WO2008066197A1 - Exhaust gas clean-up apparatus - Google Patents

Exhaust gas clean-up apparatus Download PDF

Info

Publication number
WO2008066197A1
WO2008066197A1 PCT/JP2007/073322 JP2007073322W WO2008066197A1 WO 2008066197 A1 WO2008066197 A1 WO 2008066197A1 JP 2007073322 W JP2007073322 W JP 2007073322W WO 2008066197 A1 WO2008066197 A1 WO 2008066197A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
storage
catalyst
occlusion
amount
Prior art date
Application number
PCT/JP2007/073322
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshitsugu Ogura
Takayuki Endo
Takahiko Ido
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha, Ibiden Co., Ltd. filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to KR1020097010187A priority Critical patent/KR101159901B1/en
Priority to US12/516,813 priority patent/US8128881B2/en
Priority to CN2007800444496A priority patent/CN101547734B/en
Priority to EP07832942A priority patent/EP2103341A4/en
Priority to BRPI0720791-3A priority patent/BRPI0720791B1/en
Publication of WO2008066197A1 publication Critical patent/WO2008066197A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9422Processes characterised by a specific catalyst for removing nitrogen oxides by NOx storage or reduction by cyclic switching between lean and rich exhaust gases (LNT, NSC, NSR)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9481Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start
    • B01D53/949Catalyst preceded by an adsorption device without catalytic function for temporary storage of contaminants, e.g. during cold start for storing sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2047Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9207Specific surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides

Definitions

  • the present invention relates to an exhaust gas purification device that purifies exhaust gas discharged from an internal combustion engine such as an automobile. About.
  • a NO storage reduction catalyst supporting a NO storage material selected from alkali metals, alkaline earth metals and rare earth elements together with noble metals is known. ing.
  • this NO storage reduction catalyst By using this NO storage reduction catalyst and controlling the composition of the gas mixture so that it becomes a steep to rich atmosphere in the middle of a lean atmosphere, the oxidation of HC and CO and the reduction of NO can proceed efficiently. High purification performance can be obtained.
  • a general NO storage reduction catalyst has a problem that the NO storage amount in a low temperature region is insufficient.
  • the exhaust gas contains SO generated by combustion of sulfur (S) contained in the fuel, which is oxidized by the catalytic metal in an oxygen-excess atmosphere to become so. And that is
  • the water vapor contained in the exhaust gas easily turns into sulfurous acid or sulfuric acid, which reacts with the NO storage material to produce sulfite and sulfate, so that the NO storage material is poisoned and deteriorated. It was.
  • porous carriers such as alumina have the property of being able to occlude SO, so there is a problem that the above-described sulfur poisoning is promoted.
  • Japanese Patent Application Laid-Open No. 2002-0111347 describes an SO storage material containing a composite oxide composed of a rare earth element and an aluminum oxide, and this SO storage material is disposed on the upstream side of the NO storage reduction catalyst. It is described to do.
  • JP-A-2001-113172 proposes an exhaust gas purification catalyst in which a barrier layer for suppressing the diffusion of SO is provided on the upper layer of the NO storage reduction catalyst layer.
  • the noria layer is made of an inorganic oxide carrying a noble metal and a transition metal.
  • the noble metal oxidizes S in a lean atmosphere in the lean layer, and the generated SO is firmly captured by the transition metal, so that SO diffuses into the lower NO storage reduction catalyst layer. Is suppressed.
  • the noble metal of the barrier layer reduces SO in a stoichiometric to rich atmosphere, the bond between the transition metal and SO is broken, and SO is released from the barrier layer. Therefore, the SO storage capacity of the barrier layer is not saturated.
  • the sulfur oxide cover of the downstream NO storage reduction catalyst is provided. You can power the poison.
  • Occlusion of SO also means that NO is occluded, so there may be an advantage that the amount of NO occlusion increases in the low temperature range.
  • Patent Document 1 JP 2001-113172 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-0111347
  • the present invention has been made in view of the above circumstances, and increases the SO storage amount of the storage catalyst arranged upstream of the ⁇ storage reduction catalyst and also increases the NO storage amount in the low temperature range. This is a problem to be solved.
  • an exhaust gas purification comprising: an occlusion catalyst that occludes NO and SO; an NO occlusion reduction catalyst that is disposed on the exhaust gas downstream side of the occlusion catalyst; A device,
  • the storage catalyst is the storage catalyst
  • a carrier substrate having a specific surface area of 30 m 2 / g or more;
  • the coating powder consists of a carrier powder composed of at least one kind and a precious metal that occludes NO and SO.
  • the carrier base material also contains the occlusion material!
  • the storage catalyst is A10, CeO, ZrO, TiO, and
  • a support substrate made of at least one selected from 2 3 2 2 2 oleite and having a specific surface area of 30 m 2 / g or more is used. Since this carrier base material has a large specific surface area, the amount of the occlusion material that occludes NO and SO increases remarkably, and the SO occlusion amount and the NO occlusion amount in a low temperature range increase remarkably. In addition, since the carrier base material made of such a material does not easily react with the storage material that stores NO and SO, there is no problem that the strength of the carrier base material decreases.
  • FIG. 1 is an explanatory view showing an exhaust gas purifying apparatus according to an embodiment of the present invention.
  • FIG. 2 is a bar graph showing NO storage amount.
  • FIG. 3 is a bar graph showing the amount of stored sulfur. Explanation of symbols
  • the exhaust gas purifying apparatus of the present invention comprises an occlusion catalyst that occludes NO and SO, and an NO occlusion reduction catalyst arranged on the exhaust gas downstream side of the occlusion catalyst.
  • the NO storage reduction catalyst is selected from a porous oxide support, a noble metal supported on the porous oxide support, an alkali metal, an alkaline earth metal and a rare earth element, and a NO supported on the porous oxide support.
  • An occlusion material and a force-configured conventional one can be used.
  • porous oxide carrier used for the NO storage reduction catalyst alumina, silica, silica, alumina, titania, zeolite and the like can be used. One of these can be used! /, And multiple types can be mixed and used. Of these, highly active ⁇ -alumina is preferably used.
  • Examples of the noble metal used in the NO storage reduction catalyst include Pt, Rh, Pd, Ir and the like.
  • the amount of noble metal supported is preferably 0 • l to 10 g per liter of the catalyst. If it is less than this, the purification activity is insufficient, and if it is supported more than this, the effect is saturated and the cost becomes high.
  • the amount of the NO storage material supported on the NO storage reduction catalyst is preferably in the range of 0.01 to 2 moles per liter of the catalyst. If the loading amount is less than this range, the NO storage capacity decreases, so the NO purification capacity decreases, and if it exceeds this range, the precious metal is covered with the NO storage material and the activity decreases.
  • Examples of the alkali metal include lithium, sodium, potassium, and cesium.
  • Examples of alkaline earth metals include group 2A elements of barium, beryllium, magnesium, calcium, and strontium.
  • Examples of rare earth elements include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, dysprosium, ytterbium, and the like.
  • the storage catalyst that characterizes the present invention includes a carrier substrate, a coat layer formed on the surface of the carrier substrate, and force.
  • the carrier substrate is selected from A10, CeO, ZrO, TiO and zeolite. And a specific surface area of 30 m 2 / g or more. If the specific surface area is less than 30 m 2 / g, the amount of occlusion of the occlusion material becomes insufficient, the amount of SO occlusion decreases, and the amount of NO occlusion in the low temperature region also decreases, which is not preferable. It is particularly desirable that the specific surface area of the carrier substrate is 50 m 2 / g or more! /.
  • A10 or ZrO is particularly preferable as the material for the carrier substrate.
  • A10 is preferred because it has a remarkably high specific surface area.
  • ZrO has a high basicity, so it absorbs SO.
  • Zeolite is also a preferred material for reasons described below.
  • the coating layer is at least one selected from A10, CeO, ZrO, TiO and zeolite
  • the carrier powder is formed by supporting a storage material for storing NO and SO and a noble metal.
  • A10 or ZrO is particularly preferred for the same reason as above.
  • the amount of the coat layer formed is preferably 100 g or more, preferably 150 g or more, per liter of the storage catalyst. If the amount of coating layer formed is small, the storage amount of NO and SO decreases.
  • the occlusion material that occludes NO and SO is desirably at least one selected from alkali metals and alkaline earth metals. Of these, Mg or Ba having high basicity and excellent stability is preferred.
  • an alkali metal oxide or an alkaline earth metal oxide has a high ability to occlude NO and SO, but on the other hand, it is difficult to release the occluded NO and SO. For this reason, the temperature at which NO and SO are released becomes high, and when used in the low to medium temperature range, the storage amount of NO and SO becomes saturated, and it becomes difficult to store more NO and SO. There is. If a carrier material such as zeolitic and zeolitic is used as an occlusion material in which alkali metal or alkaline earth metal is ion-exchange-supported, the temperature at which the occluded NO and SO are released is lowered, and the exhaust gas temperature in the low to medium temperature range is reduced. Even so, it is possible to repeatedly store and release NO and SO.
  • ZrO added with an alkali metal or alkaline earth metal is different from other occlusion materials.
  • Oxidizing activity is expressed by ⁇ , Fe ⁇ , etc., and NO or SO in exhaust gas is oxidized.
  • alkali metal or alkaline earth metal is not clear, but alkali metal or alkaline earth metal is dissolved in the ZrO lattice to dissolve the alkali metal
  • Lukari earth metal and ZrO are compounded, which modifies the ZrO surface and newly absorbs it.
  • the storage material has different temperatures for storing NO and SO depending on its type. Therefore, it is also preferable to use multiple types of occlusion materials with different temperatures that indicate the maximum occlusion amount! For example, if a low-temperature type occlusion material that efficiently stores NO and SO at a low temperature is arranged on the most upstream side, and an intermediate temperature type occlusion material that efficiently occludes NO and SO is arranged on the downstream side, NO. Since SO and SO are gradually stored from the upstream side where the storage temperature is low, NO and SO can be stored in a wide temperature range from a low temperature range to a high temperature range. Further, since the exhaust gas is heated by the heat generated by the storage of NO and SO, there is an effect that the downstream storage material or the NO storage reduction catalyst is activated early.
  • a zeolite carrying a rare earth element such as Ce a zeolite carrying an alkali metal, an alkaline earth metal or a transition metal
  • a zeolite carrying an alkali metal, an alkaline earth metal or a transition metal examples include those carrying a noble metal on ZrO and those carrying a transition metal such as Co 0.
  • Examples are those carrying a metal and an alkali metal or alkaline earth metal.
  • Zeolite has pores comparable to the size of the molecule, also called a molecular sieve, and is used not only as an occlusion material but also as a catalyst in many reactions. It also contains a cation to neutralize the negative charge of the main component, A10,
  • At least one metal selected from alkali metals and alkaline earth metals can be ion-exchanged and supported in an extremely highly dispersed state.
  • the ion exchange-supported metal element is supported on the zeolite with extremely high dispersion. NO and SO oxidation activity at low temperatures where activity is extremely high
  • zeolite such as ferrierite, ZSM-5, mordenite, and Y-type zeolite can be used.
  • ZSM-5 and mordenite are excellent in ion exchange capacity, so it is desirable to select and use them.
  • a NO storage / reduction catalyst is arranged downstream of the storage material in which at least one metal element selected from alkali metals, alkaline earth metals, and rare earth elements is ion-exchange-supported in zeolite, NO can be used even at low temperatures. Is already NO, so even if there is NO that could not be occluded by the occlusion material, it will be occluded by the downstream NO occlusion reduction catalyst. As a result, the NO storage capacity at low temperatures is improved and the NO purification capacity is improved.
  • the coat layer further carries a noble metal.
  • the noble metal include Pt, Rh, Pd, Ir and the like. Among them, Pt having a high oxidation activity is particularly preferable.
  • the amount of noble metal supported is preferably 0.5 to 2.0 g per liter of the storage catalyst. If it is less than this, the storage performance of NO and SO will be insufficient, and if it is supported more than this, the effect will be saturated and it will be expensive.
  • the shape of the support substrate in the occlusion catalyst may be a pellet shape, a foam shape, a straight-ported single honeycomb shape, a wall flow honeycomb shape, or the like.
  • the coating layer is formed on the surface of the carrier substrate that comes into contact with the exhaust gas.
  • the support base material of the occlusion catalyst in, for example, a straight flow type honeycomb shape, a powder made of at least one selected from A10, CeO, ZrO, TiO and zeolite is used.
  • the slurry can be made into a highly viscous slurry together with the inner and fired after extrusion. And to form a coating layer on the surface of the carrier substrate, A10, CeO, ZrO, T Comparison of powder with at least one selected from iO and zeolite together with binder
  • the slurry is made into a slurry with low physical viscosity, sucked and then dried and fired after being put into the carrier substrate, and then impregnated with a solution in which the noble metal compound is dissolved and a solution in which the compound containing the occlusion material element is dissolved in order, followed by drying and firing. do it.
  • a solution in which a compound containing an occlusion material element such as nitrate is dissolved is used. Since we want to increase the amount of occlusion material as much as possible, it is desirable that the concentration of the compound containing the occlusion material element in the solution be a saturation concentration! /. In addition, since it is desirable to carry a large amount in one treatment, it is particularly desirable that the water absorption amount in a state where the coat layer is formed is at least 150 g per liter of the catalyst, preferably 200 g or more.
  • the storage base material of the storage catalyst also contains the storage material described above. This further increases the storage amount of N 0 and SO.
  • the above-mentioned loading method includes a certain amount of occlusion material on the carrier substrate, it is desirable to mix occlusion material powders such as MgO and BaO in the slurry used for the production of the carrier substrate. In this case, if the mixing amount of the occlusion material powder is increased, the strength of the carrier substrate may be reduced, and the specific surface area may be less than 30 m 2 / g.
  • the NO purification reaction in the NO storage reduction catalyst includes a first step in which NO in the exhaust gas is oxidized to NO in a lean atmosphere, a second step in which NO is stored in the NO storage element, and a stoichiometric reaction. It is known to comprise a third step of reducing NO released from NO storage elements on the catalyst in a rich atmosphere. Therefore, in order for the NO purification reaction to proceed smoothly, each of these steps must proceed smoothly.
  • the exhaust gas purifying apparatus of the present invention has a configuration in which the storage catalyst is arranged upstream of the exhaust gas upstream of the NO storage reduction catalyst.
  • the storage material contained in the storage catalyst is easy to store NO. Stores NO even at low temperatures. Therefore, in the low temperature range, exhaust gas containing almost no NO is supplied to the NO storage reduction catalyst, so almost no NO is emitted.
  • the exhaust gas temperature rises the stored NO is desorbed from the storage material and flows into the NO storage reduction catalyst. Since the NO storage reduction catalyst is already at the activation temperature, the reaction in the first step is smooth. NO is efficiently reduced and purified. With such a mechanism, according to the exhaust gas purification apparatus of the present invention, it is possible to secure a high NO purification rate from low temperature to high temperature with the force S.
  • FIG. 1 shows an exhaust gas purification apparatus of this example.
  • a catalyst converter 2 is disposed in the exhaust gas passage of the engine 1.
  • the storage catalyst 3 is disposed on the upstream side
  • the NO storage reduction catalyst 4 is disposed on the downstream side of the storage catalyst 3.
  • the storage catalyst 3 and the NO storage reduction catalyst 4 are both honeycomb catalysts having a straight flow structure.
  • the storage catalyst 3 includes a straight flow type honeycomb substrate 30 formed by ⁇ -A10 force, and
  • the honeycomb substrate 30 has a volume of 2 L, 600 cells / in 2 , and a specific surface area of 100 m 2 / g.
  • the coat layer 31 is formed in an amount of 150 g per liter of the honeycomb substrate 30.
  • the coat layer 31 is formed by wash-coating a slurry mainly containing ⁇ - ⁇ 10 powder.
  • the honeycomb substrate 30 carries 2.0 g of Pt per liter of the honeycomb substrate 30 and 2.5 mol of MgO per liter of the honeycomb substrate 30.
  • wash coating, drying and firing were performed to form an alumina coating layer.
  • the alumina coat layer was impregnated with a predetermined amount of Pt chemical solution having a predetermined concentration, and baked to carry Pt.
  • a maximum amount of magnesium nitrate aqueous solution saturated aqueous solution
  • the amount of MgO supported was 100 g per liter of the honeycomb substrate 30.
  • the NO storage reduction catalyst 4 is composed of a straight flow type honeycomb substrate 40 formed of cordierite, a coat layer 41 formed on the cell wall surface, and force.
  • the honeycomb substrate 40 has a volume of 3 L, 400 cells / in 2 , and a specific surface area of 100 m 2 / g.
  • Coat layer 41 is a honeycomb 150 g is formed per liter of the base material 40.
  • the coat layer 41 is composed of ⁇ -A1 0 powder and Pt, K, and Ba supported on the ⁇ -A1 0 powder.
  • the 1 liter of honeycomb substrate 40 carries 2 g of Pt, 0.1 mol of K, and 0.1 mol of Ba.
  • ⁇ - A1 0 powder instead of ⁇ - A1 0 powder: MgO powder
  • the honeycomb substrate has the same shape as that of Example 1, and its specific surface area is 100 m 2 / g.
  • an alumina coat layer similar to that in Example 1 was formed.
  • the alumina coat layer was formed in an amount of 150 g per liter of the two-cam base material.
  • Pt and MgO were supported on the alumina coat layer in the same manner as in Example 1 except that the concentration of the magnesium nitrate aqueous solution was different.
  • the amounts of Pt and MgO supported were the same as in Example 1.
  • 1.0 mol / L was supported on the honeycomb substrate and 1.5 mol / L was supported on the coat layer.
  • the obtained storage catalyst was arranged on the upstream side, and the NO storage reduction catalyst 4 similar to that of Example 1 was arranged on the downstream side, whereby the exhaust gas purification apparatus of Example 2 was obtained.
  • honeycomb base material of the storage catalyst 3 it is formed from cordierite powder instead of ⁇ - ⁇ 10 powder.
  • the honeycomb substrate has the same shape as in Example 1, and the specific surface area is 0.1 to lm 2 / g. Using this honeycomb substrate, the same alumina coat layer as in Example 1 was formed. The alumina coat layer was formed in an amount of 150 g per liter of the honeycomb substrate.
  • the supported amount of Pt was the same as in Example 1, but the supported amount of MgO was 1.0 mol / L, which was less than in Example 1. It was.
  • the obtained storage catalyst was arranged on the upstream side, and the NO storage reduction catalyst 4 similar to that in Example 1 was arranged on the downstream side, whereby the exhaust gas purification apparatus of Comparative Example 1 was obtained.
  • the honeycomb base material of the storage catalyst 3 is formed of cordierite powder instead of ⁇ - ⁇ 10 powder. What was made was used.
  • the honeycomb substrate has the same shape as in Example 1, and the specific surface area is 0.1 to lm 2 / g.
  • the same alumina coat layer as in Example 1 was formed.
  • the alumina coat layer was formed in an amount of 150 g per liter of the honeycomb substrate.
  • Pt and MgO were supported on the alumina coat layer in the same manner as in Example 1
  • the supported amount of Pt was the same as in Example 1, but the supported amount of MgO was 1.25 mol / L, which was less than Example 1. It was.
  • Fig. 3 shows the results of measuring the amount of sulfur stored when passing 90g of model gas as sulfur per liter of honeycomb substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

Disclosed is an absorption catalyst (3) comprising: a carrier base material (30) which comprises at least one member selected from Al2O3, CeO2, ZrO2, TiO2 and zeolite and has a specific surface area of 30 m2/g or more; and a coat layer (31) which comprises a carrier powder comprising at least one member selected from Al2O3, CeO2, ZrO2, TiO2 and zeolite and an absorbent material capable of absorbing NOx and SOx and a noble metal both carried on the carrier powder. Since the carrier base material (30) has a large specific surface area, the amount of an absorbent material capable of absorbing NOx and SOx which is carried on the carrier base material (30) is remarkably increased. As a consequence, the amount of SOx absorbed by the absorption catalyst placed upstream to an NOx-absorbing reduction catalyst is increased and the amount of NOx absorbed at a low temperature is also increased.

Description

明 細 書  Specification
排ガス浄化装置  Exhaust gas purification device
技術分野  Technical field
[0001] 本発明は、自動車などの内燃機関から排出される排ガスを浄化する排ガス浄化装 置に関し、詳しくは、リーンバーンエンジンからの排ガスを浄化するのに最適な NO 吸蔵還元型の排ガス浄化装置に関する。  TECHNICAL FIELD [0001] The present invention relates to an exhaust gas purification device that purifies exhaust gas discharged from an internal combustion engine such as an automobile. About.
背景技術  Background art
[0002] 近年、二酸化炭素による地球温暖化現象が問題となり、二酸化炭素の排出量を低 減することが課題となっている。 自動車においても排ガス中の二酸化炭素量の低減 が課題となり、燃料を酸素過剰雰囲気で希薄燃焼させるリーンバーンエンジンが用 いられている。このリーンバーンエンジンによれば燃料の使用量が低減されるため、 二酸化炭素の排出量を抑制することができる。  In recent years, the global warming phenomenon caused by carbon dioxide has become a problem, and it has become a problem to reduce the amount of carbon dioxide emissions. Reducing the amount of carbon dioxide in exhaust gas is also an issue for automobiles, and lean burn engines that use lean burn of fuel in an oxygen-rich atmosphere are used. According to this lean burn engine, the amount of fuel used is reduced, so carbon dioxide emissions can be suppressed.
[0003] そしてリーンバーンエンジンからの排ガス中の有害成分を浄化する触媒として、貴 金属とともにアルカリ金属、アルカリ土類金属及び希土類元素から選ばれる NO 吸 蔵材を担持した NO吸蔵還元触媒が知られている。この NO 吸蔵還元触媒を用い、 リーン雰囲気の途中にパルス状にストィキ〜リッチ雰囲気となるように混合気組成を 制御すれば、 HC及び COの酸化と NOの還元とを効率よく進行させることができ、高 い浄化性能が得られる。  [0003] As a catalyst for purifying harmful components in exhaust gas from a lean burn engine, a NO storage reduction catalyst supporting a NO storage material selected from alkali metals, alkaline earth metals and rare earth elements together with noble metals is known. ing. By using this NO storage reduction catalyst and controlling the composition of the gas mixture so that it becomes a steep to rich atmosphere in the middle of a lean atmosphere, the oxidation of HC and CO and the reduction of NO can proceed efficiently. High purification performance can be obtained.
[0004] ところが一般的な NO吸蔵還元触媒においては、低温域における NO 吸蔵量が不 充分であるという問題がある。  [0004] However, a general NO storage reduction catalyst has a problem that the NO storage amount in a low temperature region is insufficient.
[0005] また排ガス中には、燃料中に含まれる硫黄(S)が燃焼して生成した SO が含まれ、 それが酸素過剰雰囲気中で触媒金属により酸化されて soとなる。そしてそれがやは  [0005] Further, the exhaust gas contains SO generated by combustion of sulfur (S) contained in the fuel, which is oxidized by the catalytic metal in an oxygen-excess atmosphere to become so. And that is
3  Three
り排ガス中に含まれる水蒸気により容易に亜硫酸あるいは硫酸となり、これらが NO 吸蔵材と反応して亜硫酸塩や硫酸塩が生成するため、 NO 吸蔵材が被毒劣化する ことが明ら力、となった。また、アルミナなどの多孔質担体は SO を吸蔵しやすいという 性質があることから、上記した硫黄被毒が促進されるという問題もある。  The water vapor contained in the exhaust gas easily turns into sulfurous acid or sulfuric acid, which reacts with the NO storage material to produce sulfite and sulfate, so that the NO storage material is poisoned and deteriorated. It was. In addition, porous carriers such as alumina have the property of being able to occlude SO, so there is a problem that the above-described sulfur poisoning is promoted.
[0006] そして、このように NO 吸蔵材が亜硫酸塩や硫酸塩となると、もはや NOを吸蔵する ことが困難となり、耐久後の ΝΟχの浄化性能が低下するという不具合があった。 [0006] When the NO storage material becomes sulfite or sulfate as described above, NO is no longer stored. It is difficult, purification performance of ΝΟ χ after the durability there has been a problem of a decrease.
[0007] そこで特開 2002— 011347号公報には、希土類元素とアルミニウム酸化物よりなる複 合酸化物を含む SO吸蔵材が記載され、この SO 吸蔵材を NO吸蔵還元触媒の上 流側に配置することが記載されている。  [0007] In view of this, Japanese Patent Application Laid-Open No. 2002-0111347 describes an SO storage material containing a composite oxide composed of a rare earth element and an aluminum oxide, and this SO storage material is disposed on the upstream side of the NO storage reduction catalyst. It is described to do.
[0008] また特開 2001— 113172号公報には、 NO 吸蔵還元触媒層の上層に SO の拡散を 抑制するバリア層を設けた排ガス浄化用触媒が提案されている。ノ リア層は、貴金属 及び遷移金属が担持された無機酸化物からなる。この排ガス浄化用触媒によれば、 ノ リア層においてリーン雰囲気で貴金属が Sを酸化し、生成した SO が遷移金属に 強固に捕捉されるので、 SOが下層の NO 吸蔵還元触媒層へ拡散するのが抑制さ れる。そしてバリア層の貴金属は、ストィキ〜リッチ雰囲気で SO を還元し、遷移金属 と SOとの結合が切断されてバリア層から SO が放出される。したがってバリア層の SO 吸蔵能力が飽和することがない。  JP-A-2001-113172 proposes an exhaust gas purification catalyst in which a barrier layer for suppressing the diffusion of SO is provided on the upper layer of the NO storage reduction catalyst layer. The noria layer is made of an inorganic oxide carrying a noble metal and a transition metal. According to this exhaust gas purifying catalyst, the noble metal oxidizes S in a lean atmosphere in the lean layer, and the generated SO is firmly captured by the transition metal, so that SO diffuses into the lower NO storage reduction catalyst layer. Is suppressed. The noble metal of the barrier layer reduces SO in a stoichiometric to rich atmosphere, the bond between the transition metal and SO is broken, and SO is released from the barrier layer. Therefore, the SO storage capacity of the barrier layer is not saturated.
[0009] そこで特開 2001— 116172号公報に記載のバリア層のみを形成した触媒を、 NO吸 蔵還元触媒の上流側に配置することが考えられる。  [0009] Therefore, it is conceivable to dispose the catalyst having only the barrier layer described in JP-A-2001-116172 upstream of the NO storage reduction catalyst.
[0010] このように NO 吸蔵還元触媒の上流側に、 SO を吸蔵可能な SO 吸蔵材を担持し た吸蔵触媒を配置した排ガス浄化装置によれば、下流側の NO 吸蔵還元触媒の硫 黄被毒を ί卬制すること力できる。また SOを吸蔵するということは NO も吸蔵することも 意味するので、低温域における NO 吸蔵量が増加するという利点が得られる場合も ある。  [0010] Thus, according to the exhaust gas purification apparatus in which the storage catalyst supporting the SO storage material capable of storing SO is arranged upstream of the NO storage reduction catalyst, the sulfur oxide cover of the downstream NO storage reduction catalyst is provided. You can power the poison. Occlusion of SO also means that NO is occluded, so there may be an advantage that the amount of NO occlusion increases in the low temperature range.
[0011] ところが従来の吸蔵触媒においては、 so 吸蔵材の担持量に限界があって soの 吸蔵性能が十分でなぐ下流側に配置された NO 吸蔵還元触媒の硫黄被毒を十分 に防止できないという問題があった。また SO 吸蔵材を多量に担持した場合には、 S 0吸蔵材が担体基材と反応して担体基材の強度が大幅に低下するという問題があ つた。  [0011] However, in the conventional storage catalyst, there is a limit to the amount of so-occlusion material supported, and it is not possible to sufficiently prevent sulfur poisoning of the NO storage-reduction catalyst arranged on the downstream side where the so-occlusion performance is sufficient. There was a problem. Further, when a large amount of SO storage material was supported, the S 0 storage material reacted with the support base material, resulting in a problem that the strength of the support base material was greatly reduced.
特許文献 1:特開 2001— 113172号  Patent Document 1: JP 2001-113172 A
特許文献 2:特開 2002— 011347号  Patent Document 2: Japanese Patent Laid-Open No. 2002-0111347
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0012] 本発明は上記事情に鑑みてなされたものであり、 ΝΟχ吸蔵還元触媒の上流側に配 置される吸蔵触媒の SO吸蔵量を増大させるとともに、低温域における NO 吸蔵量も 増大させることを解決すべき課題とする。 Problems to be solved by the invention [0012] The present invention has been made in view of the above circumstances, and increases the SO storage amount of the storage catalyst arranged upstream of the χ storage reduction catalyst and also increases the NO storage amount in the low temperature range. This is a problem to be solved.
課題を解決するための手段  Means for solving the problem
[0013] 上記課題を解決する本発明の排ガス浄化装置の特徴は、 NO 及び SO を吸蔵す る吸蔵触媒と、吸蔵触媒の排ガス下流側に配置された NO 吸蔵還元触媒と、よりな る排ガス浄化装置であって、 [0013] The feature of the exhaust gas purification apparatus of the present invention that solves the above-described problem is that an exhaust gas purification comprising: an occlusion catalyst that occludes NO and SO; an NO occlusion reduction catalyst that is disposed on the exhaust gas downstream side of the occlusion catalyst; A device,
吸蔵触媒は、  The storage catalyst
A1 0 、 CeO 、 ZrO 、 TiO及びゼォライトから選ばれる少なくとも一種から形成され Formed of at least one selected from A10, CeO, ZrO, TiO and zeolite.
2 3 2 2 2 2 3 2 2 2
比表面積が 30m2/g以上である担体基材と、 A carrier substrate having a specific surface area of 30 m 2 / g or more;
担体基材の表面に形成され A1 0 、 CeO 、 ZrO 、 TiO及びゼォライトから選ばれる  Formed on the surface of the carrier substrate and selected from A10, CeO, ZrO, TiO and zeolite
2 3 2 2 2  2 3 2 2 2
少なくとも一種からなる担体粉末に、 NO 及び SO を吸蔵する吸蔵材と貴金属とを担 持してなるコート層と、力、らなることにある。  This is because the coating powder consists of a carrier powder composed of at least one kind and a precious metal that occludes NO and SO.
[0014] 担体基材にも上記吸蔵材を含むことが望まし!/、。 [0014] Desirably, the carrier base material also contains the occlusion material!
発明の効果  The invention's effect
[0015] 本発明の排ガス浄化装置によれば、吸蔵触媒は A1 0 、 CeO 、 ZrO 、 TiO及びゼ  [0015] According to the exhaust gas purification apparatus of the present invention, the storage catalyst is A10, CeO, ZrO, TiO, and
2 3 2 2 2 オライトから選ばれる少なくとも一種から形成され、比表面積が 30m2/g以上である担 体基材を用いている。この担体基材は比表面積が大きいため、 NO 及び SO を吸蔵 する吸蔵材の担持量が格段に増大し、 SO 吸蔵量及び低温域における NO吸蔵量 が格段に増大する。またこのような材質から形成された担体基材は、 NO 及び SO を 吸蔵する吸蔵材とは反応し難いため、担体基材の強度が低下するような問題もないA support substrate made of at least one selected from 2 3 2 2 2 oleite and having a specific surface area of 30 m 2 / g or more is used. Since this carrier base material has a large specific surface area, the amount of the occlusion material that occludes NO and SO increases remarkably, and the SO occlusion amount and the NO occlusion amount in a low temperature range increase remarkably. In addition, since the carrier base material made of such a material does not easily react with the storage material that stores NO and SO, there is no problem that the strength of the carrier base material decreases.
Yes
[0016] したがって排ガス浄化装置全体として NO 浄化性能が向上するとともに、下流側の NO吸蔵還元触媒の硫黄被毒を防止できるため耐久性が向上する。  [0016] Therefore, the NO purification performance of the exhaust gas purification apparatus as a whole is improved, and the durability is improved because sulfur poisoning of the downstream NO storage reduction catalyst can be prevented.
図面の簡単な説明  Brief Description of Drawings
[0017] [図 1]本発明の一実施例の排ガス浄化装置を示す説明図である。  FIG. 1 is an explanatory view showing an exhaust gas purifying apparatus according to an embodiment of the present invention.
[図 2]NO吸蔵量を示す棒グラフである。  FIG. 2 is a bar graph showing NO storage amount.
[図 3]吸蔵硫黄量を示す棒グラフである。 符号の説明 FIG. 3 is a bar graph showing the amount of stored sulfur. Explanation of symbols
[0018] 1 :エンジン 2 :触媒コンバータ [0018] 1: Engine 2: Catalytic converter
3 :吸蔵触媒 4 : NO 吸蔵還元触媒  3: Occlusion catalyst 4: NO storage reduction catalyst
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 本発明の排ガス浄化装置は、 NO 及び SO を吸蔵する吸蔵触媒と、吸蔵触媒の排 ガス下流側に配置された NO 吸蔵還元触媒と、よりなる。このうち NO吸蔵還元触媒 は、多孔質酸化物担体と、多孔質酸化物担体に担持された貴金属と、アルカリ金属 、アルカリ土類金属及び希土類元素から選ばれ多孔質酸化物担体に担持された NO 吸蔵材と、力 構成された従来と同様のものを用いることができる。  [0019] The exhaust gas purifying apparatus of the present invention comprises an occlusion catalyst that occludes NO and SO, and an NO occlusion reduction catalyst arranged on the exhaust gas downstream side of the occlusion catalyst. Among these, the NO storage reduction catalyst is selected from a porous oxide support, a noble metal supported on the porous oxide support, an alkali metal, an alkaline earth metal and a rare earth element, and a NO supported on the porous oxide support. An occlusion material and a force-configured conventional one can be used.
[0020] NO吸蔵還元触媒に用いられる多孔質酸化物担体としては、アルミナ、シリカ、シリ 力一アルミナ、ジルコユア、チタニア、ゼォライトなどを用いることができる。このうちの 一種でもよ!/、し複数種類を混合あるレ、は複合化して用いることもできる。中でも活性 の高い γ—アルミナを用いるのが好ましい。  [0020] As the porous oxide carrier used for the NO storage reduction catalyst, alumina, silica, silica, alumina, titania, zeolite and the like can be used. One of these can be used! /, And multiple types can be mixed and used. Of these, highly active γ-alumina is preferably used.
[0021] NO吸蔵還元触媒に用いられる貴金属としては、 Pt、 Rh、 Pd、 Irなどが例示される。  [0021] Examples of the noble metal used in the NO storage reduction catalyst include Pt, Rh, Pd, Ir and the like.
中でも活性の高い Ptが特に好ましい。また貴金属の担持量は、触媒 1リットル当たり 0 • l〜10gとすることが好ましい。これより少ないと浄化活性が不足し、これより多く担持 しても効果が飽和するとともに高価となる。  Of these, highly active Pt is particularly preferred. The amount of noble metal supported is preferably 0 • l to 10 g per liter of the catalyst. If it is less than this, the purification activity is insufficient, and if it is supported more than this, the effect is saturated and the cost becomes high.
[0022] また NO吸蔵還元触媒における NO 吸蔵材の担持量は、触媒 1リットル当たり 0.01 〜2モルの範囲とすることが望ましい。担持量がこの範囲より少ないと NO吸蔵量が低 下するため NO 浄化能が低下し、この範囲より多くなると貴金属が NO 吸蔵材に覆 われて活性が低下するようになる。  [0022] The amount of the NO storage material supported on the NO storage reduction catalyst is preferably in the range of 0.01 to 2 moles per liter of the catalyst. If the loading amount is less than this range, the NO storage capacity decreases, so the NO purification capacity decreases, and if it exceeds this range, the precious metal is covered with the NO storage material and the activity decreases.
[0023] アルカリ金属としては、リチウム、ナトリウム、カリウム、セシウムが例示される。アル力 リ土類金属は周期表 2A族元素のバリウム、ベリリウム、マグネシウム、カルシウム、スト ロンチウムなどが例示される。また希土類元素としては、スカンジウム、イットリウム、ラ ンタン、セリウム、プラセオジム、ネオジム、ジスプロシウム、イッテルビウムなどが例示 される。  [0023] Examples of the alkali metal include lithium, sodium, potassium, and cesium. Examples of alkaline earth metals include group 2A elements of barium, beryllium, magnesium, calcium, and strontium. Examples of rare earth elements include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, dysprosium, ytterbium, and the like.
[0024] 本発明の特徴をなす吸蔵触媒は、担体基材と、担体基材の表面に形成されたコー ト層と、力、らなる。担体基材は、 A1 0、 CeO、 ZrO、 TiO及びゼォライトから選ばれ る少なくとも一種から形成され比表面積が 30m2/g以上である。比表面積が 30m2/g 未満では、吸蔵材の担持量が不充分となり、 SO 吸蔵量が減少するとともに、低温域 における NO吸蔵量も減少するため好ましくない。担体基材の比表面積は、 50m2/g 以上であることが特に望まし!/、。 [0024] The storage catalyst that characterizes the present invention includes a carrier substrate, a coat layer formed on the surface of the carrier substrate, and force. The carrier substrate is selected from A10, CeO, ZrO, TiO and zeolite. And a specific surface area of 30 m 2 / g or more. If the specific surface area is less than 30 m 2 / g, the amount of occlusion of the occlusion material becomes insufficient, the amount of SO occlusion decreases, and the amount of NO occlusion in the low temperature region also decreases, which is not preferable. It is particularly desirable that the specific surface area of the carrier substrate is 50 m 2 / g or more! /.
また担体基材の材質は、上記した中でも A1 0あるいは ZrOが特に好ましい。 γ - Further, among the materials described above, A10 or ZrO is particularly preferable as the material for the carrier substrate. γ-
2 3 2 2 3 2
A1 0は比表面積が著しく高いため好ましぐ ZrOは塩基性度が高いため SO の吸 A10 is preferred because it has a remarkably high specific surface area. ZrO has a high basicity, so it absorbs SO.
2 3 2 2 3 2
蔵性能がさらに向上する。また後述する理由により、ゼォライトも好ましい材質である  The storage performance is further improved. Zeolite is also a preferred material for reasons described below.
[0026] コート層は、 A1 0 、 CeO 、 ZrO 、 TiO及びゼォライトから選ばれる少なくとも一種か [0026] The coating layer is at least one selected from A10, CeO, ZrO, TiO and zeolite
2 3 2 2 2  2 3 2 2 2
らなる担体粉末に、 NO 及び SO を吸蔵する吸蔵材と貴金属とを担持してなるもの である。担体粉末としては、上記と同様の理由により、 A1 0あるいは ZrOが特に好  The carrier powder is formed by supporting a storage material for storing NO and SO and a noble metal. As the carrier powder, A10 or ZrO is particularly preferred for the same reason as above.
2 3 2 ましぐ後述する理由によりゼォライトも好ましい。コート層の形成量は、吸蔵触媒の 1 リットルあたり 100g以上とするのが好ましぐ 150g以上とするのが特に望ましい。コー ト層の形成量が少ないと、 NO 及び SO の吸蔵量が低下する。  2 3 2 Zeolite is also preferred for the reasons described below. The amount of the coat layer formed is preferably 100 g or more, preferably 150 g or more, per liter of the storage catalyst. If the amount of coating layer formed is small, the storage amount of NO and SO decreases.
[0027] NO及び SO を吸蔵する吸蔵材は、アルカリ金属及びアルカリ土類金属から選ば れる少なくとも一種を用いることが望ましい。中でも塩基性度が高く安定性に優れた M gあるいは Baが好ましい。  [0027] The occlusion material that occludes NO and SO is desirably at least one selected from alkali metals and alkaline earth metals. Of these, Mg or Ba having high basicity and excellent stability is preferred.
[0028] 例えばアルカリ金属の酸化物やアルカリ土類金属の酸化物などは、 NO 及び SO を吸蔵する能力は高いものの、その反面吸蔵された NO 及び SO を放出しにくい。 そのため NO 及び SO を放出する温度が高くなり、低温から中温域で使用される場 合には NO 及び SO の吸蔵量が飽和してそれ以上の NO 及び SO の吸蔵が困難と なるとレ、う不具合がある。し力、しゼォライトなどの担体粉末にアルカリ金属やアルカリ 土類金属をイオン交換担持した吸蔵材とすれば、吸蔵された NO 及び SO が放出さ れる温度が低くなり、低温から中温域の排ガス温度であっても NO 及び SO の吸蔵- 放出の繰り返しが可能となる。  [0028] For example, an alkali metal oxide or an alkaline earth metal oxide has a high ability to occlude NO and SO, but on the other hand, it is difficult to release the occluded NO and SO. For this reason, the temperature at which NO and SO are released becomes high, and when used in the low to medium temperature range, the storage amount of NO and SO becomes saturated, and it becomes difficult to store more NO and SO. There is. If a carrier material such as zeolitic and zeolitic is used as an occlusion material in which alkali metal or alkaline earth metal is ion-exchange-supported, the temperature at which the occluded NO and SO are released is lowered, and the exhaust gas temperature in the low to medium temperature range is reduced. Even so, it is possible to repeatedly store and release NO and SO.
[0029] また、 ZrOにアルカリ金属やアルカリ土類金属を添加したものは、他の吸蔵材と比  [0029] In addition, ZrO added with an alkali metal or alkaline earth metal is different from other occlusion materials.
2  2
較して特に優れた吸蔵能を示す。そして、アルカリ金属やアルカリ土類金属を添加し た ZrOに、 Pt, Rh, Pdなどの貴金属、あるいは Co 0 , NiO , MnO , Fe Οなどの遷 移金属酸化物を担持すると、吸蔵能がさらに向上する。これは、 Ptや Co 0 , NiO , Compared with a particularly excellent occlusion ability. In addition, ZrO to which alkali metal or alkaline earth metal is added is changed to noble metals such as Pt, Rh, Pd, or Co 0, NiO, MnO, Fe Ο, etc. When the transfer metal oxide is supported, the occlusion ability is further improved. This is because Pt, Co 0, NiO,
3 4 2 3 4 2
ΜηΟ , Fe Οなどによって酸化活性が発現し、排ガス中の NOあるいは SO が酸化さOxidizing activity is expressed by ΟηΟ, Fe Ο, etc., and NO or SO in exhaust gas is oxidized.
2 2 3 2 れることによって吸蔵量が増加するためと考えられている。 2 2 3 2 This is thought to increase the amount of occlusion.
[0030] このようにアルカリ金属やアルカリ土類金属が効果的な原因は明らかではないが、 アルカリ金属やアルカリ土類金属が ZrO格子中に固溶することでアルカリ金属ゃァ [0030] As described above, the effective cause of alkali metal or alkaline earth metal is not clear, but alkali metal or alkaline earth metal is dissolved in the ZrO lattice to dissolve the alkali metal
2  2
ルカリ土類金属と ZrOが複合化され、それによつて ZrO表面が改質されて新たに吸  Lukari earth metal and ZrO are compounded, which modifies the ZrO surface and newly absorbs it.
2 2  twenty two
蔵サイトが生成されるからであろうと考えられて!/、る。  It is thought that this is because a storehouse site is created!
[0031] 吸蔵材は、その種類によって NO 及び SO を吸蔵する温度が異なる。そこで、最大 吸蔵量を示す温度が異なる複数種類の吸蔵材を併用することも好まし!/、。例えば最 上流側に低温で効率よく NO 及び SO を吸蔵する低温型吸蔵材を配置し、その下 流側に中温〜高温で効率よく NO 及び SO を吸蔵する中温型吸蔵材を配置すれば 、NO 及び SO は吸蔵温度の低い上流側から徐々に吸蔵されていくため、低温域か ら高温域まで広い温度域で NO 及び SO を吸蔵すること力 Sできる。また NO 及び SO の吸蔵による発熱によって排ガスが加熱されるため、下流側の吸蔵材あるいは NO 吸蔵還元触媒の活性が早期に発現されるという効果もある。  [0031] The storage material has different temperatures for storing NO and SO depending on its type. Therefore, it is also preferable to use multiple types of occlusion materials with different temperatures that indicate the maximum occlusion amount! For example, if a low-temperature type occlusion material that efficiently stores NO and SO at a low temperature is arranged on the most upstream side, and an intermediate temperature type occlusion material that efficiently occludes NO and SO is arranged on the downstream side, NO. Since SO and SO are gradually stored from the upstream side where the storage temperature is low, NO and SO can be stored in a wide temperature range from a low temperature range to a high temperature range. Further, since the exhaust gas is heated by the heat generated by the storage of NO and SO, there is an effect that the downstream storage material or the NO storage reduction catalyst is activated early.
[0032] 例えば室温〜 100°Cで最大吸蔵量を示す吸蔵材としては、ゼォライトに Ceなどの希 土類元素を担持したもの、ゼォライトにアルカリ金属、アルカリ土類金属あるいは遷移 金属を担持したものなどが例示され、 100〜 200°Cで最大吸蔵量を示す吸蔵材とし ては、 ZrOに貴金属を担持したもの、 Co 0などの遷移金属を担持したものなどが  [0032] For example, as the occlusion material exhibiting the maximum occlusion amount at room temperature to 100 ° C, a zeolite carrying a rare earth element such as Ce, a zeolite carrying an alkali metal, an alkaline earth metal or a transition metal Examples of the occlusion material exhibiting the maximum occlusion amount at 100 to 200 ° C. include those carrying a noble metal on ZrO and those carrying a transition metal such as Co 0.
2 3 4  2 3 4
例示され、 300°C以上で最大吸蔵量を示す吸蔵材としては、 ZrO、 A1 0などに貴  Examples of occlusion materials that show maximum occlusion at 300 ° C or higher include ZrO, A10, etc.
2 2 3 金属とアルカリ金属やアルカリ土類金属を担持したものなどが例示される。  2 2 3 Examples are those carrying a metal and an alkali metal or alkaline earth metal.
[0033] ゼォライトは、別名分子篩いとも称されるように、分子の大きさに匹敵する細孔を有 し、吸蔵材として利用されるほか、触媒として多くの反応に利用されている。また主成 分である A1 0の負電荷を中和するために陽イオンを含み、この陽イオンは水溶液  [0033] Zeolite has pores comparable to the size of the molecule, also called a molecular sieve, and is used not only as an occlusion material but also as a catalyst in many reactions. It also contains a cation to neutralize the negative charge of the main component, A10,
2 3  twenty three
中で他の陽イオンと容易に交換されるため、陽イオン交換体としても利用されている。 したがってアルカリ金属及びアルカリ土類金属から選ばれる少なくとも 1種の金属をィ オン交換担持することができ、きわめて高分散の状態で担持することができる。  Since it is easily exchanged with other cations, it is also used as a cation exchanger. Therefore, at least one metal selected from alkali metals and alkaline earth metals can be ion-exchanged and supported in an extremely highly dispersed state.
[0034] そしてイオン交換担持された金属元素は、ゼォライト上にきわめて高分散に担持さ れているので活性がきわめて高ぐ低温域における NO及び SO の酸化活性が向上 [0034] The ion exchange-supported metal element is supported on the zeolite with extremely high dispersion. NO and SO oxidation activity at low temperatures where activity is extremely high
2  2
すると考えられる。そのため排ガス中の NO及び SO は低温域においても吸蔵材上で  I think that. For this reason, NO and SO in the exhaust gas remain on the occlusion material even at low temperatures.
2  2
酸化されて NO 及び SO となり、それが吸蔵材に吸蔵されると考えられ、低温域にお いても NO 及び SO が充分に吸蔵されるのである。  Oxidized to become NO and SO, which are thought to be occluded by the occlusion material, and NO and SO are occluded sufficiently even at low temperatures.
[0035] またゼォライトには排ガス中の HCも吸蔵されるので、吸蔵された HCと NOとの反応 も期待される。したがって NO 浄化能が一層向上する。  [0035] Further, since HC also stores HC in the exhaust gas, a reaction between the stored HC and NO is also expected. Therefore, NO purification capacity is further improved.
[0036] なおゼォライトとしては、フェリエライト、 ZSM-5、モルデナイト、 Y型ゼオライトなどの ゼォライトなどを用いることができる。中でも ZSM-5及びモルデナイトがイオン交換能 に優れてレ、るので、これらから選んで用いることが望ましレ、。  [0036] As zeolite, zeolite, such as ferrierite, ZSM-5, mordenite, and Y-type zeolite can be used. Among them, ZSM-5 and mordenite are excellent in ion exchange capacity, so it is desirable to select and use them.
[0037] そしてゼォライトにアルカリ金属、アルカリ土類金属及び希土類元素から選ばれる 少なくとも 1種の金属元素をイオン交換担持した吸蔵材の下流側に NO 吸蔵還元触 媒を配置すれば、低温域でも NOは既に NO となっているのであるから、吸蔵材で吸 蔵しきれなかった NOが存在しても、下流側の NO 吸蔵還元触媒に吸蔵される。した 力 Sつて低温域における NO 吸蔵能が向上し、 NO浄化能が向上する。  [0037] If a NO storage / reduction catalyst is arranged downstream of the storage material in which at least one metal element selected from alkali metals, alkaline earth metals, and rare earth elements is ion-exchange-supported in zeolite, NO can be used even at low temperatures. Is already NO, so even if there is NO that could not be occluded by the occlusion material, it will be occluded by the downstream NO occlusion reduction catalyst. As a result, the NO storage capacity at low temperatures is improved and the NO purification capacity is improved.
[0038] コート層には、さらに貴金属が担持されている。この貴金属としては、 Pt、 Rh、 Pd、 Ir などが例示される。中でも酸化活性の高い Ptが特に好ましい。また貴金属の担持量 は、吸蔵触媒 1リットル当たり 0.5〜 2.0gとすることが好ましい。これより少ないと NO 及び SO の吸蔵性能が不足し、これより多く担持しても効果が飽和するとともに高価 となる。  [0038] The coat layer further carries a noble metal. Examples of the noble metal include Pt, Rh, Pd, Ir and the like. Among them, Pt having a high oxidation activity is particularly preferable. The amount of noble metal supported is preferably 0.5 to 2.0 g per liter of the storage catalyst. If it is less than this, the storage performance of NO and SO will be insufficient, and if it is supported more than this, the effect will be saturated and it will be expensive.
[0039] 吸蔵触媒における担体基材の形状は、ペレット形状、フォーム形状、ストレートフ口 一型ハニカム形状、ウォールフロー型ハニカム形状などとすることができる。またコー ト層は、排ガスと接触する担体基材表面に形成される。ウォールフロー型ハニカム形 状の担体基材の場合は、流入側セルと流出側セルとを区画する隔壁中の細孔の内 表面にもコート層を形成するのが好ましい。  [0039] The shape of the support substrate in the occlusion catalyst may be a pellet shape, a foam shape, a straight-ported single honeycomb shape, a wall flow honeycomb shape, or the like. The coating layer is formed on the surface of the carrier substrate that comes into contact with the exhaust gas. In the case of a wall-flow type honeycomb-shaped carrier substrate, it is preferable to form a coat layer also on the inner surface of the pores in the partition walls dividing the inflow side cells and the outflow side cells.
[0040] 吸蔵触媒の担体基材を例えばストレートフロー型ハニカム形状に製造するには、 A 1 0、 CeO、 ZrO、 TiO及びゼォライトから選ばれる少なくとも一種からなる粉末をバ[0040] In order to manufacture the support base material of the occlusion catalyst in, for example, a straight flow type honeycomb shape, a powder made of at least one selected from A10, CeO, ZrO, TiO and zeolite is used.
2 3 2 2 2 2 3 2 2 2
インダーと共に粘度の高いスラリーとし、それを押出成形後に焼成して製造すること ができる。そして担体基材の表面にコート層を形成するには、 A1 0、 CeO、 ZrO、 T iO及びゼォライトから選ばれる少なくとも一種からなる粉末をバインダーと共に比較The slurry can be made into a highly viscous slurry together with the inner and fired after extrusion. And to form a coating layer on the surface of the carrier substrate, A10, CeO, ZrO, T Comparison of powder with at least one selected from iO and zeolite together with binder
2 2
的粘度の低いスラリーとし、担体基材に投入後吸引してから乾燥 '焼成し、その後、 貴金属化合物を溶解した溶液と吸蔵材元素を含む化合物を溶解した溶液とを順に 含浸し、乾燥 ·焼成すればよい。  The slurry is made into a slurry with low physical viscosity, sucked and then dried and fired after being put into the carrier substrate, and then impregnated with a solution in which the noble metal compound is dissolved and a solution in which the compound containing the occlusion material element is dissolved in order, followed by drying and firing. do it.
[0041] コート層に吸蔵材を担持するには、硝酸塩など吸蔵材元素を含む化合物を溶解し た溶液を用いる。吸蔵材の担持量をできるだけ多くしたいのであるから、溶液中の吸 蔵材元素を含む化合物の濃度は飽和濃度とすることが望まし!/、。また一度の処理で 多量に担持することが望ましいので、コート層を形成した状態における吸水量は、触 媒 1リットルあたり少なくとも 150g以上であることが好ましぐ 200g以上であることが特 に望ましい。 [0041] In order to support the occlusion material on the coat layer, a solution in which a compound containing an occlusion material element such as nitrate is dissolved is used. Since we want to increase the amount of occlusion material as much as possible, it is desirable that the concentration of the compound containing the occlusion material element in the solution be a saturation concentration! /. In addition, since it is desirable to carry a large amount in one treatment, it is particularly desirable that the water absorption amount in a state where the coat layer is formed is at least 150 g per liter of the catalyst, preferably 200 g or more.
[0042] また吸蔵触媒の担体基材にも、前記した吸蔵材を含むことが望ましい。これにより N 0 及び SO の吸蔵量がさらに増大する。上記した担持法によっても担体基材にある 程度の吸蔵材が含まれるが、担体基材の製造に用いられるスラリー中に MgO、 BaO などの吸蔵材粉末を混合しておくことが望ましい。この場合の吸蔵材粉末の混合量 が多くなると、担体基材の強度が低下したり、比表面積が 30m2/g未満となる場合が ある。 [0042] Further, it is desirable that the storage base material of the storage catalyst also contains the storage material described above. This further increases the storage amount of N 0 and SO. Although the above-mentioned loading method includes a certain amount of occlusion material on the carrier substrate, it is desirable to mix occlusion material powders such as MgO and BaO in the slurry used for the production of the carrier substrate. In this case, if the mixing amount of the occlusion material powder is increased, the strength of the carrier substrate may be reduced, and the specific surface area may be less than 30 m 2 / g.
[0043] ところで NO吸蔵還元型触媒における NO の浄化反応は、リーン雰囲気において 排ガス中の NOを酸化して NO とする第 1ステップと、 NO 吸蔵元素に NO を吸蔵す る第 2ステップと、ストィキ〜リッチ雰囲気において NO 吸蔵元素から放出された NO を触媒上で還元する第 3ステップとからなることがわかっている。したがって NO 浄化 反応が円滑に進行するためには、この各ステップがそれぞれ円滑に進行しなければ ならない。  [0043] By the way, the NO purification reaction in the NO storage reduction catalyst includes a first step in which NO in the exhaust gas is oxidized to NO in a lean atmosphere, a second step in which NO is stored in the NO storage element, and a stoichiometric reaction. It is known to comprise a third step of reducing NO released from NO storage elements on the catalyst in a rich atmosphere. Therefore, in order for the NO purification reaction to proceed smoothly, each of these steps must proceed smoothly.
[0044] ところ力 例えば 300°C未満の低温域においては、 NOの酸化反応が進行しにくく第  [0044] However, for example, in a low temperature range below 300 ° C, the oxidation reaction of NO is difficult to proceed.
1ステップが円滑に進行しにくいと考えられる。そのために低温域では NO の生成量 が少なくなり第 2ステップと第 3ステップも円滑に進行しなくなって、低温域における N 0 浄化能が低くなると考えられる。  It is considered that one step is difficult to proceed smoothly. For this reason, the amount of NO produced is low in the low temperature range and the second and third steps do not proceed smoothly, and the N 0 purification capacity in the low temperature range is considered to be low.
[0045] そこで本発明の排ガス浄化装置では、 NO 吸蔵還元触媒の排ガス上流側に吸蔵 触媒を配置した構成としている。吸蔵触媒に含まれる吸蔵材は、 NO を吸蔵しやすく 、低温域でも NOを吸蔵する。したがって低温域においては NO をほとんど含まない 排ガスが NO 吸蔵還元触媒に供給されるので、 NOはほとんど排出されない。そして 排ガス温度が上昇すると、吸蔵されていた NO が吸蔵材から脱離して NO 吸蔵還元 触媒に流入するが、 NO吸蔵還元触媒は既に活性化温度となっているため上記第 1 ステップの反応が円滑に進行し、 NOは効率よく還元浄化される。このような機構によ り、本発明の排ガス浄化装置によれば低温から高温まで高い NO浄化率を確保する こと力 Sでさる。 [0045] Therefore, the exhaust gas purifying apparatus of the present invention has a configuration in which the storage catalyst is arranged upstream of the exhaust gas upstream of the NO storage reduction catalyst. The storage material contained in the storage catalyst is easy to store NO. Stores NO even at low temperatures. Therefore, in the low temperature range, exhaust gas containing almost no NO is supplied to the NO storage reduction catalyst, so almost no NO is emitted. When the exhaust gas temperature rises, the stored NO is desorbed from the storage material and flows into the NO storage reduction catalyst. Since the NO storage reduction catalyst is already at the activation temperature, the reaction in the first step is smooth. NO is efficiently reduced and purified. With such a mechanism, according to the exhaust gas purification apparatus of the present invention, it is possible to secure a high NO purification rate from low temperature to high temperature with the force S.
実施例  Example
[0046] 以下、実施例及び比較例により本発明を具体的に説明する。  Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
(実施例 1 )  (Example 1)
[0047] 図 1に本実施例の排ガス浄化装置を示す。エンジン 1の排ガス流路には、触媒コン バータ 2が配置されている。触媒コンバータ 2には、上流側に吸蔵触媒 3が配置され、 吸蔵触媒 3の下流側に NO 吸蔵還元触媒 4が配置されている。吸蔵触媒 3及び NO 吸蔵還元触媒 4は、共にストレートフロー構造のハニカム触媒である。  FIG. 1 shows an exhaust gas purification apparatus of this example. A catalyst converter 2 is disposed in the exhaust gas passage of the engine 1. In the catalytic converter 2, the storage catalyst 3 is disposed on the upstream side, and the NO storage reduction catalyst 4 is disposed on the downstream side of the storage catalyst 3. The storage catalyst 3 and the NO storage reduction catalyst 4 are both honeycomb catalysts having a straight flow structure.
[0048] 吸蔵触媒 3は、 γ -A1 0力、ら形成されたストレートフロー型のハニカム基材 30と、そ  [0048] The storage catalyst 3 includes a straight flow type honeycomb substrate 30 formed by γ-A10 force, and
2 3  twenty three
のセル壁表面に形成されたコート層 31と、からなる。ハニカム基材 30は、体積が 2L、 600セル/ in2、比表面積が 100m2/gである。コート層 31は、ハニカム基材 30の 1リツ トルあたり 150g形成されている。 And a coating layer 31 formed on the surface of the cell wall. The honeycomb substrate 30 has a volume of 2 L, 600 cells / in 2 , and a specific surface area of 100 m 2 / g. The coat layer 31 is formed in an amount of 150 g per liter of the honeycomb substrate 30.
[0049] コート層 31は、 γ -Α1 0粉末を主として含むスラリーをゥォッシュコートすることで形 [0049] The coat layer 31 is formed by wash-coating a slurry mainly containing γ-Α10 powder.
2 3  twenty three
成され、ハニカム基材 30の 1リットルあたり 2.0gの Ptと、ハニカム基材 30の 1リットルあ たり 2.5モルの MgOと、を担持している。先ず γ -Α1 0粉末を主として含むスラリーを  The honeycomb substrate 30 carries 2.0 g of Pt per liter of the honeycomb substrate 30 and 2.5 mol of MgO per liter of the honeycomb substrate 30. First, a slurry mainly containing γ-Α10 powder
2 3  twenty three
ゥォッシュコートして乾燥焼成してアルミナコート層を形成した。次いでアルミナコート 層に所定濃度の Pt薬液を所定量含浸させ、焼成して Ptを担持した。その後に硝酸マ グネシゥム水溶液 (飽和水溶液)を最大量含浸させ、乾燥'焼成して MgOを担持した 。担持された MgOの量は、ハニカム基材 30の 1リットルあたり 100gであった。  Wash coating, drying and firing were performed to form an alumina coating layer. Next, the alumina coat layer was impregnated with a predetermined amount of Pt chemical solution having a predetermined concentration, and baked to carry Pt. Thereafter, a maximum amount of magnesium nitrate aqueous solution (saturated aqueous solution) was impregnated, dried and baked to carry MgO. The amount of MgO supported was 100 g per liter of the honeycomb substrate 30.
[0050] NO吸蔵還元触媒 4は、コージエライトから形成されたストレートフロー型のハニカム 基材 40と、そのセル壁表面に形成されたコート層 41と、力、らなる。ハニカム基材 40は、 体積が 3L、 400セル/ in2、比表面積が 100m2/gである。コート層 41は、ハニカム 基材 40の 1リットルあたり 150g形成されている。 [0050] The NO storage reduction catalyst 4 is composed of a straight flow type honeycomb substrate 40 formed of cordierite, a coat layer 41 formed on the cell wall surface, and force. The honeycomb substrate 40 has a volume of 3 L, 400 cells / in 2 , and a specific surface area of 100 m 2 / g. Coat layer 41 is a honeycomb 150 g is formed per liter of the base material 40.
[0051] コート層 41は、 γ -A1 0粉末と、 γ -A1 0粉末に担持された Pt、 K、及び Baとからな [0051] The coat layer 41 is composed of γ-A1 0 powder and Pt, K, and Ba supported on the γ-A1 0 powder.
2 3 2 3  2 3 2 3
る。ハニカム基材 40の 1リットルあたり、 Ptは 2g、 Kは 0.1モル、 Baは 0.1モル担持され ている。  The 1 liter of honeycomb substrate 40 carries 2 g of Pt, 0.1 mol of K, and 0.1 mol of Ba.
(実施例 2)  (Example 2)
[0052] 吸蔵触媒 3のハニカム基材として、 Ί -A1 0粉末に代えて Ί -A1 0粉末: MgO粉 [0052] As the honeycomb substrate of the storage catalyst 3, Ί- A1 0 powder instead of Ί- A1 0 powder: MgO powder
2 3 2 3  2 3 2 3
末 = 9 : 1の重量比で混合された混合粉末から形成されたものを用いた。ハニカム基 材は、実施例 1と同一の形状であり、その比表面積は 100m2/gである。このハニカム 基材を用い、実施例 1と同様のアルミナコート層を形成した。アルミナコート層は、ノヽ 二カム基材の 1リットルあたり 150g形成された。そして硝酸マグネシウム水溶液の濃 度が異なること以外は実施例 1と同様にしてアルミナコート層に Pt及び MgOを担持し たところ、 Pt及び MgOの担持量は実施例 1と同様であった。なお MgOの担持分布を 調査したところ、ハニカム基材に 1.0モル/ L担持され、コート層に 1.5モル/ L担持 されていた。 What was formed from the mixed powder mixed by the weight ratio of the end = 9: 1 was used. The honeycomb substrate has the same shape as that of Example 1, and its specific surface area is 100 m 2 / g. Using this honeycomb substrate, an alumina coat layer similar to that in Example 1 was formed. The alumina coat layer was formed in an amount of 150 g per liter of the two-cam base material. Then, Pt and MgO were supported on the alumina coat layer in the same manner as in Example 1 except that the concentration of the magnesium nitrate aqueous solution was different. The amounts of Pt and MgO supported were the same as in Example 1. When the MgO loading distribution was investigated, 1.0 mol / L was supported on the honeycomb substrate and 1.5 mol / L was supported on the coat layer.
[0053] 触媒コンバータ 2に、得られた吸蔵触媒を上流側に配置し、その下流側に実施例 1 と同様の NO 吸蔵還元触媒 4を配置して、実施例 2の排ガス浄化装置とした。  [0053] In the catalytic converter 2, the obtained storage catalyst was arranged on the upstream side, and the NO storage reduction catalyst 4 similar to that of Example 1 was arranged on the downstream side, whereby the exhaust gas purification apparatus of Example 2 was obtained.
(比較例 1)  (Comparative Example 1)
[0054] 吸蔵触媒 3のハニカム基材として、 γ -Α1 0粉末に代えてコージエライト粉末から形  [0054] As the honeycomb base material of the storage catalyst 3, it is formed from cordierite powder instead of γ-Α10 powder.
2 3  twenty three
成されたものを用いた。ハニカム基材は、実施例 1と同一の形状であり、その比表面 積は 0.1〜lm2/gである。このハニカム基材を用い、実施例 1と同様のアルミナコー ト層を形成した。アルミナコート層は、ハニカム基材の 1リットルあたり 150g形成された 。そして実施例 1と同様にしてアルミナコート層に Pt及び MgOを担持したところ、 Ptの 担持量は実施例 1と同様であつたが MgOの担持量は 1.0モル/ Lと実施例 1より少な かった。 What was made was used. The honeycomb substrate has the same shape as in Example 1, and the specific surface area is 0.1 to lm 2 / g. Using this honeycomb substrate, the same alumina coat layer as in Example 1 was formed. The alumina coat layer was formed in an amount of 150 g per liter of the honeycomb substrate. When Pt and MgO were supported on the alumina coat layer in the same manner as in Example 1, the supported amount of Pt was the same as in Example 1, but the supported amount of MgO was 1.0 mol / L, which was less than in Example 1. It was.
[0055] 触媒コンバータ 2に、得られた吸蔵触媒を上流側に配置し、その下流側に実施例 1 と同様の NO 吸蔵還元触媒 4を配置して、比較例 1の排ガス浄化装置とした。  [0055] In the catalytic converter 2, the obtained storage catalyst was arranged on the upstream side, and the NO storage reduction catalyst 4 similar to that in Example 1 was arranged on the downstream side, whereby the exhaust gas purification apparatus of Comparative Example 1 was obtained.
(比較例 2)  (Comparative Example 2)
[0056] 吸蔵触媒 3のハニカム基材として、 γ -Α1 0粉末に代えてコージエライト粉末から形 成されたものを用いた。ハニカム基材は、実施例 1と同一の形状であり、その比表面 積は 0.1〜lm2/gである。このハニカム基材を用い、実施例 1と同様のアルミナコー ト層を形成した。アルミナコート層は、ハニカム基材の 1リットルあたり 150g形成された 。そして実施例 1と同様にしてアルミナコート層に Pt及び MgOを担持したところ、 Ptの 担持量は実施例 1と同様であつたが MgOの担持量は 1.25モル/ Lと実施例 1より少 なかった。 [0056] The honeycomb base material of the storage catalyst 3 is formed of cordierite powder instead of γ-Α10 powder. What was made was used. The honeycomb substrate has the same shape as in Example 1, and the specific surface area is 0.1 to lm 2 / g. Using this honeycomb substrate, the same alumina coat layer as in Example 1 was formed. The alumina coat layer was formed in an amount of 150 g per liter of the honeycomb substrate. And when Pt and MgO were supported on the alumina coat layer in the same manner as in Example 1, the supported amount of Pt was the same as in Example 1, but the supported amount of MgO was 1.25 mol / L, which was less than Example 1. It was.
<試験例〉  <Test example>
[0057] 各実施例及び各比較例の排ガス浄化装置に用いた吸蔵触媒 3のみを評価装置に それぞれ取付け、表 1に示すリーン定常のモデルガスを流入させた。触媒床温度は 150°Cとし、モデルガス流量は 30L/分である。そして触媒からの出ガスを分析し、 N 0 吸蔵量を測定した結果を図 2に示す。  [0057] Only the storage catalyst 3 used in the exhaust gas purifying apparatus of each example and each comparative example was attached to the evaluation apparatus, and the lean steady model gas shown in Table 1 was allowed to flow. The catalyst bed temperature is 150 ° C and the model gas flow rate is 30L / min. Fig. 2 shows the results of analyzing the exhaust gas from the catalyst and measuring the N 0 storage amount.
[0058] [表 1]  [0058] [Table 1]
Figure imgf000013_0001
Figure imgf000013_0001
[0059] また各実施例及び各比較例の排ガス浄化装置に用いた吸蔵触媒 3のみを評価装 置にそれぞれ取付け、表 2に示すリーン定常のモデルガスを流入させた。触媒床温 度は 400°Cとし、モデルガス流量は 30L/分である。そして、ハニカム基材の 1リットル あたり硫黄として 90g相当量のモデルガスを通過させた時の吸蔵硫黄量を測定した 結果を図 3に示す。 [0059] Further, only the storage catalyst 3 used in the exhaust gas purifying apparatus of each Example and each Comparative Example was attached to the evaluation apparatus, and the lean steady model gas shown in Table 2 was allowed to flow. The catalyst bed temperature is 400 ° C and the model gas flow rate is 30 L / min. Fig. 3 shows the results of measuring the amount of sulfur stored when passing 90g of model gas as sulfur per liter of honeycomb substrate.
[0060] [表 2]  [0060] [Table 2]
Figure imgf000013_0002
Figure imgf000013_0002
[0061] 図 2及び図 3より、実施例 1及び実施例 2の吸蔵触媒は、低温域における ΝΟχ吸蔵 性能に優れ、かつ SOx吸蔵性能にも優れていることがわかり、これは MgOの担持量 が多!/、ことに起因して!/、ることが明らかである。 [0061] From FIG. 2 and FIG. 3, the storage catalyst of Example 1 and Example 2, vo chi occlusion in a low temperature range It can be seen that it has excellent performance and SO x occlusion performance, and this is clearly due to the large amount of MgO supported!

Claims

請求の範囲 The scope of the claims
[1] ΝΟχ及び SOxを吸蔵する吸蔵触媒と、該吸蔵触媒の排ガス下流側に配置された N 0 吸蔵還元触媒と、よりなる排ガス浄化装置であって、 [1] An exhaust gas purification apparatus comprising an occlusion catalyst that occludes χ χ and SO x , an N 0 occlusion reduction catalyst disposed on the exhaust gas downstream side of the occlusion catalyst, and
該吸蔵触媒は、  The storage catalyst is
A1 0 、 CeO 、 ZrO 、 TiO及びゼォライトから選ばれる少なくとも一種から形成され Formed of at least one selected from A10, CeO, ZrO, TiO and zeolite.
2 3 2 2 2 2 3 2 2 2
比表面積が 30m2/g以上である担体基材と、 A carrier substrate having a specific surface area of 30 m 2 / g or more;
該担体基材の表面に形成され A1 0 、 CeO 、 ZrO 、 TiO及びゼォライトから選ば  Formed on the surface of the carrier substrate and selected from A10, CeO, ZrO, TiO and zeolite
2 3 2 2 2  2 3 2 2 2
れる少なくとも一種からなる担体粉末に、 NO 及び SO を吸蔵する吸蔵材と貴金属と を担持してなるコート層と、力 なることを特徴とする排ガス浄化装置。  An exhaust gas purification apparatus comprising: a support layer composed of at least one kind of carrier powder supporting NO and SO, and a coat layer formed by supporting a noble metal.
[2] 前記担体基材には前記吸蔵材を含む請求項 1に記載の排ガス浄化装置。 [2] The exhaust gas purifying apparatus according to [1], wherein the carrier base material contains the storage material.
[3] 前記担体基材の比表面積は 50m2/g以上である請求項 1に記載の排ガス浄化装 置。 [3] The exhaust gas purification apparatus according to [1], wherein the specific surface area of the carrier substrate is 50 m 2 / g or more.
[4] 前記吸蔵材は、アルカリ金属及びアルカリ土類金属から選ばれる少なくとも一種で ある請求項 1に記載の排ガス浄化装置。  4. The exhaust gas purifying apparatus according to claim 1, wherein the storage material is at least one selected from alkali metals and alkaline earth metals.
[5] 前記吸蔵材はマグネシウム及びバリウムから選ばれる少なくとも一種を含む請求項 [5] The occlusion material includes at least one selected from magnesium and barium.
4に記載の排ガス浄化装置。  4. The exhaust gas purification device according to 4.
PCT/JP2007/073322 2006-12-01 2007-12-03 Exhaust gas clean-up apparatus WO2008066197A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020097010187A KR101159901B1 (en) 2006-12-01 2007-12-03 Exhaust-gas converting apparatus
US12/516,813 US8128881B2 (en) 2006-12-01 2007-12-03 Exhaust-gas converting apparatus
CN2007800444496A CN101547734B (en) 2006-12-01 2007-12-03 Exhaust gas clean-up apparatus
EP07832942A EP2103341A4 (en) 2006-12-01 2007-12-03 Exhaust gas clean-up apparatus
BRPI0720791-3A BRPI0720791B1 (en) 2006-12-01 2007-12-03 EXHAUST GAS CONVERSION APPLIANCE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-325756 2006-12-01
JP2006325756A JP4327837B2 (en) 2006-12-01 2006-12-01 Exhaust gas purification device

Publications (1)

Publication Number Publication Date
WO2008066197A1 true WO2008066197A1 (en) 2008-06-05

Family

ID=39467978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073322 WO2008066197A1 (en) 2006-12-01 2007-12-03 Exhaust gas clean-up apparatus

Country Status (8)

Country Link
US (1) US8128881B2 (en)
EP (1) EP2103341A4 (en)
JP (1) JP4327837B2 (en)
KR (1) KR101159901B1 (en)
CN (1) CN101547734B (en)
BR (1) BRPI0720791B1 (en)
RU (1) RU2408415C1 (en)
WO (1) WO2008066197A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178299A1 (en) * 2015-05-07 2016-11-10 株式会社デンソー Internal combustion engine exhaust purification device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2236194A1 (en) * 2009-03-31 2010-10-06 Ibiden Co., Ltd. Honeycomb structure
KR101159756B1 (en) * 2010-05-18 2012-06-25 한국기계연구원 Lean nox trap having metal foam filter
EP2484876B8 (en) * 2010-12-06 2016-09-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification method for internal combustion engine
KR101629910B1 (en) * 2014-09-24 2016-06-14 주식회사 태강 Manufacturing method for deodorant compounding using the waste coal ash
JP6278008B2 (en) * 2015-07-17 2018-02-14 トヨタ自動車株式会社 Exhaust gas purification catalyst
JP2018171599A (en) * 2017-03-31 2018-11-08 トヨタ自動車株式会社 Catalyst for exhaust gas purification

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113172A (en) 1999-10-15 2001-04-24 Toyota Motor Corp Exhaust gas cleaning catalyst
JP2001116172A (en) 1999-10-15 2001-04-27 Takada Seisakusho:Kk Built-up pipe
JP2002011347A (en) 2000-06-28 2002-01-15 Toyota Central Res & Dev Lab Inc SOx ABSORBING MATERIAL AND EXHAUST GAS CLEANING CATALYST AND EXHAUST GAS CLEANING METHOD USING THE SAME
JP2002095967A (en) * 2000-09-25 2002-04-02 Toyota Motor Corp Exhaust gas cleaning catalyst
JP2004230241A (en) * 2003-01-29 2004-08-19 Nissan Motor Co Ltd Exhaust gas cleaning catalyst and manufacturing method therefor

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57117326A (en) 1981-01-12 1982-07-21 Toyota Motor Corp Filter for exhaust gas of internal-combustion engine
RU2029107C1 (en) 1991-02-19 1995-02-20 Республиканский инженерно-технический центр порошковой металлургии Catalytic neutralizer of exhaust gases for internal combustion engine
KR960700809A (en) 1993-12-21 1996-02-24 마에다 카쯔노수케 A porous material having selective adsorptivity and a production method
JPH0889803A (en) 1994-09-28 1996-04-09 Isuzu Motors Ltd Catalyst for catalytic reduction on nitrogen oxide
JPH08103651A (en) 1994-10-05 1996-04-23 Mitsubishi Heavy Ind Ltd Adsorbent for low concentration nox
JP3636384B2 (en) 1994-12-12 2005-04-06 川崎重工業株式会社 Car painting system
US6471924B1 (en) * 1995-07-12 2002-10-29 Engelhard Corporation Method and apparatus for NOx abatement in lean gaseous streams
DE19714536A1 (en) 1997-04-09 1998-10-15 Degussa Car exhaust catalytic converter
EP0899002A2 (en) * 1997-08-26 1999-03-03 General Motors Corporation Promoted three-way catalyst and process for lean NOx reduction
DE19847008A1 (en) * 1998-10-13 2000-04-20 Degussa Nitrogen oxide storage catalytic converter
DE69927718T2 (en) 1998-11-13 2006-07-13 Engelhard Corp. CATALYST AND METHOD FOR REDUCING EXHAUST EMISSIONS
US20020048542A1 (en) 1999-04-02 2002-04-25 Michel Deeba Catalytic trap and methods of making and using the same
AU2001284443A1 (en) * 2000-09-08 2002-03-22 Ngk Insulators, Ltd. Method for producing catalyst body and carrier having alumina carried thereon
JP2002113077A (en) 2000-10-06 2002-04-16 Shimakawa Seisakusho:Kk Device and method of deodorization
JP2004130269A (en) 2002-10-15 2004-04-30 Nissan Motor Co Ltd Catalyst for exhaust-gas cleaning and its manufacturing method
JP4304428B2 (en) 2003-02-07 2009-07-29 いすゞ自動車株式会社 Exhaust gas purification system for internal combustion engine
JP2005224682A (en) 2004-02-12 2005-08-25 Hitachi Ltd Exhaust gas purifier for internal engine and method of purfying exhaust gas
JP2005262144A (en) 2004-03-19 2005-09-29 Toyota Motor Corp Nox occlusion reduction catalyst
JP2005305338A (en) * 2004-04-22 2005-11-04 Toyota Motor Corp Exhaust gas cleaning catalyst and preparation method therefor
WO2006025498A1 (en) * 2004-09-02 2006-03-09 Ibiden Co., Ltd. Honeycomb structure, method for production thereof and exhaust gas purification device
JP4495574B2 (en) 2004-11-22 2010-07-07 株式会社日立国際電気 Broadcast material preview method in broadcasting system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001113172A (en) 1999-10-15 2001-04-24 Toyota Motor Corp Exhaust gas cleaning catalyst
JP2001116172A (en) 1999-10-15 2001-04-27 Takada Seisakusho:Kk Built-up pipe
JP2002011347A (en) 2000-06-28 2002-01-15 Toyota Central Res & Dev Lab Inc SOx ABSORBING MATERIAL AND EXHAUST GAS CLEANING CATALYST AND EXHAUST GAS CLEANING METHOD USING THE SAME
JP2002095967A (en) * 2000-09-25 2002-04-02 Toyota Motor Corp Exhaust gas cleaning catalyst
JP2004230241A (en) * 2003-01-29 2004-08-19 Nissan Motor Co Ltd Exhaust gas cleaning catalyst and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2103341A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016178299A1 (en) * 2015-05-07 2016-11-10 株式会社デンソー Internal combustion engine exhaust purification device
JP2016211410A (en) * 2015-05-07 2016-12-15 株式会社デンソー Exhaust emission control device for internal combustion engine

Also Published As

Publication number Publication date
US8128881B2 (en) 2012-03-06
US20100034712A1 (en) 2010-02-11
BRPI0720791A2 (en) 2014-03-11
CN101547734B (en) 2012-09-05
KR20090075728A (en) 2009-07-08
RU2408415C1 (en) 2011-01-10
EP2103341A4 (en) 2011-06-15
CN101547734A (en) 2009-09-30
JP2008136941A (en) 2008-06-19
KR101159901B1 (en) 2012-06-25
EP2103341A1 (en) 2009-09-23
BRPI0720791B1 (en) 2018-02-06
JP4327837B2 (en) 2009-09-09

Similar Documents

Publication Publication Date Title
EP3277406B1 (en) Lean nox trap with enhanced high and low temperature performance
US20020103078A1 (en) SOx trap for enhancing NOx trap performance and methods of making and using the same
JP3494147B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method
KR20070073598A (en) Layered sox tolerant nox trap catalysts and methods of making and using the same
JP4327837B2 (en) Exhaust gas purification device
US8980209B2 (en) Catalyst compositions, catalytic articles, systems and processes using protected molecular sieves
JP2009226349A (en) Exhaust gas purifying catalyst
US20030039597A1 (en) Close coupled catalyst with a SOx trap and methods of making and using the same
WO2000027508A1 (en) Method and system for purifying exhaust gases and exhaust gas purification catalyst for use therein and method for preparation thereof
JP2002126453A (en) Waste gas cleaning device
JP2009273986A (en) Exhaust gas cleaning catalyst
JP2001289035A (en) Exhaust emission control method and system
JP5391664B2 (en) Exhaust gas purification catalyst
WO2002070127A1 (en) Exhaust gas purifying catalyst
JP3567708B2 (en) Exhaust gas purification catalyst
JP2002191988A (en) Catalyst for cleaning exhaust gas
US20220152595A1 (en) TUNABLE NOx ADSORBER
JP2002168117A (en) Exhaust emission control system
JPH10174868A (en) Catalyst for cleaning of exhaust gas
JP3812791B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3596246B2 (en) Exhaust gas purification catalyst and method for producing the same
JP2001198461A (en) Catalyst for oxidation reduction
JP5024883B2 (en) Exhaust gas purification catalyst
JP2006102628A (en) Sulfur oxide absorber and its manufacturing method, and emission gas purifying facility
JP4985499B2 (en) Sulfur oxide absorber and exhaust gas purification device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780044449.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832942

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2007832942

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097010187

Country of ref document: KR

Ref document number: 2007832942

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3479/DELNP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2009120456

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12516813

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0720791

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090529