WO2008065771A1 - Sampling switch and pipeline a/d converter - Google Patents
Sampling switch and pipeline a/d converter Download PDFInfo
- Publication number
- WO2008065771A1 WO2008065771A1 PCT/JP2007/062529 JP2007062529W WO2008065771A1 WO 2008065771 A1 WO2008065771 A1 WO 2008065771A1 JP 2007062529 W JP2007062529 W JP 2007062529W WO 2008065771 A1 WO2008065771 A1 WO 2008065771A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor
- switch
- sampling
- voltage
- sampling switch
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C27/00—Electric analogue stores, e.g. for storing instantaneous values
- G11C27/02—Sample-and-hold arrangements
- G11C27/024—Sample-and-hold arrangements using a capacitive memory element
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/06—Modifications for ensuring a fully conducting state
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/06—Modifications for ensuring a fully conducting state
- H03K17/063—Modifications for ensuring a fully conducting state in field-effect transistor switches
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K2217/00—Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
- H03K2217/0036—Means reducing energy consumption
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/002—Provisions or arrangements for saving power, e.g. by allowing a sleep mode, using lower supply voltage for downstream stages, using multiple clock domains or by selectively turning on stages when needed
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/124—Sampling or signal conditioning arrangements specially adapted for A/D converters
- H03M1/1245—Details of sampling arrangements or methods
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M1/00—Analogue/digital conversion; Digital/analogue conversion
- H03M1/12—Analogue/digital converters
- H03M1/34—Analogue value compared with reference values
- H03M1/38—Analogue value compared with reference values sequentially only, e.g. successive approximation type
- H03M1/44—Sequential comparisons in series-connected stages with change in value of analogue signal
Definitions
- the present invention relates to an analog / digital converter, a sample / hold circuit, a bootstrap sampling switch and a pipeline AZD converter used for a sampling device.
- FIG. 6 shows a sampling switch described in the non-patent document.
- the conventional bootstrap switch has an electric control switch Ml.
- the analog input signal Vin is input to the input terminal 11, and the control signal Vg is given to the electrical control switch control terminal 13 to control the electrical control switch Ml to be on or off, and the analog output signal Vout is Output to output terminal 12.
- This bootstrap switch also includes a capacitor C1, a switch SW2 that connects the first terminal of the capacitor C1 to the low-potential power supply VSS, and a switch SW3 that connects the first terminal of the capacitor C1 and the input terminal 11.
- the electric control switch Ml and the sampling capacitor C2 constitute a sampling circuit 15.
- the electric control switch Ml is usually formed of an M0S transistor, and the input terminal is a source, the output terminal is a drain, and the control signal is a gate.
- the electric control switch Ml is composed of an N-channel MOS transistor, and becomes conductive when the control terminal 13 is high (VDD potential or higher) and non-conductive when the control terminal 13 is low (VSS potential).
- the switches SW1 to SW5 are also usually formed by MOS transistors, and their conduction and non-passage are controlled by a control signal.
- Vin is an analog signal input to the input terminal 11
- CLK1 is a clock signal that controls the switches SW1, SW2, and SW3
- CLK2b is a clock signal that controls the switches SW3 and SW4
- Vg is ,
- the control signal of the electric control switch Ml, Vout represents the sampled analog signal output to the output terminal 12.
- Clock signals CLK1, CLK2b Force When the switch is S high, the switch controlled by this signal is turned on, and when it is low, it is turned off.
- FIG. 8 shows conduction and non-conduction states of the switches during the hold period of FIG. 7
- FIG. 9 shows conduction and non-conduction states of the switches during the sample period of FIG.
- FIG. 9 shows a state where the hold period has shifted to the next sample period.
- the capacitor C1 is connected between the input terminal 11 and the electrical control switch control terminal 13, and the switches SW1, SW2, and SW5 are turned off.
- both the clock signal CLK1 and the clock signal CLK2b are low, and all the switches are non-conductive. Since the Sampnore period starts after this period, the charge Q1 stored in the capacitor C1 is also retained during the Sampnore period. Due to the held charge Q1, the voltage of VDD-VSS is held at both ends of the capacitor C1, and the voltage between the input terminal 11 and the electrical control switch control terminal 13 is related to the voltage of the analog input signal Vin. A constant voltage (VDD— V SS) is applied.
- a bootstrap switch is used in such a circuit configuration, and the voltage (Vg_Vin) between the electric control switch control terminal 13 and the input terminal 11 is a predetermined voltage (VDD-VSS). Because it is constant, the electric control switch Ml formed by the M ⁇ S transistor The voltage between the gate and gate is constant, the on-resistance is almost constant regardless of the input voltage, and a low-distortion sampling switch can be formed.
- the electric control switch control terminal 13 is normally fixed to the high potential power supply VDD, and when the input voltage Vin changes, the voltage (Vg Since -Vin) is not constant, the on-resistance of the switch also changes with the input voltage, which causes distortion in the sampling output.
- Patents ffl ⁇ l Bootstrapped low-voltage analog switches ⁇ Jesper Steensgaard, ireu its and Systems ⁇ 1999, ISCAS '99. Proceedings of the 1999 IEEE International Symp osium on Volume2,30 May-2 June 1999 Page (s ): 29_32 vol.2 ( Figure 3)
- the voltage applied to the capacitor C1 is made lower than the voltage (VDD—VSS). In this case, however, the voltage is lower than the high potential power supply voltage VDD. It is necessary to make a circuit that generates a voltage higher than the low potential power supply voltage VSS. In addition, since these circuits need to be fully charged within the hold period, it is necessary to lower the output impedance, which leads to an increase in power consumption and an increase in the number of device elements.
- the present invention has been made to solve the above-mentioned problems, and its object is to provide a control signal generation circuit for an electric control switch so as not to exceed the gate oxide film breakdown voltage.
- a circuit that adds new power consumption is added while maintaining a substantially constant on-resistance regardless of the input signal level, which is a characteristic of the conventional bootstrap sampling switch.
- Vg electrical control switch control signal
- the present invention that achieves the above object is configured to generate an electric control switch control signal with high voltage accuracy only by adding a capacity and a switch that do not increase power consumption.
- the sampling switch of the present invention is a boost strap type sampling switch having a substantially constant on-resistance regardless of the level of the input signal input to the input terminal, and the input signal
- a sampling circuit having an electrical control switch for propagating the signal, and a sampling capacity for charging the charge of the input signal propagated from the electrical control switch, a first capacitor, and a second capacitor,
- both ends of the first capacitor are charged with a stored charge corresponding to a voltage difference between a high potential power source and a low potential power source, and the second capacitor
- the first capacitor and the second capacitor are connected in parallel during a sampling period in which zero charge is charged at both ends of the capacitor and the electrical control switch is turned on. , Connect the voltage at the terminals of one that the parallel connection to said input terminal, characterized in that the voltage of the other terminal and a switch group for the control signal of the electric control switch.
- the present invention is characterized in that, in the sampling switch, both ends of the second capacitor are connected to a low potential power source during the hold period.
- the present invention is characterized in that, in the sampling switch, both ends of the second capacitor are connected to a high potential power source during the hold period.
- the present invention is characterized in that, in the sampling switch, both ends of the second capacitor are connected to the input terminal during the hold period.
- the present invention of [0018] is characterized in that, in the sampling switch, a capacitance value of the first capacitor and the second capacitor is formed at a ratio of n: m (n and m are integers).
- the present invention provides the first capacitor and the second capacitor. Are each formed using an integer number of unit capacities.
- the electrical control switch includes a source electrode connected to the input terminal, a drain electrode connected to the sampling capacitor, and a gate electrode to which the control signal is applied. It is composed of transistors.
- the pipeline A / D converter of the present invention is arranged continuously after the sampling switch and the sampling switch, and converts a plurality of output signals of the sampling switch into a multi-bit digital signal. And a digital correction circuit for correcting the digital output value of each of the stages.
- control voltage of the electrical control switch of the sampling circuit can be set to the breakdown voltage of the gate oxide film only by appropriately setting the capacitance value and the capacitance ratio of the first capacitor and the second capacitor. It can be set not to exceed. Therefore, it is possible to obtain a boost strap type sampling switch that does not increase power consumption or increase the number of device elements.
- the first capacitor C1 and the newly added second capacitor each have an integral number of unit capacitors, a control signal with high voltage accuracy can be generated. The variation in the characteristics of the sampling switch is effectively suppressed.
- the gate oxide film can be formed without increasing the power consumption and by adding only the capacitance with a large increase in the number of device elements or by adding only this capacitance and the switch. Electric control switch control voltage can be generated without exceeding the breakdown voltage.
- the sampling switch of the present invention since the first capacitor C1 and the second capacitor to be newly added are each configured with an integer number of unit capacitors, a control signal with high voltage accuracy is provided. This produces an effect of effectively suppressing variation in the characteristics of the sampling switch.
- FIG. 1 is a circuit diagram according to Embodiment 1 of the present invention.
- FIG. 2 is a diagram related to Embodiment 1 of the present invention
- FIG. 2 is a diagram illustrating a switch state during a hold period.
- FIG. 3 is a diagram showing a switch state during a sampling period of the sampling switch according to the first embodiment of the present invention.
- FIG. 4 shows an embodiment of the present invention.
- FIG. 5 is a circuit diagram according to Embodiment 3 of the present invention: [FIG. 6]
- Fig. 8 is a diagram showing the state of the switch during the hold period of the conventional sampling switch.
- Fig. 9 is a diagram showing the state of the switch during the Sampnore period of the conventional sampling switch.
- FIG. 10 is related to Embodiment 5 of the present invention.
- FIG. 10 is a block diagram of the used pipeline A / D converter.
- FIG. 1 shows a sampling switch according to Embodiment 1 of the present invention.
- a second capacitance C3 is additionally inserted.
- the number and configuration of the switch group SW0 consisting of five switches SW1 to SW5 is There is no change.
- the first terminal of the capacitor C3 is connected to the terminal to which the switch SW2 and the switch SW3 are connected, and the second terminal of the capacitor C3 is connected to the control terminal 13 of the electric control switch Ml. Connected.
- the operation timing at which SW1 to SW5 of this embodiment are turned on and off is the same as that in FIG. 7 of the conventional example.
- Fig. 3 shows the connection of each switch when the next sample period starts.
- Capacitor C1 and capacitor C3 are connected in parallel by switch SW3 and switch SW4, and both terminals thereof are connected to input terminal 11 and control terminal (gate terminal of the MOS transistor) 13 of electric control switch Ml.
- the voltage Vg applied to the control terminal 13 becomes Vin + (VDD ⁇ VSS) ⁇ C1 / (C1 + C3). This is because when moving from the hold period to the sample period, the charge Q1 stored in the capacitor C1 is held, and the charge is redistributed to the capacitors C1 and C3 connected in parallel.
- VDD—VSS VDD—VSS
- X Cl V3sa X (CI + C3)
- V3sa This is because (VDD-VSS) XC 1 / (CI + C3).
- C1 / (C1 + C3) ⁇
- the voltage Vg applied to the control terminal 13 is Vin + ⁇ X (VDD ⁇ VSS) (0 ⁇ 1).
- the switch Ml is formed of MOS transistors.
- the force and voltage (Vg_Vin) between the control terminal 13 and the input terminal 11 is ⁇ X (VDD ⁇ VSS)
- the bootstrap has a constant on-resistance regardless of the input signal. Keep the characteristics of the switch. ⁇ can be freely set by determining the capacitance C1 and the capacitance C3 so as not to exceed the gate oxide breakdown voltage.
- the problem of reliability due to the gate oxide film breakdown voltage can be prevented only by adding the capacitor C3, and an effect of hardly increasing the power consumption can be obtained. It is done.
- FIG. 4 shows a sampling switch according to Embodiment 2 of the present invention.
- the capacity (second capacity) C4, the switch SW6, and the switch SW7 are arranged in comparison with the conventional example.
- the switch SW6 is connected between the first terminal of the capacitor C4 and the high potential power supply VDD, and the switch SW7 is a terminal connecting the first terminal of the capacitor C4, the switch SW2 and the switch SW3.
- the second terminal of the capacitor C4 is connected to the terminal connected to the switch SW1 and the switch SW4.
- the switch SW6 operates at the timing of the clock signal CLK1 in Fig. 7, the switch SW7 operates at the timing of the clock signal CLK2b, and during the hold period, the switch SW6 is conductive and the switch SW7 is nonconductive, while the sample period Then, switch SW6 is non-conductive and switch SW7 is conductive.
- both terminals of the capacitor C4 are connected to the high-potential power supply VDD, and there is no potential difference between the quantity terminals, so that the stored charge is zero as in the first embodiment.
- the configuration in which the capacitor C1 and the capacitor C4 are connected in parallel and connected between the input terminal 11 and the electric control switch control terminal 13 is the same as in the first embodiment, and the voltage of Vg is Vin + (VDD ⁇ VSS) ⁇ C1 / (C1 + C4), and the same effect as in the first embodiment can be obtained. There are two more switches than in the first embodiment. It is not a problem.
- FIG. 5 shows a sampling switch according to Embodiment 3 of the present invention.
- a capacitor (second capacitor) C5, a switch SW8, and a switch SW9 are added to the conventional example.
- the switch SW8 is connected between both terminals of the capacitor C5, and the first terminal of the capacitor C5 is connected to the input terminal 11.
- the switch SW9 is connected to the second terminal of the capacitor C5 and a terminal connecting the switch SW1 and the switch SW4.
- the switch SW8 operates at the timing of the clock signal CLK1 in FIG. 7, the switch SW9 operates at the timing of the clock signal CLK2b, and during the hold period, the switch SW8 is conductive and the switch SW9 is nonconductive. In the sample period, the switch SW8 is non-conductive and the switch SW9 is conductive.
- the voltage Vg applied to pin 13 is Vin + (VDD -VSS) X nZ (n + m).
- this capacitance ratio is 1% or less, the control voltage variation of the electric control switch Ml can be suppressed to 1% or less, and the on-resistance variation in manufacturing of the electric control switch Ml is almost 1%.
- the following can be kept small.
- a sampling switch characteristic variation due to on-resistance variation, In addition, variations in distortion characteristics can be reduced, and a sampling switch with good characteristics can be provided.
- the electric control switch Ml is composed of an n-channel MOS transistor, but it goes without saying that the same effect can be obtained by using a p-channel MOS transistor.
- a detailed description of the configuration of switches SW1 to SW9 is omitted. Usually, MOS switches are used.
- FIG. 10 shows a fourth embodiment of the present invention. This embodiment shows the application of the sampling switch described above.
- This figure shows a pipeline A / D converter.
- the first stage is a sample-no-hold circuit 20 composed of the sampling switches described above, and a plurality of consecutively arranged downstream stages.
- a plurality of stages 211 to 21n comprising the above arithmetic circuits.
- the plurality of stages 211 to 21n convert the output signal of the sampling switch, that is, the charge amount of the sampling capacitor C2 shown in FIG. 1, into a predetermined multi-bit digital signal.
- These digital signals are input to the digital correction circuit 22 and corrected, and the corrected output becomes a multi-bit digital output value from the pipeline A / D converter.
- the sampling switch of the present invention has the bootstrap circuit that effectively reduces the control voltage of the MOS transistor that constitutes the switch. It is useful as a hold circuit, etc., and can also be applied to pipeline / analog / digital conversion circuit applications.
Landscapes
- Electronic Switches (AREA)
Abstract
A boot strap sampling switch has a capacitor C1 for charging a VDD-VSS voltage and a capacitor C3 for charging zero charges during a hold period. During a sampling period, the capacitor C1 and the capacitor C3 are connected in parallel and this parallel circuit is connected between an analog input terminal Vin and the control terminal of an electric control switch (M1) consisting of an MOS transistor. Capacitance ratio between the capacitor C1 and the capacitor C3 is set to such a capacitance ratio that the control voltage of the electric control switch (M1) is reduced to a voltage not exceeding the withstand voltage of a gate oxide film. Consequently, the withstand voltage of the gate oxide film in the electric control switch (M1) can be prevented from being exceeded by simply adding the capacitor C3 without causing an increase in power consumption or in the number of elements, and the electric control switch (M1) can be protected effectively.
Description
明 細 書 Specification
サンプリングスィッチ及びパイプライン AZD変換器 Sampling switch and pipeline AZD converter
技術分野 Technical field
[0001] 本発明は、アナログ/デジタル変換器、サンプル 'ホールド回路及び、サンプリング デバイスに使用するブートストラップサンプリングスィッチ及びパイプライン AZD変換 器に関するものである。 The present invention relates to an analog / digital converter, a sample / hold circuit, a bootstrap sampling switch and a pipeline AZD converter used for a sampling device.
背景技術 Background art
[0002] 従来、ブートストラップサンプリングスィッチとして、例えば非特許文献 1に記載され ているようなものがあった。図 6は、前記非特許文献に記載されたサンプリングスイツ チを示す。従来のブートストラップスィッチは、電気制御スィッチ Mlを有する。アナ口 グ入力信号 Vinは入力端子 11に入力され、また、電気制御スィッチ制御端子 13に 制御信号 Vgを与えて、電気制御スィッチ Mlの導通、非道通の制御をし、アナログ出 力信号 Voutを出力端子 12に出力する。また、このブートストラップスィッチは、容量 C1と、容量 C1の第 1の端子を低電位電源 VSSに接続するスィッチ SW2と、容量 C1 の第 1の端子と入力端子 11との間を接続するスィッチ SW3と、容量 C1の第 2の端子 と高電位電源 VDDとを接続するスィッチ SW1と、容量 C1の第 2の端子と電気制御ス イッチ Mlの制御端子 13とを接続するスィッチ SW4と、電気制御スィッチ Mlの制御 端子 13と低電位電源 VSSとを接続するスィッチ SW5と、電気制御スィッチ Mlの出 力端子 12と低電位電源 VSSとの間に配置されて出力アナログ信号をホールドする サンプリング容量 C2とからなる。前記電気制御スィッチ Mlとサンプリング容量 C2と はサンプリング回路 15を構成する。 Conventionally, as a bootstrap sampling switch, for example, there is one described in Non-Patent Document 1. FIG. 6 shows a sampling switch described in the non-patent document. The conventional bootstrap switch has an electric control switch Ml. The analog input signal Vin is input to the input terminal 11, and the control signal Vg is given to the electrical control switch control terminal 13 to control the electrical control switch Ml to be on or off, and the analog output signal Vout is Output to output terminal 12. This bootstrap switch also includes a capacitor C1, a switch SW2 that connects the first terminal of the capacitor C1 to the low-potential power supply VSS, and a switch SW3 that connects the first terminal of the capacitor C1 and the input terminal 11. A switch SW1 connecting the second terminal of the capacitor C1 and the high-potential power supply VDD, a switch SW4 connecting the second terminal of the capacitor C1 and the control terminal 13 of the electric control switch M1, and an electric control switch. From switch SW5 that connects Ml control terminal 13 and low-potential power supply VSS, and sampling capacitor C2 that is placed between output terminal 12 of electric control switch Ml and low-potential power supply VSS and holds the output analog signal Become. The electric control switch Ml and the sampling capacitor C2 constitute a sampling circuit 15.
[0003] 前記電気制御スィッチ Mlは、半導体集積回路では、通常、 M〇Sトランジスターで 形成され、入力端子はソース、出力端子はドレイン、制御信号はゲートになる。図 6の 例では、電気制御スィッチ Mlは Nチャンネル MOSトランジスターで構成されており、 制御端子 13がハイ (VDD電位以上)の時に導通状態となり、ロー(VSS電位)の時 に非導通状態となる。スィッチ SW1〜SW5も通常、 MOSトランジスターで形成され、 制御信号により、その導通、非道通が制御される。
[0004] 次に、従来のブートストラップサンプリングスィッチの動作を図 7のタイミング波形と、 図 8及び図 9用いて説明する。 [0003] In the semiconductor integrated circuit, the electric control switch Ml is usually formed of an M0S transistor, and the input terminal is a source, the output terminal is a drain, and the control signal is a gate. In the example shown in Fig. 6, the electric control switch Ml is composed of an N-channel MOS transistor, and becomes conductive when the control terminal 13 is high (VDD potential or higher) and non-conductive when the control terminal 13 is low (VSS potential). . The switches SW1 to SW5 are also usually formed by MOS transistors, and their conduction and non-passage are controlled by a control signal. Next, the operation of the conventional bootstrap sampling switch will be described with reference to the timing waveform of FIG. 7 and FIGS. 8 and 9.
[0005] 図 7において、 Vinは、入力端子 11に入力されるアナログ信号、 CLK1は、スィッチ SW1、 SW2、 SW3を制御するクロック信号、 CLK2bは、スィッチ SW3、 SW4を制御 するクロック信号、 Vgは、電気制御スィッチ Mlの制御信号、 Voutは、出力端子 12 に出力されるサンプリングされたアナログ信号を表す。クロック信号 CLK1、 CLK2b 力 Sハイの時、この信号で制御されるスィッチが導通状態になり、ローの時に非導通状 態になる。 In FIG. 7, Vin is an analog signal input to the input terminal 11, CLK1 is a clock signal that controls the switches SW1, SW2, and SW3, CLK2b is a clock signal that controls the switches SW3 and SW4, and Vg is , The control signal of the electric control switch Ml, Vout represents the sampled analog signal output to the output terminal 12. Clock signals CLK1, CLK2b Force When the switch is S high, the switch controlled by this signal is turned on, and when it is low, it is turned off.
[0006] 図 8は、図 7のホールド期間での各スィッチの導通、非導通状態を表し、図 9は、図 7のサンプル期間での各スィッチの導通、非導通状態を表す。 FIG. 8 shows conduction and non-conduction states of the switches during the hold period of FIG. 7, and FIG. 9 shows conduction and non-conduction states of the switches during the sample period of FIG.
[0007] 図 8のホールド期間では、容量 C1は高電位電源 VDDと低電位電源 VSSと間に接 続され、容量 C1には電荷 Q1が蓄えられる。容量 Cに印加される電圧が所定値 Vの 時に蓄えられる電荷 Qは、 Q = C XVであるので、容量 C1に蓄えられる電荷 Q1は、 Q1 = C1 X (VDD— VSS)である。このとき、電気制御スィッチ Mlは、そのゲートが 低電位電源 VSSに接続されていて、非導通状態である。このため、容量 C2には、電 気制御スィッチ Mlが非導通になる直前の電圧が保持されている。 [0007] In the hold period of FIG. 8, the capacitor C1 is connected between the high-potential power supply VDD and the low-potential power supply VSS, and the charge C1 is stored in the capacitor C1. Since the charge Q stored when the voltage applied to the capacitor C is a predetermined value V is Q = C XV, the charge Q1 stored in the capacitor C1 is Q1 = C1 X (VDD – VSS). At this time, the electrical control switch Ml is in a non-conductive state because its gate is connected to the low potential power supply VSS. For this reason, the voltage immediately before the electric control switch Ml is turned off is held in the capacitor C2.
[0008] 図 9は、ホールド期間から次のサンプノレ期間に移った状態を示している。容量 C1は 、入力端子 11と電気制御スィッチ制御端子 13との間に接続され、スィッチ SW1、 S W2、 SW5は、非導通状態になる。図 7でホールド期間からサンプノレ期間に移る遷移 期間では、クロック信号 CLK1とクロック信号 CLK2bが共にローになり、スィッチ全て が非導通になる。この期間後にサンプノレ期間に入るため、容量 C1に蓄えられていた 電荷 Q1は、サンプノレ期間も保持されている。保持された電荷 Q1のため、容量 C1の 両端には、 VDD— VSSの電圧が保持され、入力端子 11と電気制御スィッチ制御端 子 13との間には、アナログ入力信号 Vinの電圧に関係なぐ一定の電圧 (VDD— V SS)が力、かっている。 FIG. 9 shows a state where the hold period has shifted to the next sample period. The capacitor C1 is connected between the input terminal 11 and the electrical control switch control terminal 13, and the switches SW1, SW2, and SW5 are turned off. In FIG. 7, in the transition period from the hold period to the sample period, both the clock signal CLK1 and the clock signal CLK2b are low, and all the switches are non-conductive. Since the Sampnore period starts after this period, the charge Q1 stored in the capacitor C1 is also retained during the Sampnore period. Due to the held charge Q1, the voltage of VDD-VSS is held at both ends of the capacitor C1, and the voltage between the input terminal 11 and the electrical control switch control terminal 13 is related to the voltage of the analog input signal Vin. A constant voltage (VDD— V SS) is applied.
[0009] このような回路構成で使用するのがブートストラップスィッチであり、電気制御スイツ チ制御端子 13と入力端子 11との間の電圧 (Vg_Vin)が、所定電圧 (VDD— VSS) であって一定のため、 M〇Sトランジスターで形成する電気制御スィッチ Mlは、ソー
ス、ゲート間の電圧が一定であり、入力電圧に関係なくほぼ一定のオン抵抗となり、 歪みの少なレ、サンプリングスィッチが形成できる。ブートストラップを使用しなレ、通常 のサンプリングスィッチの場合には、サンプル期間のとき、電気制御スィッチ制御端 子 13が通常は高電位電源 VDDに固定され、入力電圧 Vinが変化すると、電圧 (Vg -Vin)が一定でなくなるために、スィッチのオン抵抗も入力電圧によって変化し、こ れが原因で、サンプリング出力に歪みを生じることになる。 [0009] A bootstrap switch is used in such a circuit configuration, and the voltage (Vg_Vin) between the electric control switch control terminal 13 and the input terminal 11 is a predetermined voltage (VDD-VSS). Because it is constant, the electric control switch Ml formed by the M〇S transistor The voltage between the gate and gate is constant, the on-resistance is almost constant regardless of the input voltage, and a low-distortion sampling switch can be formed. In the case of a normal sampling switch that does not use bootstrap, during the sampling period, the electric control switch control terminal 13 is normally fixed to the high potential power supply VDD, and when the input voltage Vin changes, the voltage (Vg Since -Vin) is not constant, the on-resistance of the switch also changes with the input voltage, which causes distortion in the sampling output.
^^特許乂 ffl^l: Bootstrapped low-voltage analog switches^ Jesper Steensgaard、し ireu its and Systems^ 1999、 ISCAS '99. Proceedings of the 1999 IEEE International Symp osium on Volume2,30 May-2 June 1999 Page(s):29_32 vol.2(Figure3) ^^ Patents ffl ^ l: Bootstrapped low-voltage analog switches ^ Jesper Steensgaard, ireu its and Systems ^ 1999, ISCAS '99. Proceedings of the 1999 IEEE International Symp osium on Volume2,30 May-2 June 1999 Page (s ): 29_32 vol.2 (Figure 3)
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0010] し力、しながら、前記従来の構成では、サンプリング期間に電気制御スィッチ Mlの制 御端子 13に電圧 (Vin+ (VDD—VSS) )の電圧がかかり、耐圧的に問題がある場 合があった。電気制御スィッチ Mlが MOSトランジスターの場合、制御端子 13は M OSトランジスターのゲート端子であり、ここに電圧(Vin+ (VDD—VSS) )がかかる。 ゲート端子に許容される印加電圧は、 MOSトランジスターを形成するゲート酸化膜 厚の耐圧によって決まっており、通常、動作電源電圧(VDD—VSS)プラスひの電 圧に設定されている。アナログ入力電圧 Vinが高くなり、 Vin+ (VDD—VSS) > (V DD-VSS) + a、すなわち、 Vin > aとなると、ゲート酸化膜耐圧を超え信頼性に 問題を生じることになる。 [0010] However, in the conventional configuration, when the voltage (Vin + (VDD—VSS)) is applied to the control terminal 13 of the electric control switch Ml during the sampling period, there is a problem with the withstand voltage. was there. When the electrical control switch Ml is a MOS transistor, the control terminal 13 is the gate terminal of the MOS transistor, and a voltage (Vin + (VDD—VSS)) is applied to it. The applied voltage allowed at the gate terminal is determined by the breakdown voltage of the gate oxide film forming the MOS transistor, and is usually set to the operating power supply voltage (VDD-VSS) plus one. If the analog input voltage Vin increases and Vin + (VDD—VSS)> (V DD-VSS) + a, that is, Vin> a, the gate oxide breakdown voltage will be exceeded, causing a problem in reliability.
[0011] 前記の課題を解決するために、容量 C1に印加する電圧を、電圧 (VDD—VSS)よ りも低くすることが考えられるが、この場合は、高電位電源電圧 VDDよりも低い電圧 を発生する回路、又は低電位電源電圧 VSSよりも高い電圧を発生する回路を別に 作る必要がある。またこれらの回路は、ホールド期間内に容量を充電しきる必要があ るため、出力インピーダンスを下げる必要があり、そのため、消費電力の増大やデバ イス素子数の増大を招く。 [0011] In order to solve the above problem, it is conceivable that the voltage applied to the capacitor C1 is made lower than the voltage (VDD—VSS). In this case, however, the voltage is lower than the high potential power supply voltage VDD. It is necessary to make a circuit that generates a voltage higher than the low potential power supply voltage VSS. In addition, since these circuits need to be fully charged within the hold period, it is necessary to lower the output impedance, which leads to an increase in power consumption and an increase in the number of device elements.
[0012] 本発明は、前記課題を解決するためになされたものであって、その目的は、ゲート 酸化膜耐圧を超えることのないように、電気制御スィッチの制御信号生成回路を提供
するであり、従来のブートストラップサンプリングスィッチの特徴である入力信号のレ ベルに関係なく実質的に一定のオン抵抗であることは維持しながら、新たな消費電 力の増大を招く回路を付加することなぐまた、デバイス素子数の大きな増加を招くこ となぐ電圧精度の良い電気制御スィッチ制御信号 Vgを生成することにある。 [0012] The present invention has been made to solve the above-mentioned problems, and its object is to provide a control signal generation circuit for an electric control switch so as not to exceed the gate oxide film breakdown voltage. In addition, a circuit that adds new power consumption is added while maintaining a substantially constant on-resistance regardless of the input signal level, which is a characteristic of the conventional bootstrap sampling switch. Of course, it is also necessary to generate an electrical control switch control signal Vg with good voltage accuracy that would cause a large increase in the number of device elements.
課題を解決するための手段 Means for solving the problem
[0013] 前記の目的を達成すベぐ本発明では、消費電力を増加することなぐ容量とスイツ チの追加のみで、電圧精度の良い電気制御スィッチ制御信号を発生するように構成 する。 [0013] The present invention that achieves the above object is configured to generate an electric control switch control signal with high voltage accuracy only by adding a capacity and a switch that do not increase power consumption.
[0014] 具体的に、本発明のサンプリングスィッチは、入力端子に入力された入力信号のレ ベルに関係なく実質的に一定のオン抵抗を有するブーストストラップ方式のサンプリ ングスィッチであって、前記入力信号を伝播するための電気制御スィッチ、及び、前 記電気制御スィッチから伝播された前記入力信号の電荷を充電するサンプリング容 量とを有するサンプリング回路と、第 1の容量と、第 2の容量と、前記電気制御スイツ チを非導通状態にするホールド期間において、前記第 1の容量の両端に高電位電 源と低電位電源との差電圧に相当する蓄積電荷を充電すると共に、前記第 2の容量 の両端にゼロ電荷を充電し、一方、前記電気制御スィッチを導通状態にするサンプリ ング期間において、前記第 1の容量と前記第 2の容量とを並列接続し、この並列接続 した一方の端子の電圧を前記入力端子に接続し、他方の端子の電圧を前記電気制 御スィッチの制御信号とするスィッチ群とを備えたことを特徴とする。 Specifically, the sampling switch of the present invention is a boost strap type sampling switch having a substantially constant on-resistance regardless of the level of the input signal input to the input terminal, and the input signal A sampling circuit having an electrical control switch for propagating the signal, and a sampling capacity for charging the charge of the input signal propagated from the electrical control switch, a first capacitor, and a second capacitor, In the hold period during which the electrical control switch is in a non-conducting state, both ends of the first capacitor are charged with a stored charge corresponding to a voltage difference between a high potential power source and a low potential power source, and the second capacitor The first capacitor and the second capacitor are connected in parallel during a sampling period in which zero charge is charged at both ends of the capacitor and the electrical control switch is turned on. , Connect the voltage at the terminals of one that the parallel connection to said input terminal, characterized in that the voltage of the other terminal and a switch group for the control signal of the electric control switch.
[0015] 本発明は、前記サンプリングスィッチにおいて、前記ホールド期間では、前記第 2の 容量の両端を低電位電源に接続することを特徴とする。 The present invention is characterized in that, in the sampling switch, both ends of the second capacitor are connected to a low potential power source during the hold period.
[0016] 本発明は、前記サンプリングスィッチにおいて、前記ホールド期間では、前記第 2の 容量の両端を高電位電源に接続することを特徴とする。 The present invention is characterized in that, in the sampling switch, both ends of the second capacitor are connected to a high potential power source during the hold period.
[0017] 本発明は、前記サンプリングスィッチにおいて、前記ホールド期間では、前記第 2の 容量の両端を前記入力端子に接続することを特徴とする。 The present invention is characterized in that, in the sampling switch, both ends of the second capacitor are connected to the input terminal during the hold period.
[0018] の本発明は、前記サンプリングスィッチにおいて、前記第 1の容量と前記第 2の容 量の容量値とは、 n: m (n、 mは整数)の比で形成されることを特徴とする。 The present invention of [0018] is characterized in that, in the sampling switch, a capacitance value of the first capacitor and the second capacitor is formed at a ratio of n: m (n and m are integers). And
[0019] 本発明は、前記サンプリングスィッチにおいて、前記第 1の容量と前記第 2の容量と
は、各々、単位容量を整数個使用して形成されることを特徴とする In the sampling switch, the present invention provides the first capacitor and the second capacitor. Are each formed using an integer number of unit capacities.
本発明は、前記サンプリングスィッチにおいて、前記電気制御スィッチは、前記入 力端子に接続されたソース電極、前記サンプリング容量に接続されたドレイン電極、 及び前記制御信号が与えられるゲート電極を有する M〇Sトランジスタで構成される ことを特徴とする。 In the sampling switch, the electrical control switch includes a source electrode connected to the input terminal, a drain electrode connected to the sampling capacitor, and a gate electrode to which the control signal is applied. It is composed of transistors.
[0020] 本発明のパイプライン A/D変換器は、前記サンプリングスィッチと、前記サンプリ ングスィッチの後段に連続して配置され、前記サンプリングスィッチの出力信号を複 数ビットのデジタル信号に変換する複数個の演算回路よりなる複数ステージと、前記 各ステージのデジタル出力値を補正するデジタル補正回路とを備えたを備えたことを 特徴とする。 [0020] The pipeline A / D converter of the present invention is arranged continuously after the sampling switch and the sampling switch, and converts a plurality of output signals of the sampling switch into a multi-bit digital signal. And a digital correction circuit for correcting the digital output value of each of the stages.
[0021] 以上により、本発明では、第 1の容量と第 2の容量との容量値及び容量比を適宜設 定するだけで、サンプリング回路の電気制御スィッチの制御電圧をゲート酸化膜の耐 圧を超えることのないように設定できる。従って、消費電力の増大やデバイス素子数 の増大を招くことなぐブーストストラップ方式のサンプリングスィッチを得ることができ る。 As described above, in the present invention, the control voltage of the electrical control switch of the sampling circuit can be set to the breakdown voltage of the gate oxide film only by appropriately setting the capacitance value and the capacitance ratio of the first capacitor and the second capacitor. It can be set not to exceed. Therefore, it is possible to obtain a boost strap type sampling switch that does not increase power consumption or increase the number of device elements.
[0022] 特に、本発明では、第 1の容量 C1と新たに付加する第 2の容量とを各々単位容量 を整数個並べた構成としたので、電圧精度の良い制御信号を生成することができ、 サンプリングスィッチの特性ばらつきが有効に抑制される。 [0022] In particular, according to the present invention, since the first capacitor C1 and the newly added second capacitor each have an integral number of unit capacitors, a control signal with high voltage accuracy can be generated. The variation in the characteristics of the sampling switch is effectively suppressed.
発明の効果 The invention's effect
[0023] 以上説明したように、本発明のサンプリングスィッチによれば、消費電力の増加なく 、且つデバイス素子数の大きな増加なぐ容量のみ又はこの容量とスィッチのみの追 加だけで、ゲート酸化膜の耐圧を超えることのなレ、電気制御スィッチ制御電圧を生成 できる。 [0023] As described above, according to the sampling switch of the present invention, the gate oxide film can be formed without increasing the power consumption and by adding only the capacitance with a large increase in the number of device elements or by adding only this capacitance and the switch. Electric control switch control voltage can be generated without exceeding the breakdown voltage.
[0024] 特に、本発明のサンプリングスィッチによれば、第 1の容量 C1と新たに付加する第 2 の容量とを各々単位容量を整数個並べた構成としたので、電圧精度の良い制御信 号を生成することができ、サンプリングスィッチの特性ばらつきを有効に抑制できる効 果を奏する。 [0024] In particular, according to the sampling switch of the present invention, since the first capacitor C1 and the second capacitor to be newly added are each configured with an integer number of unit capacitors, a control signal with high voltage accuracy is provided. This produces an effect of effectively suppressing variation in the characteristics of the sampling switch.
図面の簡単な説明
[図 1]図 1は本発明の実施形態 1に係; す回路図である。 Brief Description of Drawings FIG. 1 is a circuit diagram according to Embodiment 1 of the present invention.
[図 2]図 2は本発明の実施形態 1に係; ホールド期間のスイツ チの状態を示す図である。 FIG. 2 is a diagram related to Embodiment 1 of the present invention; FIG. 2 is a diagram illustrating a switch state during a hold period.
[図 3]図 3は本発明の実施形態 1に係るサンプリングスィッチのサンプル期間のスイツ チの状態を示す図である。 [Fig. 3] Fig. 3 is a diagram showing a switch state during a sampling period of the sampling switch according to the first embodiment of the present invention.
[図 5]図 5は本発明の実施形態 3に係るサ: —回路図である [図 6] [FIG. 5] FIG. 5 is a circuit diagram according to Embodiment 3 of the present invention: [FIG. 6]
園 8]図 8は従来例のサンプリングスィッチのホールド期間のスィッチの状態を示す図 である。 8] Fig. 8 is a diagram showing the state of the switch during the hold period of the conventional sampling switch.
園 9]図 9は従来例のサンプリングスィッチのサンプノレ期間のスィッチの状態を示す図 である。 9] Fig. 9 is a diagram showing the state of the switch during the Sampnore period of the conventional sampling switch.
[図 10]図 10は本発明の実施形態 5に係; 使用したパイプライ ン A/D変換器のブロック図である。 FIG. 10 is related to Embodiment 5 of the present invention; FIG. 10 is a block diagram of the used pipeline A / D converter.
符号の説明 Explanation of symbols
C1 第 1の容量 C1 1st capacity
C2 サンプリング容量 C2 sampling capacity
C3、 C4、 C5 第 2の容量 C3, C4, C5 second capacity
SW0 スィッチ群 SW0 switch group
SW1〜SW9 スィッチ SW1 to SW9 switch
Ml 電気制御スィッチ Ml Electric control switch
VDD VDD
VSS 低電位電源 VSS Low potential power supply
Vin アナログ入力信号 Vin Analog input signal
Vout アナログ出力信号 Vout analog output signal
Vg 電気制御スィッチ制御信号 Vg Electric control switch control signal
11 入力端子
12 出力端子 11 Input terminal 12 Output terminal
13 電気制御スィッチ制御端子 13 Electric control switch control terminal
20 サンプリングスィッチ 20 Sampling switch
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下、本発明の実施形態について図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0028] (実施形態 1) [0028] (Embodiment 1)
図 1は、本発明の実施形態 1に係るサンプリングスィッチを示している。従来の図 6と 比較すると、容量 (第 1の容量) C1に加えて、第 2の容量 C3を追加挿入しており、 5個 のスィッチ SW1〜SW5より成るスィッチ群 SW0の個数及び構成には変更はない。 FIG. 1 shows a sampling switch according to Embodiment 1 of the present invention. Compared to the conventional Fig. 6, in addition to the capacitance (first capacitance) C1, a second capacitance C3 is additionally inserted.The number and configuration of the switch group SW0 consisting of five switches SW1 to SW5 is There is no change.
[0029] 図 1において、容量 C3の第 1の端子は、スィッチ SW2とスィッチ SW3とが接続され ている端子に接続し、容量 C3の第 2の端子は、電気制御スィッチ Mlの制御端子 13 に接続している。本実施形態の SW1〜SW5を導通、非導通にする動作タイミングは 、従来例の図 7と同じである。図 7のホールド期間においての各スィッチの状態を示し たものが図 2である。このホールド期間において、新たに付加された容量 C3は、スィ ツチ SW2及びスィッチ SW5によって、両端子が共に低電位電源 VSSに接続されて いる。この時、容量 C3の両端が同電位であるので、この容量 C3に蓄えられる電荷 Q 3はゼロである。容量 C1に蓄えられる電荷 Q1は従来例と同じであるので、 Q1 = C1 X (VDD—VSS)である。 In FIG. 1, the first terminal of the capacitor C3 is connected to the terminal to which the switch SW2 and the switch SW3 are connected, and the second terminal of the capacitor C3 is connected to the control terminal 13 of the electric control switch Ml. Connected. The operation timing at which SW1 to SW5 of this embodiment are turned on and off is the same as that in FIG. 7 of the conventional example. Figure 2 shows the state of each switch during the hold period in Fig. 7. In this hold period, the newly added capacitor C3 has both terminals connected to the low potential power supply VSS by the switch SW2 and the switch SW5. At this time, since both ends of the capacitor C3 are at the same potential, the charge Q3 stored in the capacitor C3 is zero. Since the charge Q1 stored in the capacitor C1 is the same as the conventional example, Q1 = C1 X (VDD—VSS).
[0030] 次のサンプル期間に移ったときの各スィッチの接続を示したものが図 3である。スィ ツチ SW3及びスィッチ SW4によって、容量 C1と容量 C3とは並列接続されて、その 両端子は、入力端子 11と電気制御スィッチ Mlの制御端子 (MOSトランジスターの ゲート端子) 13とに接続される。この時、制御端子 13に印加される電圧 Vgは、 Vin + (VDD—VSS) X C1/ (C1 +C3)になる。何故なら、ホールド期間からサンプル期 間に移る時、容量 C1に蓄えられた電荷 Q1が保持され、その電荷が並列接続された 容量 C1と容量 C3とに再配分されるからである。即ち、サンプル期間に並列接続され た容量 C1及び容量 C3に加わる電圧を V3saとすると、電荷保存則により、(VDD— VSS) X Cl =V3sa X (CI + C3)が成り立ち、これより、 V3sa= (VDD—VSS) X C 1/ (CI +C3)となるからである。
[0031] C1/ (C1 + C3) = βとすると、制御端子 13に印加される電圧 Vgは、 Vin+ β X ( VDD-VSS) (0< < 1)となる。容量 C1と容量 C3との値を任意の値に選ぶことに より、制御端子 13に印加される電圧 Vgを電圧 (Vin+ (VDD—VSS) )よりも低く抑え ることが可能になり、電気制御スィッチ Mlを MOSトランジスターで形成したときのゲ ート酸化膜耐圧による信頼性の問題を防ぐことができる。ここで、制御端子 13と入力 端子 11との間に力、かる電圧(Vg_Vin)は、 β X (VDD—VSS)であるので、入力信 号に依存せず一定のオン抵抗であるというブートストラップスィッチの特徴は保持して レ、る。 βはゲート酸化膜耐圧を超えないように容量 C1及び容量 C3を決めることによ り、自由に設定可能である。 [0030] Fig. 3 shows the connection of each switch when the next sample period starts. Capacitor C1 and capacitor C3 are connected in parallel by switch SW3 and switch SW4, and both terminals thereof are connected to input terminal 11 and control terminal (gate terminal of the MOS transistor) 13 of electric control switch Ml. At this time, the voltage Vg applied to the control terminal 13 becomes Vin + (VDD−VSS) × C1 / (C1 + C3). This is because when moving from the hold period to the sample period, the charge Q1 stored in the capacitor C1 is held, and the charge is redistributed to the capacitors C1 and C3 connected in parallel. That is, if the voltage applied to the capacitor C1 and the capacitor C3 connected in parallel during the sample period is V3sa, (VDD—VSS) X Cl = V3sa X (CI + C3) is established according to the law of charge conservation. From this, V3sa = This is because (VDD-VSS) XC 1 / (CI + C3). When C1 / (C1 + C3) = β, the voltage Vg applied to the control terminal 13 is Vin + β X (VDD−VSS) (0 << 1). By selecting the values of capacitance C1 and capacitance C3 as desired, the voltage Vg applied to the control terminal 13 can be kept lower than the voltage (Vin + (VDD—VSS)). This prevents the reliability problem due to the gate oxide breakdown voltage when the switch Ml is formed of MOS transistors. Here, since the force and voltage (Vg_Vin) between the control terminal 13 and the input terminal 11 is β X (VDD−VSS), the bootstrap has a constant on-resistance regardless of the input signal. Keep the characteristics of the switch. β can be freely set by determining the capacitance C1 and the capacitance C3 so as not to exceed the gate oxide breakdown voltage.
[0032] 以上のように、本実施形態によれば、容量 C3の追加のみで、ゲート酸化膜耐圧に よる信頼性の問題を防ぐことができ、また、消費電力の増加もほとんどない効果が得 られる。 As described above, according to the present embodiment, the problem of reliability due to the gate oxide film breakdown voltage can be prevented only by adding the capacitor C3, and an effect of hardly increasing the power consumption can be obtained. It is done.
[0033] (実施形態 2) [0033] (Embodiment 2)
図 4は、本発明の実施形態 2に係るサンプリングスィッチを示している。 FIG. 4 shows a sampling switch according to Embodiment 2 of the present invention.
[0034] 本実施形態では、従来例に対し、容量 (第 2の容量) C4と、スィッチ SW6と、スイツ チ SW7とをカロえてレ、る。スィッチ SW6は、容量 C4の第 1の端子と高電位電源 VDDと の間に接続し、スィッチ SW7は、前記容量 C4の第 1の端子と、スィッチ SW2とスイツ チ SW3とを接続している端子とに接続し、容量 C4の第 2の端子は、スィッチ SW1とス イッチ SW4の接続している端子とに接続している。スィッチ SW6は、図 7のクロック信 号 CLK1のタイミングで動作し、スィッチ SW7は、クロック信号 CLK2bのタイミングで 動作し、ホールド期間では、スィッチ SW6は導通、スィッチ SW7は非導通し、一方、 サンプル期間では、スィッチ SW6は非導通、スィッチ SW7は導通している。ホールド 期間では、容量 C4の両端子は共に高電位電源 VDDに接続されて、量端子間に電 位差がないので、実施形態 1と同様に、蓄えられる電荷はゼロである。サンプル期間 では、容量 C1と容量 C4とは並列接続された状態で入力端子 11と電気制御スィッチ 制御端子 13との間に接続される構成は、実施形態 1と同じであり、 Vgの電圧は、 Vin + (VDD-VSS) X C1/ (C1 +C4)になり、実施形態 1と同様の効果が得られる。 実施形態 1よりも、スィッチが 2個多くなつているが、全体の回路規模からすると、大き
な問題ではない。 In the present embodiment, the capacity (second capacity) C4, the switch SW6, and the switch SW7 are arranged in comparison with the conventional example. The switch SW6 is connected between the first terminal of the capacitor C4 and the high potential power supply VDD, and the switch SW7 is a terminal connecting the first terminal of the capacitor C4, the switch SW2 and the switch SW3. The second terminal of the capacitor C4 is connected to the terminal connected to the switch SW1 and the switch SW4. The switch SW6 operates at the timing of the clock signal CLK1 in Fig. 7, the switch SW7 operates at the timing of the clock signal CLK2b, and during the hold period, the switch SW6 is conductive and the switch SW7 is nonconductive, while the sample period Then, switch SW6 is non-conductive and switch SW7 is conductive. In the hold period, both terminals of the capacitor C4 are connected to the high-potential power supply VDD, and there is no potential difference between the quantity terminals, so that the stored charge is zero as in the first embodiment. In the sample period, the configuration in which the capacitor C1 and the capacitor C4 are connected in parallel and connected between the input terminal 11 and the electric control switch control terminal 13 is the same as in the first embodiment, and the voltage of Vg is Vin + (VDD−VSS) × C1 / (C1 + C4), and the same effect as in the first embodiment can be obtained. There are two more switches than in the first embodiment. It is not a problem.
[0035] (実施形態 3) [0035] (Embodiment 3)
図 5は、本発明の実施形態 3に係るサンプリングスィッチを示している。 FIG. 5 shows a sampling switch according to Embodiment 3 of the present invention.
[0036] 本実施形態では、従来例に対し、容量 (第 2の容量) C5と、スィッチ SW8と、スイツ チ SW9とを加えている。スィッチ SW8は、容量 C5の両端子間に接続され、容量 C5 の第 1の端子は入力端子 1 1に接続されている。スィッチ SW9は、前記容量 C5の第 2 の端子と、スィッチ SW1とスィッチ SW4とを接続している端子とに接続されている。ス イッチ SW8は、図 7のクロック信号 CLK1のタイミングで動作し、スィッチ SW9は、クロ ック信号 CLK2bのタイミングで動作し、ホールド期間では、スィッチ SW8は導通、ス イッチ SW9は非導通し、一方、サンプル期間では、スィッチ SW8は非導通、スィッチ SW9は導通している。ホールド期間では、容量 C5の両端子は共に入力端子に接続 されて電位差がないので、実施形態 1と同様に、容量 C5に蓄えられる電荷はゼロで ある。サンプル期間では、容量 C1と容量 C5とは並列接続されて、その両端子は、入 力端子 11と電気制御スィッチ制御端子 13と間に接続される構成は、実施形態 1と同 じであり、 Vgの電圧は、 Vin+ (VDD— VSS) X CI/ (CI + C5)になり、実施形態 1 と同様の効果がある。本実施形態では、実施形態 1よりもスィッチが 2個多くなつてい るが、全体の回路規模からすると、大きな問題ではない。 In the present embodiment, a capacitor (second capacitor) C5, a switch SW8, and a switch SW9 are added to the conventional example. The switch SW8 is connected between both terminals of the capacitor C5, and the first terminal of the capacitor C5 is connected to the input terminal 11. The switch SW9 is connected to the second terminal of the capacitor C5 and a terminal connecting the switch SW1 and the switch SW4. The switch SW8 operates at the timing of the clock signal CLK1 in FIG. 7, the switch SW9 operates at the timing of the clock signal CLK2b, and during the hold period, the switch SW8 is conductive and the switch SW9 is nonconductive. In the sample period, the switch SW8 is non-conductive and the switch SW9 is conductive. In the hold period, since both terminals of the capacitor C5 are connected to the input terminal and there is no potential difference, the charge stored in the capacitor C5 is zero as in the first embodiment. In the sample period, the capacitor C1 and the capacitor C5 are connected in parallel, and both terminals thereof are connected between the input terminal 11 and the electric control switch control terminal 13 in the same manner as in the first embodiment. The voltage of Vg is Vin + (VDD−VSS) × CI / (CI + C5), and the same effect as in the first embodiment is obtained. In this embodiment, there are two more switches than in the first embodiment, but this is not a big problem in terms of the overall circuit scale.
[0037] (実施形態 4) [0037] (Embodiment 4)
次に、本発明の第 4の実施形態を説明する。 Next, a fourth embodiment of the present invention will be described.
[0038] 前記実施形態 1において、容量 C1と容量 C3とを各々単位容量 COの整数倍で、 C l =n X C0、 C3 =m X C0 (n、 mは共に整数)と構成すると、制御端子 13に印加され る電圧 Vgは、 Vin+ (VDD -VSS) X nZ (n+m)になる。半導体集積回路におい て、容量を形成するとき、単位容量を規則的に配置することにより、容量精度を上げ ること力 Sできる。例えば、単位容量 COを 0. 5pFとし、 n=m= lの時、 nZ (n +m)の ばらつき精度は 1 %以下になる。この容量比の精度が 1 %以下であれば、電気制御 スィッチ Mlの制御電圧ばらつきを 1 %以下に抑えることが可能であり、電気制御スィ ツチ Mlの製造上のオン抵抗ばらつきは、ほぼ 1 %以下に小さく抑えることができる。 これにより、サンプリングスィッチとしてオン抵抗ばらつきに起因する特性ばらつき、特
に歪み特性のばらつきを低減でき、特性の良好なサンプリングスィッチが提供可能と なる。 [0038] In the first embodiment, the capacity C1 and the capacity C3 are each an integral multiple of the unit capacity CO, and C l = n X C0 and C3 = m X C0 (n and m are both integers) are controlled. The voltage Vg applied to pin 13 is Vin + (VDD -VSS) X nZ (n + m). In a semiconductor integrated circuit, when forming a capacitor, it is possible to increase the accuracy of the capacitor by arranging unit capacitors regularly. For example, when the unit capacitance CO is 0.5 pF and n = m = 1, the variation accuracy of nZ (n + m) is 1% or less. If the accuracy of this capacitance ratio is 1% or less, the control voltage variation of the electric control switch Ml can be suppressed to 1% or less, and the on-resistance variation in manufacturing of the electric control switch Ml is almost 1%. The following can be kept small. As a result, as a sampling switch, characteristic variation due to on-resistance variation, In addition, variations in distortion characteristics can be reduced, and a sampling switch with good characteristics can be provided.
[0039] 尚、以上の説明では、電気制御スィッチ Mlは、 nチャンネル MOSトランジスターで 構成したが、 pチャンネル MOSトランジスターを用いても同様の効果があるのは勿論 である。また、スィッチ SW1〜SW9の構成の詳細な説明は省いた力 通常は、 MOS トランスターを用いて形成される。 In the above description, the electric control switch Ml is composed of an n-channel MOS transistor, but it goes without saying that the same effect can be obtained by using a p-channel MOS transistor. In addition, a detailed description of the configuration of switches SW1 to SW9 is omitted. Usually, MOS switches are used.
[0040] (実施形態 5) [0040] (Embodiment 5)
図 10は本発明の第 4の実施形態を示す。本実施形態は、以上で説明したサンプリ ングスィッチの適用を示している。 FIG. 10 shows a fourth embodiment of the present invention. This embodiment shows the application of the sampling switch described above.
[0041] 同図は、ノ ィプライン A/D変換器を示し、最初段に、以上で説明したサンプリング スィッチで構成されるサンプノレホールド回路 20と、その後段に連続して配置された複 数個の演算回路よりなる複数ステージ 211〜21nとを備えている。前記複数個のステ ージ 211〜21nは、前記サンプリングスィッチの出力信号、即ち、図 1に示したサンプ リング容量 C2の電荷量を、所定の複数ビットのデジタル信号に変換する。これ等の デジタル信号はデジタル補正回路 22に入力されて補正され、その補正出力がパイ プライン A/D変換器からの複数ビットのデジタル出力値となる。 [0041] This figure shows a pipeline A / D converter. The first stage is a sample-no-hold circuit 20 composed of the sampling switches described above, and a plurality of consecutively arranged downstream stages. A plurality of stages 211 to 21n comprising the above arithmetic circuits. The plurality of stages 211 to 21n convert the output signal of the sampling switch, that is, the charge amount of the sampling capacitor C2 shown in FIG. 1, into a predetermined multi-bit digital signal. These digital signals are input to the digital correction circuit 22 and corrected, and the corrected output becomes a multi-bit digital output value from the pipeline A / D converter.
産業上の利用可能性 Industrial applicability
[0042] 以上説明したように、本発明のサンプリングスィッチは、スィッチを構成する M〇Sト ランジスターの制御電圧を有効に低減するブートストラップ回路を有するので、サン プル'ホールド回路や、トラック 'ホールド回路等として有用であり、また、パイプライン 式などのアナログ/デジタル変換回路の用途にも応用できる。
[0042] As described above, the sampling switch of the present invention has the bootstrap circuit that effectively reduces the control voltage of the MOS transistor that constitutes the switch. It is useful as a hold circuit, etc., and can also be applied to pipeline / analog / digital conversion circuit applications.
Claims
[1] 入力端子に入力された入力信号のレベルに関係なく実質的に一定のオン抵抗を 有するブーストストラップ方式のサンプリングスィッチであって、 [1] A boost strap type sampling switch having a substantially constant on-resistance regardless of the level of the input signal input to the input terminal,
前記入力信号を伝播するための電気制御スィッチ、及び、前記電気制御スィッチ から伝播された前記入力信号の電荷を充電するサンプリング容量とを有するサンプリ ング回路と、 A sampling circuit having an electrical control switch for propagating the input signal, and a sampling capacitor for charging the charge of the input signal propagated from the electrical control switch;
第 1の容量と、 The first capacity,
第 2の容量と、 A second capacity,
前記電気制御スィッチを非導通状態にするホールド期間において、前記第 1の容 量の両端に高電位電源と低電位電源との差電圧に相当する蓄積電荷を充電すると 共に、前記第 2の容量の両端にゼロ電荷を充電し、一方、前記電気制御スィッチを導 通状態にするサンプリング期間において、前記第 1の容量と前記第 2の容量とを並列 接続し、この並列接続した一方の端子の電圧を前記入力端子に接続し、他方の端子 の電圧を前記電気制御スィッチの制御信号とするスィッチ群とを備えた In the hold period in which the electrical control switch is turned off, the accumulated charge corresponding to the differential voltage between the high potential power source and the low potential power source is charged at both ends of the first capacitor, and the second capacitor The first capacitor and the second capacitor are connected in parallel during a sampling period in which zero charge is charged at both ends and the electrical control switch is in a conductive state, and the voltage of the one terminal connected in parallel is connected. Connected to the input terminal, and a switch group using the voltage of the other terminal as a control signal of the electric control switch.
[2] 前記請求項 1記載のサンプリングスィッチにおいて、 [2] In the sampling switch according to claim 1,
前記ホールド期間では、前記第 2の容量の両端を低電位電源に接続する ことを特徴とするサンプリングスィッチ。 In the hold period, the both ends of the second capacitor are connected to a low potential power source.
[3] 前記請求項 1記載のサンプリングスィッチにおいて、 [3] The sampling switch according to claim 1,
前記ホールド期間では、前記第 2の容量の両端を高電位電源に接続する ことを特徴とするサンプリングスィッチ。 In the hold period, the both ends of the second capacitor are connected to a high potential power supply.
[4] 前記請求項 1記載のサンプリングスィッチにおいて、 [4] The sampling switch according to claim 1,
前記ホールド期間では、前記第 2の容量の両端を前記入力端子に接続する ことを特徴とするサンプリングスィッチ。 In the hold period, the both ends of the second capacitor are connected to the input terminal.
[5] 前記請求項 1記載のサンプリングスィッチにおいて、 [5] The sampling switch according to claim 1,
前記第 1の容量と前記第 2の容量の容量値とは、 n : m (n、 mは整数)の比で形成さ れる
The capacitance value of the first capacitor and the second capacitor is formed in a ratio of n: m (n and m are integers).
[6] 前記請求項 5記載のサンプリングスィッチにおいて、 [6] The sampling switch according to claim 5,
前記第 1の容量と前記第 2の容量とは、各々、単位容量を整数個使用して形成され る The first capacitor and the second capacitor are each formed using an integer number of unit capacitors.
ことを特徴とするサンプリングスィッチ A sampling switch characterized by
[7] 前記請求項 1記載のサンプリングスィッチにおいて、 [7] The sampling switch according to claim 1,
前記電気制御スィッチは、 The electric control switch is
前記入力端子に接続されたソース電極、前記サンプリング容量に接続されたドレイ ン電極、及び前記制御信号が与えられるゲート電極を有する MOSトランジスタで構 成される The MOS transistor includes a source electrode connected to the input terminal, a drain electrode connected to the sampling capacitor, and a gate electrode to which the control signal is applied.
ことを特徴とするサンプリングスィッチ。 A sampling switch characterized by that.
[8] 前記請求項 1〜7の何れ力、 1項に記載のサンプリングスィッチと、 [8] The force according to any one of claims 1 to 7, and the sampling switch according to claim 1,
前記サンプリングスィッチの後段に連続して配置され、前記サンプリングスィッチの 出力信号を複数ビットのデジタル信号に変換する複数個の演算回路よりなる複数ス テージと、 A plurality of stages comprising a plurality of arithmetic circuits arranged continuously after the sampling switch and converting the output signal of the sampling switch into a digital signal of a plurality of bits;
前記各ステージのデジタル出力値を補正するデジタル補正回路とを備えた を備えたことを特徴とするパイプライン A/D変換器。
A pipeline A / D converter comprising: a digital correction circuit that corrects a digital output value of each stage.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006323816 | 2006-11-30 | ||
JP2006-323816 | 2006-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008065771A1 true WO2008065771A1 (en) | 2008-06-05 |
Family
ID=39467571
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/062529 WO2008065771A1 (en) | 2006-11-30 | 2007-06-21 | Sampling switch and pipeline a/d converter |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2008065771A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010199841A (en) * | 2009-02-24 | 2010-09-09 | Fujitsu Semiconductor Ltd | Analog switch circuit |
FR2979173A1 (en) * | 2011-08-19 | 2013-02-22 | St Microelectronics Grenoble 2 | LOW VOLTAGE ANALOG SWITCH |
JP2014064434A (en) * | 2012-09-24 | 2014-04-10 | Sharp Corp | Sample-and-hold circuit and switching power circuit |
JP2016032292A (en) * | 2014-07-25 | 2016-03-07 | アイメック・ヴェーゼットウェーImec Vzw | Sample-and-hold circuit for interleaved analog-to-digital converter |
JP2016143918A (en) * | 2015-01-29 | 2016-08-08 | 株式会社ソシオネクスト | Switch circuit, AD conversion circuit and integrated circuit |
CN107241088A (en) * | 2017-06-07 | 2017-10-10 | 中国电子科技集团公司第二十四研究所 | A kind of deep-submicron CMOS bootstrapped switch for eliminating body bias effect |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56104532A (en) * | 1980-01-25 | 1981-08-20 | Toshin Prod Kk | Digital-analog converting circuit |
JPH05235766A (en) * | 1991-10-07 | 1993-09-10 | Nec Corp | A/d converter |
JP2004228988A (en) * | 2003-01-23 | 2004-08-12 | Renesas Technology Corp | Bootstrap circuit |
-
2007
- 2007-06-21 WO PCT/JP2007/062529 patent/WO2008065771A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56104532A (en) * | 1980-01-25 | 1981-08-20 | Toshin Prod Kk | Digital-analog converting circuit |
JPH05235766A (en) * | 1991-10-07 | 1993-09-10 | Nec Corp | A/d converter |
JP2004228988A (en) * | 2003-01-23 | 2004-08-12 | Renesas Technology Corp | Bootstrap circuit |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010199841A (en) * | 2009-02-24 | 2010-09-09 | Fujitsu Semiconductor Ltd | Analog switch circuit |
FR2979173A1 (en) * | 2011-08-19 | 2013-02-22 | St Microelectronics Grenoble 2 | LOW VOLTAGE ANALOG SWITCH |
US8648642B2 (en) | 2011-08-19 | 2014-02-11 | Stmicroelectronics (Grenoble 2) Sas | Low voltage analog switch |
JP2014064434A (en) * | 2012-09-24 | 2014-04-10 | Sharp Corp | Sample-and-hold circuit and switching power circuit |
JP2016032292A (en) * | 2014-07-25 | 2016-03-07 | アイメック・ヴェーゼットウェーImec Vzw | Sample-and-hold circuit for interleaved analog-to-digital converter |
JP2016143918A (en) * | 2015-01-29 | 2016-08-08 | 株式会社ソシオネクスト | Switch circuit, AD conversion circuit and integrated circuit |
CN107241088A (en) * | 2017-06-07 | 2017-10-10 | 中国电子科技集团公司第二十四研究所 | A kind of deep-submicron CMOS bootstrapped switch for eliminating body bias effect |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6784824B1 (en) | Analog-to-digital converter which is substantially independent of capacitor mismatch | |
US8089388B2 (en) | Folding analog-to-digital converter | |
TWI446139B (en) | Circuits and methods to reduce or eliminate signal-dependent modulation of a reference bias | |
US7068203B2 (en) | Switched-capacitor circuits with reduced finite-gain effect | |
EP2719078B1 (en) | Distributed bootstrap switch | |
JP3737346B2 (en) | Sample hold amplifier circuit, pipelined AD converter and pipelined DA converter using the same | |
US20050200510A1 (en) | Analog to digital converter circuit of successive approximation type operating at low voltage | |
JP2916505B2 (en) | Comparison circuit | |
US10181857B1 (en) | Analog-to-digital converter error correction | |
WO2008065771A1 (en) | Sampling switch and pipeline a/d converter | |
US8456343B2 (en) | Switched capacitor type D/A converter | |
TW589782B (en) | Pseudo-differential amplifier and analog-to-digital converter using the same | |
JP5321126B2 (en) | Analog switch circuit | |
US10312925B1 (en) | Multiplying DAC of pipelined ADC | |
TWI749879B (en) | Control circuit of pipeline adc | |
US20080316074A1 (en) | Electronic Circuit and Semiconductor Device Having Dac and Scf | |
EP1540565B1 (en) | Switched capacitor system, method, and use | |
US20230308110A1 (en) | Comparator-based switched-capacitor circuit | |
JP2005268895A (en) | Switching circuit | |
US8232904B2 (en) | Folding analog-to-digital converter | |
US7479915B1 (en) | Comparator architecture | |
CN104685789A (en) | Method for controlling D/A converter, D/A converter, method for controlling A/D converter, and A/D converter | |
CN114244369A (en) | Successive approximation analog-to-digital conversion transpose | |
KR102169714B1 (en) | Ultra-Low Power and Wide-Range Input Analog-Digital Converter | |
US10630278B2 (en) | Electronic circuit and control method for electronic circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07767355 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07767355 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |