WO2008065938A1 - Rotor à aimant permanent et moteur l'utilisant - Google Patents

Rotor à aimant permanent et moteur l'utilisant Download PDF

Info

Publication number
WO2008065938A1
WO2008065938A1 PCT/JP2007/072500 JP2007072500W WO2008065938A1 WO 2008065938 A1 WO2008065938 A1 WO 2008065938A1 JP 2007072500 W JP2007072500 W JP 2007072500W WO 2008065938 A1 WO2008065938 A1 WO 2008065938A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
permanent magnet
magnetic
magnet rotor
motor
Prior art date
Application number
PCT/JP2007/072500
Other languages
English (en)
French (fr)
Inventor
Fumitoshi Yamashita
Hiroshi Murakami
Yukihiro Okada
Kiyomi Kawamura
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Priority to EP07832230.2A priority Critical patent/EP1956698B1/en
Priority to US12/162,435 priority patent/US7759833B2/en
Priority to JP2008515768A priority patent/JP4735716B2/ja
Priority to CN200780024939XA priority patent/CN101485065B/zh
Publication of WO2008065938A1 publication Critical patent/WO2008065938A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0578Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together bonded together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/03Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies having permanent magnets

Definitions

  • the anisotropy direction M ⁇ relative to the mechanical angle ⁇ is controlled by the deformation of the magnetic poles, and the anisotropy is continuously controlled to a distribution of 90 X sin [ ⁇ ⁇ 2 ⁇ / (360 / ⁇ ) ⁇ ].
  • the anisotropy direction M ⁇ relative to the mechanical angle ⁇ is controlled by the deformation of the magnetic poles, and the anisotropy is continuously controlled to a distribution of 90 X sin [ ⁇ ⁇ 2 ⁇ / (360 / ⁇ ) ⁇ ].
  • power saving, resource saving, downsizing, and noise reduction of permanent magnet motors of approximately 50W or less which are widely used as various drive sources for home appliances, air conditioning equipment, and information equipment.
  • the present invention relates to a permanent magnet rotor whose anisotropy is continuously controlled and a motor using the same.
  • Non-Patent Document 1 describes the relationship between the residual magnetic flux density Br, which is one of the basic characteristics of the magnet, and the motor constant KJ (KJ is the ratio of the output torque KT and the square root of resistance loss ⁇ R) as an index of motor performance. From the relationship, when the motor diameter, rotor diameter, air gap, soft magnetic material, magnet size, etc. are fixed, the increase in the magnet energy density (BH) max is increased in the radial air gap type magnet motor targeted by the present invention. It states that a higher torque density can be obtained.
  • KJ is the ratio of the output torque KT and the square root of resistance loss ⁇ R
  • BH max of the magnet can achieve a higher torque density in the motor targeted by the present invention, but the stator core of the motor has a slot for storing the winding. Since there are teeth that form part of the magnetic circuit, the permeance changes with rotation. For this reason, increasing the magnet energy density (BH) max increases torque pulsation, ie, cogging torque. Increasing cogging torque hinders smooth rotation of the motor, increases motor vibration and noise, and causes adverse effects such as deterioration of rotation controllability.
  • a magnetic pole having a certain thickness in the magnetization direction it is possible to increase the thickness of the magnet.
  • remanent magnetization Br l. 2T, maximum thickness of magnetic pole center 3mm, and minimum thickness of magnetic pole ends 1.5mm.
  • the motor shown in FIG. 11A has an uneven magnetic pole 1, a stator core 2, a stator core slot 3, and a stator core tooth 4.
  • the cogging torque can be reduced even with the magnetic pole 1 that is uneven from the outer diameter side of the magnetic pole 1 and the opposite magnetic pole 1 from the inner diameter side.
  • the magnetic pole tip of a thick magnetic pole is thinned to about 1/2 and fixed. Increase the gap with the stator core or reduce the area between the thin magnetic poles. Therefore, the amount of the static magnetic field Ms generated from the magnetic poles flowing into the stator core as the magnetic flux ⁇ is suppressed. As a result, these methods result in a reduction in torque density of generally 10 to 15% due to a reduction in cogging torque. Therefore, the cogging torque reduction method using the conventional technology shown in FIGS. 11A, 11B, and 11C has a contradictory relationship with increasing the torque density of the motor by increasing the magnet energy density (BH) max. It was.
  • BH magnet energy density
  • each magnetic pole is composed of 2 to 5 pieces and the magnetization direction (direction of magnetic anisotropy) is adjusted stepwise for each piece.
  • the subscripts (2) to (5) of the magnetic pole 1 indicate the number of pieces obtained by dividing the magnetic pole 1 into 2 to 5 parts.
  • the direction of the arrow in each fragment indicates the direction of the magnetization vector M along the oriented easy axis (C axis), that is, the direction of anisotropy.
  • Fig. 13 shows that the magnetization vector M at an arbitrary mechanical angle ⁇ and the angle with respect to the circumferential tangent of the magnetic pole is M ⁇ . This suggests that it is ideal to change continuously.
  • the subject of the present invention is, for example, a thin shape such as a thickness of 1.5 mm that is difficult to be unevenly thickened.
  • Another object of the present invention is to provide a permanent magnet rotor and a motor using the permanent magnet rotor that realize a novel cogging torque reduction that does not reduce the volume or area of the magnetic pole in an anisotropic magnetic pole having a high energy density.
  • the main points of the present invention are that when the magnetic pole is deformed and the anisotropic direction with respect to the radial tangent of the magnetic pole surface is M ⁇ , the mechanical angle is ⁇ , and the number of pole pairs is p, M ⁇ and 90 X sin [ (i)
  • This is a permanent magnet rotor whose absolute direction average of ⁇ 2 ⁇ / (360 / ⁇ ) ⁇ ] is continuously controlled to 3 degrees or less.
  • the direction of anisotropy ⁇ ⁇ force Permanent magnet rotor distributed sinusoidally in the range of 0 to 90 degrees with respect to mechanical angle ⁇ .
  • a permanent magnet rotor whose anisotropy is continuously controlled has not been known so far.
  • the permanent magnet rotor according to the present invention has a high energy density! /
  • the relationship ⁇ 2 ⁇ / (360 / ⁇ ) ⁇ ] can be given with high accuracy, and the contradictory effects of reducing cogging torque and increasing torque density can be achieved.
  • the volume fraction of magnetic material with macro structure separated by matrix (continuous phase) and binder and energy density (BH) max ⁇ 270kj / m 3 in magnetic anisotropic magnetic pole is more than 80vol.%
  • the direction of the incoming magnetic field Hm shall be the same direction as the orientation magnetic field Hex, and it shall be 2.4 MA / m or more.
  • a magnetically isotropic magnet can be freely magnetized in any direction according to the direction of the applied magnetic field and the magnetic field strength distribution. Therefore, by optimizing the shape of the magnetized yoke and the magnetomotive force, it is possible to give a magnetization pattern as shown by the arc-shaped arrow of magnetic pole 1 in FIG. it can. As a result, the gap magnetic flux density distribution between the magnetic pole and the stator core can be easily adjusted to a sine wave shape. Therefore, the reduction of the cogging torque of the motor is extremely easy compared to the case where the thin magnetic pole is made of a magnetically anisotropic magnet material.
  • isotropic magnet materials with different powder shapes are also available industrially (for example, see Non-Patent Documents 7 to 10).
  • the present invention is intended for a motor equipped with a permanent magnet rotor.
  • V higher! /, While obtaining torque density, increases cogging torque.
  • N. Takahashi et al. In the manufacture of arc-shaped anisotropic magnets used in motors, placed a magnetic body in a non-magnetic molding die and changed the direction of the magnetic flux ⁇ of the cavity portion from a uniform direction. Proposed a method to control the direction of anisotropy by changing the direction of (See page 12).
  • Non-Patent Document 1 J. Schulze, “Application oi nigh periormance magnets for small motors”, Proc. Of the 18th international workshop on hig h performance magnets and their applications, 2004, pp. 908—91 5
  • Non-Patent Document 2 ⁇ Pang, ⁇ . Q. Zhu, S. Ruangsinchaiwanich, D. Howe, “Comparison of brushless motors having renzach magnetized magnets and shaped parallel magnetized magnets”, Proc. Of the 18th inter national workshop on high performance magnets and their applicat ions, 2004, pp. 400— 407
  • Non-Patent Document 3 W. Rodewald, W. Rodewald, M. Katter, ⁇ Properties and applications of high performance magnets '', Proc. Of the 18th inter national workshop on high performance magnets and their applicat ions, 2004, pp. 52— 63
  • Non-Patent Document 4 Atsushi Matsuoka, Togo Yamazaki, Hitoshi Kawaguchi, “Examination of high performance brushless DC motor for blower”, IEEJ rotating machine workshop, RM-01-161, 2001
  • Non-Patent Document 5 D. Howe, ZQ Zhu, "Application oi nalbach cylinders to electrical machine", Proc. Of the 17th int. Workshop on rare earth magnets and their applications, 2000, pp. 903-922 6: RW Lee, EG Brewer, NA Schaffel, “Hot— pressed
  • Non-Patent Document 7 Yasuhiko Iriyama, “Development Trend of High Performance Rare Earth Bond Magnets”, Ministry of Education, Culture, Sports, Science and Technology Innovation Creation Project / Effective Utilization of Rare Earth Resources and Advanced Materials Symposium, 2002, pp. 19-26
  • Non-Patent Document 8 B. H. Rabin, B. M. Ma, “Recent developments in Nd—Fe— B powderj, 120th Topical Symposium of the Magnetic Society of Japan, 2001, pp. 23— 28
  • Non-Patent Document 9 B. M. Ma, "Recent powder development at magnequen ch”, Polymer Bonded Magnets 2002, 2002
  • Non-Patent Document 10 S. Hirasawa, H. Kanekiyo, T. Miyoshi, K. Murakami, Y. S higemoto, T. Nishiuchi, “Structure and magnetic properties of Nd 2Fel4B / FexB— type nanocomposite permanent magnets prepared by strip casting , 9th Joint MMM / INTERMAG, FG—05, 2004
  • Non-Patent Document 11 HA Davies, JI Betancourt, CL Harland, “Nanophas e Pr and Nd / Pr based rare-earth-iron-boron alloys”, Proc. of 16th Int. Workshop on Rare— Earth Magnets and Their Applicati ons, 2000, pp. 485—495
  • Non-Patent Document 12 N. Takahashi, K. Ebihara, K. Yoshida, T. Nakata, K. Ohas hi and K. Miyata, ⁇ IrLvestigation of simulated annealing method a nd its application to optimal design of die mold for orientation of magnetic powderj, IEEE Trans. Mag., Vol. 32, No. 3, 1996, pp. 1 210-1213
  • Non-Patent Document 13 A. Kawamoto T. Ishikawa, S. Yasuda, K. Takeya, K. Ishiz aka, T. Iseki, K. Ohmori, “SmFeN magnet powder prepared by red auction and diffusion methodj, IEEE Trans. , 35, 1999, pp. 3 322
  • Non-Patent Document I3 ⁇ 4 14 T. Takeshita, R. Nakayama, “Magnetic properties and micro-structure of the Nd—Fe— B magnet powders produced by h ydrogen treatmentj, Proc. 10th Int. Workshop on Rare— earth Magnets and Their Applications, 1989, pp. 551— 562
  • Non-Patent Document 15 F. Yamashita ⁇ H. Fukunaga, “Radially— anisotropic rare — earth hybrid magnet with self— organizing binder consolidated un der a heat and a low— pressure configurationj, Proc. 18th Int. W orkshop on High Performance Magnets and Their Applications, An necy, 2004, pp. 76— 83
  • the anisotropy direction M ⁇ is continuously controlled to a distribution of 90 X sin [ ⁇ ⁇ 2 ⁇ / (360 / ⁇ ) ⁇ ] by the deformation of the magnetic poles with respect to the mechanical angle ⁇ .
  • the cogging torque of the motor is increased regardless of the anisotropic magnetic pole approximately twice that of an isotropic magnet with a sinusoidal magnetization of (BH) max ⁇ 80kj / m 3
  • Use force S to increase the torque density.
  • FIG. 1A is a first conceptual diagram showing anisotropic direction control by deformation.
  • FIG. 1B is a second conceptual diagram showing anisotropic direction control by deformation.
  • FIG. 2A is a first conceptual diagram of a deformation pattern indicated by a stress distribution.
  • FIG. 2B is a second conceptual diagram of the deformation pattern indicated by the stress distribution.
  • FIG. 2C is a third conceptual diagram of the deformation pattern indicated by the stress distribution.
  • FIG. 3A is a first conceptual diagram showing a flow form of a molten polymer by an external force.
  • FIG. 3B is a second conceptual diagram showing a flow form of the molten polymer by an external force.
  • FIG. 4 is a schematic diagram showing the molecular structure of a thermosetting resin composition responsible for viscous deformation.
  • FIG. 5 is a perspective external view of a magnetic pole, a permanent magnet rotor, and a permanent magnet type motor.
  • FIG. 6 is an electron micrograph showing the macro structure of a magnetic pole.
  • FIG. 7 is a characteristic diagram showing the magnetic performance of the magnetic poles.
  • FIG. 8 is a characteristic diagram showing the relationship of mechanical angle ⁇ static magnetic field Ms direction.
  • FIG. 9 is a characteristic diagram showing the relationship between the mechanical angle ⁇ and the anisotropy direction M ⁇ .
