JPH085939A - Display device - Google Patents

Display device

Info

Publication number
JPH085939A
JPH085939A JP6141656A JP14165694A JPH085939A JP H085939 A JPH085939 A JP H085939A JP 6141656 A JP6141656 A JP 6141656A JP 14165694 A JP14165694 A JP 14165694A JP H085939 A JPH085939 A JP H085939A
Authority
JP
Japan
Prior art keywords
light
emission efficiency
diffractive
varying means
display device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6141656A
Other languages
Japanese (ja)
Other versions
JP3422077B2 (en
Inventor
Tatsuo Ito
達男 伊藤
Michihito Ueda
路人 上田
Teruhiro Shiono
照弘 塩野
Kazuo Yokoyama
和夫 横山
Shinichi Mizuguchi
信一 水口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14165694A priority Critical patent/JP3422077B2/en
Priority to US08/492,894 priority patent/US5920418A/en
Priority to CNB011451904A priority patent/CN1177197C/en
Priority to CN95109107A priority patent/CN1090336C/en
Priority to KR1019950017369A priority patent/KR100219015B1/en
Priority to EP95109622A priority patent/EP0689078A1/en
Publication of JPH085939A publication Critical patent/JPH085939A/en
Priority to CNB011451882A priority patent/CN1208656C/en
Application granted granted Critical
Publication of JP3422077B2 publication Critical patent/JP3422077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)

Abstract

PURPOSE:To provide the display device which is high in the utilization efficiency of light by providing a diffraction type projection efficiency varying means which is provided on the optical path and a lens which images the light projected from the projection efficiency varying means. CONSTITUTION:The light emitted by a light source 24 is converged by a condenser lens 28 including light reflected by a cold mirror 27. Only the red light is reflected by a dichroic mirror 29a to change its direction by 90 deg. and is made incident on the diffraction type projection efficiency varying means 25a. The diffraction type projection efficiency varying means 25a is switched, pixel by pixel, by a control circuit and the incident light is modulated by pixels to obtain pixels emitting light of 0th order and other pixels. The modulated red light has its optical path bent by a mirror 30a and is made incident on a coupling prism 31, and the light further has its optical path bent again and is multiplexed with other light to form an image on a screen through a projection lens 26. Similarly, the blue light and green light are also modulated and imaged by the projection lens 26.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は動画像や静止画像の投射
型のディスプレイ装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a projection type display device for moving images and still images.

【0002】[0002]

【従来の技術】近年、ディスプレイ装置は大型化の傾向
をたどっており、画像を投影拡大する方式が開発されて
いる。一般には、液晶パネルに形成した画像を、高輝度
の光源により照明し、反射や透過により空間変調された
光を投影レンズによってスクリーン上に結像するという
方式がある。以下に従来のディスプレイ装置について説
明する。
2. Description of the Related Art In recent years, display devices have tended to increase in size, and methods for projecting and enlarging images have been developed. Generally, there is a system in which an image formed on a liquid crystal panel is illuminated by a high-intensity light source, and light spatially modulated by reflection or transmission is formed on a screen by a projection lens. The conventional display device will be described below.

【0003】図5は従来のディスプレイ装置の構成を示
すものである。図5において、1はランプであり、2は
反射鏡、3は干渉フィルター、4a、4bはダイクロイ
ックミラーであり、ダイクロイックミラー4aは青色光
だけを選択的に反射し、ダイクロイックミラー4bは緑
色光だけを選択的に反射する。5a、5b、5cはミラ
ーである。6a、6b、6cは液晶パネルであり、7は
ダイクロイックプリズムである。8は投影レンズであ
り、9はスクリーンである。
FIG. 5 shows the structure of a conventional display device. 5, 1 is a lamp, 2 is a reflecting mirror, 3 is an interference filter, 4a and 4b are dichroic mirrors, the dichroic mirror 4a selectively reflects only blue light, and the dichroic mirror 4b only green light. Selectively reflect. Reference numerals 5a, 5b and 5c are mirrors. 6a, 6b and 6c are liquid crystal panels, and 7 is a dichroic prism. Reference numeral 8 is a projection lens, and 9 is a screen.

【0004】以上のように構成されたディスプレイ装置
について、以下その動作について説明する。まず、ラン
プ1を出射した光は、反射鏡2によって反射された光も
含めて、干渉フィルター3を通過する際に可視光だけに
なる。ダイクロイックミラー4aでは、可視光の内、青
色光だけが反射され、90度方向を変え、他の光は透過
する。青色光はミラー5aにより反射され、液晶パネル
6aに入射する。液晶パネル6aには、図示しない制御
回路により、カラー映像信号の内、青色の信号だけが入
力され、各画素毎に設けられたTFT(薄膜トランジス
ター)により画素のスイッチングを行い、入射した青色
光を偏光面を変化させることによって空間変調する。
The operation of the display device configured as described above will be described below. First, the light emitted from the lamp 1, including the light reflected by the reflecting mirror 2, becomes only visible light when passing through the interference filter 3. The dichroic mirror 4a reflects only blue light of visible light, changes its direction by 90 degrees, and transmits other light. The blue light is reflected by the mirror 5a and enters the liquid crystal panel 6a. In the liquid crystal panel 6a, only a blue signal of the color video signal is input by a control circuit (not shown), and the TFT (thin film transistor) provided for each pixel switches the pixel so that the incident blue light is emitted. Spatial modulation is performed by changing the plane of polarization.

【0005】空間変調されて、液晶パネル6aを透過し
た青色光はダイクロイックプリズム7によって、再度9
0度方向を変え投影レンズ8によりスクリーン9上に結
像され、青色の画像を形成する。ダイクロイックミラー
4aを透過した光は、ダイクロイックミラー4bにより
緑色光だけが反射され、90度方向を変え、液晶パネル
6bに入射した後、青色光と同様にしてスクリーン9上
に緑色の画像を形成する。ダイクロイックミラー4bを
透過した赤色光についても同様にスクリーン9上に赤色
の画像を形成する。従って、スクリーン9上では青、
緑、赤の画像が合成されてカラー画像となる。
The blue light spatially modulated and transmitted through the liquid crystal panel 6a is again reflected by the dichroic prism 7.
The direction is changed by 0 ° and the image is formed on the screen 9 by the projection lens 8 to form a blue image. Of the light transmitted through the dichroic mirror 4a, only the green light is reflected by the dichroic mirror 4b, the direction of the light is changed by 90 degrees, and after entering the liquid crystal panel 6b, a green image is formed on the screen 9 similarly to the blue light. . A red image is similarly formed on the screen 9 for the red light transmitted through the dichroic mirror 4b. Therefore, on the screen 9, blue,
The green and red images are combined to form a color image.

【0006】[0006]

【発明が解決しようとする課題】しかしながら上記従来
の構成では、光の空間変調に偏光を利用し、且つ画素毎
にTFTを用いるため光の利用効率が悪いという課題を
有していた。以下、図を用いてこの課題について詳述す
る。図6は液晶パネルの構成を示すものである。
However, the above-mentioned conventional configuration has a problem that the light utilization efficiency is poor because polarized light is used for spatial modulation of light and a TFT is used for each pixel. Hereinafter, this problem will be described in detail with reference to the drawings. FIG. 6 shows the structure of the liquid crystal panel.

【0007】図6において、10は入射光、11は偏光
板、12a、12bはガラス基板、13はTFT、14
は画素電極、15は走査線、16は信号線、17は液
晶、18は共通電極、19は偏光板である。液晶パネル
による空間変調の原理は、入射光10が偏光板11に入
射すると、特定方向の偏光成分だけが通過し、液晶17
を通過する間に偏光面が回転した後、再度偏光板19を
通過するときに透過光の偏光面の向きと偏光板19の偏
光面の向きの違いにより、光を振幅変調するものである
が、入射光10はランプ光源の場合、ランダム偏光して
いるので、偏光板11を透過する光は入射光10の高々
50%であり、光の利用効率が低い。
In FIG. 6, 10 is incident light, 11 is a polarizing plate, 12a and 12b are glass substrates, 13 is a TFT, 14
Is a pixel electrode, 15 is a scanning line, 16 is a signal line, 17 is a liquid crystal, 18 is a common electrode, and 19 is a polarizing plate. The principle of spatial modulation by the liquid crystal panel is that when the incident light 10 enters the polarizing plate 11, only the polarized component in a specific direction passes through and the liquid crystal 17
After the plane of polarization is rotated while passing through, the light is amplitude-modulated due to the difference in the direction of the plane of polarization of the transmitted light and the direction of the plane of polarization of the polarizing plate 19 when passing through the polarizing plate 19 again. In the case of a lamp light source, since the incident light 10 is randomly polarized, the light transmitted through the polarizing plate 11 is 50% at most of the incident light 10, and the light utilization efficiency is low.

【0008】また液晶17のスイッチングは走査線15
と信号線16により選択されたTFT13により透明な
画素電極14と同じく透明な共通電極18との間に電圧
を印加することにより行っているが、TFTの部分は不
透明であるので、光を透過させず光の利用効率を下げる
原因となる。このことは高精細度TV用液晶パネルなど
では、画素数が多くなって各画素面積が小さくなるの
で、各画素に占めるTFTの面積比が大きくなり、開口
率(=実際に光が透過する面積/画素面積)が30数%
となり、深刻な問題となる。
The switching of the liquid crystal 17 is performed by the scanning line 15
This is done by applying a voltage between the transparent pixel electrode 14 and the transparent common electrode 18 by the TFT 13 selected by the signal line 16, but since the TFT portion is opaque, light is transmitted. This causes a decrease in light utilization efficiency. This means that in a high-definition TV liquid crystal panel or the like, the number of pixels increases and the area of each pixel decreases, so the area ratio of the TFT in each pixel increases, and the aperture ratio (= the area through which light actually transmits). / Pixel area) is 30%
Becomes a serious problem.

【0009】本発明は上記従来の問題点を解決するもの
で、光利用効率の高いディスプレイ装置を提供すること
を目的とする。
The present invention solves the above-mentioned conventional problems, and an object of the present invention is to provide a display device having high light utilization efficiency.

【0010】[0010]

【課題を解決するための手段】この目的を達成するため
に第1の発明のディスプレイ装置は、光源と前記光源か
ら出射した光の光路に設けられた回折型の出射効率可変
手段と前記回折型の出射効率可変手段から出射した光を
結像するレンズとを備えた構成を有している。
In order to achieve this object, a display device according to a first aspect of the present invention comprises a light source, a diffractive emission efficiency changing means provided in an optical path of light emitted from the light source, and the diffractive type. And a lens that forms an image of the light emitted from the emission efficiency varying means.

【0011】また、第2の発明は、回折型の出射効率可
変手段が複数の回折格子からなっており、隣接する単位
の回折格子間に位相差が入射光波長の2分の1となる領
域を設けている。
According to a second aspect of the invention, the diffractive type emission efficiency varying means is composed of a plurality of diffraction gratings, and the region where the phase difference between adjacent diffraction gratings is ½ of the incident light wavelength. Is provided.

【0012】また、第3の発明は、回折型の出射効率可
変手段が基板上に複数の梁を中空に支持した構造であ
り、支持部の幅が可動部の幅よりも細いという構成を有
している。
A third aspect of the present invention has a structure in which the diffractive type emission efficiency varying means supports a plurality of beams in a hollow shape on a substrate, and the width of the supporting portion is smaller than the width of the movable portion. are doing.

【0013】[0013]

【作用】回折型の出射効率可変手段については、O.S
olgaard等がオプティクスレターズ 17巻、9
号、688〜690頁、’92年に報告しており、図を
用いてその原理を説明する。図7は回折型出射効率可変
手段の斜視図であり、同図において20はシリコン基板
である。21はスペーサーで、22は誘電体膜であり、
スペーサー21により中空に保持されている。スペーサ
ー21と誘電体膜22の厚みはそれぞれ入射光波長の4
分の1に設定している。23a〜eは誘電体膜22に設
けられたスリットである。シリコン基板20の表面と誘
電体膜22の表面には反射膜兼電極としてアルミニウム
や銀が成膜されている。
With respect to the diffractive output efficiency varying means, the O.D. S
olgaard et al., Optics Letters, Vol. 17, 9
Issue, pp. 688-690, 1992, and the principle is explained using figures. FIG. 7 is a perspective view of the diffractive type emission efficiency varying means, and in the figure, 20 is a silicon substrate. 21 is a spacer, 22 is a dielectric film,
It is held in the hollow by the spacer 21. The thicknesses of the spacer 21 and the dielectric film 22 are each 4 times the incident light wavelength.
It is set to one-half. 23 a to 23 e are slits provided in the dielectric film 22. On the surface of the silicon substrate 20 and the surface of the dielectric film 22, aluminum or silver is formed as a reflective film and an electrode.

【0014】図8は回折型出射効率可変手段の動作を示
すもので、図8において図7と同一物については、同一
番号を賦し説明を省略する。図8(a)は電極に電圧を
印加していない状態を示す図で、誘電体膜22表面とシ
リコン基板20表面の段差は入射光の波長の2分の1に
なっている。この時、誘電体膜22表面で反射する光と
シリコン基板20表面で反射する光の光路差は往復で1
波長となり、位相が揃うので、回折型出射効率可変手段
は単なるミラーの働きをする。
FIG. 8 shows the operation of the diffractive type emission efficiency changing means. In FIG. 8, the same parts as those in FIG. 7 are designated by the same reference numerals and the description thereof will be omitted. FIG. 8A is a diagram showing a state in which no voltage is applied to the electrodes, and the step between the surface of the dielectric film 22 and the surface of the silicon substrate 20 is ½ of the wavelength of the incident light. At this time, the optical path difference between the light reflected on the surface of the dielectric film 22 and the light reflected on the surface of the silicon substrate 20 is 1 round trip.
Since the wavelengths and the phases are aligned, the diffractive emission efficiency changing means merely functions as a mirror.

【0015】次に電極に電圧を印加した状態では図8
(b)のように、静電力により、誘電体膜22がシリコ
ン基板20に接触するため、誘電体膜22表面とシリコ
ン基板20表面の段差は入射光の波長の4分の1とな
り、誘電体膜22表面で反射する光とシリコン基板20
表面で反射する光の光路差は往復で2分の1波長となる
ので、位相が半波長ずれることにより、互いに打ち消し
あって、0次回折光が消滅し、代わりに、1次以上の高
次回折光が出射するようになる。したがって、回折型出
射効率可変手段は0次回折光を変調することができるこ
ととなる。
Next, in the state where voltage is applied to the electrodes, FIG.
As shown in (b), since the dielectric film 22 contacts the silicon substrate 20 due to electrostatic force, the step between the surface of the dielectric film 22 and the surface of the silicon substrate 20 becomes 1/4 of the wavelength of the incident light, and Light reflected on the surface of the film 22 and the silicon substrate 20
Since the optical path difference of the light reflected on the surface is one-half wavelength in a round trip, the phases are offset by half a wavelength and cancel each other out, and the 0th-order diffracted light disappears. Instead, the 1st-order or higher-order diffracted light Will be emitted. Therefore, the diffractive emission efficiency varying means can modulate the 0th-order diffracted light.

【0016】この方式は入射光の位相だけを利用するの
で、0次回折光の出射効率は入射光の偏光面に殆ど依存
せず、どの様な偏光面でも利用可能である。ここで、0
次回折光の出射効率とは、回折型出射効率可変手段によ
り反射される光と、入射する光の強度比と定義する。し
たがって、液晶パネルのように偏光面を利用する場合に
比べ、光源の光利用効率が大きくなる。また、電極に電
圧を印加するためのスイッチング素子を誘電体薄膜の下
部に設けることにより、光の反射面を広く取ることが出
来、開口率を高くできるという特長も得られる。
Since this system utilizes only the phase of the incident light, the emission efficiency of the 0th-order diffracted light hardly depends on the polarization plane of the incident light, and any polarization plane can be used. Where 0
The emission efficiency of the second-order diffracted light is defined as the intensity ratio of the light reflected by the diffractive emission efficiency changing means and the incident light. Therefore, the light utilization efficiency of the light source is higher than that in the case where a polarization plane is used as in a liquid crystal panel. Further, by providing a switching element for applying a voltage to the electrode below the dielectric thin film, it is possible to obtain a wide light reflecting surface and increase the aperture ratio.

【0017】第1の発明の作用は、この回折型出射効率
可変手段を二次元的に配列することにより、空間光変調
素子として液晶パネルの代わりに用いることにより、デ
ィスプレイ装置を構成するものである。しかしながら、
O.Solgaard等の報告では、入射光として、平
行光を用いておりスリット23a〜eのピッチは波長の
6倍以下となっているが、ディスプレイ装置として用い
るには、光源からの光をレンズにより、集光して回折型
出射効率可変手段に入射させる必要があり、回折型出射
効率可変手段の入射角依存性を考慮する必要があった。
我々は、入射波長λとスリットのピッチΛの比と、0次
回折光の出射効率の関係を検討し、λ/Λ≧6の時出射
効率が90%を越えることを発見し、また、λ/Λ≧7
の時にスクリーン上での光量が均一になることを見つけ
た。従って、λ/Λの値としては7以上が好適である。
The operation of the first invention is to construct a display device by arranging the diffractive emission efficiency changing means two-dimensionally and using it as a spatial light modulator instead of the liquid crystal panel. . However,
O. In the report of Solgaard et al., Parallel light is used as incident light and the pitch of the slits 23a to 23e is 6 times or less of the wavelength. However, for use as a display device, light from a light source is collected by a lens. It is necessary to make the light incident on the diffractive emission efficiency varying means, and it is necessary to consider the incident angle dependency of the diffractive emission efficiency varying means.
We examined the relationship between the ratio of the incident wavelength λ to the pitch Λ of the slit and the emission efficiency of the 0th-order diffracted light, and found that the emission efficiency exceeded 90% when λ / Λ ≧ 6, and also λ / Λ ≧ 7
At that time, I found that the amount of light on the screen was uniform. Therefore, 7 or more is suitable as the value of λ / Λ.

【0018】また、回折型出射効率可変手段を2次元的
に配列する時、画素同士の分離のため光を反射しない領
域(ブラックマトリクス)を設ける必要があるが、O.
Solgaard等の回折型出射効率可変手段をそのま
ま二次元的に配列すると、画素と画素の間は反射帯とな
り、常に光を反射するので、画素同士がスクリーン上で
混色し表示性能を劣下させる原因となる。
Further, when the diffractive type emission efficiency changing means is two-dimensionally arranged, it is necessary to provide a region (black matrix) which does not reflect light due to separation of pixels.
When the diffraction type emission efficiency varying means such as Solgaard is two-dimensionally arranged as it is, a reflection band is formed between the pixels, and light is always reflected, so that the pixels are mixed with each other on the screen and the display performance is deteriorated. Becomes

【0019】第2の発明の作用は、画素間に位相差が入
射光の波長の2分の1となる領域を設けることにより、
画素間で反射した光が互いに打ち消しあい、ブラックマ
トリクスが構成できるものである。
The function of the second invention is to provide an area in which the phase difference is half the wavelength of the incident light between the pixels.
The light reflected between the pixels cancels each other to form a black matrix.

【0020】第3の発明の作用は、回折型出射効率可変
手段の可動部を支持する梁の幅を可動部の幅に対して細
くすることにより、支持梁を変形しやすくするするもの
である。
The operation of the third aspect of the invention is to make the support beam easier to deform by making the width of the beam supporting the movable portion of the diffraction type emission efficiency varying means narrower than the width of the movable portion. .

【0021】[0021]

【実施例】【Example】

(実施例1)以下本発明の一実施例について、図面を参
照しながら説明する。図1は本発明の第1の実施例の基
本構成を示すものであって、24は光源であり、25は
回折型の出射効率可変手段、26は投影レンズである。
図2は本発明の第1の実施例におけるディスプレイ装置
の構成を示すものであり、図1に示した基本構成を光の
3原色毎に設けたものである。以下、図2を用いて動作
の説明を行う。
(Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the basic configuration of the first embodiment of the present invention, in which 24 is a light source, 25 is a diffractive emission efficiency changing means, and 26 is a projection lens.
FIG. 2 shows the structure of a display device according to the first embodiment of the present invention, in which the basic structure shown in FIG. 1 is provided for each of the three primary colors of light. The operation will be described below with reference to FIG.

【0022】図2において、図1と同一物については同
一番号を賦す。24は光源であり、メタルハライドラン
プやキセノンランプ等の白色光源である。25a〜cは
回折型出射効率可変手段であり、26は投影レンズであ
る。27はコールドミラーであり、熱線を透過し、可視
光は反射する。28は集光レンズである。29a〜cは
ダイクロイックミラーであり、ダイクロイックミラー2
9aは赤色光だけを選択的に反射し、ダイクロイックミ
ラー29bは青色光だけを選択的に反射し、ダイクロイ
ックミラー29cは緑色光だけを選択的に反射する。3
0a、bはミラーである。31はカップリングプリズム
であり、光を合成する。
In FIG. 2, the same parts as those in FIG. 1 are designated by the same reference numerals. A light source 24 is a white light source such as a metal halide lamp or a xenon lamp. Reference numerals 25a to 25c are diffraction type emission efficiency changing means, and 26 is a projection lens. Reference numeral 27 denotes a cold mirror that transmits heat rays and reflects visible light. 28 is a condenser lens. Reference numerals 29a to 29c are dichroic mirrors.
9a selectively reflects only red light, the dichroic mirror 29b selectively reflects only blue light, and the dichroic mirror 29c selectively reflects only green light. Three
Reference numerals 0a and 0b are mirrors. Reference numeral 31 is a coupling prism, which synthesizes light.

【0023】以上のように構成されたディスプレイ装置
について以下その動作を説明する。まず、光源24を出
射した光はコールドミラー27により、反射された光も
含めて、集光レンズ28により収束される。ダイクロイ
ックミラー29aにより、赤色光だけが反射されて、9
0度向きを変え回折型出射効率可変手段25aに入射す
る。回折型出射効率可変手段25aは図示しない制御回
路によって各画素毎にスイッチングされており、入射光
は画素毎に変調され作用の項で述べた原理により、0次
光が出射する画素と、出射しない画素ができる。変調さ
れた赤色光はミラー30aにより光路を折曲げられてカ
ップリングプリズム31に入射し、再度光路を折曲げら
れて、他の光と合成され投影レンズ26により図示しな
いスクリーン上に結像される。
The operation of the display device configured as described above will be described below. First, the light emitted from the light source 24, including the light reflected by the cold mirror 27, is converged by the condenser lens 28. Only the red light is reflected by the dichroic mirror 29a,
The direction is changed by 0 ° and the diffractive type emission efficiency changing means 25a enters. The diffractive type emission efficiency varying means 25a is switched for each pixel by a control circuit (not shown), and the incident light is modulated for each pixel, and according to the principle described in the section of action, 0th-order light is emitted and is not emitted. Pixels are created. The modulated red light has its optical path bent by the mirror 30a, enters the coupling prism 31, is bent again, is combined with other light, and is imaged on a screen (not shown) by the projection lens 26. .

【0024】ダイクロイックミラー29aを透過した緑
・青色光の内、青色光はダイクロイックミラー29bに
より反射され、90度向きを変えて回折型出射効率可変
手段25bに入射する。回折型出射効率可変手段25b
により空間変調された青色光はダイクロイックミラー2
9cを透過し、ミラー30bにより90度向きを変え、
カップリングプリズム31で他の色と合成され、投影レ
ンズ26により結像される。
Of the green and blue light transmitted through the dichroic mirror 29a, the blue light is reflected by the dichroic mirror 29b, changes its direction by 90 degrees, and enters the diffraction type emission efficiency changing means 25b. Diffraction type emission efficiency changing means 25b
The blue light spatially modulated by the dichroic mirror 2
9c is transmitted, the direction is changed by 90 degrees by the mirror 30b,
It is combined with another color by the coupling prism 31 and is imaged by the projection lens 26.

【0025】ダイクロイックミラー29bを透過した緑
色光も同様に回折型出射効率可変手段25cにより空間
変調されダイクロイックミラー29cにより光路を折曲
げられて青色光と同じ光路を通って結像され、結果、ス
クリーン上では3原色が混色されてカラー画像を得る。
この構成において、作用の項で述べたごとく、回折型出
射効率可変手段の格子ピッチΛと入射光の中心波長λの
比をたとえば、λ/Λ=7とすると、回折型出射効率可
変手段で生じる1次回折光の回折角は8.2度となるの
で、この1次回折光が投影レンズ31の入射瞳に入らな
いようにするために投影レンズのF値(=焦点距離/レ
ンズの有効口径)としては3.5以上にする必要があ
る。従って、集光レンズF値も3.5以上にする必要が
あり、この時、作用の項で述べたごとく、スクリーン上
での光量が、ほぼ均一になる。
Similarly, the green light transmitted through the dichroic mirror 29b is spatially modulated by the diffractive emission efficiency changing means 25c, the optical path is bent by the dichroic mirror 29c, and the green light is imaged through the same optical path as the blue light. Above, the three primary colors are mixed to obtain a color image.
In this configuration, as described in the section of action, when the ratio of the grating pitch Λ of the diffractive emission efficiency changing means to the center wavelength λ of the incident light is set to λ / Λ = 7, the diffraction emitting efficiency changing means produces it. Since the diffraction angle of the first-order diffracted light is 8.2 degrees, in order to prevent this first-order diffracted light from entering the entrance pupil of the projection lens 31, the F value (= focal length / effective aperture of the lens) of the projection lens is set. Must be 3.5 or higher. Therefore, the F value of the condenser lens needs to be 3.5 or more, and at this time, the amount of light on the screen becomes substantially uniform, as described in the section of the action.

【0026】以上のように本実施例によれば、光源の光
を赤・緑・青の3原色に分離し、各色毎に反射型の回折
型出射効率可変手段を設け、λ/Λ=7とすることによ
り、光利用効率が高く、光量むらの少ないディスプレイ
装置を得ることが出来る。
As described above, according to the present embodiment, the light from the light source is separated into the three primary colors of red, green and blue, and the reflection type diffraction type emission efficiency varying means is provided for each color, and λ / Λ = 7. With this, it is possible to obtain a display device with high light utilization efficiency and less unevenness in light amount.

【0027】(実施例2)以下本発明の第2の実施例に
ついて図面を参照しながら説明する。第1の実施例と異
なるのは回折型出射効率可変手段の部分だけであるの
で、回折型出射効率可変手段以外の部分は省略する。図
3は、回折型出射効率可変手段の1画素の構成を示す図
で、図3(a)は斜視図、(b)は同A−A断面図であ
る。
(Second Embodiment) A second embodiment of the present invention will be described below with reference to the drawings. Since only the diffractive emission efficiency changing means is different from the first embodiment, parts other than the diffractive emission efficiency changing means are omitted. 3A and 3B are diagrams showing the configuration of one pixel of the diffractive emission efficiency varying means, FIG. 3A is a perspective view, and FIG. 3B is a sectional view taken along line AA.

【0028】図3において、32a〜eは梁であり、厚
みは入射光の波長の4分の1で、例えば窒化シリコン等
の誘電体膜をパターニングして形成する。梁32a〜e
の上面には電極兼反射膜としてアルミニウムや銀等が成
膜されている。33はスペーサーであり、厚みは入射光
波長の4分の1である。34は電極であり図示しない基
板上に設けられている。また、電極34は入射光を反射
する。
In FIG. 3, reference numerals 32a to 32e denote beams, each of which has a thickness of ¼ of the wavelength of incident light and is formed by patterning a dielectric film such as silicon nitride. Beams 32a-e
Aluminum, silver, or the like is formed on the upper surface of the film as an electrode / reflection film. 33 is a spacer, and the thickness thereof is ¼ of the incident light wavelength. Reference numeral 34 denotes an electrode, which is provided on a substrate (not shown). Further, the electrode 34 reflects incident light.

【0029】上記のように構成された回折型出射効率可
変手段が0次回折光を変調できるのは作用の項で述べた
ごとくであるが、スペーサー33の上に設けた梁32a
と32eは静電力を加えてもたわまないので、梁32a
ないし,32e上面で反射する光とスペーサー33上面
で反射する光の位相差は常に往復で2分の1波長であ
り、また、梁32b、c、dのスペーサー33で支持さ
れている部分でも同様に位相差は2分の1波長である。
従って画素と画素の間の部分の位相差はすべて2分の1
波長となって、0次回折光は発生しないので、画素分離
の問題を解決できる。
As described in the section of action, the diffractive type emission efficiency varying means constructed as described above can modulate the 0th-order diffracted light, but the beam 32a provided on the spacer 33 is used.
And 32e do not bend even if electrostatic force is applied, so beam 32a
Or, the phase difference between the light reflected on the upper surface of 32e and the light reflected on the upper surface of the spacer 33 is always one-half wavelength in a round trip, and the same applies to the portions supported by the spacer 33 of the beams 32b, c, d. The phase difference is 1/2 wavelength.
Therefore, the phase difference between the pixels is halved.
Since the wavelength becomes the wavelength and the 0th-order diffracted light is not generated, the problem of pixel separation can be solved.

【0030】以上のように、回折型出射効率可変手段に
おいて、画素間に位相差が2分の1となる領域を設けた
ことにより、実質的にブラックマトリクスを設けたのと
同様の効果が得られる。
As described above, in the diffractive type emission efficiency varying means, by providing the region where the phase difference is ½ between the pixels, substantially the same effect as that of providing the black matrix can be obtained. To be

【0031】(実施例3)以下本発明の第3の実施例に
ついて図面を参照しながら説明する。第1の実施例と異
なるのは回折型出射効率可変手段の部分だけであるの
で、回折型出射効率可変手段以外の部分は省略する。図
4は、回折型出射効率可変手段の構成を示す図で、図4
(a)は平面図、(b)は同A−A断面図である。
(Third Embodiment) A third embodiment of the present invention will be described below with reference to the drawings. Since only the diffractive emission efficiency changing means is different from the first embodiment, parts other than the diffractive emission efficiency changing means are omitted. FIG. 4 is a diagram showing the configuration of the diffractive type emission efficiency changing means.
(A) is a top view and (b) is the same AA sectional drawing.

【0032】図4において、35は誘電体膜で、厚みは
入射光の波長の4分の1であり、上面には電極兼反射膜
としてアルミニウムや銀等が成膜されている。36a〜
36lは誘電体膜35をエッチングして作成したスリッ
トである。37は支持梁であり、誘電体膜35をエッチ
ングして作成する。38はスペーサー、39は電極であ
る。電極39も光を反射する。
In FIG. 4, reference numeral 35 denotes a dielectric film, the thickness of which is 1/4 of the wavelength of incident light, and aluminum, silver or the like is formed on the upper surface as an electrode / reflection film. 36a ~
36l is a slit formed by etching the dielectric film 35. Reference numeral 37 is a support beam, which is formed by etching the dielectric film 35. 38 is a spacer and 39 is an electrode. The electrode 39 also reflects light.

【0033】上記のように構成された回折型出射効率可
変手段について、以下その動作を説明する。誘電体膜3
5は支持梁37とスペーサー38により中空に支持され
ているが、誘電体膜上面に設けた電極と電極39間に電
圧を印加すると、静電力により、誘電体膜35が電極3
9に接触するのは作用の項で述べたのと同様である。可
動部分の誘電体膜35の幅に比べ支持梁の幅が細いた
め、支持梁が変形しやすくなり、電極39に接触する面
積が広くなって、結果0次回折光を変調する面積が広く
なり、開口率が向上する。
The operation of the diffractive emission efficiency changing means constructed as described above will be described below. Dielectric film 3
5 is hollowly supported by the support beam 37 and the spacer 38, but when a voltage is applied between the electrode provided on the upper surface of the dielectric film and the electrode 39, the dielectric film 35 causes the electrode 3 to move to the electrode 3 by electrostatic force.
The contact with 9 is the same as described in the operation section. Since the width of the supporting beam is narrower than the width of the dielectric film 35 in the movable portion, the supporting beam is easily deformed, the area in contact with the electrode 39 is increased, and as a result, the area for modulating the 0th-order diffracted light is increased. The aperture ratio is improved.

【0034】以上のように可動部分の幅よりも支持梁の
幅を細くしたことにより、支持梁が変形しやすくなり、
0次回折光の変調に寄与しないデッドスペースが減少で
きるという効果が得られる。なお、第3の実施例におい
て、回折型出射効率可変手段を構成する各々の梁をスペ
ーサー38の近傍だけを細くしても同様の効果が得られ
ることは言うまでもない。
As described above, by making the width of the support beam narrower than the width of the movable portion, the support beam is easily deformed,
The effect that the dead space that does not contribute to the modulation of the 0th-order diffracted light can be reduced can be obtained. It is needless to say that in the third embodiment, the same effect can be obtained even if each beam forming the diffraction type emission efficiency changing means is thinned only near the spacer 38.

【0035】[0035]

【発明の効果】以上のように第1の発明は、光源と前記
光源から出射した光の光路に設けられた回折型の出射効
率可変手段と前記回折型の出射効率可変手段から出射し
た光を結像するレンズとを設けることにより、光の利用
効率の高いディスプレイ装置を実現できるものである。
また、入射光の波長λと回折型出射効率可変手段の格子
ピッチΛの比を7以上とすることにより、光源からの光
を収束して回折型出射効率可変手段に入射させた場合で
も、光量むらの少ないディスプレイ装置が得られる。
As described above, according to the first aspect of the invention, the light source, the diffractive emission efficiency changing means provided in the optical path of the light emitted from the light source, and the light emitted from the diffractive emission efficiency changing means are provided. By providing a lens for forming an image, a display device with high light utilization efficiency can be realized.
Further, by setting the ratio of the wavelength λ of the incident light to the grating pitch Λ of the diffractive emission efficiency changing means to 7 or more, even if the light from the light source is converged and made incident on the diffractive emission efficiency changing means, A display device with less unevenness can be obtained.

【0036】また、第2の発明によれば、回折型出射効
率可変手段の各画素間に位相差が入射光の2分の1とな
る領域を設けることにより、スクリーン上での画素を明
確に分離することが出来る。
Further, according to the second aspect of the invention, the area on the screen is clearly defined by providing a region where the phase difference is ½ of the incident light between the pixels of the diffraction type emission efficiency varying means. Can be separated.

【0037】また、第3の発明によれば、回折型出射効
率可変手段の可動部分を、可動部分の幅よりも細い幅の
支持梁で支持することにより、開口率が向上し、光の利
用効率の高いディスプレイ装置が得られる。
According to the third aspect of the invention, the movable portion of the diffraction type emission efficiency varying means is supported by the support beam having a width narrower than the width of the movable portion, whereby the aperture ratio is improved and the light is utilized. A highly efficient display device can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の基本構成を示す図FIG. 1 is a diagram showing a basic configuration of a first embodiment of the present invention.

【図2】本発明の第1の実施例におけるディスプレイ装
置の構成図
FIG. 2 is a configuration diagram of a display device according to the first embodiment of the present invention.

【図3】(a)は本発明の第2の実施例の回折型出射効
率可変手段の1画素の斜視図 (b)は本発明の第2の実施例の回折型出射効率可変手
段の1画素の断面図
FIG. 3A is a perspective view of one pixel of the diffraction type emission efficiency varying means of the second embodiment of the present invention, and FIG. 3B is a perspective view of one diffraction type emission efficiency varying means of the second embodiment of the present invention. Cross section of pixel

【図4】(a)は本発明の第3の実施例における回折型
出射効率可変手段の平面図 (b)は本発明の第3の実施例における回折型出射効率
可変手段の断面図
FIG. 4A is a plan view of the diffractive emission efficiency changing means in the third embodiment of the present invention, and FIG. 4B is a sectional view of the diffractive emission efficiency changing means in the third embodiment of the present invention.

【図5】従来のディスプレイ装置の構成図FIG. 5 is a configuration diagram of a conventional display device.

【図6】液晶パネルの構成図FIG. 6 is a configuration diagram of a liquid crystal panel

【図7】回折型出射効率可変手段の斜視図FIG. 7 is a perspective view of a diffractive type emission efficiency changing means.

【図8】(a)は回折型出射効率可変手段の電極に電圧
を印加していない状態の動作を示す図 (b)は回折型出射効率可変手段の電極に電圧を印加し
た状態の動作を示す図
FIG. 8A shows an operation in a state where no voltage is applied to the electrode of the diffraction type emission efficiency varying means, and FIG. 8B shows an operation in which a voltage is applied to the electrode of the diffraction type emitting efficiency varying means. Figure

【符号の説明】[Explanation of symbols]

24 光源 25 回折型出射効率可変手段 26 投影レンズ 27 コールドミラー 28 集光レンズ 29 ダイクロイックミラー 30 ミラー 31 カップリングプリズム 32 梁 33 スペーサー 34 電極 35 誘電体膜 36 スリット 37 支持梁 38 スペーサー 39 電極 24 Light source 25 Diffraction type emission efficiency changing means 26 Projection lens 27 Cold mirror 28 Condensing lens 29 Dichroic mirror 30 Mirror 31 Coupling prism 32 Beam 33 Spacer 34 Electrode 35 Dielectric film 36 Slit 37 Support beam 38 Spacer 39 Electrode

───────────────────────────────────────────────────── フロントページの続き (72)発明者 横山 和夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 水口 信一 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kazuo Yokoyama 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Shinichi Mizuguchi, 1006 Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】光源と、前記光源から出射した光の光路に
設けられた回折型の出射効率可変手段と、前記回折型の
出射効率可変手段から出射した光を結像するレンズとを
備えたディスプレイ装置。
1. A light source, a diffractive emission efficiency changing means provided in an optical path of light emitted from the light source, and a lens for focusing light emitted from the diffractive emission efficiency changing means. Display device.
【請求項2】回折型の出射効率可変手段が反射型である
ことを特徴とする請求項1記載のディスプレイ装置。
2. The display device according to claim 1, wherein the diffractive type emission efficiency varying means is a reflective type.
【請求項3】回折型の出射効率可変手段の回折格子ピッ
チと前記回折型の出射効率可変手段に入射する光の波長
域の中心波長との比が7以上であることを特徴とする請
求項1記載のディスプレイ装置。
3. The ratio of the diffraction grating pitch of the diffractive output efficiency varying means to the center wavelength of the wavelength range of the light incident on the diffractive output efficiency varying means is 7 or more. 1. The display device according to 1.
【請求項4】光源と、前記光源から出射した光の光路に
設けられた回折型の出射効率可変手段と、前記回折型の
出射効率可変手段から出射した光を結像するレンズとを
具備し、前記回折型の出射効率可変手段が複数の回折格
子からなっており、隣接する単位の回折格子間に位相差
が入射光波長の2分の1となる領域を設けたことを特徴
とするディスプレイ装置。
4. A light source, a diffractive emission efficiency changing means provided in an optical path of light emitted from the light source, and a lens for focusing light emitted from the diffractive emission efficiency changing means. The display, characterized in that the diffractive type emission efficiency varying means is composed of a plurality of diffraction gratings, and an area having a phase difference of ½ of the incident light wavelength is provided between the adjacent diffraction gratings. apparatus.
【請求項5】光源と、前記光源から出射した光の光路に
設けられた回折型の出射効率可変手段と、前記回折型の
出射効率可変手段から出射した光を結像するレンズとを
具備し、前記回折型の出射効率可変手段が基板上に複数
の梁を中空に可動に支持した構造であり支持部の幅が可
動部の幅よりも細いことを特徴とするディスプレイ装
置。
5. A light source, a diffractive emission efficiency changing means provided in an optical path of light emitted from the light source, and a lens for forming an image of light emitted from the diffractive emission efficiency changing means. A display device, wherein the diffractive type emission efficiency varying means has a structure in which a plurality of beams are movably supported in a hollow manner on a substrate, and a width of the supporting portion is smaller than a width of the movable portion.
【請求項6】光源から出射した光を赤色光と緑色光と青
色光とに分離する手段を有し、各光の光路に回折型の出
射効率可変手段を設けたことを特徴とする請求項1記載
のディスプレイ装置。
6. A means for separating the light emitted from the light source into red light, green light and blue light, and diffractive type emission efficiency varying means is provided in the optical path of each light. 1. The display device according to 1.
JP14165694A 1994-06-21 1994-06-23 Display device Expired - Lifetime JP3422077B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP14165694A JP3422077B2 (en) 1994-06-23 1994-06-23 Display device
US08/492,894 US5920418A (en) 1994-06-21 1995-06-20 Diffractive optical modulator and method for producing the same, infrared sensor including such a diffractive optical modulator and method for producing the same, and display device including such a diffractive optical modulator
CN95109107A CN1090336C (en) 1994-06-21 1995-06-21 Diffractive optical modulator and method for producing the same, infrared sensor including such a diffractive optical mouldator and method for producing the same, and display device including such....
KR1019950017369A KR100219015B1 (en) 1994-06-21 1995-06-21 Diffraction type optical controller and manufacturing method thereof
CNB011451904A CN1177197C (en) 1994-06-21 1995-06-21 Infrared sensor including diffraction optical modulator
EP95109622A EP0689078A1 (en) 1994-06-21 1995-06-21 Diffractive optical modulator and method for producing the same
CNB011451882A CN1208656C (en) 1994-06-21 2001-12-28 Display device including diffraction optics modulation unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14165694A JP3422077B2 (en) 1994-06-23 1994-06-23 Display device

Publications (2)

Publication Number Publication Date
JPH085939A true JPH085939A (en) 1996-01-12
JP3422077B2 JP3422077B2 (en) 2003-06-30

Family

ID=15297123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14165694A Expired - Lifetime JP3422077B2 (en) 1994-06-21 1994-06-23 Display device

Country Status (1)

Country Link
JP (1) JP3422077B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016756A1 (en) * 1995-11-01 1997-05-09 Matsushita Electric Industrial Co., Ltd. Outgoing efficiency control device, projection type display apparatus, infrared sensor and non-contact thermometer
JP2006071957A (en) * 2004-09-02 2006-03-16 Sony Corp Electronic device chip assembly, electronic device chip, diffraction grating-optical modulation apparatus assembly, and diffraction grating-optical modulation apparatus
WO2008068900A1 (en) * 2006-12-07 2008-06-12 Olympus Corporation Spatial phase modulation element and projector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8063409B2 (en) 2008-04-24 2011-11-22 PhotonEdge Inc. Systems, devices and methods of broadband light sources with tunable spectrum

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016756A1 (en) * 1995-11-01 1997-05-09 Matsushita Electric Industrial Co., Ltd. Outgoing efficiency control device, projection type display apparatus, infrared sensor and non-contact thermometer
US6072620A (en) * 1995-11-01 2000-06-06 Matsushita Electric Industrial Co., Ltd. Output efficiency control device, projection-type display apparatus, infrared sensor, and non-contact thermometer
JP2006071957A (en) * 2004-09-02 2006-03-16 Sony Corp Electronic device chip assembly, electronic device chip, diffraction grating-optical modulation apparatus assembly, and diffraction grating-optical modulation apparatus
WO2008068900A1 (en) * 2006-12-07 2008-06-12 Olympus Corporation Spatial phase modulation element and projector
JP2008145613A (en) * 2006-12-07 2008-06-26 Olympus Corp Spatial phase modulation element and projector

Also Published As

Publication number Publication date
JP3422077B2 (en) 2003-06-30

Similar Documents

Publication Publication Date Title
US5231432A (en) Projector utilizing liquid crystal light-valve and color selection by diffraction
US6449023B2 (en) Active matrix liquid crystal display device
EP1280360B1 (en) Single-panel color image display apparatus
JP3729438B2 (en) Diffraction spatial light modulator and display
JP3298433B2 (en) Color filter and color image display device
KR100930237B1 (en) Illumination optical system employing a dichroic mirror wheel and an image display device having the same
JP2004163817A (en) Projector
JP4055970B2 (en) Liquid crystal light modulation element and projection display device
JP3601576B2 (en) Color image display
JP3422077B2 (en) Display device
JP2001281760A (en) Projection type display device
JPH05307174A (en) Image display device
US6086208A (en) Light valve projector apparatus and technique
JP2001324762A (en) Illuminating optical system for single panel type liquid crystal projector
JP3647206B2 (en) Optical modulation device and projection device using the same
JP3669051B2 (en) Projection display
JP4332361B2 (en) Reflective liquid crystal display element, display device and optical unit
JP4812178B2 (en) Image projection device
JP3200335B2 (en) Optical modulation device and color image display device using the same
JP3022455B2 (en) Color image display
KR100312499B1 (en) Liquid Crystal Display Projector
JP3236194B2 (en) Optical modulation device and color image display device using the same
JP2008304855A (en) Liquid crystal display device and image display device
JP3200334B2 (en) Optical modulation device and color image display device using the same
JP3236195B2 (en) Optical modulation device and color image display device using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 11

EXPY Cancellation because of completion of term