、 光源は集光光学系の光軸 上から離間した位置に配置されており、 且つ、 遮蔽部材は空間位相変調素子 から出射されて投影される画像を形成する回折光の光束外に配置されること が望ましい。  In the first projection device of the present invention, as a second embodiment, the light source is disposed at a position separated from the optical axis of the condensing optical system, and the shielding member is emitted from the spatial phase modulation element Therefore, it is desirable to dispose the light beam outside the diffracted light beam that forms the projected image.
[0029] 本発明の第 1の投影装置または第 1の形態もしくは第 2の形態における投 影装置は、 第 1の態様として、 空間位相変調素子における区画部分の縦の列 数および横の列数が、 投影されて表示される画像の画素の縦の列数および横 の列数に等しいか、 または多くするとよい。 [0029] The first projection device of the present invention or the projection in the first embodiment or the second embodiment. In the shadow device, as a first aspect, the number of vertical columns and the number of horizontal columns of the partition portion in the spatial phase modulation element are equal to the number of vertical columns and horizontal columns of pixels of the image displayed by projection. Or more.
[0030] 本発明の第 1の投影装置または第 1の形態もしくは第 2の形態の投影装置 または第 1の態様における投影装置は、 第 2の態様として、 空間位相変調素 子における区画部分の縦の列数および横の列数が、 2のべき乗であるとする ことが好ましい。  [0030] The first projection device of the present invention, the projection device of the first embodiment or the second embodiment, or the projection device according to the first aspect, as a second aspect, is the longitudinal of the partition portion in the spatial phase modulation element. It is preferable that the number of columns and the number of horizontal columns are powers of 2.
[0031 ] 本発明の第 1の投影装置または第 1の形態もしくは第 2の形態の投影装置 または第 1の態様または第 2の態様における投影装置は、 第 3の形態として 、 空間位相変調素子の位相変調を行う為の区画部分の全てで形成される位相 変調部における輪郭形状が、 縦横比の等しい正方形であり、 表示される画像 の縦横比に依存しないようにしても構わない。  [0031] The first projection device of the present invention, the projection device of the first embodiment or the second embodiment, or the projection device according to the first embodiment or the second embodiment is a spatial phase modulation element of the third embodiment. The contour shape in the phase modulation section formed by all of the partition portions for performing the phase modulation is a square having the same aspect ratio, and may not depend on the aspect ratio of the displayed image.
[0032] 本発明の第 1の投影装置または第 1の形態もしくは第 2の形態の投影装置 または第 1の態様から第 3の態様におけるいずれか一つの投影装置は、 第 4 の態様として、 空間位相変調素子を、 光源からの光を反射する際に位相変調 を行う為のミラー面を有し、 ミラー面上に設けられた位相変調を行う為の各 区画部分に対応して配置された弾性部材と、 弾性部材にそれぞれ対応して配 置され、 電圧を印加することで弾性部材の復元力に杭してミラー面を移動ま たは変形させるための電極と、 電極が配置される基板と、 で構成するとして もよい。  [0032] The first projection device of the present invention, the projection device of the first mode or the second mode, or any one of the projection devices according to the first mode to the third mode may be a space. The phase modulation element has a mirror surface for performing phase modulation when reflecting light from the light source, and is arranged corresponding to each partition portion for performing phase modulation provided on the mirror surface. A member, an electrode arranged corresponding to each elastic member, and piled on the restoring force of the elastic member by applying a voltage to move or deform the mirror surface; and a substrate on which the electrode is arranged It may be composed of,.
[0033] 本発明の第 4の態様の投影装置において、 第 1の様態として、 空間位相変 調素子におけるミラ一面が、 電極への電圧の印加に対応して移動し、 その移 動量または変形量に応じて位相変調量が決定されることが好ましい。  [0033] In the projection device of the fourth aspect of the present invention, as a first aspect, the mirror surface of the spatial phase modulation element moves in response to the application of voltage to the electrode, and the amount of movement or deformation It is preferable that the phase modulation amount is determined according to the above.
[0034] 本発明の第 4の態様の投影装置の第 1の様態における、 第 2の様態として 、 空間位相変調素子におけるミラー面の移動制御または変形制御が、 電極へ の電圧の印加の有無のみで決定されるとしてもよい。  [0034] In the first aspect of the projection apparatus of the fourth aspect of the present invention, as the second aspect, the movement control or deformation control of the mirror surface in the spatial phase modulation element is performed only in the presence or absence of voltage application to the electrode. It may be determined by.
[0035] 本発明の第 4の態様の投影装置の第 2の様態における、 第 1の制御として 、 空間位相変調素子におけるミラー面の移動量または変形量が、 入射する光 源の光の 1 / 4波長相当分であり、 出射する回折光において 1 / 2波長分の 位相差を形成するとしてもよい。 [0035] In the second aspect of the projection device of the fourth aspect of the present invention, as the first control, the amount of movement or deformation of the mirror surface in the spatial phase modulation element is incident light. It may be equivalent to a quarter wavelength of the source light, and a phase difference corresponding to a half wavelength may be formed in the emitted diffracted light.
[0036] 本発明の第 4の態様の投影装置の第 3の様態として、 前記空間位相変調素 子におけるミラー面の移動量または変形量の制御が、 前記電極に印加される 電圧値に依存して決定されると共に、 印加される電圧の変化量は連続的に順 次増加または減少されるべく制御されるとしてもよい。 [0036] As a third aspect of the projection apparatus of the fourth aspect of the present invention, the control of the movement amount or deformation amount of the mirror surface in the spatial phase modulation element depends on the voltage value applied to the electrode. The amount of change in the applied voltage may be controlled to be continuously increased or decreased.
[0037] 本発明の第 4の態様の投影装置の第 3の様態における、 第 2の制御として 、 空間位相変調素子におけるミラー面の最大移動量または変形量が、 入射す る光源の光の 1 / 2波長相当分以内であり、 出射する回折光において形成さ れる位相差は 1波長分以内であることが好ましい。  [0037] As the second control in the third aspect of the projection device of the fourth aspect of the present invention, the maximum movement amount or deformation amount of the mirror surface in the spatial phase modulation element is 1 of the light of the incident light source. It is preferable that the phase difference formed within the diffracted light to be output is within one wavelength.
[0038] 本発明の第 4の態様の投影装置または第 1から第 3の様態のいずれか一つ の投影装置または第 1または第 2の制御のできる投影装置において、 空間位 相変調素子におけるミラ一面は、 一体型のミラ一から形成され、 一体型のミ ラーにおけるミラー面の位相変調を行う為の各区画部分に対応してそれぞれ 弾性部材及び電極が配置されることが望ましい。  [0038] In the projection device according to the fourth aspect of the present invention, the projection device according to any one of the first to third aspects, or the projection device capable of the first or second control, the mirror in the spatial phase modulation element It is desirable that one surface is formed from an integrated mirror, and an elastic member and an electrode are arranged corresponding to each partition portion for performing phase modulation of the mirror surface in the integrated mirror.
[0039] 本発明の第 4の態様の投影装置または第 1から第 3の様態のいずれか一つ の投影装置または第 1または第 2の制御のできる投影装置において、 空間位 相変調素子におけるミラー面は、 位相変調を行うための各区画部分において 、 それぞれ個別のミラーとして形成され、 各ミラーに対してそれぞれ弾性部 材及び電極が配置されることが望ましい。  [0039] In the projection device according to the fourth aspect of the present invention, the projection device according to any one of the first to third aspects, or the projection device capable of the first or second control, the mirror in the spatial phase modulation element The surface is preferably formed as an individual mirror in each partition portion for performing phase modulation, and an elastic member and an electrode are preferably arranged for each mirror.
[0040] 本発明の第 4の態様の投影装置において、 空間位相変調素子におけるミラ —面の面精度が、 5 0 n m以下であることが望ましい。  [0040] In the projection device according to the fourth aspect of the present invention, it is desirable that the surface accuracy of the mirror surface in the spatial phase modulation element is 50 nm or less.
[0041 ] 本発明の第 4の態様の投影装置において、 空間位相変調素子におけるミラ 一面の面粗さが、 5 n m以下であることが望ましい。  [0041] In the projection device according to the fourth aspect of the present invention, it is desirable that the surface roughness of the mirror surface of the spatial phase modulation element be 5 nm or less.
図面の簡単な説明  Brief Description of Drawings
[0042] 本発明は、 後述する詳細な説明を、 下記の添付図面と共に参照すればより 明らかになるであろう。  [0042] The present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
[図 1 ]透過型の空間位相変調素子を用いた投影装置の一つの実施形態である。 [図 2]本発明の一つの実施形態における、 空間位相変調素子に入力される信号 における信号処理のフローチヤ一ト図である。 FIG. 1 shows an embodiment of a projection apparatus using a transmissive spatial phase modulation element. FIG. 2 is a flowchart of signal processing for a signal input to a spatial phase modulation element in one embodiment of the present invention.
[図 3]本発明の一つの実施形態として、 空間位相変調素子の基板に設けられた スィツチ回路の模式図である。  FIG. 3 is a schematic diagram of a switch circuit provided on a substrate of a spatial phase modulation element as one embodiment of the present invention.
[図 4]色順次の光源制御によって画像をカラ一表示する為の一つの例として、 空間位相変調素子の動作と赤色光源、 緑色光源、 青色光源の各発光動作との 関係を同一時間軸 tとして表しているタイミングチャートを示した図である  [Fig. 4] As an example of displaying images in color by color sequential light source control, the relationship between the operation of the spatial phase modulator and the light emission operations of the red, green, and blue light sources is the same time axis. It is the figure which showed the timing chart expressed as
[図 5]空間位相変調素子で表示されている空間位相情報によって読み出し光が 回折され、 その回折光がスクリーンに投影される様子を示している模式図で ある。 FIG. 5 is a schematic diagram showing how the readout light is diffracted by the spatial phase information displayed by the spatial phase modulation element, and the diffracted light is projected onto the screen.
[図 6]本発明の一つの実施形態として、 図 5の透過型の空間位相変調素子に表 示されている格子間隔 dの回折格子に入射する読み出し光の照明光の入射角 を Θ R = 0 ° とし、 照明光の波長 λ = 0 . 5 mとした時の回折光の回折角 0 sと回折格子の間隔 dとの対応関係を表した図である。 One embodiment of FIG. 6 present invention, theta angle of incidence of the illumination light of the reading light incident on the diffraction grating of the grating pitch d which is displayed in the transmission type spatial phase modulator of FIG. 5 R = FIG. 5 is a diagram showing the correspondence between the diffraction angle 0 s of diffracted light and the distance d of the diffraction grating when the wavelength of illumination light is λ = 0.5 m.
[図 7]本発明の一つの実施形態において、 集光光学系と透過型の空間位相変調 素子と遮蔽部材を備えた投影装置の平面図である。  FIG. 7 is a plan view of a projection apparatus including a condensing optical system, a transmissive spatial phase modulation element, and a shielding member in one embodiment of the present invention.
[図 8]投影したい画像に相当するリアルドメインの模式図である。  FIG. 8 is a schematic diagram of a real domain corresponding to an image to be projected.
[図 9A]図 8のリアルドメィンを空間位相変調素子において縦横の長さを等し [Fig. 9A] The real domain in Fig. 8 is equal in length and width in the spatial phase modulator.
<してフーリエ変換したフーリエドメインの模式図である。 <It is the schematic diagram of the Fourier domain which carried out Fourier transform.
[図 9B]図 9 Aのフーリエドメインを縦方向の区画部分の列数を横方向の区画 部分の列数と同じ列数にしたフーリエドメインの模式図である。  FIG. 9B is a schematic diagram of the Fourier domain of FIG. 9A in which the number of columns in the vertical partition portion is the same as the number of columns in the horizontal partition portion.
[図 9G]図 9 Aのフーリエドメインを横方向の区画部分の列数を縦方向の区画 部分の列数と同じ列数にしたフーリエドメインの模式図である。  FIG. 9G is a schematic diagram of the Fourier domain of FIG. 9A in which the number of columns in the horizontal partition portion is the same as the number of columns in the vertical partition portion.
[図 1 0A]投影したい画像を g ( χ ) としたグラフを示している図である。  [FIG. 10A] A diagram showing a graph in which g (χ) is an image to be projected.
[図 1 0Β]投影したい画像を g ( χ ) を 1次元フーリエ変換して G ( v ) に座標 変換したグラフを示している図である。  [FIG. 10 0] is a diagram showing a graph obtained by performing a one-dimensional Fourier transform of g (χ) on the image to be projected and converting the coordinates to G (v).
[図 1 1 ]本発明の別の実施形態において、 集光光学系と反射型の空間位相変調 素子と遮蔽部材を備えた投影装置の平面図である。 [FIG. 1 1] In another embodiment of the present invention, a condensing optical system and a reflective spatial phase modulation It is a top view of the projection apparatus provided with the element and the shielding member.
[図 12]本発明のさらに異なる実施形態として、 図 1 1 とは異なる構成した投 影装置の平面図である。  FIG. 12 is a plan view of a projection apparatus configured differently from FIG. 11 as still another embodiment of the present invention.
[図 13A]本発明の一つの実施形態において、 反射型の空間位相変調素子と遮蔽 部材とを備えた構成とし、 画像のフルカラ一表示を行う投影装置の平面図で FIG. 13A is a plan view of a projection apparatus that includes a reflective spatial phase modulation element and a shielding member and performs full-color display of an image in one embodiment of the present invention.
COる。 CO
[図 13B]図 1 3 Aの投影装置を視線方向 Iから見た側面図である。  FIG. 13B is a side view of the projection device of FIG.
[図 14A]本発明の一つの実施形態として、 一体型のミラ一面で構成されるミラ [FIG. 14A] As an embodiment of the present invention, a mirror composed of one surface of an integrated mirror.
—を基板上に配置した M M D素子の斜視図である。 FIG. 3 is a perspective view of an M M D element in which — is arranged on a substrate.
[図 14B]本発明の別の実施形態において、 略方形状のミラ一を基板上に二次元 に複数個配置した M M D素子の斜視図である。  FIG. 14B is a perspective view of an MMD element in which a plurality of substantially square mirrors are two-dimensionally arranged on a substrate in another embodiment of the present invention.
[図 15A]本発明の一つの実施形態として、 図 1 4 Aで示した M M D素子の線 X V— Aにおける断面図である。  FIG. 15A is a cross-sectional view taken along line XV-A of the MMD element shown in FIG. 14A as one embodiment of the present invention.
[図 15B]図 1 5 Aにおける M M D素子の光の位相変調時における断面図である  FIG. 15B is a cross-sectional view of the MMD element in FIG. 15A during phase modulation of light.
[図 16A]本発明の別の実施形態として、 図 1 4 Bで示した M M D素子の線 X V I _ Aにおける断面図である。 FIG. 16A is a cross-sectional view taken along line X V I — A of the MMD element shown in FIG. 14B as another embodiment of the present invention.
[図 16B]図 1 6 Aにおける M M D素子の光の位相変調時における断面図である  FIG. 16B is a cross-sectional view of the MMD element in FIG. 16A during phase modulation of light.
[図 17A]本発明の一つの実施形態において、 図 1 5 Aおよび図 1 5 Bで示した M M D素子の電極の配置が異なつている図である。 FIG. 17A is a diagram in which the electrodes of the MMD elements shown in FIG. 15A and FIG. 15B are arranged differently in one embodiment of the present invention.
[図 17B]本発明の一つの実施形態において、 図 1 6 Aおよび図 1 6 Bで示した M M D素子の電極の配置が異なつている図である。  FIG. 17B is a diagram in which the electrodes of the MMD elements shown in FIG. 16A and FIG. 16B are arranged differently in one embodiment of the present invention.
[図 18] _つの例として、 基板上における本発明の M M D素子の支柱と弾性部 材の全体配置を示している模式図である。  [FIG. 18] As an example, FIG. 18 is a schematic diagram showing the overall arrangement of the support and elastic members of the MMD element of the present invention on a substrate.
[図 19A] _つの実施形態において、 本発明の M M D素子に用いられる支柱の形 状を示している図である。  FIG. 19A is a diagram showing the shape of a column used in the MMD element of the present invention in one embodiment.
[図 19B]別の実施形態として、 図 1 9 Aとは異なる本発明の M M D素子に用い られる支柱の形状を示している図である。 [FIG. 19B] As another embodiment, it is used for the MMD element of the present invention different from FIG. 19A. It is a figure which shows the shape of the support | pillar used.
[図 20]空間位相変調素子として L C O Sを用いた従来の投影装置の模式図で 発明を実施する為の最良の形態  FIG. 20 is a schematic diagram of a conventional projection apparatus using L C O S as a spatial phase modulation element, and the best mode for carrying out the invention
[0043] 本発明では、 装置の構成を簡素化すると共に投影されて表示される画像に 十分な解像度を確保できる空間位相変調素子を提供できる。 投影画像への 0 次回折光の影響をも回避できる空間位相変調素子を備えた投影装置を提供す る。 また、 本発明の投影装置に用いられる新規な空間位相変調素子の一つと して、 簡易的な構成で光の利用効率および回折効率を高め、 最適な回折バタ —ンを得ることのできる反射型の空間位相変調素子 (S P M) である M M D ( Mag i c M i rror Dev i ce)素子を提供する。  [0043] According to the present invention, it is possible to provide a spatial phase modulation element capable of simplifying the configuration of the apparatus and ensuring sufficient resolution for an image that is projected and displayed. Provided is a projection device including a spatial phase modulation element that can avoid the influence of 0th-order diffracted light on a projected image. In addition, as one of the novel spatial phase modulation elements used in the projection apparatus of the present invention, a reflection type capable of obtaining the optimum diffraction pattern by improving the light utilization efficiency and diffraction efficiency with a simple configuration. An MMD (Magnetic Micro Device) element which is a spatial phase modulation element (SPM) is provided.
[0044] 以下では、 図面を参照しながら本発明の実施形態の例について説明する。  [0044] Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings.
[実施形態 1 ]  [Embodiment 1]
実施形態 1では、 本発明の投影装置およびこの投影装置に使用される新規 な空間位相変調素子の詳細を明らかにする。 光源から出射される光を集光す る集光光学系と、 光源から出射された光が集光光学系を経由して集光される 集光位置までの途中の位置に配置された  In the first embodiment, details of the projection apparatus of the present invention and a novel spatial phase modulation element used in the projection apparatus will be clarified. The condensing optical system that condenses the light emitted from the light source, and the light converging light that is emitted from the light source through the condensing optical system
空間位相変調素子と、 空間位相変調素子から回折されずに出射して集光する 0次回折光をその集光位置で遮蔽する遮蔽部材とを備えている。  A spatial phase modulation element; and a shielding member that shields the 0th-order diffracted light that is emitted from the spatial phase modulation element without being diffracted and collected at the light collection position.
[0045] 本明細書においては、 空間位相変調素子上に複数の区画部分を設けている 。 この区画部分は空間位相変調素子上の領域を細かな多数の区画に区切った もので、 そのそれぞれの区画部分の物理的な状態を独立に制御することによ つて、 そのそれぞれが所望の位相を持った回折光を出射することができる。 この区画部分は C C D等の光電変換素子や液晶等の画像表示素子で言えば画 素に相当するような概念ではあるが、 C C Dや液晶の画素がそれ単独で可視 画像の一部となりその画素情報はそのまま 1対 1で投影画像の画素になるの に対し、 それぞれの区画と実際に表示される画像との関係は C C Dや液晶の それとは全く異なっている。 即ち、 本願においては、 投影表示されている画 像はスクリーン上において可視画像に変換されている状態であり、 この時に スクリーン上に再現されている表示画像の画素に着目してみると、 この各画 素のそれぞれは空間位相変調素子上のすべての区画から出射された回折光の 総和で形成されている。 即ち、 表示される画素 1つを形成するのにすべての 区画からの回折光が必要ということである。 同様に、 表示されているすべて の個々の画素はそのそれぞれがすべての区画から出射された回折光の総和で 形成されている。 また、 本願に言う位相変調部はこの区画が設けられている 全体の輪郭を意味している。 In the present specification, a plurality of partition portions are provided on the spatial phase modulation element. This partition part is obtained by dividing the area on the spatial phase modulation element into a large number of fine sections, and each of the partition parts controls the desired phase by independently controlling the physical state of each partition part. The diffracted light can be emitted. This section is a concept that corresponds to a pixel in terms of a photoelectric conversion element such as a CCD or an image display element such as a liquid crystal, but the pixel of the CCD or liquid crystal itself becomes a part of the visible image. While the pixels of the projected image are one-to-one as they are, the relationship between each section and the actually displayed image is completely different from that of a CCD or liquid crystal display. That is, in the present application, the projected image is displayed. The image is converted to a visible image on the screen. At this time, when attention is paid to the pixels of the display image reproduced on the screen, each of these pixels is all on the spatial phase modulation element. It is formed by the sum of the diffracted light emitted from this section. That is, diffracted light from all sections is required to form one pixel to be displayed. Similarly, all displayed individual pixels are each formed by the sum of diffracted light emitted from all sections. Further, the phase modulation section referred to in the present application means the entire contour in which this section is provided.
[0046] なお、 実施形態 1では、 光源から出射される光を集光する集光光学系として 集光レンズを用い、 さらに空間位相変調素子として透過型の空間位相変調素 子を用いるとする。  In the first embodiment, it is assumed that a condensing lens is used as a condensing optical system for condensing light emitted from a light source, and a transmissive spatial phase modulation element is used as a spatial phase modulation element.
[0047] 図 1は、 集光レンズと透過型の空間位相変調素子、 遮蔽部材を備えた本発 明の投影装置の一つの実施形態を示している。  FIG. 1 shows one embodiment of the projection apparatus of the present invention that includes a condensing lens, a transmissive spatial phase modulation element, and a shielding member.
[0048] 図 1では、 不図示の光源から発した照明光の照明光束 15を集光レンズ 1 1に よって集光した上で透過型の空間位相変調素子 12に入射させている。 透過型 の空間位相変調素子 12において位相変調かつ回折された回折光 1 7をスクリー ン 14に投影する投影装置 10を示している。 図 1中の 0は回折角をあらわして いる。  In FIG. 1, an illumination light beam 15 of illumination light emitted from a light source (not shown) is collected by a condenser lens 11 and then incident on a transmissive spatial phase modulation element 12. 1 shows a projection apparatus 10 that projects diffracted light 17 that is phase-modulated and diffracted by a transmissive spatial phase modulation element 12 onto a screen 14. 0 in Fig. 1 represents the diffraction angle.
[0049] 本発明の投影装置では、 空間位相変調素子から出射される回折光をスクリ —ンに投影表示することによって画像を形成するようにしている。 空間位相 変調素子の各区画部分では、 投影表示される画像情報に対応して生成される 空間位相情報に基づいてその位相が制御される。 また、 本発明の投影装置に おける光源は、 集光光学系の光軸上から離間した位置に配置されており、 且 つ、 遮蔽部材を空間位相変調素子から出射されて投影される画像を形成する 回折光の光束外に配置するような構成としている。  In the projection apparatus of the present invention, an image is formed by projecting and displaying the diffracted light emitted from the spatial phase modulation element on the screen. In each section of the spatial phase modulation element, the phase is controlled based on the spatial phase information generated corresponding to the image information projected and displayed. Further, the light source in the projection device of the present invention is disposed at a position separated from the optical axis of the condensing optical system, and forms a projected image by emitting the shielding member from the spatial phase modulation element. Yes It is configured to be placed outside the diffracted light beam.
[0050] このように構成することで、 図 1における投影装置では、 照明光束 15を集 光レンズ 1 1で集束光とすることにより、 0次回折光 1 6を遮蔽部材 13で補足で き、 スクリーン 14に 0次回折光が投影されないようにすることで画像のコン トラストを低下させるのを防ぐことができる。 図 1においてスクリーン 14は、 透過型の空間位相変調素子 12の近辺に描かれているが、 実際は、 透過型の空 間位相変調素子 12の十分遠方にある。 With this configuration, in the projection apparatus in FIG. 1, the illumination light beam 15 is focused by the collecting lens 11 1, so that the 0th-order diffracted light 16 can be supplemented by the shielding member 13, and the screen By preventing the 0th-order diffracted light from being projected onto 14 It is possible to prevent the trust from being lowered. In FIG. 1, the screen 14 is drawn in the vicinity of the transmissive spatial phase modulation element 12, but actually, it is sufficiently far away from the transmissive spatial phase modulation element 12.
[0051] また、 図 1のように投影装置を構成した際には、 基本的には投影レンズを 必要としないが、 スクリーン 14との距離を調節する場合や回折光 17の広がり 角を変えたい場合には、 投影レンズを設けてもよい。 投影レンズを設ける場 合でも、 表示素子に描かれた画像を投影する従来の投影装置とは違い、 位相 変調された回折光を投影する構成であるため、 簡易的な投影レンズで済ます 事ができる。 [0051] When the projection apparatus is configured as shown in Fig. 1, basically no projection lens is required, but when adjusting the distance from the screen 14 or changing the spread angle of the diffracted light 17. In some cases, a projection lens may be provided. Even when a projection lens is provided, unlike a conventional projection device that projects an image drawn on the display element, it is configured to project phase-modulated diffracted light, so a simple projection lens can be used. .
[0052] 図 2は、 本発明の投影装置における空間位相変調素子に入力される信号の 信号処理のフローチヤ一ト図を示している。  FIG. 2 shows a flowchart of signal processing of signals input to the spatial phase modulation element in the projection apparatus of the present invention.
[0053] 以下に、 信号の種類と信号が空間位相変調素子に入力されるまでの処理の 流れを詳述する。 [0053] Hereinafter, the type of signal and the flow of processing until the signal is input to the spatial phase modulation element will be described in detail.
[0054] 始めに、 投影したい画像の画像データ 21を取得する。 画像データ(画像) 21 は、 フーリエ変換されて空間位相分布の情報となるが、 し力、し、 このままで は空間位相分布とともに強度分布が生じるので、 予め画像データ 21にランダ ムな位相情報 22を重畳しておく。 そして、 ランダムな位相情報を画像データ に重畳した後にフーリエ変換 23を行う。 このランダム位相情報を重畳する方 法は、 キノフォームとして知られている技術であり、 例えば、 W. H. Lee : [0054] First, image data 21 of an image to be projected is acquired. The image data (image) 21 is subjected to Fourier transform to become spatial phase distribution information. However, since the intensity distribution is generated together with the spatial phase distribution in this state, random phase information 22 in advance in the image data 21 is obtained. Is superimposed. Then, after the random phase information is superimposed on the image data, Fourier transform 23 is performed. This method of superimposing random phase information is a technique known as kinoform, such as W. H. Lee:
Computer-generated holograms: techniques and appl ications, in Pro gress in Optics, E. Wolf, ed. , (North-Hol land, Amsterdam, 1978), Vol .1 6, pp.119-232 などに詳しく述べらている。 このようにランダム位相情報を 画像データ 21に重畳することで空間位相分布上の強度が平均化され、 位相情 報だけで画像情報を満たす空間分布を得ることができる。 このようにランダ ム位相を重畳され、 フーリエ変換された画像データは、 位相だけの空間位相 情報となる。 そして、 この位相だけの空間位相情報に対して光学配置に基づ く補正処理 24を施した後に、 S PMドライバ 25に入力する。 この時の画像情 報は、 通常の画像情報と同様に 2次元マトリックスデータとなっている。 S P Mドライバ 25では、 空間位相変調素子 (S P M) を駆動させる駆動信号を 作成する。 次いで、 この駆動信号を空間位相変調素子に与えて空間位相変調 素子 (S P M) 上に投影したい画像に対応した空間位相情報を位相分布とし て出現させる事ができる。 Computer-generated holograms: techniques and applications, in Pro gress in Optics, E. Wolf, ed., (North-Hol land, Amsterdam, 1978), Vol.1 6, pp.119-232 Yes. Thus, by superimposing the random phase information on the image data 21, the intensity on the spatial phase distribution is averaged, and a spatial distribution satisfying the image information can be obtained only by the phase information. Thus, the random phase is superimposed and the Fourier transformed image data becomes spatial phase information of only the phase. Then, the spatial phase information of only this phase is subjected to the correction process 24 based on the optical arrangement, and then input to the SPM driver 25. The image information at this time is two-dimensional matrix data, just like normal image information. S The PM driver 25 creates a drive signal for driving the spatial phase modulation element (SPM). Next, by applying this drive signal to the spatial phase modulation element, spatial phase information corresponding to an image to be projected onto the spatial phase modulation element (SPM) can appear as a phase distribution.
ここで信号処理の一例として、 光源からの光を反射する際に位相変調を行 う為のミラーと、 ミラーのミラー面における位相変調を行う為の各区画部分 に対応して配置された弾性部材と、 弾性部材にそれぞれ対応して配置され、 電圧を印加することで弾性部材の復元力に杭してミラー面を移動するための 電極と、 電極が配置される基板とで構成される後述する本発明の反射型の空 間位相変調素子の区画が 3 X 3であると仮定し、 信号の入力による空間位相 変調素子の動作を簡単に説明する。 なお、 図 3では、 3 X 3の区画の空間位 相変調素子に対応して基板に設けられたスィッチ回路 30であるトランジスタ 回路を 2 X 2だけを示した。 図 3において、 空間位相変調素子の駆動回路で は、 各区画の信号線 31の Y 1から Y 3まで順次、 駆動信号を送り、 一方で各 区画の走査線 32の X 1から X 3まで順次、 走査信号を送るような通常の X _ Y走査を行うものとする。 ここで、 信号線 Y 1から駆動信号を送り、 走査線 X 1から O Nの走査信号を送ると、 区画 (X 1、 Y 1 ) のトランジスタ 33が O Nとなり、 信号線 Y1の信号に従い電極 34に電圧が印加される。 この時、 空 間位相変調素子の弾性部材 36と電極 34の間には、 キャパシター 35となってい る事で電荷が蓄積され、 電荷に応じてクーロン力が生じる。 この電荷は、 次 の信号が来るまで維持される。 次に、 信号線 Y 2から駆動信号が送られ、 走 査線 X 1から O Nの走査信号を送られると区画 (X 1、 Y 2 ) の電極 34に電 圧が印加される。 同様に、 区画 (X 1、 Y 3 ) に信号線 Y 3から駆動信号が 送られ走査線 X 1で走査された後に、 区画 (X 2、 Y 1 ) に信号線 Y 1から駆 動信号が送られ、 次いで走査線 X 2から O Nの走査信号が送られることで次 々駆動信号の情報を空間位相変調素子に反映してゆく。 このようにして随時 、 空間位相変調素子全体に空間位相情報が表現されることで光の位相変調を できるようになる。 以上のような動作を制御する事で空間位相変調素子 (S P M ) 上に投影したい画像の空間位相分布情報を表現する事ができる。 なお 、 ここでの弾性部材 36は、 スィッチ回路に接続されている電極 34に電圧が印 加されて電荷がキャパシター 35に蓄積される事で生じるクーロン力が解放さ れた場合にミラーを元の状態に復帰するために設けられている。 Here, as an example of signal processing, a mirror for performing phase modulation when reflecting light from a light source, and an elastic member disposed corresponding to each partition portion for performing phase modulation on the mirror surface of the mirror And an electrode for moving the mirror surface by applying a voltage to pile up the restoring force of the elastic member by applying a voltage, and a substrate on which the electrode is arranged, which will be described later Assuming that the section of the reflective spatial phase modulation element of the present invention is 3 × 3, the operation of the spatial phase modulation element by signal input will be briefly described. In FIG. 3, only 2 X 2 transistor circuits, which are the switch circuits 30 provided on the substrate corresponding to the spatial phase modulation elements in the 3 X 3 section, are shown. In FIG. 3, the drive circuit of the spatial phase modulation element sequentially sends drive signals from Y 1 to Y 3 of the signal lines 31 of each section, while sequentially from X 1 to X 3 of the scan lines 32 of each section. Suppose that normal X_Y scanning that sends a scanning signal is performed. Here, when a drive signal is sent from the signal line Y 1 and an ON scan signal is sent from the scan line X 1, the transistor 33 in the section (X 1, Y 1) is turned on, and the electrode 34 is applied to the electrode 34 according to the signal on the signal line Y 1. A voltage is applied. At this time, electric charge is accumulated between the elastic member 36 of the spatial phase modulation element and the electrode 34 by being a capacitor 35, and Coulomb force is generated according to the electric charge. This charge is maintained until the next signal comes. Next, when a driving signal is sent from the signal line Y 2 and an ON scanning signal is sent from the scanning line X 1, a voltage is applied to the electrode 34 in the section (X 1, Y 2). Similarly, after the drive signal is sent from the signal line Y3 to the section (X1, Y3) and scanned by the scanning line X1, the drive signal is sent from the signal line Y1 to the section (X2, Y1). Then, an ON scanning signal is sent from the scanning line X2, and the information of the driving signal is reflected on the spatial phase modulation element one after another. In this way, the phase modulation of light can be performed by expressing the spatial phase information in the entire spatial phase modulation element as needed. The spatial phase modulation element (S PM) It is possible to express the spatial phase distribution information of an image to be projected onto. Here, the elastic member 36 returns the mirror to the original when the voltage is applied to the electrode 34 connected to the switch circuit and the Coulomb force generated by the charge being accumulated in the capacitor 35 is released. It is provided to return to the state.
[0056] また、 ここでの光学配置に基づく補正処理 24とは、 例えば、 図 1に示して いる光学配置の場合において、 集光レンズ 1 1によって透過型の空間位相変調 素子 12上に照射される光が、 スクリーン 14に向けて回折角 0で回折されるよ うに空間位相変調素子上に出現される空間位相情報を補正することを意味す る。 Further, the correction processing 24 based on the optical arrangement here is, for example, in the case of the optical arrangement shown in FIG. 1, irradiated on the transmissive spatial phase modulation element 12 by the condenser lens 11. This means that the spatial phase information appearing on the spatial phase modulation element is corrected so that the incident light is diffracted toward the screen 14 at a diffraction angle 0.
[0057] なお、 この一連のデータ処理は、 画像が実時間で表示できるように投影装 置内に設けられた回路上で高速で実行される。 回路としては、 例えば、 F P Note that this series of data processing is executed at high speed on a circuit provided in the projection apparatus so that an image can be displayed in real time. For example, F P
G Aや A S I Cが用いられる。 G A and A S I C are used.
[0058] 次に、 集光光学系と、 空間位相変調素子と、 遮蔽部材とを備えた本発明の 投影装置で色順次の光源制御をして画像を力ラー表示する為の手順を記載す る。 [0058] Next, a procedure for performing power sequential display of an image by color-sequential light source control in the projection apparatus of the present invention including a condensing optical system, a spatial phase modulation element, and a shielding member will be described. The
[0059] 図 4は、 本発明の投影装置において色順次の光源制御をして画像を力ラー 表示する際における空間位相変調素子の動作と赤色光源、 緑色光源、 青色光 源の発光動作との関係を同一時間軸 tとして表しているタイミングチヤ一ト である。 以下、 実施形態の一つとして図 4を参照して、 時間 tの進行に基づ く赤色光源、 緑色光源、 青色光源と空間位相変調素子の動作を示す。  FIG. 4 shows the operation of the spatial phase modulation element and the light emission operations of the red light source, the green light source, and the blue light source when performing color-sequential light source control and displaying an image with a power error in the projector of the present invention. This is a timing chart showing the relationship as the same time axis t. Hereinafter, referring to FIG. 4 as one embodiment, operations of a red light source, a green light source, a blue light source, and a spatial phase modulation element based on the progress of time t are shown.
[0060] 初めに、 時間 t。から t まで赤色光源を ON状態として空間位相変調素子に 入射させているものとする。 この時に、 空間位相変調素子は、 素子上に再現 されている空間位相情報に基づいて赤色光源を回折させ、 適切な画像を得る 為の赤色光源に対応した赤色の回折光を生じている。 このようにして、 投影 したい画像の赤色部分を表示する事ができる。  [0060] First, time t. From t to t, the red light source is turned on and is incident on the spatial phase modulator. At this time, the spatial phase modulation element diffracts the red light source based on the spatial phase information reproduced on the element, and generates red diffracted light corresponding to the red light source for obtaining an appropriate image. In this way, the red part of the image to be projected can be displayed.
[0061 ] 次に、 時間 t から t 2において、 空間位相変調素子は、 赤色光源に対応し た空間位相情報から緑色光源に対応した空間位相情報への書き換えを行う。 この時、 本実施形態のように 1つの空間位相変調素子を用いて色順次方式で 画像を投影する場合、 各色の光源に対して空間位相情報が異なる為に空間位 相変調素子の空間位相情報の書き換え時間幅 41では、 投影したい画像情報と は全く異なる回折パターンが得られ、 この書き換え途中の回折パターンに対 して光が入射すると一般の拡大投影とは異なり表示される表示画面すべてが カラ一ノィズ画面となってしまい表示画像品位を著しく低下させることにな る。 従って、 このタイミングでは光の入射を避ける必要がある。 したがって 、 空間位相変調素子が空間位相情報の書き換えを行っている時間幅 41では、 全ての光源を O F F状態とする必要がある。 このようにする事でノイズ画面 を表示する瞬間がなく、 表示画像が動画であればコントラス卜の高い画像を 表示することができる。 [0061] Next, at t 2 from time t, the spatial phase modulator rewrites from the spatial phase information corresponding to the red light source to the spatial phase information corresponding to the green light source. At this time, as in the present embodiment, a color sequential method using one spatial phase modulation element is used. When projecting an image, the spatial phase information is different for each color light source. Therefore, in the rewrite time width 41 of the spatial phase information of the spatial phase modulation element, a diffraction pattern completely different from the image information to be projected is obtained. When light is incident on the diffraction pattern being rewritten, unlike the general magnified projection, all displayed display screens become color noise screens, and the displayed image quality is significantly reduced. Therefore, it is necessary to avoid the incidence of light at this timing. Therefore, in the time width 41 during which the spatial phase modulation element is rewriting the spatial phase information, it is necessary to turn off all the light sources. By doing this, there is no moment to display the noise screen, and if the displayed image is a moving image, an image with high contrast can be displayed.
[0062] そして、 空間位相変調素子が、 完全に緑色光源に対応した空間位相情報へ の書き換えを終えた後に、 時間 t 2から t 3まで緑色光源を O N状態にする。 このようにして緑色の回折光を生成し、 投影したい画像の緑色部分を表示す る事ができる。 [0062] Then, the spatial phase modulating element is completely after completing rewriting of the spatial phase information corresponding to the green light source is turned ON the green light source from the time t 2 to t 3. In this way, green diffracted light can be generated and the green portion of the image to be projected can be displayed.
[0063] また、 同様に、 時間 t 3から t 4において、 空間位相変調素子は、 緑色光源 に対応した空間位相情報から青色光源に対応した空間位相情報への書き換え を行う。 赤色光源に対応した空間位相情報から緑色光源に対応した空間位相 情報への書き換えの時と同様に、 この時間幅においても全ての光源を O F F 状態にする。 そして、 空間位相変調素子が、 完全に青色光源に対応した空間 位相情報への書き換えを終えた後に、 時間 t 4から t 5まで青色光源を ON状態 にする。 このようにして青色の回折光を生成し、 投影したい画像の青色部分 を表示する事ができる。 [0063] Similarly, in the t 4 from the time t 3, the spatial light modulating element, rewriting from the spatial phase information corresponding to the green light source to the spatial phase information corresponding to the blue light source. As in the case of rewriting from the spatial phase information corresponding to the red light source to the spatial phase information corresponding to the green light source, all the light sources are turned off during this time width. Then, after the spatial phase modulation element has completely rewritten the spatial phase information corresponding to the blue light source, the blue light source is turned on from time t 4 to t 5 . In this way, blue diffracted light can be generated and the blue portion of the image to be projected can be displayed.
[0064] 以上の動作を短時間で順次、 繰り返し行う事で 1つの空間位相変調素子を 用いて投影したい画像のカラー表示を高い品位で行う事ができる。  [0064] By performing the above operations sequentially and repeatedly in a short time, color display of an image to be projected using one spatial phase modulation element can be performed with high quality.
[0065] なお、 本実施形態における光源としては、 レーザ一ダイオード (L D ) が 好ましい。  Note that a laser diode (L D) is preferable as the light source in the present embodiment.
[0066] また、 図 4においては、 各色の光源において O N期間を示しているが、 レ —ザ一ダイオード (L D ) においては、 この O N期間にパルス発光させると しても良い。 [0066] In FIG. 4, the ON period is shown for each color light source. In the laser diode (LD), if light is pulsed during this ON period, light is emitted. You may do it.
[0067] 次に、 一つの実施形態として図 5に示されている透過型の空間位相変調素 子に表示された空間位相情報に読み出し光を入射することで回折光を生成し て画像をスクリーンに投影する方法について述べる。  Next, as one embodiment, diffracted light is generated by making readout light incident on the spatial phase information displayed on the transmission type spatial phase modulation element shown in FIG. 5, and an image is displayed on the screen. The method of projecting is described.
[0068] 図 5は、 透過型の空間位相変調素子で読み出し光が回折される様子を示し ている。  FIG. 5 shows how the readout light is diffracted by the transmissive spatial phase modulation element.
[0069] 図 5においては、 簡単のために空間位相変調素子に回折格子 51が表示され ている場合を考える。 ここでの空間位相変調素子には、 投影したい画像の空 間位相情報、 例えばフーリエ変換情報、 を表示している。 この空間位相変調 素子に表示されている回折格子 51に読み出し光 (reference light) 、 すなわ ち照明光束 52を入射させると、 信号光、 すなわち回折光 (diffraction light) 53が射出される。 この回折光 53を適切な距離に配置したスクリーン 54に投影 することで画像を得ることができる。  In FIG. 5, for the sake of simplicity, consider the case where the diffraction grating 51 is displayed on the spatial phase modulation element. The spatial phase modulation element here displays spatial phase information of an image to be projected, for example, Fourier transform information. When reading light (reference light), that is, illumination light beam 52 is incident on the diffraction grating 51 displayed on the spatial phase modulation element, signal light, that is, diffracted light (diffraction light) 53 is emitted. An image can be obtained by projecting the diffracted light 53 onto a screen 54 arranged at an appropriate distance.
[0070] 以下では、 この回折光をスクリーンに投影する為の数学的な原理を簡単に 説明するために、 例として透過型の空間位相変調素子 51に一定の格子間隔 d を有する単純な回折格子が表示された場合において図 5を参照しながら説明 してゆく。  [0070] In the following, in order to briefly explain the mathematical principle for projecting this diffracted light onto a screen, as an example, a simple diffraction grating having a constant grating spacing d in a transmissive spatial phase modulation element 51 is used. If is displayed, refer to Fig. 5.
[0071] 表示される回折格子の間隔を dとした場合には、 図 5における読み出し光 の照明光束 52の入射角 0Rと回折光 53の射出角 0Sとの間には、 [0071] When the interval of the displayed diffraction grating is d, between the incident angle 0 R of the illumination light beam 52 of the readout light and the exit angle 0 S of the diffracted light 53 in FIG.
[0072] [数 1] [0072] [Equation 1]
, λ , λ
d二 (1 )  d two (1)
sm0R + sin^s の関係がある。 例えば、 ここで簡単の為に 0R=O度とすると、 There is a relationship sm0 R + sin ^ s . For example, for the sake of simplicity, if 0 R = O degrees,
[0073] [数 2] [0073] [Equation 2]
(2)
Figure imgf000018_0001
と表すことができる。 この場合、 射出角 0Sは、 入射角が 0R=O° の場合であ るので回折角と同義になる。 ここで読み出し光 52の波長 λを 0. 5 mとし た場合、 回折格子 51の間隔 dと回折光 53の射出角即ち回折角 0Sの間には、 図 6のような対応関係が得られる。
(2)
Figure imgf000018_0001
It can be expressed as. In this case, the exit angle 0 S is synonymous with the diffraction angle because the incident angle is 0 R = O °. Here, when the wavelength λ of the readout light 52 is 0.5 m, the correspondence shown in FIG. 6 is obtained between the distance d of the diffraction grating 51 and the exit angle of the diffraction light 53, that is, the diffraction angle 0 S. .
[0074] 図 6は、 透過型の空間位相変調素子に表示された格子間隔 dを有する回折 格子 51への読み出し光 52の入射角 0R=O° および波長 λ = 0. 5 mとした 時の回折光 53の射出角即ち回折角 Ssと回折格子 51の間隔 dとの対応関係を表 した図である。 [0074] FIG. 6 shows the case where the incident angle 0 R = O ° and the wavelength λ = 0.5 m of the readout light 52 to the diffraction grating 51 having the grating interval d displayed on the transmissive spatial phase modulator. FIG. 6 is a diagram showing a correspondence relationship between the exit angle of the diffracted light 53, that is, the diffraction angle S s, and the interval d of the diffraction grating 51.
[0075] 図 6からも明らかであるように、 回折格子 51の格子間隔 dを小さくすると 回折光 53の射出角即ち回折角 0Sを大きくすることができる。 この関係を好適 に用いる事により、 画像を投影する回折光 53と画像表示に不必要な空間位相 変調素子によって回折されない 0次回折光とを分離する事が可能となる。 As apparent from FIG. 6, when the grating interval d of the diffraction grating 51 is reduced, the exit angle of the diffracted light 53, that is, the diffraction angle 0 S can be increased. By suitably using this relationship, it is possible to separate the diffracted light 53 for projecting an image from the 0th-order diffracted light that is not diffracted by the spatial phase modulation element unnecessary for image display.
[0076] 次に、 実際に画像データ、 すなわち画像をスクリーン 54に投影表示する場 合を考える。 空間位相変調素子の位相情報再現面、 すなわち空間位相変調素 子の位相変調を行う為の区画部分の全てで形成される位相変調部の幅を Dと すると、 波長; Iの照明光束 52を空間位相変調素子の回折格子 51に照射した時 の、 回折光 53による広がり角 0 sは、  Next, consider a case where image data, that is, an image is actually projected and displayed on the screen 54. If the width of the phase modulation part formed by the phase information reproduction surface of the spatial phase modulation element, that is, the partition part for performing phase modulation of the spatial phase modulation element, is D, the illumination light beam 52 of wavelength; When the diffraction grating 51 of the phase modulation element is irradiated, the divergence angle 0 s by the diffracted light 53 is
[0077] [数 3]
Figure imgf000019_0001
で表される。 これは、 位相変調部の幅が Dである空間位相変調素子が、 スク リーン 53に投影できる画像の精細度を表している。 ここで例として、 位相変 調部の幅 D=0. 6 inchであり、 各区画部分の縦横比が 4/5である空間位相 変調素子を考える。 この時の空間位相変調素子における位相変調部の幅 Dは 、 0. 6 X 4/5 X 25. 4= 1 2. 2 mmであり、 読み出し光の波長 λを 0 . 5 mとして、 その回折による広がり角 0 sは、 2. 35 X 1 0-3度となる 。 すなわち、 この位相変調部の幅 D=0. 6 inchの透過型の空間位相変調素子 で表示できる画像の精細度は、 角度分解能で、 2. 35 X 1 0_3度であるこ とを意味している。
[0077] [Equation 3]
Figure imgf000019_0001
It is represented by This represents the definition of the image that can be projected onto the screen 53 by the spatial phase modulation element whose phase modulation section width is D. As an example, consider a spatial phase modulator with a phase modulator width D = 0. 6 inch and an aspect ratio of each section of 4/5. At this time, the width D of the phase modulation section in the spatial phase modulation element is 0.6 X 4/5 X 25.4 = 1.2.2 mm, and the diffraction wavelength is λ when the readout light wavelength λ is 0.5 m. The divergence angle due to 0 s is 2.35 X 10-3 degrees. That is, a transmission type spatial phase modulation element having a width D = 0. 6 inch of the phase modulation section Resolution display can image in is the angular resolution, 2. which means that it is a 35 X 1 0_ 3 degrees.
[0078] 次に、 投影する画像の画素数を表現するために必要な空間位相変調素子に 課される条件を検討する。 ここで、 投影したい画像が N TS C(National Tel evision Standard Committee)の場合、 すなわち投影したい画像の画素の横方 向の列数を 720とすると、 回折光の回折角の変化は、 最低 2. 35 X 1 0- 3 x 720= 1. 7度必要となる。 H D T V (High Definition Television)の 場合、 すなわち投影したい画像の画素の横方向の列数が 1 920とすると、 最低 4. 5度の回折角の変化が必要となる。 スーパ一ハイビジョンの場合は 、 投影したい画像の画素の横方向の列数は 7680であり、 必要な回折角の 変化は 1 8度に達する。 これらの画像を投影するには、 (2) 式より、 空間 位相変調素子においてそれぞれ間隔 d = 1 7、 6. 4、 1. 6 mの回折格 子を表示することが必要になる。 したがって、 空間位相変調素子には、 それ だけ細かい格子間隔 dの空間位相情報を表示する能力が必要となる。  Next, the conditions imposed on the spatial phase modulation element necessary for expressing the number of pixels of the image to be projected are examined. Here, if the image to be projected is NTS C (National Television Standard Committee), that is, if the number of pixels in the horizontal direction of the image to be projected is 720, the change in the diffraction angle of the diffracted light is at least 2. 35 X 1 0- 3 x 720 = 1. 7 degrees required. In the case of HDTV (High Definition Television), that is, if the number of pixels in the horizontal direction of the image to be projected is 1,920, a change in diffraction angle of at least 4.5 degrees is required. For Super Hi-Vision, the number of pixels in the horizontal direction of the image you want to project is 7680, and the required change in diffraction angle reaches 18 degrees. In order to project these images, it is necessary to display diffraction gratings with spacings d = 17, 6.4, and 1.6 m, respectively, in the spatial phase modulator from Eq. (2). Therefore, the spatial phase modulation element needs to have the ability to display spatial phase information with such a fine lattice spacing d.
[0079] ここで、 格子間隔 dの回折格子の空間位相情報を表示するには、 空間位相 変調素子を構成する各区画部分間のピッチを Pとして、  [0079] Here, in order to display the spatial phase information of the diffraction grating with the grating interval d, P is the pitch between the partition portions constituting the spatial phase modulation element,
[0080] [数 4] d = 2P (4) を満たす空間位相変調素子が必要となる。 ここで、 N TSC、 HDTV, ス 一パーハイビジョンのそれぞれに対応する空間位相変調素子の一つの区画部 分の幅は、 8. 5 m、 3. 2 m、 0. 8 m程度が好ましい。  [0080] A spatial phase modulation element satisfying [Equation 4] d = 2P (4) is required. Here, the width of one section of the spatial phase modulation element corresponding to each of NTSC, HDTV, and Super Hi-Vision is preferably about 8.5 m, 3.2 m, and 0.8 m.
[0081] 各区画部分間のピッチが Pである空間位相変調素子は、 (4) 式よりも小 さな格子間隔 dの回折格子を表示できないので、 (2) 式で表される回折角 力 画像を投影できる最も大きな回折角となる。 簡単のため、 回折光の回折 角がそれほど大きくないと仮定すると、 (2) 式は、 [0081] A spatial phase modulation element with a pitch P between each section cannot display a diffraction grating with a grating spacing d smaller than that in Eq. (4), so the diffraction angular force expressed by Eq. (2) This is the largest diffraction angle at which an image can be projected. For simplicity, assuming that the diffraction angle of the diffracted light is not so large, Equation (2) is
[0082] [数 5]
Figure imgf000021_0001
と、 近似することができる。 さらに、 ここで投影表示したい画像の画素の横 方向の列数を Nとして、 0次回折光を避けて画像を表示するためには、 投影 したい画像の画素の横方向の列数 Nを表示するのに必要な回折光の広がり角 N ■ 0δが回折角 0Sより小さいことが必要である。 従って、 0次回折光を避け て画像を投影表示するためには、
[0082] [Equation 5]
Figure imgf000021_0001
And can be approximated. Furthermore, in order to display the image by avoiding the 0th order diffracted light, where N is the number of pixels in the horizontal direction of the pixel of the image to be projected and displayed here, the number of horizontal columns N of the pixel of the image to be projected is displayed. It is necessary that the diffracted light spreading angle N 1 δ required for the diffraction is smaller than the diffraction angle 0 S. Therefore, to project and display an image while avoiding 0th order diffracted light,
[0083] [数 6] [0083] [Equation 6]
Νθδ8 (6) の条件を満たすことが必要となる。 この条件式に、 (3) 〜 (5) 式を代入 すると、 It is necessary to satisfy the condition of Νθ δ8 (6). Substituting equations (3) to (5) into this conditional expression,
[0084] [数 7] [0084] [Equation 7]
D 、 r D, r
->2N (7) が得られる。 ここでの D/Pは、 投影表示したい画像に対応する空間位相変 調素子の区画部分の横方向の列数 Mであり、 その投影表示したい画像に対応 する空間位相変調素子の区画部分の横方向の列数 M=D/Pとすると、  -> 2N (7) is obtained. Here, D / P is the number M of horizontal columns of the partition portion of the spatial phase modulation element corresponding to the image to be projected and displayed, and the horizontal portion of the partition portion of the spatial phase modulation element corresponding to the image to be projected and displayed. If the number of columns in the direction is M = D / P,
[0085] [数 8] [0085] [Equation 8]
M>2N (8) となる。 これが投影表示したい画像の画素の横方向の列数 Nに対応した空間位 相変調素子の区画部分の横方向に必要な列数 Mであり、 空間位相変調素子にお いて空間位相情報を表示する為の必要な条件となる。 M> 2N (8) This is the number of columns M required in the horizontal direction of the partition portion of the spatial phase modulation element corresponding to the number of horizontal columns N of the pixels of the image to be projected and displayed, and the spatial phase information is displayed on the spatial phase modulation element. This is a necessary condition.
[0086] また、 空間位相変調素子を構成する各区画部分間のピッチ Pは、 (7) よ り [0086] Further, the pitch P between the partition portions constituting the spatial phase modulation element is expressed by (7) R
[0087] [数 9]
Figure imgf000022_0001
と表すこともできる。
[0087] [Equation 9]
Figure imgf000022_0001
Can also be expressed.
[0088] 以上より、 空間位相変調素子の区画部分の横方向の列数 Mを、 投影表示した い画像の画素の横方向の列数 Nに対して、  From the above, the number of horizontal columns M of the partition portion of the spatial phase modulation element is set to the number of horizontal columns N of the pixels of the image to be projected and displayed.
[0089] [数 1 0]  [0089] [Equation 1 0]
M > 2N M> 2N
とすることにより、 高精細、 高画質の優れた投影装置を提供できる。 By doing so, it is possible to provide an excellent projection device with high definition and high image quality.
[0090] さらに、 空間位相変調素子の位相変調部の幅 D、 投影表示したい画像の画素 の横方向の列数 Nとして、 空間位相変調素子を構成する各区画部分間のピッチ Pを  [0090] Further, as the width D of the phase modulation section of the spatial phase modulation element and the number N of horizontal columns of pixels of the image to be projected and displayed, the pitch P between the respective partition portions constituting the spatial phase modulation element is
[0091 ] [数 1 1 ]  [0091] [Number 1 1]
Pぐ P
2N とした空間位相変調素子を用いることにより、 高精細、 高画質の画像表示を 最適に行うことができる。  By using a 2N spatial phase modulator, high-definition and high-quality image display can be optimally performed.
[0092] 次に、 集光光学系と上述した空間位相情報を具現化する為の必要な条件を 満たした空間位相変調素子と遮蔽部材を備えた投影装置について述べる。  Next, a projection apparatus including a condensing optical system, a spatial phase modulation element that satisfies the necessary conditions for realizing the above-described spatial phase information, and a shielding member will be described.
[0093] 図 7は、 光源からの照明光を集光して空間位相変調素子に入射させる集光 光学系と、 上述した空間位相情報を位相分布として具現化する為の必要な条 件を満たした透過型の空間位相変調素子と、 空間位相変調素子から回折され ずに出射して集光する 0次回折光を遮蔽する遮蔽部材とを備えた投影装置の 平面図を示している。 [0093] FIG. 7 shows a condensing optical system that condenses illumination light from a light source and makes it incident on a spatial phase modulation element, and satisfies the necessary conditions for realizing the above-described spatial phase information as a phase distribution. And a shielding member that shields the 0th-order diffracted light that is emitted and collected without being diffracted from the spatial phase modulation element. A plan view is shown.
[0094] 図 7における透過型の空間位相変調素子を備えた投影装置 70は、 光源 71と 、 照明光のノイズを除く為の空間フィルタ 72、 そしてコリメータ 73、 集光レ ンズ 74と、 透過型の空間位相変調素子 75と、 遮蔽部材 76とを含んで構成され る。 このような構成は、 λ板や P B Sなどを省いた構成を行えることで簡単 な光学構成で済み、 投影レンズも不要である。  [0094] A projection apparatus 70 having a transmission type spatial phase modulation element in FIG. 7 includes a light source 71, a spatial filter 72 for removing noise of illumination light, a collimator 73, a condensing lens 74, and a transmission type The spatial phase modulation element 75 and the shielding member 76 are included. In such a configuration, a configuration without a λ plate or PBS can be performed, so that a simple optical configuration is required, and a projection lens is not required.
[0095] 図 7において、 光源 71、 例えばレーザ一、 からの照明光は、 空間フィルタ 7 2およびコリメータ 73を通り、 照明光束となり、 集光レンズ 74によって集光さ れた後に透過型の空間位相変調素子 75に入射する。 そして、 透過型の空間位 相変調素子 75に入射した照明光は、 位相変調がなされ、 回折光 79を射出する 。 空間位相変調素子 75は、 画像データに基づいて生成された空間位相情報を 位相分布として素子上に具現化して位相変調を行う。 透過型の空間位相変調 素子 75からの回折光 79は、 スクリーン 77に投影され、 スクリーン 77上に所望 の画像を表示する事ができる。 本投影装置では、 集光レンズ 74を通り空間位 相変調素子 75から回折されずに出射して集光する 0次回折光を集光して集光 位置における遮蔽部材 76で遮蔽することで投影表示される画像に悪影響を及 ぼさない工夫をしている。 また、 図 7では、 空間位相変調素子 75から出射さ れる回折光 79の光束内に遮蔽部材 76が配置されているが、 実際には、 スクリ ーン 77は遮蔽部材 76の位置から十分遠方にあるので、 スクリーン上に表示さ れる画像にほとんど悪影響を及ぼさない。  In FIG. 7, illumination light from a light source 71, for example, a laser beam, passes through a spatial filter 72 and a collimator 73, becomes an illumination light beam, and is collected by a condenser lens 74 and then transmitted through a spatial phase. The light enters the modulation element 75. The illumination light incident on the transmissive spatial phase modulation element 75 is phase-modulated and emits diffracted light 79. The spatial phase modulation element 75 embodies the spatial phase information generated based on the image data as a phase distribution on the element to perform phase modulation. The diffracted light 79 from the transmissive spatial phase modulation element 75 is projected onto the screen 77, and a desired image can be displayed on the screen 77. In this projection apparatus, the light is condensed and emitted from the spatial phase modulation element 75 without being diffracted through the condenser lens 74, and the 0th-order diffracted light is condensed and shielded by the shielding member 76 at the condensing position. The device is designed so as not to adversely affect the image being displayed. In FIG. 7, the shielding member 76 is arranged in the light beam of the diffracted light 79 emitted from the spatial phase modulation element 75. In practice, however, the screen 77 is sufficiently far from the position of the shielding member 76. As such, it has little adverse effect on the image displayed on the screen.
[0096] スクリーン 77上には、 空間位相変調素子 75から出射された回折光 79が投影 される。 この一連の動作処理中で行われる図 2に示した補正処理 94は、 各光 学要素の配置位置に対応して行われるものであり、 空間位相変調素子上に具 現化される空間位相分布が、 スクリーン 77に向かって回折するようにフーリ ェ変換で得られる空間位相分布を補正することを意味する。  On the screen 77, diffracted light 79 emitted from the spatial phase modulation element 75 is projected. The correction processing 94 shown in FIG. 2 performed during this series of operation processing is performed corresponding to the arrangement position of each optical element, and the spatial phase distribution embodied on the spatial phase modulation element. This means that the spatial phase distribution obtained by the Fourier transform is corrected so as to be diffracted toward the screen 77.
[0097] 次いで、 図 7の構成において所望の画像を得る為の透過型の空間位相変調 素子 75に課される条件を以下で検討する。  Next, the conditions imposed on the transmissive spatial phase modulation element 75 for obtaining a desired image in the configuration of FIG. 7 will be examined below.
[0098] 図 7のような構成の場合は、 回折光 79が 0次回折光を挟んで生じているこ とでプラス 1次だけでなく、 マイナス 1次の回折光も考慮した条件が必要とな る。 In the configuration shown in FIG. 7, the diffracted light 79 is generated with the 0th-order diffracted light sandwiched therebetween. Therefore, it is necessary to consider not only the positive first order but also the negative first order diffracted light.
[0099] 実施形態 1における図 1の実施形態では、 プラス 1次またはマイナス 1次の 片方だけの回折光に基づいて所望の画像を得る為の透過型の空間位相変調素 子 12に課される条件を導出した。 図 7のような構成の場合は、 図 1における 回折角 0 sが 2倍になると考えればよいので、 (6) 式は、 [0099] In the embodiment of Fig. 1 in Embodiment 1, it is imposed on the transmissive spatial phase modulation element 12 for obtaining a desired image based on the diffracted light of only one of the plus 1st order or the minus 1st order. The condition was derived. In the case of the configuration shown in FIG. 7, it can be considered that the diffraction angle 0 s in FIG. 1 is doubled.
[0100] [数 12]  [0100] [Equation 12]
Νθδ < 2GS (i o) と表すことができ、 図 7の透過型の空間位相変調素子 75に課される条件は、 It can be expressed as Νθ δ <2G S (io), and the conditions imposed on the transmissive spatial phase modulator 75 in FIG.
[0101] [数 13] [0101] [Equation 13]
M≥N (1 1) となる。 ここで、 例えば HDTVの画像信号を表示する場合、 透過型の空間位相 変調素子 75の区画部分の横方向の列数 Mは、 1 920以上が好ましい。 この時 に、 空間位相変調素子の位相変調部の幅 Dが 0. 6インチであり、 各区画部分 の縦横比が 4/5である場合、 透過型の空間位相変調素子 75の 1つの区画部 分の大きさは 6. 4 mである。 つまり、 図 7の区画部分の大きさが、 図 1 で示される空間位相変調素子の 1つの区画部分の大きさの 2倍で構わないこ とになる。 同様に、 N T S Cの場合ならば、 透過型の空間位相変調素子 75に おける 1つの区画部分の大きさは、 1 7 mであり、 スーパ一ハイビジョン の場合は、 透過型の空間位相変調素子 75の 1つの区画部分の大きさは、 1. 6 mとなる。 M≥N (1 1). Here, for example, when displaying an HDTV image signal, the number M of columns in the horizontal direction of the partition portion of the transmissive spatial phase modulation element 75 is preferably 1,920 or more. At this time, when the width D of the phase modulation part of the spatial phase modulation element is 0.6 inch and the aspect ratio of each division part is 4/5, one division part of the transmission type spatial phase modulation element 75 The size of the minute is 6.4 m. In other words, the size of the partition portion in FIG. 7 may be twice the size of one partition portion of the spatial phase modulation element shown in FIG. Similarly, in the case of NTSC, the size of one partition portion in the transmission type spatial phase modulation element 75 is 17 m, and in the case of Super Hi-Vision, the size of the transmission type spatial phase modulation element 75 The size of one section is 1.6 m.
[0102] また、 ここで図 7の場合における透過型の空間位相変調素子 75の各区画部 分間のピッチ Pでは、  [0102] Here, in the case of FIG. 7, in the pitch P between the partition portions of the transmission type spatial phase modulation element 75,
[0103] [数 14] [0103] [Equation 14]
P≤— ( 1 2 ) N という条件が課される。 The condition P≤— (1 2) N is imposed.
[0104] 以上より、 透過型の空間位相変調素子の区画部分の横方向の列数 Mを、 投影 したい画像の画素の横方向の列数 Nに対して、 [0104] From the above, the number of horizontal columns M of the partition portion of the transmissive spatial phase modulation element is set to the number of horizontal columns N of the pixels of the image to be projected.
[0105] [数 15] [0105] [Equation 15]
M≥N とすることにより、 高精細で高画質の表示を行うことができる。 By setting M≥N, high-definition and high-quality display can be performed.
[0106] さらに、 空間位相変調素子 75の位相情報表示面、 すなわち位相変調部の横 幅 D、 投影したい画像の横方向の画素列数 N、 透過型の空間位相変調素子 75の 区画部分ピッチ Pを  [0106] Further, the phase information display surface of the spatial phase modulation element 75, that is, the horizontal width D of the phase modulation unit, the number N of pixel columns in the horizontal direction of the image to be projected, the partition partial pitch P of the transmission type spatial phase modulation element 75 The
[0107] [数 1 6]
Figure imgf000025_0001
とすることにより、 比較的に大きな区画で高精細、 高画質の画像を投影する ことができ、 空間位相変調素子 75に対する負担を軽減できる。 好ましくは、 空間位相変調素子 75の各区画部分間のピッチ Pを 6 . 4 m〜3 . 2 mとす る事によって最適な投影装置用の空間位相変調素子を提供することができる
[0107] [Equation 1 6]
Figure imgf000025_0001
By doing so, a high-definition and high-quality image can be projected in a relatively large section, and the burden on the spatial phase modulation element 75 can be reduced. Preferably, an optimum spatial phase modulation element for a projection apparatus can be provided by setting the pitch P between the partition portions of the spatial phase modulation element 75 to 6.4 m to 3.2 m.
[実施形態 2 ] [Embodiment 2]
図 8および図 9 A、 図 9 B、 図 9 Cでは、 投影表示したい画像におけるリ アルドメインと本発明の投影装置に用いられる空間位相変調素子の空間位相 情報におけるフーリエドメインの対応関係を例示している。 [0108] ここで、 リアルドメインとは、 例えば、 表示したい画像データ、 あるいは 表示されたスクリーン上の画像である。 例として図 8では、 リアルドメイン 8 0を横 N x縦 Q= 1 6 X 9の画素として示している。 ここで、 投影される 1つの 画素 81として表される部分をリアルドメインの陰影部分で示している。 HDTV フォーマットの場合は、 リアルドメイン 80は横の列数 N x縦の列数 Q= 1 9 2 0 X 1 0 8 0の画素が必要である。 このリアルドメイン 80をフーリエ変換す ることで空間位相情報の基礎データを作ることになる。 投影したい画像の最 大空間周波数は縦と横で等しいので、 フーリエドメインの空間位相変調素子 における位相変調部の縦の長さ Kと横の長さ Jは等しくするのが効率的であ る。 投影して表示する画像の縦横比がどのような比であってもその比には依 存しない。 8 and 9A, FIG. 9B, and FIG. 9C exemplify the correspondence between the real domain in the image to be projected and displayed and the Fourier domain in the spatial phase information of the spatial phase modulation element used in the projection apparatus of the present invention. ing. [0108] Here, the real domain is, for example, image data to be displayed or an image on the screen that is displayed. For example, in FIG. 8, the real domain 80 is shown as pixels of horizontal N x vertical Q = 1 6 X 9. Here, the portion represented as one pixel 81 to be projected is indicated by the shaded portion of the real domain. In the case of the HDTV format, the real domain 80 requires a number of horizontal columns N x vertical columns Q = 1 9 2 0 X 1 0 8 0 pixels. The Fourier transform of this real domain 80 creates basic data of spatial phase information. Since the maximum spatial frequency of the image to be projected is the same in the vertical and horizontal directions, it is efficient to make the vertical length K and the horizontal length J of the phase modulation part in the spatial phase modulation element in the Fourier domain equal. Whatever aspect ratio of the projected image is displayed, it does not depend on that ratio.
[0109] 図 9 Aでは、 図 8のリアルドメイン 80をフーリエ変換したフーリエドメィ ン 90において空間位相変調素子の位相変調部の縦の長さ Kと横の長さ Jが等 しい場合を示している。 この場合においても実施形態 1で述べたように空間 位相変調素子の区画部分の横方向の列数 Mもしくは縦方向の列数 Lは、 投影 したい画像の画素の横方向の列数 Nもしくは縦方向の列数 Qに等しいか、 あ るいはそれ以上である事が望ましい。 ここで、 例えば、 空間位相変調素子の 区画部分の横方向の列数 Mもしくは縦方向の列数 Lが、 投影したい画像の画 素の横方向の列数 Nもしくは縦方向の列数 Qに等しいとすると、 図 9 Aで示 したように、 空間位相変調素子の横方向の区間部分の間隔が縦方向の区間部 分の間隔よりも小さくなる。 図 9 Aにおけるこの時の空間位相変調素子の区 間部分 93の列数は、 横の列数 M X縦の列数 L = 1 6 X 9の区画数になってい る。 また、 図 9 Bは、 空間位相変調素子の区間部分の縦方向の列数を横方向の 列数と同じ列数、 すなわち横の列数 M X縦の列数 L = 1 6 X 1 6として、 図 9 Aより小さくしたフーリエドメイン 91を示している。 そして、 図 9 Gでは、 図 9 Bとは反対に空間位相変調素子の区間部分の横方向の列数を縦方向の列数 と同じ列数、 すなわち横の列数 M X縦の列数 L = 9 X 9として、 図 9 Aより 大きくしたフーリエドメイン 92を示している。 ただし、 この図 9 Cの場合、 空間位相変調素子の区画数が少なくてすむと言う利点とともに、 横方向の低 周波像の再現性が、 理論上若干劣化する。 ゆえに、 空間位相変調素子におけ る位相変調を行う為の区画部分が、 2次元に複数配置されていると共に、 各 区画部分の区画数が、 投影される画像の画素数に等しいか、 または多いこと が望ましい。 FIG. 9A shows a case where the vertical length K and the horizontal length J of the phase modulation part of the spatial phase modulation element are equal in the Fourier domain 90 obtained by Fourier transforming the real domain 80 of FIG. . Also in this case, as described in the first embodiment, the number of horizontal columns M or the number of vertical columns L of the partition portion of the spatial phase modulation element is the number of horizontal columns N of the pixels of the image to be projected or the vertical direction. It is desirable to be equal to or greater than the number of columns of Q. Here, for example, the number of horizontal columns M or the number of vertical columns L of the partition portion of the spatial phase modulation element is equal to the number of horizontal columns N or the number of vertical columns Q of the pixels of the image to be projected. Then, as shown in FIG. 9A, the interval in the horizontal section of the spatial phase modulation element is smaller than the interval in the vertical section. The number of columns of the spatial portion 93 of the spatial phase modulation element at this time in FIG. 9A is the number of partitions of the number of horizontal columns MX the number of vertical columns L = 16 × 9. 9B shows that the number of vertical columns in the section of the spatial phase modulation element is the same as the number of horizontal columns, that is, the number of horizontal columns MX the number of vertical columns L = 1 6 X 16 FIG. 9 shows a Fourier domain 91 smaller than A. In FIG. 9G, contrary to FIG. 9B, the number of horizontal columns in the section of the spatial phase modulation element is the same as the number of vertical columns, that is, the number of horizontal columns MX the number of vertical columns L = 9 X 9 shows the Fourier domain 92 larger than Fig. 9A. However, in the case of Figure 9C, The reproducibility of the low-frequency image in the horizontal direction is slightly degraded in theory, with the advantage that the number of spatial phase modulation elements can be reduced. Therefore, a plurality of partition parts for performing phase modulation in the spatial phase modulation element are two-dimensionally arranged, and the number of sections in each partition part is equal to or greater than the number of pixels of the projected image. It is desirable.
[0110] 以下では、 図 8から図 9 A、 図 9 B、 図 9 Cへのフーリエ変換について述 ベる。  [0110] The Fourier transform from Fig. 8 to Fig. 9A, Fig. 9B, and Fig. 9C will be described below.
[0111] 図 8において表示したい画像を g (x, y) とすると、 そのフーリエ変換 [0111] If the image to be displayed in Fig. 8 is g (x, y), its Fourier transform
G (u, V ) は、 G (u, V) is
[0112] [数 17] [0112] [Equation 17]
G(w, V) = jjg(x,y)e-j27r ux+vy dxdy (13) と表すことができるが、 実際の投影装置では、 フーリエ変換は、 デジタル計 算によって高速に行われる為に、 式 (1 3) で表されるような連続的フ一リ ェ変換ではなく、 以下の式 (1 4) で表されるような離散的フーリエ変換が 用いられる。 G (w, V) = jjg (x, y) e- j27r ux + vy dxdy (13) In an actual projector, the Fourier transform is performed at high speed by digital calculation. Instead of the continuous Fourier transform expressed by Eq. (1 3), the discrete Fourier transform expressed by Eq. (14) below is used.
[0113] [数 18] [0113] [Equation 18]
Gmn=∑∑g^- ; (14) G mn = ∑∑g ^-; (14)
/=0 *=0 ここで、  / = 0 * = 0 where
[0114] は表示したい画像であり、 k、 I は画像における画素の番地と考えると理解 しゃすい。 また、 式 (1 4) における画素数は、 N X P個あることになる。
Figure imgf000028_0001
[0114] is the image you want to display, and k and I are understood to be pixel addresses in the image. In addition, the number of pixels in Equation (14) is NXP.
Figure imgf000028_0001
[0115] は、 [0115]
Ski Ski
[0116] のフーリエ変換であり、 この時、 [0116] Fourier transform,
[0117] [数 19] w = 0,1,2, ..... ,Ν - \ [0117] [Equation 19] w = 0,1,2, ....., Ν-\
"=0,1,2,…… , -1 とおくと、 式 (1 4) の離散的フーリエ変換は、 高速フーリエ変換 (FFT : Fa st Fourier Transform) を用いることができる。 この高速フーリエ変換を用 いることで、 投影したい画像  "= 0,1,2, ......, -1, the fast Fourier transform (FFT) can be used for the discrete Fourier transform of Equation (1 4). This fast Fourier transform By using, the image you want to project
[0118] を実時間において短時間でフーリエ変換することができ、 動画の速度に対応 させることができる。 したがって、 投影表示したい画像の画素の横の列数 X 縦の列数 = N X Pと空間位相変調素子の位相変調用の区画部分の横の列数 X 縦の列数 =Mx Lとを等しくしておく、 即ち、 Nと M、 Pと Lを等しくしてお くと都合がよい。 このようにする事により、 フーリエ変換によっても情報量 を保つことができる必要十分条件を満たすことが出来るため、 表示される画 像を形成するのに十分な情報量が確保され、 解像度等が確保された高品位の 画像を表示することができる。 もちろん投影表示したい画素の列数より区画 部分の列数が多ければさらに情報量の増大化が可能である。 加えて、 N、 P においては、 それぞれの 2のべき乗の計算がしゃすいと言う利点がある。 し たがって、 空間位相変調素子における区画部分の縦の列数および横の列数は 、 2のべき乗とすることで演算処理の高速化が実現できる。 [0118] can be Fourier-transformed in real time in a short time, and can correspond to the speed of the moving image. Therefore, the number of horizontal columns of the pixels of the image to be projected and displayed X the number of vertical columns = NXP and the number of horizontal columns of the phase modulation section of the spatial phase modulator X and the number of vertical columns = Mx L In other words, it is convenient to make N and M, and P and L equal. In this way, the necessary and sufficient condition that the amount of information can be maintained even by Fourier transform can be satisfied, so that a sufficient amount of information is secured to form the displayed image, and the resolution is secured. Displayed high-quality images. Of course, the amount of information can be further increased if the number of columns in the partition portion is larger than the number of pixels to be projected and displayed. In addition, in N and P, there is an advantage that the calculation of the powers of 2 is shaky. Therefore, the number of vertical columns and horizontal columns of the partition portion in the spatial phase modulation element is , By making it a power of 2, it is possible to speed up the arithmetic processing.
[0119] 以上、 第 2実施形態より、 本発明では、 空間位相変調素子において、 また 、 空間位相変調素子における位相変調を行う為の区画部分の縦の列数および 横の列数が、 スクリーン上に表示する投影される画像の画素の縦の列数およ び横の列数に等しいか、 または多くすることでスクリーン上に表示する画像 の解像本数を十分に満たした画像投影に最適な空間位相変調素子とすること ができる。 そして、 空間位相変調素子の縦横の長さを等しくする事で、 画像 における縦横の空間周波数 (解像度) を等しく表示することができる。 なお 、 表示する画像の縦横の長さが異なる場合でも空間位相変調素子の縦横の長 さを等しいままで必要最小限の空間周波数を出力できる。 また、 縦横の長さ を等しくした空間位相変調素子を備えた投影装置で光を回折することで画像 を投影できる。 したがって、 空間位相変調素子の位相変調を行う為の区画部 分の全てで形成される位相変調部における輪郭形状が、 縦横比の等しい正方 形であり、 投影される画像の縦横比に依存せずにスクリーン上に画像を投影 できる。 さらに、 スクリーン上に表示する画像の画素の縦横の列数と空間位 相変調素子の位相変調用の区画部分の縦横の列数とを等しくした空間位相変 調素子を備える投影装置で光を回折することで高い品位の画像を投影できる As described above, according to the second embodiment, in the present invention, in the spatial phase modulation element, the number of vertical columns and the number of horizontal columns of the partition portion for performing phase modulation in the spatial phase modulation element are on the screen. Optimal for projecting images that are equal to or greater than the number of vertical and horizontal columns of pixels of the projected image displayed on the screen, and sufficiently satisfy the number of images displayed on the screen. It can be a spatial phase modulation element. By making the vertical and horizontal lengths of the spatial phase modulation elements equal, the vertical and horizontal spatial frequencies (resolutions) in the image can be displayed equally. Even when the vertical and horizontal lengths of images to be displayed are different, the minimum necessary spatial frequency can be output while the vertical and horizontal lengths of the spatial phase modulation elements remain the same. In addition, an image can be projected by diffracting light with a projection apparatus equipped with spatial phase modulation elements with equal length and width. Therefore, the contour shape in the phase modulation part formed by all the partition parts for performing the phase modulation of the spatial phase modulation element is a square having the same aspect ratio, and does not depend on the aspect ratio of the projected image. The image can be projected on the screen. Furthermore, light is diffracted by a projection device having a spatial phase modulation element in which the number of vertical and horizontal columns of pixels of the image displayed on the screen is equal to the number of vertical and horizontal columns of the phase modulation section of the spatial phase modulation element. Can project high quality images
[0120] 図 1 OAおよび図 1 O Bでは、 さらなる理解を助けるために、 例として投 影したい画像 g (x) を一次元フーリエ変換することで G (u) としたグラ フを示す。 [0120] In Fig. 1 OA and Fig. 1 OB, to help further understanding, an image g (x) to be projected is shown as a graph G (u) by one-dimensional Fourier transform as an example.
[0121] 投影したい画像 g (χ) の画素数を Νとした場合、 離散的フーリエ変換を おこなった結果、 G (u) の数値の個数は N個となる。 ここで図 1 OAでは 、 投影したい画像を g ( X) として示しており、 図 1 0 Bでは、 図 1 0 Aの 投影したい画像 g (x) をフーリエ変換して、 画像周波数に座標変換した G [0121] When the number of pixels of the image g (χ) to be projected is Ν, the number of numerical values of G (u) is N as a result of the discrete Fourier transform. Here, in Fig. 1 OA, the image to be projected is shown as g (X), and in Fig. 10B, the image g (x) to be projected in Fig. 10A is Fourier transformed and coordinate-converted to the image frequency. G
(u) を示している。 図 1 0 Bでは、 G。が周波数 0を示しており、 は 、 画像周波数を表示できる最大周波数を示している。 (u) is shown. In Fig. 10 B, G. Indicates the frequency 0, and indicates the maximum frequency at which the image frequency can be displayed.
[実施形態 3] 図 1 1は、 光源からの照明光を集光して空間位相変調素子に入射させる集 光光学系と、 反射型の空間位相変調素子と、 空間位相変調素子から回折され ずに出射して集光する 0次回折光をその集光位置で遮蔽する遮蔽部材とを備 えた投影装置を示している。 [Embodiment 3] Figure 11 shows the converging optical system that collects the illumination light from the light source and makes it incident on the spatial phase modulation element, the reflective spatial phase modulation element, and the light emitted from the spatial phase modulation element without being diffracted. 1 shows a projection device provided with a shielding member that shields the diffracted 0-order diffracted light at its condensing position.
[0122] 図 1 1における投影装置 1 10は、 光源 1 1 1、 反射型の空間位相変調素子 1 13、 遮蔽部材 1 14、 集光光学系として集光レンズ 1 12とを含んで構成される。 図 1 1で図示している光学構成においては、 空間フィルタを省略してある。 この 光学構成は、 λ板を用いなくともよい照明光学系であって非常に簡単であり 、 低コストで済む上に、 小型化も可能である。  The projection apparatus 1 10 in FIG. 11 includes a light source 1 1 1, a reflective spatial phase modulation element 1 13, a shielding member 1 14, and a condensing lens 1 12 as a condensing optical system. . In the optical configuration shown in FIG. 11, the spatial filter is omitted. This optical configuration is an illumination optical system that does not require the use of a λ plate, is very simple, can be reduced in cost, and can be downsized.
[0123] この投影装置 1 10では、 図 1で用いられている透過型の空間位相変調素子と は異なり、 反射型の空間位相変調素子 1 13によって位相変調がなされた回折光 1 18を出射させ、 集光レンズ 1 12を介してスクリーン 1 15に回折光を投影する。 図 1 1の反射型の空間位相変調素子 1 13では、 0次回折光 1 1 7も反射されるが 、 反射された 0次回折光 1 1 7を遮蔽部材 1 14によつて遮蔽されるように構成し 、 スクリーン 1 15上に投影される画像に何らの悪影響も及ぼさないようにして いる。 0次回折光 1 1 7は回折角が 0度であり直進するため、 図 1 1に示すよう に光源 1 1 1を回折光の光路外に配置し、 空間位相変調素子 1 13の表面に対し て斜め方向から入射させることにより、 遮蔽部材 1 1 4の配置位置をスクリ ーンに向けて投影される回折光の光束外に配置できるので、 図 7に示す投影 装置とは異なり、 回折光の光束内から遮蔽部材を排除でき、 遮蔽部材によつ て発生する回折光の影をゼロとすることができる。  Unlike the transmissive spatial phase modulation element used in FIG. 1, this projection apparatus 110 emits diffracted light 118 that has been phase-modulated by a reflective spatial phase modulation element 113. The diffracted light is projected onto the screen 1 15 through the condenser lens 1 12. In the reflection type spatial phase modulation element 1 13 in FIG. 1, the 0th-order diffracted light 1 1 7 is also reflected, but the reflected 0th-order diffracted light 1 1 7 is shielded by the shielding member 1 14 However, the image projected on the screen 115 is not adversely affected. Since the 0th-order diffracted light 1 1 7 has a diffraction angle of 0 degrees and travels straight, the light source 1 1 1 is placed outside the optical path of the diffracted light as shown in FIG. Unlike the projection device shown in FIG. 7, the light beam of the diffracted light beam can be placed outside the diffracted light beam projected to the screen by placing the shielding member 1 1 4 at an oblique direction. The shielding member can be excluded from the inside, and the shadow of the diffracted light generated by the shielding member can be made zero.
[0124] なお、 図 1 1の光学配置においても各光学要素の配置位置に対応した補正 を必要とし、 この補正は、 空間位相変調素子に照射される照射光が、 スクリ —ン 1 15に向かって回折されて投影されるようにフーリエ変換で得られる空間 位相変調素子に表示される空間位相分布を補正することを意味する。  [0124] It should be noted that the optical arrangement of Fig. 11 also requires correction corresponding to the arrangement position of each optical element, and this correction is such that the irradiation light irradiated to the spatial phase modulation element is directed toward the screen 115. This means that the spatial phase distribution displayed on the spatial phase modulation element obtained by Fourier transformation is corrected so that it is diffracted and projected.
[0125] 次に、 図 1 2では、 反射型の空間位相変調素子を備えた投影装置のさらに 異なる実施形態を示している。  [0125] Next, FIG. 12 shows still another embodiment of a projection apparatus including a reflective spatial phase modulation element.
[0126] 図 1 2における投影装置 120は、 光源 121、 集光光学系としての集光レンズ 1 22、 反射型の空間位相変調素子 123、 遮蔽部材 124、 回折光 128を投影するスク リーン 125とを含んで構成される。 図 1 2の構成においては、 空間フィルタを 省略してある。 この光学構成においても、 λ板を用いなくともよい照明光学 系とすることで非常に簡単であり、 低コストで済む上に、 小型化も可能であ る。 [0126] The projection device 120 in FIG. 12 includes a light source 121 and a condensing lens 1 as a condensing optical system. 22, a reflective spatial phase modulation element 123, a shielding member 124, and a screen 125 for projecting the diffracted light 128. In the configuration of Fig. 12, the spatial filter is omitted. Even in this optical configuration, the illumination optical system that does not require the use of the λ plate is very simple, can be reduced in cost, and can be downsized.
[0127] 図 1 2の投影装置では、 光源 121、 例えばレーザ一、 からの照明光を集光光 学系の集光レンズ 122により照明光束 126とし、 反射型の空間位相変調素子 123 に入射するようにする。 そして、 反射型の空間位相変調素子 123によって、 位 相変調された回折光 128が射出されてスクリーン 125に投影され、 スクリーン 上に画像が表示される。 この反射型の空間位相変調素子 123では、 0次回折光 127も反射され、 回折光 128の光束内に射出される事になるが、 遮蔽部材 124に よって遮蔽されるように構成することでスクリーン 125上に表示される画像に 実用上の悪影響を及ぼさないようにしている。  In the projection device of FIG. 12, illumination light from a light source 121, for example, a laser beam, is converted into an illumination light beam 126 by a condensing optical system condensing lens 122 and is incident on a reflective spatial phase modulation element 123. Like that. Then, the phase-modulated diffracted light 128 is emitted by the reflective spatial phase modulation element 123 and projected onto the screen 125, and an image is displayed on the screen. In this reflection type spatial phase modulation element 123, the 0th-order diffracted light 127 is also reflected and emitted into the light beam of the diffracted light 128, but the screen 125 is configured to be shielded by the shielding member 124. The image displayed above is not adversely affected by practical use.
[0128] なお、 図 1 2の光学配置においても各光学要素の配置位置に対応した補正 を必要とし、 この補正は、 空間位相変調素子に照射される照射光が、 スクリ —ン 125に向かって回折されるようにフーリエ変換で得られる空間位相分布を 補正することを意味する。  [0128] Note that the optical arrangement shown in Fig. 12 also requires correction corresponding to the arrangement position of each optical element. In this correction, the irradiation light applied to the spatial phase modulation element is directed toward the screen 125. This means that the spatial phase distribution obtained by Fourier transform is corrected so as to be diffracted.
[0129] 以上、 図 1 1および図 1 2では、 集光光学系と、 反射型の空間位相変調素 子と、 遮蔽部材とを備える投影装置の一つの実施形態を示したが、 投影レン ズを設けなくとも投影レンズを設けても構わない。 即ち、 空間位相変調素子 の大きさに対してスクリーンまでの投影距離が長い場合は、 焦点調節する必 要がない為に投影レンズをなくすことができる。 一方で、 空間位相変調素子 の大きさに対してスクリーンまでの投影距離が近い場合は、 焦点調節の為に 投影レンズが必要な場合がある。 また、 投影装置としてズーム機能を付加し たい場合は、 ズーム機能を担う投影レンズが必要になる。 しかしながら、 こ の時に付加される投影レンズにおいても、 従来の投影装置に用いられている 投影レンズよりも廉価で小型な物を使用する事ができる。  As described above, in FIGS. 11 and 12, one embodiment of the projection apparatus including the condensing optical system, the reflective spatial phase modulation element, and the shielding member has been described. A projection lens may be provided without providing the projection lens. That is, when the projection distance to the screen is long with respect to the size of the spatial phase modulation element, it is not necessary to adjust the focus, so that the projection lens can be eliminated. On the other hand, if the projection distance to the screen is close to the size of the spatial phase modulation element, a projection lens may be required for focus adjustment. In addition, if you want to add a zoom function as a projection device, you need a projection lens that carries the zoom function. However, even the projection lens added at this time can use a cheaper and smaller object than the projection lens used in the conventional projection apparatus.
[0130] さらに、 図 1 1、 図 1 2のいずれの実施形態においても図 4において説明 したように赤色光源 R、 緑色光源 G、 青色光源 Bのから照明光、 例えば赤色光 源 緑色光源 G、 青色光源 Bからのレーザー、 を用いて時分割で各色を色順次 方式で照明する事でフルカラーの表示が可能である。 ここで、 通常の一色の 画像表示は、 6 0 Hzなので、 三色の切り替えを行う場合には、 1 8 0 Hzが最 低限必要となる。 また、 カラ一ブレイク現象を低減する為には 5 4 O Hz以上 の三色の切り替えが好ましい。 よって、 フルカラー表示を行う場合の空間位 相変調素子の画像に対応する空間位相分布の切換え速度は、 最低でも 1 8 0 H z以上が必要とされ、 好ましくは 5 4 0 Hz以上がよい。 [0130] Further, in any of the embodiments shown in FIGS. As described above, illumination light from red light source R, green light source G, and blue light source B, for example, light from red light source, green light source G, and laser from blue light source B, is used to illuminate each color in a time-sequential manner. Full color display is possible. Here, the normal one-color image display is 60 Hz, so when switching between the three colors, 180 Hz is the minimum required. In order to reduce the color break phenomenon, it is preferable to switch between three colors of 5 4 OHz or higher. Therefore, the switching speed of the spatial phase distribution corresponding to the image of the spatial phase modulation element in the case of performing full color display needs to be at least 1800 Hz, and preferably 5400 Hz or more.
[0131 ] 次に、 図 1 3 Aおよび図 1 3 Bは、 複数の反射型の空間位相変調素子と、 遮蔽部材とを備え、 多板式の構成とし、 画像のフルカラー表示を行う投影装 置 130を示している。 [0131] Next, FIGS. 13A and 13B are each a projection device 130 that includes a plurality of reflective spatial phase modulation elements and a shielding member, has a multi-plate configuration, and performs full-color display of an image. Is shown.
[0132] 図 1 3 Aは投影装置 130の平面図であり、 図 1 3 Bは、 図 1 3 Aの青色光源 に対応する空間位相変調素子 133bを含んでいる部分を視線方向 Iから見た時の 側面図を示している。  [0132] FIG. 13A is a plan view of the projector 130, and FIG. 13B is a view of the portion including the spatial phase modulation element 133b corresponding to the blue light source of FIG. A side view of the hour is shown.
[0133] 図 1 3 Aにおける投影装置 130は、 赤色光源 R、 緑色光源 G、 青色光源 Bの各 色の光源と、 各色の光源に対応したコリメータ 131 r , 131 g, 131 bと、 各色の光 源に対応した全反射プリズム 132r , 132g, 132bと、 各色の光源に対応した反射 型の空間位相変調素子 133r、 133g、 133bと、 各色の光源に対応した遮蔽部材 1 36r , 136g, 136bと、 各色の回折光を合成する為の色合成プリズム 137と、 投影 レンズ 138を含んで構成される。  [0133] The projection device 130 in FIG. 1A includes a light source of each color of red light source R, green light source G, and blue light source B, collimators 131 r, 131 g, 131 b corresponding to the light sources of each color, Total reflection prisms 132r, 132g, 132b corresponding to the light sources, reflective spatial phase modulation elements 133r, 133g, 133b corresponding to the light sources of the respective colors, and shielding members 1 36r, 136g, 136b corresponding to the light sources of the respective colors A color synthesizing prism 137 for synthesizing the diffracted lights of the respective colors, and a projection lens 138.
[0134] ここで、 図 1 3 Aで図示している投影レンズ 138は凹レンズであるが、 凸レ ンズであっても構わない。  Here, although the projection lens 138 shown in FIG. 13A is a concave lens, it may be a convex lens.
[0135] ここでは、 図 1 3 Aにおいて回折光でフルカラ一画像を投影する為の原理 として、 まず、 簡単の為に図 1 3 Bの青色の空間位相変調素子 133 bに対応す る部分のみに着目し、 青色の回折光を射出する原理を述べる。  [0135] Here, as a principle for projecting a full color image with diffracted light in Fig. 13A, first, for the sake of simplicity, only the part corresponding to the blue spatial phase modulation element 133b in Fig. 13B The principle of emitting blue diffracted light is described.
[0136] 図 1 3 Bにおいて青色光源 134bから発した青色照明光、 例えば青色のレー ザ一、 は、 全反射プリズム 132bで反射された後に、 コリメータ 131 bを通過し 、 青色光源 134bに対応する反射型の空間位相変調素子 133bに入射する。 そし て、 反射型の空間位相変調素子 133bに対応した青色画像用の空間位相情報に よって変調され、 射出した青色の回折光は、 コリメータ 131 bを再び通過し、 略平行な光束となり、 色合成プリズム 137に入射する。 また、 ここでの青色の 0次回折光は、 空間位相変調素子 133bから出射した後に、 再びコリメータ 131 bを通って、 全反射プリズム 132bで全反射し、 遮蔽部材 136bに到達することで 遮蔽される。 [0136] In FIG. 13B, the blue illumination light emitted from the blue light source 134b, for example, a blue laser beam, is reflected by the total reflection prism 132b, passes through the collimator 131b, and corresponds to the blue light source 134b. The light enters the reflective spatial phase modulation element 133b. And The blue diffracted light modulated and emitted by the spatial phase information for the blue image corresponding to the reflective spatial phase modulation element 133b passes through the collimator 131b again, becomes a substantially parallel light beam, and becomes a color synthesis prism. Incident on 137. The blue zero-order diffracted light here is emitted from the spatial phase modulation element 133b, then again passes through the collimator 131b, is totally reflected by the total reflection prism 132b, and is blocked by reaching the shielding member 136b. .
[0137] ここで図 1 3 Aにおける緑色光源、 赤色光源の空間位相変調素子 133g、 133 rに対応する部分においても、 青色光源 134bの空間位相変調素子 133bに対応す る部分と同様の構成で赤色、 緑色の回折光を得ることができ、 各色に対応す る空間位相変調素子から射出した回折光が色合成プリズム 137に入射する。 な お、 ここにおける赤色光源、 緑色光源の 0次回折光は、 青色光源の 0次回折 光と同様に遮蔽部材 136g, 133rによって取り除かれる。 図 1 3 Aにおいて、 青 色光源に対応する空間位相変調素子 133b、 赤色光源に対応する空間位相変調 素子 133r、 緑色光源に対応する空間位相変調素子 133gから生じた青色、 赤色 、 緑色の回折光は、 色合成プリズム 137に入射し、 各色の回折光が合成されて フルカラーの回折光となり、 投影レンズ 138を介してスクリーン 139に投影さ れることでフル力ラーの画像を映し出す事ができる。  Here, the portions corresponding to the spatial phase modulation elements 133g and 133r of the green light source and the red light source in FIG. 13A also have the same configuration as the portions corresponding to the spatial phase modulation element 133b of the blue light source 134b. Red and green diffracted light can be obtained, and diffracted light emitted from the spatial phase modulation element corresponding to each color is incident on the color synthesis prism 137. Here, the 0th-order diffracted light of the red light source and the green light source is removed by the shielding members 136g and 133r in the same manner as the 0th-order diffracted light of the blue light source. In Fig. 1 3 A, the blue, red, and green diffracted light generated from the spatial phase modulation element 133b corresponding to the blue light source, the spatial phase modulation element 133r corresponding to the red light source, and the spatial phase modulation element 133g corresponding to the green light source Is incident on the color combining prism 137, and the diffracted lights of the respective colors are combined to form a full-color diffracted light, which is projected onto the screen 139 via the projection lens 138, thereby displaying a full power error image.
[0138] この多板式構成においては、 常時、 各照明光を照らしており、 図 4におけ る色順次式のような各色の光源の切り替えの必要がない為にカラーブレイク 現象の心配はない。  [0138] In this multi-plate configuration, each illumination light is always illuminated, and there is no need to switch the light source of each color as in the color sequential method in Fig. 4, so there is no worry of a color break phenomenon.
[0139] 以上のような構成で、 小型で廉価かつ 0次回折光の影響をも回避できる画 像のフルカラー表示を行う投影装置を提供できる。  [0139] With the configuration as described above, it is possible to provide a projection device that performs full-color display of an image that is small, inexpensive, and that can avoid the influence of 0th-order diffracted light.
[0140] なお、 実施形態 1から実施形態 3に示した投影装置では、 透過型の空間位 相変調素子として L Cや L C O Sを適用できる。 一方、 D M Dは反射型の空 間位相変調素子としては利用できないが、 空間位相を振幅回折素子として具 現できる空間強度変調素子として利用できる。 しかしながら、 この場合、 回 折効率は大きくできない。  [0140] Note that, in the projection apparatuses shown in Embodiments 1 to 3, L C and L C O S can be applied as a transmissive spatial phase modulation element. On the other hand, D M D cannot be used as a reflective spatial phase modulation element, but can be used as a spatial intensity modulation element that can realize the spatial phase as an amplitude diffraction element. However, in this case, the diffraction efficiency cannot be increased.
[実施形態 4 ] 本発明では、 さらに簡易的な構成で光の利用効率および回折効率を高め、 最適な回折パターンを得ることのできる反射型の空間位相変調素子 (Spatial Phase Modu later: S PM) である MM D (Magic Mirror Device)素子を提供 する。 なお、 本発明の MMD素子を上述した投影装置に用いることで画像を 投影することができる。 [Embodiment 4] In the present invention, MM D (Spatial Phase Modu later: S PM) is a reflection type spatial phase modulation element that can improve the light utilization efficiency and diffraction efficiency with a simpler structure and obtain an optimum diffraction pattern. Magic Mirror Device) element is provided. An image can be projected by using the MMD element of the present invention for the above-described projection apparatus.
[0141] 図 1 4 Aおよび図 1 4 Bは、 MM D素子 150、 160を示す斜視図である。 FIGS. 14A and 14B are perspective views showing the MMD elements 150 and 160. FIG.
[0142] MM D (Magic Mirror Device)素子のミラ一 151 , 161は、 光源からの光を位 相変調するための区画部分と、 この各区画部分に対応して配置された弾性部 材と、 弾性部材にそれぞれ対応して配置され、 電圧を印加することで前記弾 性部材の復元力に杭して前記ミラーを移動するための電極と、 電極が配置さ れる基板とを有している。 図 1 4 Αおよび図 1 4 Bでは、 MM D素子 150, 160 における位相変調を行う為の区画部分 93を陰影をつけて示している。 本発明 の光源からの光から位相変調した回折光を出射させる空間位相変調素子であ る MM D素子は、 位相変調を行うための区画部分 93が、 2次元に複数配置さ れていると共に、 各区画部分 93の区画数が、 投影される画像の画素数に等し し、か、 または多くなるようにしている。 さらに、 MMD素子における区画部 分 93の縦の列数および横の列数が、 投影される画像の画素の縦の列数および 横の列数に等しい、 または多いことが好ましい。 また、 MM D素子における 区画部分 93の縦の列数および横の列数が、 2のべき乗であるとさらに良い。 そして、 MM D素子の位相変調を行うための区画部分 93の全てで形成される 位相変調部における輪郭形状が、 縦横比の等しい正方形であり、 投影される 画像の縦横比に依存しない。 [0142] Mirrors 151 and 161 of an MM D (Magic Mirror Device) element include partition portions for phase-modulating light from a light source, and elastic members disposed corresponding to the partition portions, Each electrode is arranged corresponding to each elastic member, and has an electrode for moving the mirror by applying a voltage to the restoring force of the elastic member, and a substrate on which the electrode is arranged. In FIGS. 14 and 14B, the section 93 for performing phase modulation in the MMD elements 150 and 160 is shown shaded. The MMD element, which is a spatial phase modulation element that emits phase-modulated diffracted light from light from the light source of the present invention, has a plurality of partition portions 93 for performing phase modulation arranged in two dimensions, The number of sections of each section 93 is set equal to or greater than the number of pixels of the projected image. Furthermore, it is preferable that the number of vertical columns and the number of horizontal columns of the partition part 93 in the MMD element is equal to or larger than the number of vertical columns and horizontal columns of pixels of the projected image. Further, it is more preferable that the number of vertical columns and the number of horizontal columns of the partition portion 93 in the MMD element is a power of two. The contour shape in the phase modulation section formed by all of the partition sections 93 for performing phase modulation of the MMD element is a square having the same aspect ratio, and does not depend on the aspect ratio of the projected image.
[0143] 図 1 4 Aおよび図 1 4 Bのように、 MM D素子 150、 160は不図示の電極、 不図示の弾性部材、 不図示の支柱、 ミラ一 151、 161を基板 157上に配置してい る。 例えば、 MM D素子に用いられるミラ一は、 一体型のミラ一面としても 良く、 または一体型を複数に分割したミラ一面としても良い。 一体型のミラ 一に対して複数の電極で制御する場合には、 ミラーに柔軟性が必要である。 図 1 4 Aでは、 一つの一体型のミラ一 151に対して複数の電極を対応させてい る様子を示している。 図 1 4 Aでは、 一体型のミラ一 151において位相変調を 行うための各区画部分 93毎に一つの弾性部材を対応させている。 一方で、 図 1 4 Bでは、 一つの略方形のミラ一 161に対して一つの電極を対応させ、 縦横 にミラ一の間隔、 いわゆるピッチを一定にしながら複数のミラ一 161を配置し て MMD素子 160を構成している様子を示している。 図 1 4 Aおよび図 1 4 B では、 M M D素子 160における位相制御を行うための区画部分 93を陰影をつけ て示している。 図 1 4 Bにおいて、 ミラ一 161のピッチは一定でなくても良い 。 また、 このミラ一間の間隔は、 互いのミラ一同士が動作時に干渉しない程 度に極限まで近づける事が望ましい。 例えば、 横 X縦で 1 980 X 1 080 の画素数の投影画像を表示するのに必要な区画数は、 上記各実施例ですでに 述べたように所望の解像度を確保するために画素数と同数とした場合には、 縦の列数 X横の列数 = 1 920 X 1 080 = 2, 073, 600個である。 ま た、 この MM D素子は、 位相変調が行える機能があれば良いので、 光の波長 の数分の一程度の高さ位置の差を形成できる制御を行うことで所望の機能を 発揮できる。 したがって、 MM D素子のミラー面の面精度は、 十分の一波長 程度が必要である。 また、 光の利用効率や画像のコントラストを考えると、 MM D素子のミラーの表面の面粗さは、 波長の 1 00分の 1程度が望ましい 。 よって、 可視光で使用する場合、 MMD素子のミラ一面の面精度は 5 Onm 以下で、 ミラ一面の面粗さは 5 nm以下が好ましい。 ここでの精度は rmsで達成 されていても、 ピーク トウピークで達成されていてもよい。 ミラ一の面精度 を 5 Onm以下にする事により、 忠実度の高い画像を表示することができる。 また、 ミラーの面粗さを 5nm以下とすることにより、 散乱光を減らすことが でき、 コントラス卜の高い画像を表示することができる。 [0143] As shown in Fig. 1 4 A and Fig. 1 4 B, the MM D elements 150 and 160 have electrodes (not shown), elastic members (not shown), pillars (not shown), and mirrors 151 and 161 arranged on the substrate 157. is doing. For example, the mirror used for the MMD element may be an integral type mirror surface, or may be a mirror surface obtained by dividing the integral type into a plurality of mirror surfaces. When controlling an integrated mirror with multiple electrodes, the mirror must be flexible. In Fig. 14 A, multiple electrodes are associated with one integrated mirror 151. It shows how it works. In FIG. 14A, one elastic member is made to correspond to each partition portion 93 for performing phase modulation in the integrated mirror 151. On the other hand, in FIG. 14B, one electrode is made to correspond to one substantially square mirror 161, and a plurality of mirrors 161 are arranged in the vertical and horizontal directions while maintaining a constant spacing between the mirrors, so-called pitch. A state in which the element 160 is configured is shown. In FIG. 14A and FIG. 14B, the partition part 93 for performing phase control in the MMD element 160 is shown shaded. In Fig. 14 B, the pitch of the mirror 161 does not have to be constant. It is desirable that the distance between the mirrors be as close as possible to the extent that the mirrors do not interfere with each other during operation. For example, the number of sections required to display a projected image having a number of pixels of 1 980 X 1 080 in the horizontal X vertical direction is the same as the number of pixels in order to secure a desired resolution as already described in the above embodiments. If the number is the same, the number of vertical columns X the number of horizontal columns = 1 920 X 1 080 = 2, 073, 600. In addition, since this MMD element only needs to have a function capable of phase modulation, a desired function can be exhibited by performing control capable of forming a height position difference of about a fraction of the wavelength of light. Therefore, the surface accuracy of the mirror surface of the MMD element needs to be about one-tenth of a wavelength. Also, considering the light use efficiency and image contrast, the surface roughness of the mirror of the MMD element is preferably about 1 / 100th of the wavelength. Therefore, when used with visible light, the surface accuracy of the mirror surface of the MMD element is preferably 5 Onm or less, and the surface roughness of the mirror surface is preferably 5 nm or less. The accuracy here may be achieved at rms or peak-to-peak. By setting the mirror surface accuracy to 5 Onm or less, images with high fidelity can be displayed. Also, by setting the mirror surface roughness to 5 nm or less, the scattered light can be reduced and an image with high contrast wrinkles can be displayed.
[0144] 以下では、 図 1 4 Aおよび図 1 4 Bの線 XV— Aおよび線 XV I —Aで示 される MM D素子の断面図を参照しながら本発明の MM D素子の詳細を述べ る。 [0144] The details of the MM D element of the present invention will be described below with reference to cross-sectional views of the MM D element shown by lines XV—A and XV I —A in FIGS. 14A and 14B. The
[0145] 図 1 5 Aは、 図 1 4 Aの MMD素子 150の線 X V— Aにおける断面図を示し ている。 [0146] M M D素子 150の基板 157上には、 絶縁層 156が重ねられており、 その絶縁層 156の上に各区画部分 93に対応して配置された導電性の弾性部材 154が設けら れている。 そして、 各弾性部材 154の下方には、 絶縁層上部に各区画に対応し て配置され、 スィッチ回路に接続された電極 155が設けられている。 一方で、 弾性部材 154の上部には支柱 153が結合しており、 その支柱 153の上部は、 さら に薄膜 152と結合しており、 薄膜 152上にはミラ一 151が配置されている。 図 1 5 Aでは、 ミラ一 151が一体型に繋がっており、 一つのミラ一 151の各区画部 分に対して支柱 153、 弾性部材 154、 電極 155が対応して配置されている。 ここ でのミラー 151は柔軟性を有し、 容易に湾曲するように変形する事ができる。 好ましくは、 ミラー 151は、 反射率の高い金属または誘電体多層膜で形成する 。 また、 薄膜 152は、 柔軟性と耐久性に富む材料で形成することができる。 薄 膜 152には、 好ましくは、 柔軟性のある有機フィルムや S i 2 N 3などを用いる 。 薄膜 152は無くても良い。 また、 支柱 153は、 S iや S i 0 2など製造プロセ スにおいて都合が良いものを用いることができる。 そして、 弾性部材 154には 、 柔軟金属や導電性有機フィルムを用いることができる。 また、 この有機フ イルムに導電性素材をコーティングした物を用いても良い。 電極 155には、 伝 導体として A I、 C u、 W等を用いることができる。 そして、 絶縁層 156には 、 S i 0 2ゃ3 i Cなどを用いる事ができ、 基板 157には、 S i を用いる事が できる。 FIG. 15A shows a cross-sectional view along line XV—A of the MMD element 150 of FIG. 14A. An insulating layer 156 is overlaid on the substrate 157 of the MMD element 150, and a conductive elastic member 154 disposed corresponding to each partition portion 93 is provided on the insulating layer 156. ing. Below each elastic member 154, an electrode 155 is provided above the insulating layer so as to correspond to each section and connected to the switch circuit. On the other hand, a support column 153 is coupled to the upper portion of the elastic member 154, and the upper portion of the support column 153 is further coupled to the thin film 152, and a mirror 151 is disposed on the thin film 152. In FIG. 15A, the mirror 151 is integrally connected, and the support 153, the elastic member 154, and the electrode 155 are arranged corresponding to each partition portion of the single mirror 151. The mirror 151 here has flexibility and can be easily deformed so as to bend. Preferably, the mirror 151 is formed of a highly reflective metal or dielectric multilayer film. The thin film 152 can be formed using a material having high flexibility and durability. As the thin film 152, a flexible organic film, Si 2 N 3 or the like is preferably used. The thin film 152 may be omitted. Also, it struts 153 may be used as convenient in the manufacturing process, such as S i and S i 0 2. For the elastic member 154, a flexible metal or a conductive organic film can be used. Further, a material obtained by coating this organic film with a conductive material may be used. For the electrode 155, AI, Cu, W, or the like can be used as a conductor. S i 0 2 or 3 i C can be used for the insulating layer 156, and S i can be used for the substrate 157.
[0147] したがって、 図 1 5 Aにおけるミラ一面は、 一体型のミラ一から形成され 、 一体型のミラーにおけるミラー面の位相変調を行う為の各区画部分に対応 してそれぞれ弾性部材及び電極が配置されるようにしており、 ミラーを用い ている事で入射光をほぼ 1 0 0 %利用できる光の利用効率の良い空間位相変 調素子を提供する事ができる。  Therefore, the mirror surface in FIG. 15A is formed from an integral mirror, and the elastic member and the electrode correspond to each partition portion for phase modulation of the mirror surface in the integral mirror. By using a mirror, it is possible to provide a spatial phase modulation element with high light utilization efficiency that can use almost 100% of incident light by using a mirror.
[0148] 図 1 5 Bは、 図 1 5 Aの M M D素子の光の位相変調時における断面図を示 している。  FIG. 15 B shows a cross-sectional view of the MMD element of FIG. 15 A during phase modulation of light.
[0149] 図 1 5 Bでは、 図 1 5 Aの初期状態から電極 155に電圧を印加する事で対応 する区画部分 93における弾性部材 154と電極 155との間にクーロン力が作用し 、 弾性部材 154が電極 155に近づき、 柔軟性を有する一体型のミラー 151の表面 が窪むように湾曲し、 ミラ一面の移動量△ h が生じる。 ここで、 他の湾曲し ていないミラ一面で反射される入射光と湾曲しているミラ一面で反射される 入射光とでミラ一面の移動量△ h の違いによる光路差が生じる事で位相の変 調を可能とする。 そのミラー面が湾曲して窪んでいる量、 すなわちミラー面 の変形量 A h 力 1 / 4波長分である場合は、 湾曲しているミラーで反射さ れる入射光は、 往復で 1 / 2波長、 すなわち他の湾曲していないミラー面で反 射される反射光と比べて πの位相差を作り出す事ができる。 このように本発 明の M M D素子において、 電極に電圧を 0N/0FFするバイナリ一動作によって 位相を反転させる事が可能となる。 また、 同様にして、 ミラ一面の変形量△ h が最大 1 / 2波長分湾曲するようにすると、 湾曲しているミラ一面で反射 される反射光は、 他の湾曲していないミラー面で反射される反射光と比べて 往復で最大 1波長分の位相差を作り出す事ができる。 [0149] In FIG. 15B, by applying a voltage to the electrode 155 from the initial state of FIG. 15A, a Coulomb force acts between the elastic member 154 and the electrode 155 in the corresponding partition portion 93. The elastic member 154 approaches the electrode 155 and is bent so that the surface of the flexible integrated mirror 151 is depressed, and a movement amount Δ h of the mirror surface is generated. Here, the phase difference is caused by the difference in the optical path between the incident light reflected by the other non-curved mirror surface and the incident light reflected by the curved mirror surface, due to the difference in the movement amount Δh of the mirror surface. Modulation is possible. If the mirror surface is curved and recessed, that is, the amount of deformation of the mirror surface is Ah force 1/4 wavelength, the incident light reflected by the curved mirror is half a wavelength in the round trip. That is, it is possible to create a phase difference of π compared to the reflected light reflected by other non-curved mirror surfaces. In this way, in the MMD element of the present invention, the phase can be reversed by a binary operation of applying a voltage of 0N / 0FF to the electrode. Similarly, if the deformation amount Δh of the mirror surface is curved by a maximum of 1/2 wavelength, the reflected light reflected by the curved mirror surface is reflected by other uncurved mirror surfaces. Compared to the reflected light, it can create a phase difference of up to one wavelength by reciprocation.
[0150] このようにして、 ミラ一面は、 電極への電圧の印加に対応して湾曲するこ とで、 その変形量に応じて作り出すことのできる位相差が決定される。 また 、 ミラー面の湾曲即ち変形の制御は、 電極への電圧の印加の有無のみで決定 できる為に制御も単純である。 なお、 制御はバイナリー制御に限定されない 。 例えば、 ミラー面の最大変形量を、 入射する光源の光の 1 / 2波長相当分 以内としておき、 この最大変形量を生成できる場合の電圧値を最大値として その範囲内の電圧を印加することでミラー面の変形量を任意の量に設定する ことができる。 制御はアナログ的な制御としても良く、 あるいはゼロから最 大電圧値までをいくつかの電圧ステップに予め分割しておき、 制御はこのス テツプを 1つずつ順次連続的に増減させるようにしても良い。 もちろん最大 変形量は 1 / 4波長分としても良い。 ミラー面の最大変形量を、 入射する光 源の光の 1 / 2波長相当分以内としても、 出射する回折光において形成され る位相差は 1波長分となり、 全ての位相差を作り出すことができる。 もちろ ん 1波長以上でも良い。  [0150] In this way, the mirror surface is curved in response to the application of a voltage to the electrode, so that the phase difference that can be produced according to the amount of deformation is determined. In addition, the control of the curvature of the mirror surface, that is, the deformation, can be determined only by the presence or absence of voltage application to the electrodes, so the control is simple. Control is not limited to binary control. For example, the maximum deformation amount of the mirror surface should be within the half wavelength equivalent of the light of the incident light source, and the voltage value when this maximum deformation amount can be generated is the maximum value and a voltage within that range is applied. With, the amount of deformation of the mirror surface can be set to an arbitrary amount. The control may be analog control, or the voltage from zero to the maximum voltage value may be divided into several voltage steps in advance, and the control may be increased or decreased sequentially one by one. good. Of course, the maximum deformation may be 1/4 wavelength. Even if the maximum deformation of the mirror surface is within half the wavelength equivalent to the light from the incident light source, the phase difference formed in the emitted diffracted light is one wavelength, and all phase differences can be created. . Of course, more than one wavelength is acceptable.
[0151 ] さらに、 弾性部材 154の弾性定数を適切に選択する事で弾性部材 154の窪み 、 すなわちミラー面の湾曲によるミラー面の変形量 Δ h を制御する事が可能 である。 また、 ミラ一面の変形量△ h を順次連続的に増減させるように制御 し、 連続的且つ緩やかに一体型のミラ一 151の変形量を変化させることで、 バ イナリー動作によるバイナリ一位相変調で生じる不要な回折次数を抑える事 が可能である。 [0151] Furthermore, by appropriately selecting the elastic constant of the elastic member 154, the depression of the elastic member 154 That is, it is possible to control the deformation amount Δ h of the mirror surface due to the curvature of the mirror surface. In addition, by controlling the amount of deformation Δh on the mirror surface to increase and decrease sequentially, and by changing the amount of deformation of the integrated mirror 151 continuously and slowly, binary one-phase modulation by binary operation is performed. It is possible to suppress unnecessary diffraction orders.
[0152] なお、 弾性部材 154は、 電圧を印加されて窪んだ後に、 電圧をゼロにする事 によって弾性部材 154の復元力により初期状態まで戻る事ができる。  [0152] The elastic member 154 can return to the initial state by the restoring force of the elastic member 154 by setting the voltage to zero after the voltage is applied and the electrode is depressed.
[0153] 以上に述べたように特定の電極 155に電圧を印加し、 一体型に繋がったミラ 一 151の特定部分を選択的に湾曲させることで位相変調をすることができる。 ミラー 151の高さの変化を連続的且つ緩やかに行う事で不要な回折次数の発生 が抑えられ、 さらに、 バイナリ一変調よりも高い回折効率を得られる。  [0153] As described above, phase modulation can be performed by applying a voltage to the specific electrode 155 and selectively bending the specific portion of the mirror 151 connected to the integral type. By continuously and gently changing the height of the mirror 151, generation of unnecessary diffraction orders can be suppressed, and higher diffraction efficiency than binary one modulation can be obtained.
[0154] 図 1 6 Aでは、 図 1 4 Bの M M D素子の線 X V I— Aにおける断面図を示 している。  [0154] Fig. 16A shows a cross-sectional view of the MMD element of Fig. 14B taken along line XVI-A.
[0155] 図 1 6 Aの M M D素子 160では、 図 1 5八ゃ図1 5 Bで示したような一体型 のミラーを複数に分割することで複数のミラー 161とし、 分割した各ミラー 16 1に一対一の対応となるように支柱 153、 弾性部材 154、 電極 155を配置した。 それ以外は、 図 1 5八と図1 5 Bにおける M M D素子 150と同様の構成である 。 この構成において薄膜 162をミラ一 161の下部分に用いる場合には、 薄膜 162 に固い有機フィルムや S iなどを用いても良い。 なお、 本図ではミラ一 161と 薄膜 162を略方形にしたとして以下に詳細を述べる。 この構成においても、 図 1 5八と図1 5 Bと同様にミラ一を用いているので、 光をほぼ 1 0 0 %で利 用でき、 光の利用効率の良い空間位相変調素子を提供する事ができる。 図 1 6 Aでは、 位相変調を行うための各区画部分 93はそれぞれ 1つのミラ一とし ているものである。  [0155] In the MMD element 160 shown in Fig. 1 6 A, the integrated mirror as shown in Fig. 1 5-8 is divided into a plurality of mirrors 161, and each of the divided mirrors 16 1 The support 153, the elastic member 154, and the electrode 155 are arranged so as to have a one-to-one correspondence. Other than that, the configuration is the same as that of the MMD element 150 in FIGS. 15-8 and 15B. In this configuration, when the thin film 162 is used in the lower part of the mirror 161, a hard organic film or Si may be used for the thin film 162. In this figure, the mirror 161 and the thin film 162 are assumed to be substantially square, and the details will be described below. Even in this configuration, a mirror is used in the same manner as in FIGS. 15 and 15B, so that light can be used at approximately 100%, and a spatial phase modulation element with high light utilization efficiency is provided. I can do things. In FIG. 16A, each section 93 for performing phase modulation is one mirror.
[0156] 図 1 6 Bは、 図 1 6 Aの M M D素子の光の位相変調時における断面図を示 している。  FIG. 16B shows a cross-sectional view of the MMD element of FIG. 16 A during phase modulation of light.
[0157] 図 1 6 Bでは、 図 1 6 Aの状態から電極 155に電圧を印加する事で各弾性部 材 154と各電極 155との間にクーロン力が作用し、 弾性部材 154が電極 155と近 づく。 ここで弾性部材 154が基板 157に近づく事に伴い、 支柱 153を介して弾性 部材 154上にあるミラー 161が下方に移動する。 このミラー 161が下方に移動す ることにより、 ミラ一 161に入射する光に対し、 電圧が印加されていない他の ミラーと電圧が印加されている下方に移動しているミラ一とでミラ一面の移 動量 A h 2、 すなわち光路差が生じる事で光の位相変調を可能とする。 そのミ ラーが下方に移動しているミラーの高さの変化量即ち移動量 Δ h 2が、 入射光 の位相の 1 / 4波長分である場合は、 往復で 1 / 2波長、 すなわち電圧が印加 されていない他のミラーと電圧が印加されて下方に移動しているミラ一との 入射光において往復で πの位相差を作り出す事ができる。 このように、 電極 に電圧を 0N/0FFするバイナリー制御をすることで位相を反転させる事が可能 となる。 なお、 制御はバイナリ一制御に限定されない。 例えば、 ミラ一面の 最大移動量を、 入射する光源の光の 1 / 2波長相当分以内としておき、 この 最大移動量を生成できる場合の電圧値を最大値としてその範囲内の電圧を印 加することでミラー面の移動量を任意の量に設定することができる。 制御は アナログ的な制御としても良く、 あるいはゼロから最大電圧値までをいくつ かの電圧ステップに予め分割しておき、 制御はこのステップを 1つずつ順次 連続的に増減させるようにしても良い。 ミラー面の最大移動量を、 入射する 光源の光の 1 / 2波長相当分以内としても、 出射する回折光において形成さ れる位相差は 1波長分となり、 全ての位相差を作り出すことができる。 もち ろん 1波長以上でも良い。 In FIG. 16B, by applying a voltage to the electrode 155 from the state of FIG. 16A, a Coulomb force acts between each elastic member 154 and each electrode 155, and the elastic member 154 becomes the electrode 155. And near Follow. Here, as the elastic member 154 approaches the substrate 157, the mirror 161 on the elastic member 154 moves downward via the support column 153. By moving the mirror 161 downward, the light incident on the mirror 161 is mirrored by another mirror to which no voltage is applied and another mirror to which the voltage is applied. The amount of movement A h 2 , that is, the optical path difference is generated, which enables the phase modulation of light. The mirror is the height change amount, or moving amount delta h 2 mirrors are moving downward, if it is 1/4-wavelength of the phase of the incident light, reciprocal 1/2-wavelength, i.e. the voltage A phase difference of π can be created in a reciprocating manner in the incident light between the other mirror that is not applied and the mirror that is moving downward by applying a voltage. In this way, it is possible to invert the phase by performing binary control to the electrode with a voltage of 0N / 0FF. Note that the control is not limited to binary one control. For example, the maximum amount of movement on one side of the mirror is set to be within a half wavelength equivalent of the light from the incident light source, and the voltage within the range is applied with the maximum voltage value when this maximum amount of movement can be generated. Thus, the amount of movement of the mirror surface can be set to an arbitrary amount. The control may be analog control, or the voltage from zero to the maximum voltage value may be divided into several voltage steps in advance, and the control may be made to increase or decrease this step sequentially one by one. Even if the maximum amount of movement of the mirror surface is within 1/2 wavelength equivalent of the light from the incident light source, the phase difference formed in the emitted diffracted light is one wavelength, and all phase differences can be created. Of course, it may be more than one wavelength.
[0158] さらに、 弾性部材 154の弾性定数を適切に選択する事で弾性部材 154の窪み 、 すなわちミラ一面の移動量△ h 2を制御する事が可能である。 また、 ミラ一 面の移動量 Δ h 2を順次連続的に増減させるように制御し、 連続的且つ緩やか にミラ一 161の移動量を変化させることで、 バイナリ一動作によるバイナリ一 位相変調で生じる不要な回折次数を抑える事が可能である。 [0158] Furthermore, the depression of the elastic member 154 by selecting appropriately the elastic constant of the elastic member 154, i.e. it is possible to control the movement amount △ h 2 of one surface mirror. Also, the amount of movement of the mirror surface Δ h 2 is controlled so as to increase and decrease sequentially, and the amount of movement of the mirror 161 is changed continuously and gently, resulting in binary one-phase modulation by binary operation. Unnecessary diffraction orders can be suppressed.
[0159] なお、 弾性部材 154は、 電圧を印加されて窪んだ後に、 電圧をゼロにする事 によって弾性部材 154の復元力により初期状態まで戻る事ができる。  [0159] The elastic member 154 can return to the initial state by the restoring force of the elastic member 154 by setting the voltage to zero after the voltage is applied and the electrode is depressed.
[0160] 以上に述べたように特定の電極 155に電圧を印加し、 特定のミラー 161を選 択的に移動させることで位相変調をすることができる。 ミラ一 161の高さの変 化を連続的且つ緩やかに行う事で不要な回折次数の発生が抑えられ、 さらに 、 バイナリ一変調よりも高い回折効率を得られる。 [0160] As described above, a voltage is applied to a specific electrode 155 to select a specific mirror 161. By selectively moving, phase modulation can be performed. By continuously and slowly changing the height of the mirror 161, generation of unnecessary diffraction orders can be suppressed, and furthermore, a diffraction efficiency higher than that of binary modulation can be obtained.
[0161 ] 上述の図 1 5 Aおよび図 1 5 Bならびに図 1 6 Aおよび図 1 6 Bに示した M M D素子では、 実施形態 1の図 4の色順次の光源制御シーケンスにおける 空間位相変調素子の空間位相情報の書き換え時間 41が、 各 M M D素子の区画 部分の移動または変形動作を行つている最中の時間に相当する。  [0161] In the MMD element shown in FIGS. 15A and 15B and FIGS. 16A and 16B described above, the spatial phase modulation element in the color sequential light source control sequence of FIG. Spatial phase information rewrite time 41 corresponds to the time during the movement or deformation operation of the section of each MMD element.
[01 62] なお、 本発明に用いる弾性部材の構造やバイナリ一制御に関しては、 US-pa tent5, 835, 255や US- patent6, 040, 937などを参考にすることができる。 但し、 これらの文献は、 フアブリペローエタロンの原理を用いて、 カラ一表示を行 う素子に関する技術について述べられており、 その点では本発明とは異なる ものである。  [0162] Regarding the structure and binary control of the elastic member used in the present invention, US-patent 5, 835, 255 and US-patent 6, 040, 937 can be referred to. However, these documents describe a technique related to an element that performs color display using the principle of the Fabry-Perot etalon, which is different from the present invention.
[0163] 図 1 7 Aは、 図 1 5 Aおよび図 1 5 Bの M M D素子における電極の配置が 異なる例を示している。  [0163] FIG. 17A shows an example in which the arrangement of electrodes in the MMD elements of FIG. 15A and FIG. 15B is different.
[0164] 図 1 7 Aでは、 図 1 5 A、 図 1 5 Bの絶縁層内 156上方に設けられている電 極 155を絶縁層 156上に設けた構成を表している。 絶縁層内上部の電極 155の配 置を絶縁層 156上の電極 171の配置に変えた以外は全て同じである。 FIG. 17A shows a configuration in which the electrode 155 provided above the insulating layer 156 in FIGS. 15A and 15B is provided on the insulating layer 156. FIG. All are the same except that the arrangement of the upper electrode 155 in the insulating layer is changed to the arrangement of the electrode 171 on the insulating layer 156.
[0165] 図 1 7 Bでは、 図 1 6 A、 図 1 6 Bの M M D素子における電極の配置が異 なる例を示している。 FIG. 17B shows an example in which the electrode arrangements in the MMD elements of FIGS. 16A and 16B are different.
[0166] 図 1 7 Bでは、 図 1 6 A、 図 1 6 Bの絶縁層内上方に設けられている電極 1 55を絶縁層 156上に設けた構成を表している。 絶縁層 156内上部の電極 155の配 置を絶縁層上の電極 171の配置に変えた以外は全て同じである。  FIG. 17B shows a configuration in which an electrode 155 provided above the insulating layer in FIGS. 16A and 16B is provided on the insulating layer 156. FIG. All are the same except that the arrangement of the upper electrode 155 in the insulating layer 156 is changed to the arrangement of the electrode 171 on the insulating layer.
[01 67] 図 1 8は、 本発明の反射型の空間位相変調素子における M M D素子の基板 1 57上での支柱 153と弾性部材 154の全体配置を示している模式図である。  FIG. 18 is a schematic view showing the overall arrangement of the support 153 and the elastic member 154 on the substrate 157 of the MMD element in the reflective spatial phase modulation element of the present invention.
[01 68] 本図では、 図 1 5 Aおよび図 1 5 Bならびに図 1 6 Aおよび図 1 6 Bに示 されている M M D素子 150、 1 60における弾性部材 154および支柱 153を、 基板 1 57上に二次元的に縦横に配置している様子を模式的に示している。  [01 68] In this figure, the elastic member 154 and the support 153 in the MMD elements 150 and 160 shown in FIGS. 15A and 15B and FIGS. 16A and 16B are shown in FIG. A state in which the two-dimensional arrangement is vertically and horizontally is schematically shown.
[0169] 次に、 図 1 9 Aおよび図 1 9 Bを参照とし、 M M D素子 150、 160における支 柱 153の形状の具体例について述べる。 [0169] Next, referring to Fig. 19A and Fig. 19B, the support in the MMD elements 150, 160 is used. A specific example of the shape of the pillar 153 will be described.
[01 70] 図 1 9 Aでは、 M M D素子における支柱 153の断面を円形状としている。 [01 70] In FIG. 19A, the cross section of the support 153 in the MMD element is circular.
[01 71 ] 図 1 9 Bでは、 M M D素子における支柱 153aの断面を方形としている。 [01 71] In FIG. 19B, the cross section of the support 153a in the MMD element is rectangular.
[01 72] もちろん、 M M D素子における支柱の断面形状はこれ以外の形状であって も良く、 楕円状や長方形等の任意の断面を適宜選択しても良い。 Of course, the cross-sectional shape of the column in the MMD element may be other shapes, and an arbitrary cross-section such as an oval or a rectangle may be appropriately selected.
[01 73] なお、 弾性部材 154は、 図 1 5 A等に示されるように基板 157上に対して支 柱を中心とした対象な形状としているが、 非対称な形状であっても良く、 ま た、 基板 157との接触部が支柱を中心とした片側のみに存在する形状とするこ ともできる。 [0173] The elastic member 154 has a target shape centered on the support column with respect to the substrate 157 as shown in FIG. 15A and the like. However, the elastic member 154 may have an asymmetric shape. In addition, the contact portion with the substrate 157 may be formed on only one side centered on the support column.
[01 74] 以上、 各実施形態において、 装置の構成を簡素化すると共に、 0次回折光 の影響をも回避できる空間位相変調素子を備えた投影装置、 および光の利用 効率および回折効率を高める事ができ、 光学系を簡素化できる反射型の空間 位相変調素子を記載した。  As described above, in each embodiment, the configuration of the apparatus is simplified, and the projection apparatus provided with the spatial phase modulation element that can avoid the influence of the 0th-order diffracted light, and the light use efficiency and the diffraction efficiency are improved. A reflective spatial phase modulation element that can simplify the optical system is described.
[01 75] 本発明の各実施例、 変形例を任意に組み合わせたものも本発明に属する。  [0175] The embodiments and modifications of the present invention arbitrarily combined also belong to the present invention.
[01 76] さらに、 本発明は、 上述の実施形態としての例に限らず、 その趣旨を逸脱 しない範囲で様々な変更が可能である。  Furthermore, the present invention is not limited to the example as the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
[01 77] 以上のように、 本発明の投影装置は、 λ板を不要とできるような簡単な光 学系で構成でき、 投影装置自体の構成を簡素化しながら、 投影されて表示さ れる画像に十分な解像度を確保できる空間位相変調素子を提供できる。 また 、 集光レンズなどの集光光学系を用いて 0次回折光を遮蔽部材で遮蔽する構 成とする事でスクリーンに投影される画像への 0次回折光の混入もなく、 画 像コントラストの低下を防ぐことができる。 また、 本発明の投影装置は、 従 来の投影装置よりも簡素な構成ですむことで廉価とすることが可能である。  [0177] As described above, the projection apparatus of the present invention can be configured with a simple optical system that can eliminate the λ plate, and can be projected and displayed while simplifying the configuration of the projection apparatus itself. It is possible to provide a spatial phase modulation element capable of ensuring a sufficient resolution. In addition, by using a condensing optical system such as a condensing lens, the 0th-order diffracted light is shielded by the shielding member, so that the 0th-order diffracted light is not mixed in the image projected on the screen, and the image contrast is reduced. Can be prevented. Further, the projection apparatus of the present invention can be made inexpensive by having a simpler configuration than the conventional projection apparatus.
[01 78] 一方で、 本発明の新規の反射型の空間位相変調素子は、 簡単な構成であり 、 生産コストが廉価で、 且つ、 ミラ一を備えており光量損失がほとんどない 為に光の利用効率が良い。 さらに、 弾性部材と電極を用いてミラー面の移動 または変形量を電極に印加される電圧値に依存して、 連続的に制御すること で不要な回折次数を抑えることができ回折効率を向上させることができる。  On the other hand, the new reflective spatial phase modulation element of the present invention has a simple configuration, is inexpensive to produce, has a mirror, and has almost no light loss. Use efficiency is good. Furthermore, by using an elastic member and an electrode to continuously control the amount of movement or deformation of the mirror surface depending on the voltage applied to the electrode, unnecessary diffraction orders can be suppressed and diffraction efficiency can be improved. be able to.

Claims

請求の範囲 The scope of the claims
[1 ] 光源からの光を経由させ位相変調を行った回折光を出射させることによつ て映像の投影表示を行わしめるための空間位相変調素子であって、  [1] A spatial phase modulation element for projecting and displaying an image by emitting diffracted light subjected to phase modulation via light from a light source,
前記空間位相変調素子における位相変調を行うための区画部分が、 2次元 に複数配置されていると共に、 前記各区画部分の区画数が、 投影されて表示 される画像の画素数に等しいか、 または多いことを特徴とする空間位相変調 素子。  A plurality of partition portions for performing phase modulation in the spatial phase modulation element are two-dimensionally arranged, and the number of partitions in each partition portion is equal to the number of pixels of an image to be projected and displayed, or Spatial phase modulation element characterized by many.
[2] 前記区画部分の縦の列数および横の列数が、 表示される画像の画素の縦の 列数および横の列数に等しい、 または多いことを特徴とする請求項 1記載の 空間位相変調素子。  [2] The space according to claim 1, wherein the number of vertical columns and horizontal columns of the partition portion is equal to or greater than the number of vertical columns and horizontal columns of pixels of an image to be displayed. Phase modulation element.
[3] 前記区画部分の縦の列数および横の列数が、 2のべき乗であることを特徴 とする請求項 1または請求項 2記載の空間位相変調素子。  [3] The spatial phase modulation element according to [1] or [2], wherein the number of vertical columns and horizontal columns of the partition part is a power of two.
[4] 位相変調を行うための区画部分の全てで形成される位相変調部における輪 郭形状が、 縦横比の等しい正方形であり、 表示される画像の縦横比に依存し ないことを特徴とする請求項 1から請求項 3のいずれか一つに記載の空間位 相変調素子。  [4] The contour shape of the phase modulation section formed by all the sections for performing the phase modulation is a square having the same aspect ratio, and is independent of the aspect ratio of the displayed image. The spatial phase modulation element according to any one of claims 1 to 3.
[5] 光源からの光を反射する際に位相変調を行う為のミラー面を有し、  [5] Having a mirror surface for phase modulation when reflecting light from the light source,
前記ミラー面上に設けられた位相変調を行う為の前記各区画部分に対応し て配置された弾性部材と、  An elastic member disposed on the mirror surface and corresponding to each partition portion for performing phase modulation;
前記弾性部材にそれぞれ対応して配置され、 電圧を印加することで前記弾 性部材の復元力に抗して前記ミラー面を移動または変形させるための電極と 前記電極が配置される基板と、  An electrode for moving or deforming the mirror surface against a restoring force of the elastic member by applying a voltage, a substrate on which the electrode is disposed,
を備えることを特徴とする請求項 1から請求項 4のいずれか一項に記載の 空間位相変調素子。  The spatial phase modulation element according to any one of claims 1 to 4, further comprising:
[6] 前記ミラー面は、 前記電極への電圧の印加に対応して移動し、 その移動量 または変形量に応じて位相変調量が決定されることを特徴とする請求項 5記 載の空間位相変調素子。 6. The space according to claim 5, wherein the mirror surface moves in response to application of a voltage to the electrode, and a phase modulation amount is determined according to the movement amount or deformation amount. Phase modulation element.
[7] 前記ミラー面の移動制御または変形制御が、 前記電極への電圧の印加の有 無のみで決定されることを特徴とする請求項 6記載の空間位相変調素子。 7. The spatial phase modulation element according to claim 6, wherein the movement control or deformation control of the mirror surface is determined only by whether or not voltage is applied to the electrode.
[8] 前記ミラー面の移動量または変形量は、 入射する光源の光の 1 / 4波長相 当分であり、 出射する回折光において 1 / 2波長分の位相差を形成すること を特徴とする請求項 7記載の空間位相変調素子。  [8] The amount of movement or deformation of the mirror surface is equivalent to a quarter wavelength of the light of the incident light source, and a phase difference corresponding to a half wavelength is formed in the emitted diffracted light. The spatial phase modulation element according to claim 7.
[9] 前記ミラー面の移動量または変形量の制御は、 前記電極に印加される電圧 値に依存して決定されると共に、 印加される電圧の変化量は連続的に順次増 加または減少されるべく制御されることを特徴とする請求項 6記載の空間位 相変調素子。  [9] The movement amount or deformation amount of the mirror surface is determined depending on the voltage value applied to the electrode, and the change amount of the applied voltage is continuously increased or decreased. 7. The spatial phase modulation element according to claim 6, wherein the spatial phase modulation element is controlled as needed.
[10] 前記ミラー面の最大移動量または変形量が、 入射する光源の光の 1 / 2波 長相当分以内であり、 出射する回折光において形成される位相差は 1波長分 以内であることを特徴とする請求項 9記載の空間位相変調素子。  [10] The maximum amount of movement or deformation of the mirror surface is within half of the wavelength of the incident light source, and the phase difference formed in the emitted diffracted light is within one wavelength. The spatial phase modulation element according to claim 9.
[1 1 ] 前記ミラ一面は、 一体型のミラーから形成され、 当該一体型のミラ一にお けるミラー面の位相変調を行う為の各区画部分に対応してそれぞれ弾性部材 及び電極が配置されることを特徴とする請求項 5から請求項 1 0のいずれか 一項に記載の空間位相変調素子。  [11] The one mirror surface is formed of an integral mirror, and an elastic member and an electrode are arranged corresponding to each partition portion for performing phase modulation of the mirror surface of the integral mirror. The spatial phase modulation element according to any one of claims 5 to 10, characterized by:
[12] 前記ミラー面は、 位相変調を行うための各区画部分において、 それぞれ個 別のミラーとして形成され、 前記各ミラーに対して弾性部材及び電極がそれ ぞれ配置されることを特徴とする請求項 5から請求項 1 0のいずれか一項に 記載の空間位相変調素子。  [12] The mirror surface is formed as an individual mirror in each partition portion for performing phase modulation, and an elastic member and an electrode are arranged on each mirror, respectively. The spatial phase modulation element according to any one of claims 5 to 10.
[13] 前記ミラ一面の面精度が、 5 0 n m以下であることを特徴とする請求項 5 記載の空間位相変調素子。  13. The spatial phase modulation element according to claim 5, wherein the surface accuracy of the one surface of the mirror is 50 nm or less.
[14] 前記ミラー面の面粗さが、 5 n m以下であることを特徴とする請求項 5記 載の空間位相変調素子。  14. The spatial phase modulation element according to claim 5, wherein the mirror surface has a surface roughness of 5 nm or less.
[15] 光源と、  [15] a light source;
前記光源から出射される光を集光する集光光学系と、  A condensing optical system for condensing light emitted from the light source;
前記光源から出射された光が前記集光光学系を経由して集光される集光位 置までの途中位置に配置され、 2次元に複数配置された位相変調を行う為の 各区画部分の区画数が、 投影されて表示される画像の画素数に等しいか、 ま たは多い空間位相変調素子と、 The light emitted from the light source is disposed in the middle of the light collecting position where the light is collected via the light collecting optical system, and a plurality of two-dimensionally arranged phase modulations are performed. Spatial phase modulation elements in which the number of sections in each section is equal to or more than the number of pixels in the projected image displayed;
前記空間位相変調素子から回折されずに出射して集光する 0次回折光をそ の集光位置で遮蔽する遮蔽部材と、  A shielding member that shields the zero-order diffracted light that is emitted and collected without being diffracted from the spatial phase modulation element at the condensing position;
を備えることを特徴とする投影装置。  A projection apparatus comprising:
[16] 前記空間位相変調素子の各区画部分は、 投影されて表示される画像情報に 対応して生成される空間位相情報に基づいて変調する位相が制御され、 投影 されて表示される画像の各画素はそれぞれ前記空間位相変調素子のすべての 区画部分から出射される回折光によって形成されることを特徴とする請求項 1 5記載の投影装置。  [16] Each partition portion of the spatial phase modulation element is controlled in phase to be modulated based on spatial phase information generated corresponding to image information to be projected and displayed. 16. The projection apparatus according to claim 15, wherein each pixel is formed by diffracted light emitted from all of the partition portions of the spatial phase modulation element.
[17] 前記光源は前記集光光学系の光軸上から離間した位置に配置されており、 且つ、 前記遮蔽部材は前記空間位相変調素子から出射されて投影される画像 を形成する回折光の光束外に配置されることを特徴とする請求項 1 5記載の 投影装置。  [17] The light source is disposed at a position separated from the optical axis of the condensing optical system, and the shielding member emits diffracted light that is emitted from the spatial phase modulation element and forms a projected image. 16. The projection device according to claim 15, wherein the projection device is disposed outside the light beam.
[18] 前記空間位相変調素子における区画部分の縦の列数および横の列数が、 投 影されて表示される画像の画素の縦の列数および横の列数に等しいか、 また は多いことを特徴とする請求項 1 5から請求項 1 7のいずれか一項に記載の 投影装置。  [18] The number of vertical columns and horizontal columns of the partition portion in the spatial phase modulation element is equal to or greater than the number of vertical columns and horizontal columns of pixels of the image displayed by projection. The projection apparatus according to claim 15, wherein the projection apparatus is characterized in that:
[19] 前記空間位相変調素子における区画部分の縦の列数および横の列数が、 2 のべき乗であることを特徴とする請求項 1 5から請求項 1 8のいずれか一項 に記載の投影装置。  [19] The number of vertical columns and the number of horizontal columns of the partition portion in the spatial phase modulation element is a power of 2 according to any one of claims 15 to 18. Projection device.
[20] 前記空間位相変調素子の位相変調を行う為の区画部分の全てで形成される 位相変調部における輪郭形状が、 縦横比の等しい正方形であり、 表示される 画像の縦横比に依存しないことを特徴とする請求項 1 5から請求項 1 9のい ずれか一項に記載の投影装置。  [20] The contour shape in the phase modulation section formed by all of the partition portions for performing phase modulation of the spatial phase modulation element is a square having the same aspect ratio, and does not depend on the aspect ratio of the displayed image. The projection device according to any one of claims 15 to 19, characterized by:
[21 ] 前記空間位相変調素子が、 [21] The spatial phase modulation element,
光源からの光を反射する際に位相変調を行う為のミラー面を有し、 前記ミラー面上に設けられた位相変調を行う為の前記各区画部分に対応し て配置された弾性部材と、 A mirror surface for performing phase modulation when reflecting light from the light source, and corresponding to each of the partition portions for performing phase modulation provided on the mirror surface; An elastic member arranged
前記弾性部材にそれぞれ対応して配置され、 電圧を印加することで前記弾 性部材の復元力に抗して前記ミラー面を移動または変形させるための電極と 前記電極が配置される基板と、  An electrode for moving or deforming the mirror surface against a restoring force of the elastic member by applying a voltage, a substrate on which the electrode is disposed,
を備えることを特徴とする請求項 1 5から請求項 2 0のいずれか一項に記 載の投影装置。  The projection apparatus according to any one of claims 15 to 20, further comprising:
[22] 前記空間位相変調素子におけるミラー面が、 前記電極への電圧の印加に対 応して移動し、 その移動量または変形量に応じて位相変調量が決定されるこ とを特徴とする請求項 2 1記載の投影装置。  [22] The mirror surface of the spatial phase modulation element moves in response to application of a voltage to the electrode, and the phase modulation amount is determined according to the movement amount or deformation amount. The projection device according to claim 21.
[23] 前記空間位相変調素子におけるミラー面の移動制御または変形制御が、 前 記電極への電圧の印加の有無のみで決定されることを特徴とする請求項 2 2 記載の投影装置。 23. The projection device according to claim 22, wherein the movement control or deformation control of the mirror surface in the spatial phase modulation element is determined only by whether or not a voltage is applied to the electrode.
[24] 前記空間位相変調素子におけるミラー面の移動量または変形量が、 入射す る光源の光の 1 / 4波長相当分であり、 出射する回折光において 1 / 2波長 分の位相差を形成することを特徴とする請求項 2 3記載の投影装置。  [24] The amount of movement or deformation of the mirror surface in the spatial phase modulator is equivalent to 1/4 wavelength of the light from the incident light source, and forms a phase difference of 1/2 wavelength in the emitted diffracted light The projection device according to claim 23, wherein:
[25] 前記空間位相変調素子におけるミラー面の移動量または変形量の制御が、 前記電極に印加される電圧値に依存して決定されると共に、 印加される電圧 の変化量は連続的に順次増加または減少されるべく制御されることを特徴と する請求項 2 2記載の投影装置。  [25] Control of the movement amount or deformation amount of the mirror surface in the spatial phase modulation element is determined depending on the voltage value applied to the electrode, and the change amount of the applied voltage is successively and sequentially. The projection apparatus according to claim 22, wherein the projection apparatus is controlled to be increased or decreased.
[26] 前記空間位相変調素子におけるミラー面の最大移動量または変形量が、 入 射する光源の光の 1 / 2波長相当分以内であり、 出射する回折光において形 成される位相差は 1波長分以内であることを特徴とする請求項 2 5記載の投 影装置。  [26] The maximum movement amount or deformation amount of the mirror surface in the spatial phase modulation element is within a half wavelength equivalent of the light of the incident light source, and the phase difference formed in the emitted diffracted light is 1 The projection device according to claim 25, wherein the projection device is within a wavelength.
[27] 前記空間位相変調素子におけるミラ一面は、 一体型のミラーから形成され 、 当該一体型のミラーにおけるミラー面の位相変調を行う為の各区画部分に 対応してそれぞれ弾性部材及び電極が配置されることを特徴とする請求項 2 1から請求項 2 6のいずれか一項に記載の投影装置。 [27] The mirror surface of the spatial phase modulation element is formed of an integral mirror, and an elastic member and an electrode are arranged corresponding to each partition portion for performing phase modulation of the mirror surface of the integral mirror. The projection apparatus according to any one of claims 21 to 26, wherein:
[28] 前記空間位相変調素子におけるミラー面は、 位相変調を行うための各区画 部分において、 それぞれ個別のミラ一として形成され、 前記各ミラーに対し て弾性部材及び電極がそれぞれ配置されることを特徴とする請求項 2 1から 請求項 2 6のいずれか一項に記載の投影装置。 [28] The mirror surface in the spatial phase modulation element is formed as an individual mirror in each partition portion for performing phase modulation, and an elastic member and an electrode are arranged for each mirror. The projection device according to any one of Claims 21 to 26.
[29] 前記空間位相変調素子におけるミラー面の面精度が、 5 0 n m以下である ことを特徴とする請求項 2 1記載の投影装置。  29. The projection apparatus according to claim 21, wherein the surface accuracy of the mirror surface in the spatial phase modulation element is 50 nm or less.
[30] 前記空間位相変調素子におけるミラー面の面粗さが、 5 n m以下であるこ とを特徴とする請求項 2 1記載の投影装置。  30. The projection device according to claim 21, wherein the surface roughness of the mirror surface in the spatial phase modulation element is 5 nm or less.
PCT/JP2007/001345 2006-12-07 2007-12-04 Spatial phase modulation element and projector WO2008068900A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006331210A JP5148868B2 (en) 2006-12-07 2006-12-07 Spatial phase modulation element and projection apparatus
JP2006-331210 2006-12-07

Publications (1)

Publication Number Publication Date
WO2008068900A1 true WO2008068900A1 (en) 2008-06-12

Family

ID=39491816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001345 WO2008068900A1 (en) 2006-12-07 2007-12-04 Spatial phase modulation element and projector

Country Status (2)

Country Link
JP (1) JP5148868B2 (en)
WO (1) WO2008068900A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019067559A1 (en) * 2017-09-27 2019-04-04 Magic Leap, Inc. Near eye 3d display with separate phase and amplitude modulators

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018056194A1 (en) 2016-09-21 2018-03-29 日本電気株式会社 Projection system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217814A (en) * 1990-01-24 1991-09-25 Canon Inc Liquid crystal projector
JPH085939A (en) * 1994-06-23 1996-01-12 Matsushita Electric Ind Co Ltd Display device
WO2005059596A2 (en) * 2003-12-10 2005-06-30 Silicon Light Machines Corporation Two dimensional spatial light modulator
JP2006189790A (en) * 2005-01-05 2006-07-20 Samsung Electro Mech Co Ltd Diffraction light modulator having open hole as base

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03217814A (en) * 1990-01-24 1991-09-25 Canon Inc Liquid crystal projector
JPH085939A (en) * 1994-06-23 1996-01-12 Matsushita Electric Ind Co Ltd Display device
WO2005059596A2 (en) * 2003-12-10 2005-06-30 Silicon Light Machines Corporation Two dimensional spatial light modulator
JP2006189790A (en) * 2005-01-05 2006-07-20 Samsung Electro Mech Co Ltd Diffraction light modulator having open hole as base

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019067559A1 (en) * 2017-09-27 2019-04-04 Magic Leap, Inc. Near eye 3d display with separate phase and amplitude modulators
KR20200061362A (en) * 2017-09-27 2020-06-02 매직 립, 인코포레이티드 Near-field 3D display with separate phase and amplitude modulators
US11231581B2 (en) 2017-09-27 2022-01-25 Magic Leap, Inc. Near eye 3D display with separate phase and amplitude modulators
US11803054B2 (en) 2017-09-27 2023-10-31 Magic Leap, Inc. Near eye 3D display with separate phase and amplitude modulators
IL273480B1 (en) * 2017-09-27 2023-11-01 Magic Leap Inc Near eye 3d display with separate phase and amplitude modulators
IL273480B2 (en) * 2017-09-27 2024-03-01 Magic Leap Inc Near eye 3d display with separate phase and amplitude modulators
KR102650507B1 (en) * 2017-09-27 2024-03-21 매직 립, 인코포레이티드 Near-eye 3D display with separate phase and amplitude modulators

Also Published As

Publication number Publication date
JP2008145613A (en) 2008-06-26
JP5148868B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
JP6657111B2 (en) Compact 3D depth acquisition system
JP5312748B2 (en) Holographic projection method and holographic projection apparatus
JP2008216579A (en) Holographic projection method and holographic projection apparatus
US7843636B2 (en) Image display method for a stereoscopic image
EP1860889B1 (en) Projection display system
US20100020291A1 (en) 2-dimensional image display device, illumination light source and exposure illumination device
US7431464B2 (en) Projection display system with diffractive linear display device
US7119936B2 (en) Speckle reduction for display system with electromechanical grating
WO2012111698A1 (en) Scanning image display device, and image display method for same
JP2010501900A (en) Holographic projection system using micromirrors for light modulation
TW201028735A (en) Speckle mitigation in laser scanner projector systems
JP7379352B2 (en) System and method for digital laser projection with increased contrast using a Fourier filter
US6020940A (en) Liquid crystal projector and method of driving the projector
JP2008145546A (en) Projection apparatus
JP2008145614A (en) Spatial phase modulator and projection device
US7495814B2 (en) Raster scanning-type display device using diffractive optical modulator
US7046446B1 (en) Speckle reduction for display system with electromechanical grating
WO2008068900A1 (en) Spatial phase modulation element and projector
JP2008058963A (en) Speckle removal diffraction type optical modulation system
WO2008072376A1 (en) Spatial phase modulation element, video display method using the spatial phase modulation element, and projection device using the spatial phase modulation element
KR100827619B1 (en) Method for correcting image distortion and Apparatus thereof
JP2007199587A (en) Three-dimensional image display apparatus
JPH1055026A (en) Projection type color display device
WO2022165073A1 (en) Projection system and method with pixel shifting
US20210111537A1 (en) Mems-based phase spatial light modulating architecture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07849780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07849780

Country of ref document: EP

Kind code of ref document: A1