  • Fig. 10 is a characteristic diagram showing the relationship between the circumferential length Lo / L and the accuracy of continuous direction control of anisotropy.
  • Fig. 11A is a first conceptual diagram showing a conventional cogging torque reduction method using a magnet shape.
  • FIG. 11B is a second conceptual diagram showing a conventional cogging torque reduction method using a magnet shape.
  • Fig. 11C is a third conceptual diagram showing a conventional cogging torque reduction method using a magnet shape.
  • FIG. 12A is a first conceptual diagram showing a conventional cogging torque reduction method by discontinuous control of the magnetization direction.
  • FIG. 12B is a second conceptual diagram showing a conventional cogging torque reduction method by discontinuous control of the magnetization direction.
  • FIG. 12C is a third conceptual diagram showing a conventional cogging torque reduction method by discontinuous control of the magnetization direction.
  • FIG. 12D is a fourth conceptual diagram showing a cogging torque reduction method by conventional discontinuous control of the magnetization direction.
  • Fig. 13 is a characteristic diagram showing the relationship between the number of magnetic pole pieces with different magnetization directions and the cogging torque.
  • FIG. 14 is a conceptual diagram showing the magnetization pattern of a conventional isotropic magnet.
  • the energy density (BH) max which is a disadvantage of the isotropic magnet, is increased more than approximately twice, the anisotropy direction with respect to the radial tangent of the magnetic pole surface is M ⁇ , and the mechanical angle is ⁇
  • the anisotropy is precisely set so that the absolute direct average of the difference between ⁇ and 90Xsin [(i) ⁇ 2 ⁇ / (360 / ⁇ ) ⁇ ] is 3 degrees or less.
  • a permanent magnet rotor with continuous direction control can be provided. As a result, the torque density of the motor can be increased, and the cogging torque of the motor can be reduced to less than the isotropic magnet in the same shape.
  • the main point of the present invention is that when the anisotropy direction with respect to the radial tangent of the magnetic pole surface is ⁇ , the mechanical angle is ⁇ , and the number of pole pairs is ⁇ , ⁇ and 90Xsin [ ⁇ ⁇ 2 ⁇ / (360 / This is a permanent magnet rotor whose continuous direction is controlled with an accuracy of 3 degrees or less. That is, ⁇ ⁇ is a permanent magnet rotor distributed in a range of 0 to 90 degrees in a sinusoidal shape with respect to ⁇ . Thus, a permanent magnet rotor whose anisotropy is continuously controlled is not known so far.
  • FIG. 1A a magnetic pole in which a portion close to in-plane anisotropy is mechanically applied to the end of the magnetic pole is prepared. Then, it is transformed into an arc-shaped magnetic pole as shown in FIG. 1B.
  • FIG. 1B it is possible to prepare a magnetic pole in which the direction of anisotropy with respect to the radial tangent of the magnetic pole face is continuously controlled so that 90Xsin [(i) ⁇ 2 ⁇ / (360 / ⁇ ) ⁇ ].
  • Figs. 1A and IB show the cross-sectional shape of the right half from the center of the magnetic pole, and H ⁇ shown in Fig.
  • 1A is the angle formed with the uniform orientation magnetic field Hex with respect to the tangent to the surface of any magnetic pole piece. This ⁇ corresponds to the direction of anisotropy M ⁇ with respect to the tangent to the surface of any pole piece in FIG. 1B.
  • the present invention continuously controls the anisotropy by deformation.
  • the average absolute value of the difference between M ⁇ and 9 0 X sin [ ⁇ ⁇ 2 ⁇ / (360 / ⁇ ) ⁇ ] should be 3 degrees or less.
  • H ⁇ is the angle with the uniform orientation magnetic field Hex with respect to the radial tangent of the inner and outer peripheral surfaces
  • Lo is the gap side circumference of the magnetic pole before deformation
  • L is the gap side circumference of the magnetic pole after deformation.
  • the magnetic pole is deformed in the radial direction by external force as shown in Fig. 2A-2B-2C. At that time, at the stage of FIGS.
  • FIGS. 2A, 2B, and 2C are conceptual diagrams showing the stress distribution during deformation by the external force F, and the hatching density indicates the degree of stress.
  • represents the force, shear stress and direction in the present invention.
  • thermosetting resin composition prepared so that the magnetic pole can be deformed such as 2A, 2B, and 2C, is an essential component.
  • the deformation referred to here means that a part of the binder component is uniformly distributed in the magnetic pole as an intertwined thread-like molecular chain due to heat, and an external force F—
  • the principle is viscous deformation due to shear flow or elongational flow according to F ′.
  • the deformed magnetic pole preferably has a three-dimensional network structure by, for example, a binder component as shown in FIG. 4 by a crosslinking reaction to ensure the heat resistance and durability of the magnetic pole.
  • the example of FIG. 4 is a thermosetting resin composition composed of a novolac type epoxy oligomer, a linear polyamide, and 2-phenylenoyl 4,5-dihydroxymethyl imidazole, which is useful for the present invention and can impart deformability to the magnetic pole. It is an example of the adjusted binder.
  • the uncrosslinked linear polyamide when the uncrosslinked linear polyamide is in a molten state due to heat, it is uniformly distributed in the matrix of the magnetic poles as intertwined thread-like molecular chains.
  • thermosetting resin composition providing the flow shown in FIGS. 3A and 3B is not limited to FIG.
  • the torque density of the permanent magnet motor is proportional to the gap magnetic flux density with the magnetic pole when the static magnetic field Ms generated by the magnetic pole flows as a magnetic flux to the stator core.
  • the anisotropic magnet forming the magnetic pole according to the present invention has a residual magnetization Mr ⁇ 0.95T, an intrinsic coercive force HcJ ⁇ O. 9MA / m, and an energy density (BH) max from the viewpoint of increasing the torque density. ⁇ 150kj / m3 magnetic performance is desired! /.
  • the rare earth magnet material which is effective in the present invention a single domain particle type 1-5SmCo rare earth magnet fine powder and a two-phase separation type 2-17SmCo rare earth magnet particle can be used in part or in whole.
  • a rare earth-iron-based magnet material not containing Co as a main component is preferable.
  • A. Kawamoto et al. RD (Reduction and Diffusion)-Sm Fe N rare earth magnet fine powder see Non-Patent Document 13
  • HDDR—Nd Fe B rare earth produced by recombination
  • both Sm and Nd can be used in a balanced manner.
  • polycrystalline aggregated NdFeB-based rare earth magnet grains can be used.
  • Nd Fe B rare earth magnets when forming with a macro structure separated by a continuous phase
  • the volume fraction of the magnet material with energy density (BH) max ⁇ 270 kj / m 3 in the magnetic pole can be increased to 80 vol.% Or more, so the direction of the incoming magnetic field Hm is the same as the orientation magnetic field Hex. 2.
  • BH magnetic pole energy density
  • a magnetic pole 51 before deformation shown in FIG. 5 was prepared at 50 MPa in a uniform magnetic field Hex of 1 ⁇ 4 MA / m.
  • a uniform magnetic field Hex of 1 ⁇ 4 MA / m.
  • the deformation was 135 ° C, 2 MPa, uniform orientation magnetic field Hex, and no holding time.
  • FIG. 6 is a scanning electron micrograph showing the macro structure of a magnetic pole having a density of 6.01 Mg / m 3 according to the present invention.
  • the macro structure of the magnetic pole is that Nd Fe B rare earth magnet particles are Sm F
  • N-based rare earth magnet fine powder and a structure separated by a matrix (continuous phase) consisting of a binder and
  • the fraction is 81 vol.%.
  • the volume fraction occupied by the magnet material in the isotropic Nd Fe B-based bonded magnet is 0.8-1.
  • the binder used for the magnetic pole before deformation in this example is the molecular structure shown in FIG. As shown in the conceptual diagram showing the structure, epoxy equivalent 205-220g / eq, melting point 70-76 ° C novolac epoxy oligomer, melting point 80.
  • a thermosetting resin composition comprising C, a molecular weight of 4000 to; 12000 spring-like polyamide, 2-phenylene 4,5-dihydroxymethylimidazole. They are not gelled at the molding stage, and the linear polyamide is remelted by heating and interspersed in the magnetic poles as intertwined thread-like molecular chains.
  • the external force shown in Figs. 2A, 2B, and 2C It is deformed like magnetic pole 52.
  • thermosetting resin composition containing the linear polyamide was bridged and rigidified as shown in FIG. 4, except that FIG. 4 shows a force S indicating a free epoxy group, these are imidazolones, or Can be reacted with the terminal carboxyl group of the linear polyamide.
  • FIG. 7 is a characteristic diagram showing the MH curve of the magnetic poles of this example.
  • ⁇ of 80kj / m 3 generally is twice! /, Ru.
  • the magnetic pole 52 according to the present embodiment shown in FIG. 5 has an outer radius of 20.45 mm, an inner radius of 18.95 mm, a thickness of 1.5 mm, and a weight of 2 g, and is uniform using a solenoid coil and a pulse magnetizing power source.
  • 8 magnetic poles were bonded and fixed to the outer peripheral surface of a laminated electrical steel sheet having an outer diameter of 37.9 mm, and the diameter according to this example shown in FIG. 5 was 40.9 mm, the axial length was 14.5 mm, 8 A pole permanent magnet rotor 53 and an 8-pole / 12-slot permanent magnet motor 54 shown in FIG.
  • an arc-shaped magnetic pole having an outer radius of 20.45mm, an inner radius of 18.95mm, and a thickness of 1.5mm is directly formed in the space of uniform orientation magnetic field Hex, and a diameter of 40.9mm, which is manufactured by using this arc-shaped magnetic pole.
  • Conventional example 1 is a directional length of 14.5 mm and an 8-pole permanent magnet rotor.
  • the 80 kj / m 3 isotropic magnet has a ring shape and a weight of 16 g, and has the same outer diameter 37.
  • the magnetic pole according to this example is magnetized in the same direction as the uniform orientation magnetic field Hex with a uniform magnetic field Hm of 2.4 MA / m. Also, when magnetized at 2.4 MA / m and 4 MA / m, the remanent magnetization Mr of the magnetic pole was 0.96 T and the coercive force HcJO.9 MA / m was the same value. For this reason, the magnetic pole can be regarded as almost completely magnetized if at least Hm is 2.4 MA / m or more.
  • the magnetically anisotropic magnetic pole as described in the present embodiment is displaced in the direction of the uniform magnetic field Hm and the direction of anisotropic M ⁇ (easy magnetization axis direction). Even if it occurs, it can be assumed that it is magnetized along the anisotropic direction M ⁇ . Therefore, the angle M ⁇ between the static magnetic field Ms and the radial tangent of the magnetic pole in Fig. 8 means the direction of anisotropy.
  • FIG. 6 is a characteristic diagram showing the relationship between the mechanical angle ⁇ of the 8-pole permanent magnet rotor and the direction of anisotropy ⁇ along with the relationship of 90Xsin ⁇ 2 ⁇ / (360 / ⁇ ) ⁇ ].
  • is the number of pole pairs (4 in this embodiment)
  • FIG. 9 represents a sine curve of 90 ⁇ 3 ⁇ [ ⁇ ⁇ 2 ⁇ / (90) ⁇ ].
  • FIG. 10 is different from Lo / L, where Lo is the stator core air gap side circumference of the magnetic pole before deformation according to this embodiment, and L is the stator core air gap side circumference of the magnetic pole after deformation.
  • FIG. 6 is a characteristic diagram showing the relationship between the direction of direction M ⁇ and the absolute value average of the difference between 90X [ ⁇ ⁇ 2 ⁇ / (90) ⁇ ]. From Fig. 10, the absolute average of the difference between ⁇ and 90Xsin ⁇ 2 ⁇ / (90) ⁇ ] strongly depends on the Lo / L value, The value is in the range of 1 ⁇ 06-1.14. Then, when the magnetic pole is deformed in the radial direction by external force as shown in Fig.
  • the induced voltage proportional to the torque density of the permanent magnet type motor according to this example and the cogging torque were 24. IV and 3 mNm, respectively.
  • the conventional example 1 (159 kj / m 3 ) had 25.IV and 6 mNm
  • Example 1 has a torque density reduced by 4% and a cogging torque by 50% compared to Conventional Example 1, and a torque density of 134 for Conventional Example 2 (80 kj / m 3 ). Increased by 19% and Cogging torque decreased by 21%.
  • an increase in energy density (BH) max can increase the torque density while suppressing an increase in cogging torque of the motor. Therefore, power saving, resource saving, miniaturization and noise reduction of the motor are expected.
  • the anisotropy direction M ⁇ is continuously controlled to a distribution of 90 X sin [ ⁇ ⁇ 2 ⁇ / (360 / ⁇ ) ⁇ ] due to deformation of the magnetic pole.
  • the present invention relates to a permanent magnet rotor and a motor using the same. More specifically, the purpose is to reduce power consumption, resource saving, downsizing, and quietness of permanent magnet motors of approximately 50W or less, which are widely used as various drive sources for home appliances, air conditioning equipment, and information equipment.
  • Anisotropy with continuous direction control This relates to the controlled permanent magnet rotor and the motor using this, and its industrial applicability is extremely high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Description

明 細 書
永久磁石回転子およびこれを使用したモータ
技術分野
[0001] 本発明は磁極の変形で機械角 φに対する異方性の方向 M Θを、 90 X sin[ φ { 2 π / (360/ρ) } ]なる分布に異方性を連続方向制御した永久磁石回転子に関する 。更に詳しくは、家電機器、空調機器、並びに情報機器などの各種駆動源として幅 広く使用されている、概ね 50W以下の永久磁石型モータの省電力化、省資源化、小 型化、並びに静音化を目的とした、異方性を連続方向制御した永久磁石回転子およ びこれを使用したモータに関する。
背景技術
[0002] モータは回転子、軸、軸受、固定子などを鉄鋼、非鉄金属、高分子などの各種材 料を高精度で加工し、それらを組み合わせることで電気エネルギーを機械工ネルギ 一に変換する複合機能部品とみなせる。近年のモータは、他の磁性材料を吸引した り反発したりする能力、並びに、外部エネルギーなしに永久的に静磁界を発生する 能力をもつ磁石を利用した、所謂永久磁石型モータが主流となっている。物理的に 見て磁石が他の磁性材料と異なる点は、外部磁界を消した後も有効な磁化 Μが残り 、熱や比較的大きな逆磁界などを加えたとき、初めて磁化反転 (減磁)が起こり、それ に伴って磁化 Μの低下が起こるという点である。このような磁石の重要な特性値にェ ネルギー密度(BH) maxがある。これは磁石の潜在的エネルギーを単位体積で表し ている。
[0003] ところで、磁石の強く吸引したり反発したりする能力は、モータの種類によっては必 ずしも高性能化にはならない。しかし、非特許文献 1には、磁石の基本特性の一つで ある残留磁束密度 Brとモータ性能の指標としてのモータ定数 KJ (KJは出力トルク KT と抵抗損の平方根^ Rの比)との関係から、モータ径、回転子径、空隙、軟磁性材、 磁石寸法などを固定したとき、磁石のエネルギー密度(BH) maxの増加は、本発明 が対象とする径方向空隙型磁石モータにおいて、より高いトルク密度が得られると記 載している。 [0004] しかしながら、磁石のエネルギー密度(BH) maxの増加は本発明が対象とするモ ータにおいて、より高いトルク密度が得られる反面、当該モータの固定子鉄心には巻 線を収納するスロットと磁気回路の一部を形成するティースが存在するため、回転に 伴ってパーミアンスが変化する。このために磁石のエネルギー密度(BH) maxの増 加はトルク脈動、すなわち、コギングトルクを増大させる。コギングトルクの増加はモー タの滑らかな回転を妨げ、モータの振動や騒音を大きくし、回転制御性が悪化するな どの弊害を伴う。
[0005] 上記のような弊害を避けるため、コギングトルク低減に関し、従来から、モータの回 転子と固定子鉄心との空隙磁束密度分布を正弦波状に近づけるような研究が数多く なされてきた。
[0006] 先ず、磁化方向に或る一定の厚さをもつ磁極に関しては、磁石の偏肉化を挙げる こと力 Sできる。例えば、非特許文献 2の図 11Aのような、残留磁化 Br= l . 2T、磁極 中心の最大厚さ 3mm、磁極両端の最小厚さ 1. 5mmの偏肉化した磁極で、 12極/ 18スロットのモータとするとコギングトルクを極小化できるとしている。ただし、図 11A のモータは偏肉化した磁極 1、固定子鉄心 2、固定子鉄心スロット 3、固定子鉄心ティ ース 4を有している。なお、この場合は磁極 1の外径側からの偏肉である力 その逆の 磁極内径側から偏肉した磁極 1であってもコギングトルクを低減できることは周知であ
[0007] なお、非特許文献 2の図 11 Aのように、磁極の偏肉化でコギングトルクを極小化す るには、磁極中心の最大厚さに対し、磁極両端の最小厚さ力 /2程度となるような 偏肉化が必要であるとしている。したがって、磁極 1の厚さ、すなわち磁化 Mの方向( 厚み)が薄くなると、磁極 1を偏肉化してコギングトルクを極小化しようとしても十分な 効果が得られなくなる。加えて、一般に機械的には脆弱な磁極であるから加工も難し くなる。
[0008] 一方、磁化方向の厚さが薄い磁極に関して、非特許文献 3の図 11Bのような、磁極 をスキューする方法、或いは、非特許文献 4の図 11Cのような、磁極間の磁極面積を 連続的に削除する方法が知られている。
[0009] 以上の従来技術をまとめると、何れも厚い磁極の磁極端を 1/2程度まで薄くして固 定子鉄心との空隙を広げるか、或いは薄い磁極の磁極間の面積を削減する。したが つて、磁極から発生する静磁界 Msが磁束 Φとして固定子鉄心へ流れ込む量が抑制 される。その結果、それらの方法ではコギングトルクの低減によって一般に 10〜; 15% のトルク密度の低下を招く。したがって、図 11A、 11B、及び図 11Cに示した従来技 術によるコギングトルク低減法は、磁石のエネルギー密度(BH) maxの増加でモータ のトルク密度の増加を図ることとは相反する関係にあった。
[0010] 他方では、 D. Howeらが、磁化方向の厚さが 1. 2mmと薄ぐしかも残留磁化 Mr 力 SITと高いエネルギー密度の Nd Fe B系希土類焼結磁石を用いて、図 11A、 11
2 14
B、及び図 11Cに示したような磁化方向の厚さ、或いは磁極の面積を削減しない方 法で、モータのコギングトルク低減法を報告した。すなわち、図 12A〜図 12Dのよう に、各磁極を 2〜5分割した断片で構成し、断片毎に磁化方向(磁気異方性の方向) を段階的に調整した、所謂 Halbach Cylinderである。ただし、図 12A〜図 12D中 、磁極 1の添え字(2)〜(5)は、磁極 1を 2〜5分割した断片の数を示している。また、 各断片中の矢印の方向は配向した磁化容易軸(C軸)に沿った磁化ベクトル Mの方 向、すなわち異方性の方向を表している。
[0011] 上記構成の磁極を用いて 12極 /18スロットのモータとしたとき、当該磁極を分割し た磁極断片の数に対するコギングトルクをプロットすると図 13のようになる。すなわち 、磁極を分割した磁極断片の数 Nとコギングトルク Tcogとは、 Tcog. = 61. 753exp (-0. 1451N)なる累乗近似が成り立つ。加えて、図 13は、任意の機械角 φにおけ る磁化ベクトル Mと、磁極の周方向接線に対する角度を M Θとしたとき、 Μ θ / ρ 1S とくに異極間で特定の方向へきめ細力べ連続的に変化することが理想であること を示唆している。し力、し、厚さ 1. 2mm、残留磁化 Mrが 1Tと高いエネルギー密度の Nd Fe B系希土類焼結磁石で、異方性の方向を異にする磁極断片を多数用意し、
2 14
当該磁極断片をきめ細力べ規則的に配置し、しかも高い寸法精度で磁極を構成する こと自体が困難である。このため、当該磁極を整数倍準備した多極ロータ、あるいは、 それを用いた径方向空隙型磁石モータを製造することは極めて困難である。加えて 、経済との整合性に乏しいことも容易に推測できる。
[0012] ここで、本発明の課題は、例えば厚さ 1. 5mmのように薄く偏肉化が困難な形状で 、かつエネルギー密度の高い異方性の磁極において、磁極の体積或いは面積を削 減しない、新規なコギングトルク低減を実現する永久磁石回転子およびこれを使用し たモータを提供することにある。
[0013] 本発明の要点は、磁極の変形によって、磁極面の径方向接線に対する異方性の 方向を M Θ、機械角を φ、極対数を pとしたとき、 M Θと 90 X sin [ (i) { 2 π / (360/ρ ) } ]の差の絶対値平均を 3度以下に連続方向制御した永久磁石回転子にある。すな わち、異方性の方向 Μ Θ力 機械角 φに対して正弦波状に 0〜90度の範囲で分布 した永久磁石回転子である。このように、異方性を連続方向制御した永久磁石回転 子は、今まで知られていない。
[0014] すなわち、本発明にかかる永久磁石回転子は、磁極の変形によって異方性を連続 方向制御するものである。更に詳しくは、一様な配向磁界 Hexと磁極内外周面の径 方向接線に対する角を H Θ、変形前磁極の空隙側周長を Lo、変形後の磁極の空隙 側周長を Lとしたとき、 Lo/L= l . 06- 1. 14の範囲に特定して径方向に変形する 。変形の順序としては、先ず周方向磁極端、並びに周方向磁極中心で H Θ M Θと する。次いで、周方向磁極端と周方向磁極中心を除く部分で、磁極の空隙側周方向 中心に向けたせん断応力 τの作用により異方性を連続方向制御する。
[0015] 本発明にかかる永久磁石回転子は、エネルギー密度の高!/、磁気異方性磁極に Μ θ
Figure imgf000006_0001
{ 2 π / (360/ρ) } ]なる関係を精度よく与え、コギングトルク低減と トルク密度の増加という相反する作用を両立することができる。
[0016] とくに、エネルギー密度(BH) max≥150kj/m3を有する 150 111以下の Nd Fe
2 1
B系希土類磁石粒子を、平均粒子径 3〜5 111の Sm Fe N系希土類磁石微粉末
4 2 17 3
と結合剤とのマトリクス(連続相)で隔離したマクロ構造で、かつ磁気異方性磁極に占 めるエネルギー密度(BH) max≥270kj/m3の磁石材料の体積分率を 80vol. % 以上とし、着磁界 Hmの方向を配向磁界 Hexと同方向とし、 2. 4MA/m以上とする
[0017] 磁気的に等方性の磁石は着磁界の方向とその磁界強度分布にしたがって、如何な る方向にも自在に磁化することができる。このため、着磁ヨークの形状と起磁力の最 適化によって、図 14の磁極 1の円弧状矢印で示すような磁化パターンを与えることが できる。これにより、磁極と固定子鉄心との空隙磁束密度分布を容易に正弦波状に 調整できる。したがって、モータのコギングトルク低減は薄い磁極を磁気的に異方性 の磁石材料で形成する場合と比べると極めて容易である。
[0018] 上記のような、等方性希土類磁石材料の研究は、先ず R. W. Leeらカ S、 (BH) max = 11 lkj/m3の急冷凝固リボンを樹脂で固定すると(BH) max= 72kj/m3の等方 性 Nd Fe B系ボンド磁石ができるとしたことが始まりと思われる(非特許文献 6参照)
[0019] その後、 1980年代後半以降から現在に至るまで、希土類一鉄系溶湯合金の急冷 凝固を主とした、等方性希土類磁石材料の研究が活発に行われている。例えば、 N d Fe B系、 Sm Fe N系、或いはそれらと a Fe、 FeB、 Fe B系との微細組織に基
, 換結合を利用したナノコンポジット磁石材料を含め、多彩な合金組織をミクロ 制御した等方性磁石材料に加え、粉末形状の異なる等方性磁石材料も工業的に利 用可能になっている(例えば、非特許文献 7〜; 10参照)。
[0020] また、等方性でありながら(BH) maxが 220kj/m3に達するという Η· A. Daviesら の報告もある (非特許文献 11参照)。しかし、工業的に利用可能な等方性磁石材料 の(BH) maxは高々 134kj/m3で、 50W以下の小型モータに代表される応用で一
3 般的な等方性 Nd Fe Bボンド磁石のエネルギー密度(BH) maxは概ね 80kj/m
2 14
以下である。すなわち、 1985年に R. W. Leeらが(BH) max= l l lkj/m3のリボン で(BH) max= 72kj/m3の等方性 Nd Fe B系ボンド磁石を作製して以来、 20年
2 14
以上経過しても(BH) maxの進歩でみると 10kj/m3にも満たない。したがって、等 方性磁石材料の進歩を待ってエネルギー密度を増加し、本発明が対象とする永久 磁石回転子によるモータの高トルク密度化は期待できない。
[0021] 一方、等方性から異方性磁石への転換は一般にエネルギー密度(BH) maxの増 加を伴うものであるから、本発明が対象とする永久磁石回転子を搭載したモータにお V、て、より高!/、トルク密度が得られる反面コギングトルクが増大する。
[0022] なお、 N. Takahashiらはモータに使用される円弧状異方性磁石の製造において、 非磁性成形型に磁性体を配置し、キヤビティ部分の磁束 Φの方向を一様な方向から 任意の方向に変えることで異方性の方向を制御する方法を提案している(非特許文 献 12参照)。
[0023] し力、し、キヤビティ部分の磁束 Φの方向をきめ細力、く制御することはできない。この ため、本発明のように、磁極面の径方向接線に対する異方性の方向を M Θ、機械角 を Φ、極対数を pとしたとき、 M Θと 90 X sin [ (i) { 2 π / (360/ρ) } ]との差の絶対ィ直 平均を 3度以下とするような、精密な異方性の連続方向制御はできな!/、。
[0024] 以上説明したように、従来技術では、エネルギー密度(BH) maxが増加するとモー タのトルク密度を増加できる力 コギングトルクも増大し、静音性や制御性が悪化する などの課題があった。
非特許文献 1 :J. Schulze著、「Application oi nigh periormance magnets for small motors」、 Proc. of the 18th international workshop on hig h performance magnets and their applications、 2004年、 pp. 908— 91 5
非特許文献 2 : Υ· Pang, Ζ. Q. Zhu、 S. Ruangsinchaiwanich, D. Howe著、「C omparison of brushless motors having halbach magnetized magnets and shaped parallel magnetized magnets」、 Proc. of the 18th inter national workshop on high performance magnets and their applicat ions, 2004年、 pp. 400— 407
非特許文献 3 : W. Rodewald, W. Rodewald, M. Katter著、「Properties and applications of high performance magnets」、 Proc. of the 18th inter national workshop on high performance magnets and their applicat ions, 2004年、 pp. 52— 63
非特許文献 4 :松岡篤, 山崎東吾,川口仁著、「送風機用ブラシレス DCモータの高 性能化検討」電気学会回転機研究会、 RM— 01— 161、 2001年
非特許文献 5 : D. Howe、 Z. Q. Zhu著、「Application oi nalbach cylinders to electrical machine」、 Proc. of the 17th int. workshop on rare earth magnets and their applications、 2000年、 pp. 903— 922 非特許文献 6 : R. W. Lee、 E. G. Brewer, N. A. Schaffel著、「Hot— pressed
Neodymium― Iron― Boron magnetsj、 IEEE Trans. Magn. 、 Vol. 21、 1 985年、 pp. 1958
非特許文献 7 :入山恭彦著、「高性能希土類ボンド磁石の開発動向」、文部科学省ィ ノベーシヨン創出事業/希土類資源の有効利用と先端材料シンポジウム、 2002年、 pp. 19 - 26
非特許文献 8 : B. H. Rabin、 B. M. Ma著、「Recent developments in Nd— Fe— B powderj、 120th Topical Symposium of the Magnetic Society of Japan, 2001年、 pp. 23— 28
非特許文献 9 : B. M. Ma著、「Recent powder development at magnequen ch」、 Polymer Bonded Magnets 2002、 2002年
非特許文献 10 : S . Hirasawa, H. Kanekiyo, T. Miyoshi, K. Murakami, Y. S higemoto、 T. Nishiuchi著、「Structure and magnetic properties of Nd 2Fel4B/FexB— type nanocomposite permanent magnets prepared b y strip casting] , 9th Joint MMM/INTERMAG、 FG— 05、 2004年 非特許文献 11 : H. A. Davies, J. I. Betancourt, C. L. Harland著、「Nanophas e Pr and Nd/Pr based rare― earth― iron― boron alloys」、 Proc. of 16th Int. Workshop on Rare— Earth Magnets and Their Applicati ons、 2000年、 pp. 485— 495
非特許文献 12 : N. Takahashi, K. Ebihara, K. Yoshida, T. Nakata, K. Ohas hi and K. Miyata著、「IrLvestigation of simulated annealing method a nd its application to optimal design of die mold for orientation of magnetic powderj、 IEEE Trans. Mag. 、 Vol. 32、 No. 3、 1996年、 pp. 1 210 - 1213
非特許文献 13 : A. Kawamoto T. Ishikawa、 S. Yasuda、 K. Takeya、 K. Ishiz aka、 T. Iseki、 K. Ohmori著、「SmFeN magnet powder prepared by red uction and diffusion methodj、 IEEE Trans. Magn. 、 35、 1999年、 pp. 3 322
非特許文 I¾ 14 : T. Takeshita、 R. Nakayama著、「Magnetic properties and micro― structure of the Nd— Fe— B magnet powders produced by h ydrogen treatmentj、 Proc. 10th Int. Workshop on Rare— earth Magn ets and Their Applications、 1989年、 pp. 551— 562
非特許文献 15 : F. Yamashita^ H. Fukunaga著、「Radially— anisotropic rare — earth hybrid magnet with self— organizing binder consolidated un der a heat and a low— pressure configurationj、 Proc. 18th Int. W orkshop on High Performance Magnets and Their Applications, An necy、 2004年、 pp. 76— 83
発明の開示
[0025] 本発明は、磁極の変形で機械角 φに対する異方性の方向 M Θを 90 X sin [ φ { 2 π / (360/ρ) } ]なる分布に異方性を連続方向制御した永久磁石回転子を提供す ることで、(BH) max≤80kj/m3の正弦波着磁した等方性磁石に対し、略 2倍の異 方性磁極に拘わらずモータのコギングトルクを増加させることなぐトルク密度を高め ること力 Sでさる。
[0026] したがって、家電機器、空調機器、並びに情報機器などの各種駆動源として幅広く 使用されている、概ね 50W以下の永久磁石型モータの省電力化、省資源化、小型 化、並びに静音化の進展に有効な技術である。
図面の簡単な説明
[0027] [図 1A]図 1Aは変形による異方性方向制御を示す第 1の概念図である。
[図 1B]図 1Bは変形による異方性方向制御を示す第 2の概念図である。
[図 2A]図 2Aは応力分布で示す変形パターンの第 1の概念図である。
[図 2B]図 2Bは応力分布で示す変形パターンの第 2の概念図である。
[図 2C]図 2Cは応力分布で示す変形パターンの第 3の概念図である。
[図 3A]図 3Aは溶融高分子の外力による流動形態を示す第 1の概念図である。
[図 3B]図 3Bは溶融高分子の外力による流動形態を示す第 2の概念図である。
[図 4]図 4は粘性変形を担う熱硬化性樹脂組成物の分子構造を示す模式図である。
[図 5]図 5は磁極、永久磁石回転子、永久磁石型モータの斜視外観図である。
[図 6]図 6は磁極のマクロ構造を示す電子顕微鏡写真の図である。
[図 7]図 7は磁極の磁気性能を示す特性図である。 [図 8]図 8は機械角 φ静磁界 Ms方向の関係を示す特性図である。
[図 9]図 9は機械角 φと異方性の方向 M Θの関係を示す特性図である。
園 10]図 10は周長 Lo/Lと異方性の連続方向制御の精度の関係を示す特性図で ある。
園 11A]図 11 Aは従来の磁石形状によるコギングトルク低減法を示す第 1の概念図で ある。
園 11B]図 11Bは従来の磁石形状によるコギングトルク低減法を示す第 2の概念図で ある。
園 11C]図 11Cは従来の磁石形状によるコギングトルク低減法を示す第 3の概念図で ある。
[図 12A]図 12Aは従来の磁化方向の不連続制御によるコギングトルク低減法を示す 第 1の概念図である。
[図 12B]図 12Bは従来の磁化方向の不連続制御によるコギングトルク低減法を示す 第 2の概念図である。
[図 12C]図 12Cは従来の磁化方向の不連続制御によるコギングトルク低減法を示す 第 3の概念図である。
[図 12D]図 12Dは従来の磁化方向の不連続制御によるコギングトルク低減法を示す 第 4の概念図である。
園 13]図 13は従来の磁化方向を異にする磁極断片の数とコギングトルクの関係を示 す特性図である。
園 14]図 14は従来の等方性磁石の磁化パターンを示す概念図である。
符号の説明
1 磁極
2 固定子鉄心
3 固定子鉄心スロット
4 固定子鉄心ティース
51 , 52 磁極
53 8極永久磁石回転子 54 8極 /12スロット永久磁石型モータ
Φ 機械角
M 磁化べクトノレ
ΜΘ 磁化ベクトルの角度
Hex 一様な配向磁界
ΗΘ 外部磁界の角度
P 極対数
発明を実施するための最良の形態
[0029] 本発明は等方性磁石の欠点であるエネルギー密度(BH) maxを概ね 2倍以上に高 め、かつ磁極面の径方向接線に対する異方性の方向を M Θ、機械角を φ、極対数 を pとしたとき、 ΜΘと 90Xsin[(i) {2π/(360/ρ)}]との差の絶対ィ直平均を 3度以 下とするような、精密に異方性を連続方向制御した永久磁石回転子を提供すること ができる。これにより、モータのトルク密度の増加を図ると共に、同一形状において等 方性磁石以下までモータのコギングトルクが低減できる。
[0030] 本発明の要点は、磁極面の径方向接線に対する異方性の方向を Μ Θ、機械角を φ、極対数を ρとしたとき、 Μ Θと 90Xsin[ φ {2π/(360/ρ) }]との差の絶対ィ直平 均を、 3度以下の精度で連続方向制御した永久磁石回転子である。すなわち、 Μ Θ が φに対して、正弦波状に 0〜90度の範囲で分布した永久磁石回転子である。この ように、異方性を連続方向制御した永久磁石回転子は、今まで知られていない。
[0031] 上記のような磁極は、先ず図 1Aのように、磁極端に面内異方性に近い部分を機械 的に付与した磁極を用意する。そして、図 1Bに示すような円弧状の磁極に変形する 。これにより、磁極面の径方向接線に対する異方性の方向 Μ Θを、 90Xsin[(i) {2兀 /(360/ρ)}]となるように連続方向制御した磁極に調製できる。ただし、図 1A、 IB は磁極の中心から右半分の断面形状を表しており、図 1Aに示す H Θは、任意の磁 極断片表面の接線に対する一様な配向磁界 Hexとなす角度である。この ΗΘは、図 1Bの任意の磁極断片表面の接線に対する異方性の方向 M Θに相当する。
[0032] 上記のように、本発明は変形によって異方性を連続方向制御する。とくに、 M Θと 9 0 X sin [ φ { 2 π / (360/ρ) } ]との差の絶対値の平均を 3度以下となるようにするに は、内外周面の径方向接線に対する一様な配向磁界 Hexとの角度を H Θ、変形前 の磁極の空隙側周長を Lo、変形後の磁極の空隙側周長を Lとしたとき、 Lo/L≥l . 06 - 1 . 14に特定して、図 2A— 2B— 2Cのように、外力により磁極を径方向に変形 する。その際、図 2A、 2Bの段階で、先ず磁極周方向磁極端、並びに周方向磁極中 心部分で変形を終了させ、それらの領域では H θ = Μ Θとする。そして、図 2Cのよう に、変形の最終段階では周方向磁極端と周方向磁極中心を除く部分で、磁極の空 隙側周方向中心に向けたせん断応力 τの作用により、 Μ Θを連続制御する。ただし 、図 2A、 2B、 2Cは外力 Fによる変形時の応力分布を示す概念図で、ハッチングの 密度は応力の程度を表している。また、図 2Cの τは本発明に力、かるせん断応力とそ の方向を表している。
[0033] 以上のような磁極の変形のため、本発明では希土類磁石材料と共に、少なくとも図
2A、 2B、 2Cのように、磁極が変形し得るように調整した熱硬化性樹脂組成物を必須 成分とする。なお、ここで言う変形とは、図 3A、 3Bの概念図で示すように、結合剤成 分の一部が熱により、絡み合う糸状の分子鎖として磁極中に一様に分布し、外力 F— F 'に応じてせん断流動、または伸長流動などによる粘性変形を原理とする。
[0034] また、変形後の磁極は、例えば、図 4に示すような結合剤成分を架橋反応により 3次 元網目構造化し、磁極の耐熱性、耐久性を確保することが好ましい。図 4の例はノボ ラック型エポキシオリゴマー、線状ポリアミド、 2—フエニノレー 4 , 5—ジヒドロキシメチル イミダゾールからなる熱硬化性樹脂組成物で、本発明に力、かる磁極に変形能を与え 得るように調整した結合剤の一例である。図 4の例では、未架橋の線状ポリアミドが熱 により溶融状態のとき、絡み合う糸状の分子鎖として磁極のマトリクスに一様に分布し 、図 3A、 3Bに示すように、外力 F— F 'に応じてせん断流動、或いはまた伸長流動を 引き起こすことで磁極の変形を担う。なお、図 3A、 3Bに示す流動を与える熱硬化性 樹脂組成物は、図 4に限定されない。
[0035] ところで、永久磁石型モータのトルク密度は磁極が発生する静磁界 Msが磁束 と して、固定子鉄心へ流れるときの磁極との空隙磁束密度に比例する。同一寸法同一 構造の磁極と固定子鉄心で形成したモータの空隙磁束密度は、磁極のエネルギー 密度(BH) maxの比の平方根に概ね比例することから、エネルギー密度(BH) max = 80kj/m3を上限とする等方性 Nd Fe Bボンド磁石に対し、本発明に力、かる磁極
2 14
のエネルギー密度が(BH) max= 150kj/m3以上であれば、略 1 · 36倍の空隙磁 束密度の増加、すなわちトルク密度の増加が見込まれる。したがって、本発明にかか る磁極を形成する異方性磁石はトルク密度を高めるという観点から、残留磁化 Mr≥ 0. 95T、固有保磁力 HcJ ^ O. 9MA/m、エネルギー密度(BH) max≥ 150kj/m 3の磁気性能を有するものが望まし!/、。
[0036] 上記のような、エネルギー密度(BH) max≥150kj/m3の異方性磁極を得るには エネルギー密度(BH) max≥ 270kj/m3の希土類磁石材料の磁極に占める体積分 率を 80vol. %以上、着磁界 Hmを 2. 4MA/m以上とすることが望ましい。
[0037] 本発明に力、かる希土類磁石材料としては、単磁区粒子型の 1— 5SmCo系希土類 磁石微粉末、 2相分離型の 2— 17SmCo系希土類磁石粒子も一部、もしくは全量使 用できる。しかし、資源バランスの観点から、 Coを主成分としない希土類一鉄系磁石 材料が好ましい。例えば、 A. Kawamotoらの RD (Reduction and Diffusion) - Sm Fe N希土類磁石微粉末(非特許文献 13参照)や、 T. Takeshitaらの希土類
2 17 3
一鉄系合金の R [Fe, Co] B相の水素化(Hydrogenation, R [Fe, Co] BH )
2 14 2 14 x
、 650〜: L000。 Cでの相分解(Decomposition, RH + Fe + Fe B)、脱水素(Des
2 2
orpsion)、再結合(Recombination)で作製した、所謂 HDDR— Nd Fe B系希土
2 14 類磁石粒子 (非特許文献 14参照)などを挙げることができる。
[0038] なお、上記希土類一鉄系磁石材料を複合した磁極とすると Sm、 Ndの双方をバラ ンスよく使うことができるばかりか、とくに、多結晶集合型 Nd Fe B系希土類磁石粒
2 14
子を平均粒子径 3〜5 111の Sm Fe N系希土類磁石微粉末と結合剤とのマトリク
2 17 3
ス(連続相)で隔離したマクロ構造とすると、成形加工の際、 Nd Fe B系希土類磁石
2 14
粒子表面の損傷や破壊による新生面の生成と酸化による磁気性能の劣化が抑制で きる。或いはまた、磁極に占めるエネルギー密度(BH) max≥270kj/m3の磁石材 料の体積分率を 80vol. %以上に高めることができるため、着磁界 Hmの方向を配向 磁界 Hexと同方向とし、 2. 4MA/m以上とすることで、磁極のエネルギー密度(BH ) max≥l 50kj/m3とすることが容易となる(非特許文献 15参照)。
[0039] (実施例) 以下、本発明にかかる異方性を連続制御した磁極、 8極永久磁石回転子、並びに 8極 /12スロット永久磁石型モータを対象とした実施例により、更に詳しく説明する。 ただし、本発明はこの実施例に限定されない。
[0040] 本実施例における磁石の材料組成は粒子径 3〜 5 m、エネルギー密度(BH) ma x = 290kj/m3の異方性 Sm Fe N系希土類磁石微粉末 32. 1、粒子径 38〜; 150
2 17 3
πι、エネルギー密度(BH) max= 270kj/m3の異方性 Nd Fe B系希土類磁石
2 14
粒子 48 · 9、ノポラック型エポキシオリゴマー 6· 2、線状ポリアミド 9. 1、 2—フエニル —4, 5—ジヒドロキシメチルイミダゾール 1 · 8、滑剤(ペンタエリスリトールステアリン酸 トリエステル) 1. 9 (単位はそれぞれ vol. %)とした。
[0041] 先ず、 1 · 4MA/mの一様な配向磁界 Hex中、 50MPaで、図 5に示す変形前の 磁極 51を用意した。次に、溶融した線状ポリアミドの粘性変形を利用して、外半径 20 . 45mm,厚さ 1. 5mmの円弧状に変形し、磁極 52を作成した。なお、変形は 135°C 、 2MPa、一様な配向磁界 Hexと保持時間はなしとした。
[0042] 上記、磁極 52を、大気中 170°C、 20分の熱処理で結合剤を架橋して剛直化したの ち、 Hexと同方向に Hm = 2. 4^八/111のパルス磁化を行ぃ、外径37. 9mmの積層 電磁鋼板の外周に接着固定し、外径 40. 9mm、長さ 14. 5mmの 8極永久磁石回転 子 53とし、更に、 8極 /12スロット永久磁石型モータ 54とした。
[0043] 図 6は、本発明にかかる密度 6. 01Mg/m3の磁極のマクロ構造を示す走査電子 顕微鏡写真の図である。磁極のマクロ構造は Nd Fe B系希土類磁石粒子が Sm F
2 14 2 e N系希土類磁石微粉末と結合剤とから成るマトリクス (連続相)で隔離した構造と
17 3
している。これにより、 Sm Fe Nおよび Nd Fe B系希土類磁石材料が占める体積
2 17 3 2 14
分率は 81vol. %となっている。
[0044] なお、等方性 Nd Fe B系ボンド磁石での磁石材料が占める体積分率は 0. 8— 1.
2 14
OGPaで磁石材料を破壊しながら圧縮して緻密化しても、一般に 80vol. %程度 (密 度 6Mg/m3)である。しかし、本実施例では僅か 50MPaの圧縮で希土類磁石材料 が占める体積分率は 81vol. % (密度 6. lMg/m3)を実現し、かつ、図 6のように成 形加工した Nd Fe B系希土類磁石粒子に亀裂や破壊などは観測されない。
2 14
[0045] 上記、本実施例における変形前の磁極に使用した結合剤は、図 4に示した分子構 造を示す概念図のように、エポキシ当量 205〜220g/eq、融点 70— 76°Cのノボラ ック型エポキシオリゴマー、融点 80。C,分子量 4000〜; 12000の泉状ポリアミド、 2— フエ二ルー 4, 5—ジヒドロキシメチルイミダゾールから成る熱硬化性樹脂組成物であ る。それらは、成形加工段階ではゲル化に至らず、線状ポリアミドは加熱で再溶融し 、絡み合う糸状の分子鎖として磁極中に介在し、図 2A、 2B、 2Cに示したような外力 によって図 5の磁極 52のように変形する。
[0046] 次に、本発明に力、かる円弧状に変形後の磁極 52は、大気中 170°C、 20分の熱処 理を施した。これにより、線状ポリアミドを含む熱硬化性樹脂組成物を図 4のように架 橋し、剛直化した、ただし、図 4は遊離エポキシ基を示している力 S、これらはイミダゾー ノレ類、或レ、は線状ポリアミドの末端カルボキシル基などと反応させることができる。
[0047] 図 7は、本実施例の磁極の M— H曲線を示す特性図である。図 7のように、ェネル ギー密度(BH) max値は、一様な配向磁界 Hexと同方向に一様な着磁界 Hm = 2. 4MA/mでパルス磁化したとき、 159kj/m3に達し、 50W以下の小型モータに代 表される応用で一般的な等方性 Nd Fe Bボンド磁石のエネルギー密度(BH) max
2 14
≤ 80kj/m3の概ね 2倍となって!/、る。
[0048] 図 5に示した本実施例にかかる磁極 52は外半径 20. 45mm,内半径 18. 95mm, 厚さ 1. 5mm、重量 2gであり、ソレノイドコイルとパルス磁化電源を用い、一様な配向 磁界 Hexと同方向に一様な着磁界 Hm = 2· 4MA/mでノ ルス磁化した。然る後、 8個の磁極を外径 37. 9mmの積層電磁鋼板の外周面に接着固定し、図 5に示した 本実施例にかかる直径 40. 9mm、軸方向長さ 14. 5mm、 8極永久磁石回転子 53、 さらに、図 5に示した 8極 /12スロット永久磁石型モータ 54とした。
[0049] なお、一様な配向磁界 Hexの空間で直接外半径 20. 45mm,内半径 18. 95mm 、厚さ 1. 5mmの円弧状磁極とし、これを用いて作製した直径 40. 9mm、軸方向長 さ 14. 5mm、 8極永久磁石回転子を従来例 1とした。
[0050] また、 80kj/m3等方性磁石はリング状、重量 16gで、本発明例と同じぐ外径 37.
9mmの積層電磁鋼板の外周面に接着固定して直径 40. 9mm、軸方向長さ 14. 5 mmとし、さらに着磁ヨークとパルス磁化電源を用いて正弦波着磁した 8極永久磁石 回転子を従来例 2とした。 [0051] 図 8は、本発明に力、かるエネルギー密度(BH)max=159kj/m3の磁極から作製 した実施例の 8極磁石回転子の、径方向磁極中心の円周上に静磁界 Msの方向を 矢印で示した特性図である。ただし、磁極の機械角 φは 45度、静磁界 Msは 0.5度 ピッチで示している。
[0052] 上記、本実施例にかかる磁極は、 2.4MA/mの一様な着磁界 Hmで一様な配向 磁界 Hexと同方向に磁化している。また、 2.4MA/m、並びに 4MA/mで磁化し たとき、磁極の残留磁化 Mrは 0.96T、保磁力 HcJO.9MA/mで同じ値であった。 このこと力、ら、少なくとも Hmを 2.4MA/m以上とすれば磁極は、ほぼ完全に磁化し たとみなすことができる。
[0053] 加えて、本実施例に力、かるような磁気的に異方性の磁極は一様な着磁界 Hmの方 向と異方性の方向 M Θ (磁化容易軸方向)にずれが生じても、異方性の方向 M Θに 沿って磁化されるとみなして差し支えない。したがって、図 8の静磁界 Msと磁極の径 方向接線となす角 M Θは異方性の方向を意味している。
[0054] 図 9は、実施例に力、かる変形前の磁極の空隙側周長 Lo = 17.55mm、変形後の 磁極の空隙側周長 L= 16.06mm, Lo/L≥l.09としたときの、 8極永久磁石回転 子の機械角 Φと異方性の方向 ΜΘとの関係を、 90Xsin {2π/(360/ρ)}]の 関係と共に示す特性図である。ここで、 ρは極対数 (本実施例では 4)であるから、図 9 では、 90Χ3ίη[φ {2兀/(90)}]の正弦曲線を表している。また、図 9中の誤差を示 す特性曲線は、機械角 φに対する 90 X sin [ φ {2兀/(90) }]と M Θとの差を表して いる。図 9から明らかなように、本実施例に力、かる異方性の方向 M Θは機械角 φに対 して正弦曲線とほぼ一致し、その差の絶対値平均は 2· 42度(測定点数 n = 9019) であった。すなわち、 ΜΘと 90Xsin {2π/(360/ρ)}]の差の絶対値平均を 3 度以下とする磁極の変形で、異方性を精密に連続方向制御した永久磁石回転子が 得られる。
[0055] 図 10は、本実施例にかかる変形前の磁極の固定子鉄心空隙側周長を Lo、変形後 の磁極の固定子鉄心空隙側周長を Lとしたとき、 Lo/Lと異方性の方向 M Θと 90X [φ {2兀/(90)}]との差の絶対値平均との関係を示す特性図である。図 10から 、 ΜΘと 90Xsin {2兀/(90)}]の差の絶対値平均は Lo/Lの値に強く依存し、 その値を 1· 06-1. 14の範囲とする。すると、図 2Α— 2Β— 2Cのように外力により磁 極を径方向に変形する際、図 2Α— 2Βの段階で、先ず磁極周方向磁極端、並びに 周方向磁極中心部分で変形が終了し、それらの領域で Η θ =Μ Θとなる。そして、 図 2Cのように変形の最終段階で、周方向磁極端と周方向磁極中心を除く領域で、 磁極の空隙側周方向中心に向けたせん断応力 τの作用により Μ Θを連続制御でき るため、 Μ Θと 90 X sin [ φ 2π/(90) }]の差の絶対値平均 3度以下とすることがで きる。
[0056] なお、 Lo/Lが 1. 06未満では、せん断応力 τの作用が不足し Μ Θを正確に連続 制御できず、 Lo/Lが 1. 14を越えると τの作用が過剰となり、機械角 φに対する Μ Θの分布が乱れる。ちなみに、 Μ Θと 90Xsin[ (i) {2兀/(90) }]の差の絶対値平均 は従来例 1で 8. 41度、リング状等方性磁石を正弦波着磁した従来例 2は 1. 88度で あり、円弧状磁石の積層電磁鋼板への接着固定する際の組立精度を考慮すると本 発明は後者とほぼ等しい。
[0057] 上記、本実施例にかかる永久磁石型モータのトルク密度に比例する誘起電圧とコ ギングトノレクは、それぞれ 24. IV、 3mNmであった。また、従来例 1 (159kj/m3)で 25. IV、 6mNm、従来例 2 (80kj/m3)で 18V、 3. 8mNmであった。
[0058] 以上のように、本発明にかかる実施例 1は従来例 1に対し、トルク密度 4%減、コギ ングトルク 50%減となり、従来例 2(80kj/m3)に対しはトルク密度 134%増、コギン グトルク 21%減となった。
[0059] すなわち、本発明によれば、エネルギー密度(BH) maxの増加により、モータのコ ギングトルク増加を抑制しながら、トルク密度の増大が図れる。したがって、当該モー タの省電力化、省資源化、小型化、並びに静音化の進展が期待される。
産業上の利用可能性
[0060] 本発明は、磁極の変形で機械角 φに対する異方性の方向 M Θを 90 X sin [ φ {2 π/(360/ρ) }]なる分布に異方性を連続方向制御した永久磁石回転子およびこ れを使用したモータに関する。更に詳しくは、家電機器、空調機器、並びに情報機器 などの各種駆動源として幅広く使用されている、概ね 50W以下の永久磁石型モータ の省電力化、省資源化、小型化、並びに静音化を目的とした異方性を連続方向制 御した永久磁石回転子およびこれを使用したモータに関するもので、産業上の利用 可能性は極めて高い。

Claims

請求の範囲
[1] 磁極面の径方向接線に対する磁化ベクトル Mの角度を Μ Θ、機械角を φ、極対数 を pとしたとき、
Μ Θと 90Xsin[ (i) {2π/(360/ρ) }]の差の絶対値平均を 3度以下とする磁極の 変形によって、異方性を連続方向制御した、永久磁石回転子。
[2] 磁極の内外周面の径方向接線に対する一様な配向磁界 Hexとの角度を Η Θ、変 形前の磁極の空隙側周長を Lo、変形後の磁極の空隙側周長を Lとしたとき、
Lo/L=l. 06〜; 1. 14として径方向に変形し、周方向磁極端、並びに周方向磁 極中心で H Θを異方性の方向と等しくし、かつ前記周方向磁極端と周方向磁極中心 を除く部分で磁極空隙側周方向中心に向けたせん断応力 τの作用で異方性を連続 方向制御した、請求項 1記載の永久磁石回転子。
[3] 外力によって生じる溶融した線状高分子のせん断流動、伸張流動、およびそれら が重複した粘性変形を利用して、前記異方性を連続方向制御した、請求項 1記載の 永久磁石回転子。
[4] 磁極が残留磁化 Mr^O. 95T、固有保磁力 HcJ^O. 9MA/m、エネルギー密度
(BH) maxが 150kj/m3以上の磁気性能を有する、請求項 1に記載の永久磁石回 転子。
[5] 磁極が 150 111以下の Nd Fe B系希土類磁石粒子を平均粒子径 3〜5 mの S
2 14
m Fe N系希土類磁石微粉末と結合剤とのマトリクス(連続相)で隔離したマクロ構
2 17 3
造である、請求項 1または 4のいずれか 1項に記載の永久磁石回転子。
[6] 前記磁極に占めるエネルギー密度(BH) maxが 270kj/m3以上の磁石材料の体 積分率を 80vol. %以上とし、着磁界 Hmの方向を配向磁界 Hexと同方向とし、かつ 前記着磁界 Hmを 2. 4MA/m以上とする、請求項 1または 4のいずれ力、 1項に記載 の永久磁石回転子。
[7] 請求項 1から 4のいずれか 1項に記載の永久磁石回転子を使用したモータ。
[8] 請求項 5に記載の永久磁石回転子を使用したモータ。
[9] 請求項 6に記載の永久磁石回転子を使用したモータ。
PCT/JP2007/072500 2006-11-27 2007-11-21 Rotor à aimant permanent et moteur l'utilisant WO2008065938A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07832230.2A EP1956698B1 (en) 2006-11-27 2007-11-21 Permanent magnet rotor and motor using the same
US12/162,435 US7759833B2 (en) 2006-11-27 2007-11-21 Permanent magnet rotator and motor using the same
JP2008515768A JP4735716B2 (ja) 2006-11-27 2007-11-21 永久磁石回転子およびこれを使用したモータ
CN200780024939XA CN101485065B (zh) 2006-11-27 2007-11-21 永久磁铁转子及使用其的马达

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-318255 2006-11-27
JP2006318255 2006-11-27

Publications (1)

Publication Number Publication Date
WO2008065938A1 true WO2008065938A1 (fr) 2008-06-05

Family

ID=39467730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072500 WO2008065938A1 (fr) 2006-11-27 2007-11-21 Rotor à aimant permanent et moteur l'utilisant

Country Status (6)

Country Link
US (1) US7759833B2 (ja)
EP (1) EP1956698B1 (ja)
JP (1) JP4735716B2 (ja)
KR (1) KR100981218B1 (ja)
CN (1) CN101485065B (ja)
WO (1) WO2008065938A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142082A (ja) * 2008-12-15 2010-06-24 Seiko Epson Corp ブラシレス電気機械
JP2010199448A (ja) * 2009-02-27 2010-09-09 Minebea Co Ltd 自己修復性希土類−鉄系磁石

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2893579A1 (en) 2012-12-13 2014-06-19 Dow Agrosciences Llc Dna detection methods for site specific nuclease activity
JP6706487B2 (ja) 2015-11-19 2020-06-10 日東電工株式会社 希土類永久磁石をもった回転子を備える回転電機
WO2018186478A1 (ja) * 2017-04-07 2018-10-11 日東電工株式会社 希土類焼結磁石、希土類焼結体の製造方法、希土類焼結磁石の製造方法及び希土類焼結磁石を用いたリニアモータ
CN112865362B (zh) * 2020-12-28 2022-03-18 珠海格力电器股份有限公司 转子铁芯组件、转子和电机
CN115800587B (zh) * 2023-01-29 2023-05-09 东南大学 基于纳米复合永磁材料的组合磁极永磁同步电机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354721A (ja) * 2001-05-29 2002-12-06 Hitachi Ltd 永久磁石式回転子を備えた回転電機
JP2005224021A (ja) * 2004-02-05 2005-08-18 Neomax Co Ltd 長尺リング磁石および回転機
JP2006211802A (ja) * 2005-01-27 2006-08-10 Matsushita Electric Ind Co Ltd 自己組織化環状異方性希土類ボンド磁石モータの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352721A (ja) * 2001-05-28 2002-12-06 Matsushita Electric Ind Co Ltd プラズマディスプレイパネルおよびその製造方法
US6992553B2 (en) * 2002-06-18 2006-01-31 Hitachi Metals, Ltd. Magnetic-field molding apparatus
JP4033112B2 (ja) * 2003-11-21 2008-01-16 松下電器産業株式会社 自己組織化したハイブリッド型希土類ボンド磁石とその製造方法、並びにモータ
EP1752994A4 (en) * 2004-06-17 2007-11-28 Matsushita Electric Ind Co Ltd PROCESS FOR MANUFACTURING A SELF-ASSEMBLED RARE-IRON BOND MAGNET AND MOTOR THEREWITH
EP1995854B1 (en) * 2006-03-16 2016-09-07 Panasonic Corporation Radial anisotropic magnet manufacturing method, permanent magnet motor using radial anisotropic magnet, iron core-equipped permanent magnet motor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002354721A (ja) * 2001-05-29 2002-12-06 Hitachi Ltd 永久磁石式回転子を備えた回転電機
JP2005224021A (ja) * 2004-02-05 2005-08-18 Neomax Co Ltd 長尺リング磁石および回転機
JP2006211802A (ja) * 2005-01-27 2006-08-10 Matsushita Electric Ind Co Ltd 自己組織化環状異方性希土類ボンド磁石モータの製造方法

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
A. KAWAMOTO ET AL.: "SmFeN magnet powder prepared by reduction and diffusion method", IEEE TRANS. MAGN., vol. 35, 1999, pages 3322
ATSUSHI MATSUOKA; TOUKO YAMAZAKI; HITOSHI KAWAGUCHI: "Review on high performance of brushless DC motors for use in air blower", THE INSTITUTE OF ELECTRICAL ENGINNERS OF JAPAN, 2001, pages 01 - 161
B. H. RABIN; B. M. MA: "Recent developments in Nd-Fe-B powder", 120TH TOPICAL SYMPOSIUM OF THE MAGNETIC SOCIETY OF JAPAN, 2001, pages 23 - 28
B. M. MA: "Recent powder development at magnequench", POLYMER BONDED MAGNETS 2002, 2002
D. HOWE; Z. Q. ZHU: "Application of halbach cylinders to electrical machine", PROC. OF THE 17TH INT. WORKSHOP ON RARE EARTH MAGNETS AND THEIR APPLICATIONS, 2000, pages 903 - 922
F. YAMASHITA; H. FUKUNAGA: "Radially-anisotropic rare-earth hydrid magnet with self-organizing binder consolidated under a heat and a low-pressure configuration", PROC. 18TH INT. WORKSHOP ON HIGH PERFORMANCE MAGNETS AND THEIR APPLICATIONS, ANNECY, 2004, pages 76 - 83
H. A. DAVIES; J. I. BETANCOURT; C. L. HARLAND: "Nanophase Pr and Nd/Pr based rare-earth-iron-boron alloys", PROC. OF 16TH INT. WORKSHOP ON RARE EARTH MAGNETS AND THEIR APPLICATIONS, 2000, pages 485 - 495
J. SCHULZE: "Application of high performance magnets for small motors", PROC. OF THE 18TH INTERNATIONAL WORKSHOP ON HIGH PERFORMANCE MAGNETS AND THEIR APPLICATIONS, 2004, pages 908 - 915
N. TAKAHASHI ET AL.: "Investigation of simulated annealing method and its application to optimal design of die mold for orientation of magnetic powder", IEEE TRANS. MAG., vol. 32, no. 3, 1996, pages 1210 - 1213, XP011085527, DOI: doi:10.1109/20.497461
R. W. LEE; E. G. BREWER; N. A. SCHAFFEL: "Hot-pressed Neodymium-Iron-Boron magnets", IEEE TRANS. MAGN., vol. 21, 1985, pages 1958
S. HIRASAWA ET AL.: "Structure and magnetic properties of Nd2Fe14B/FexB-type nanocomposite permanent magnets prepared by strip casting", 9TH JOINT MMM/INTERMAG, 2004, pages 05
T. TAKESHITA; R. NAKAYAMA: "Magnetic properties and micro-structure of the Nd-Fe-B magnet powders produced by hydrogen treatment", PROC. 10TH INT. WORKSHOP ON RARE-EARTH MAGNETS AND THEIR APPLICATIONS, 1989, pages 551 - 562
W. RODEWALD; W. RODEWALD; M. KATTER: "Properties and applications of high performance magnets", PROC. OF THE 18TH INTERNATIONAL WORKSHOP ON HIGH PERFORMANCE MAGNETS AND THEIR APPLICATIONS, 2004, pages 52 - 63
Y. PANG ET AL.: "Comparison of brushless motors having halbach magnetized magnets and shaped parallel magnetized magnets", PROC. OF THE 18TH INTERNATIONAL WORKSHOP ON HIGH PERFORMANCE MAGNETS AND THEIR APPLICATIONS, 2004, pages 400 - 407
YASUHIKO IRIYAMA: "Trend of development of high performance rare-earth bonded magnets", MEXT INNOVATION CREATION PROJECTS/SYMPOSIUM ON EFFICIENT USE OF RARE-EARTH RESOURCES AND ADVANCED MATERIALS, 2002, pages 19 - 26

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010142082A (ja) * 2008-12-15 2010-06-24 Seiko Epson Corp ブラシレス電気機械
JP2010199448A (ja) * 2009-02-27 2010-09-09 Minebea Co Ltd 自己修復性希土類−鉄系磁石

Also Published As

Publication number Publication date
JPWO2008065938A1 (ja) 2010-03-04
US7759833B2 (en) 2010-07-20
KR100981218B1 (ko) 2010-09-10
EP1956698B1 (en) 2018-03-07
CN101485065A (zh) 2009-07-15
EP1956698A1 (en) 2008-08-13
EP1956698A4 (en) 2017-03-15
US20090021097A1 (en) 2009-01-22
JP4735716B2 (ja) 2011-07-27
KR20080092350A (ko) 2008-10-15
CN101485065B (zh) 2011-07-20

Similar Documents

Publication Publication Date Title
JP5169823B2 (ja) ラジアル異方性磁石の製造方法とラジアル異方性磁石を用いた永久磁石モータ及び有鉄心永久磁石モータ
JP3864986B2 (ja) 薄型ハイブリッド着磁型リング磁石、ヨーク付き薄型ハイブリッド着磁型リング磁石、および、ブラシレスモータ
WO2005101614A1 (ja) 回転子及びその製造方法
JP5089979B2 (ja) ラジアル異方性円筒焼結磁石、その製造方法及び永久磁石モータ
WO2008065938A1 (fr) Rotor à aimant permanent et moteur l'utilisant
KR101206576B1 (ko) 이방성을 연속 방향 제어한 희토류-철계 링 자석의 제조 방법
JP5088519B2 (ja) 希土類−鉄系環状磁石の製造方法、及びモータ
JP5470851B2 (ja) 径方向空隙型磁石モータ
JP4042505B2 (ja) 異方性希土類ボンド磁石の製造方法とその永久磁石型モータ
JP2004153867A (ja) ラジアル異方性焼結磁石及びその製造方法並びに磁石ロータ及びモータ
JP3933040B2 (ja) 希土類ボンド磁石の製造方法とそれを有する永久磁石型モータ
JP2006180677A (ja) 鉄心一体型スキュー磁石回転子およびその製造方法
JP4577026B2 (ja) 自己組織化環状異方性希土類ボンド磁石モータの製造方法
JP4508019B2 (ja) 異方性ボンドシート磁石およびその製造装置
JP4622536B2 (ja) ラジアル磁気異方性磁石モータ
JP2007244168A (ja) 多層構造磁石ロータ
JP2006352941A (ja) 多層構造多極磁石ロータ
JPS59148302A (ja) 円筒状永久磁石の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780024939.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008515768

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2007832230

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087016096

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12162435

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE