WO2008062629A1 - Apparatus for producing trichlorosilane - Google Patents

Apparatus for producing trichlorosilane Download PDF

Info

Publication number
WO2008062629A1
WO2008062629A1 PCT/JP2007/070735 JP2007070735W WO2008062629A1 WO 2008062629 A1 WO2008062629 A1 WO 2008062629A1 JP 2007070735 W JP2007070735 W JP 2007070735W WO 2008062629 A1 WO2008062629 A1 WO 2008062629A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
gas
trichlorosilane
concave surface
arc
Prior art date
Application number
PCT/JP2007/070735
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiyuki Ishii
Original Assignee
Mitsubishi Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007249626A external-priority patent/JP2008150273A/en
Application filed by Mitsubishi Materials Corporation filed Critical Mitsubishi Materials Corporation
Publication of WO2008062629A1 publication Critical patent/WO2008062629A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • C01B33/1071Tetrachloride, trichlorosilane or silicochloroform, dichlorosilane, monochlorosilane or mixtures thereof

Definitions

  • the present invention relates to conversion of tetrachlorosilane to trichlorosilane.
  • SiHCl 3 is converted by reacting tetrachlorosilane (SiCl: silicon tetrachloride) with hydrogen.
  • Patent Document 1 discloses a supply gas containing tetrachlorosilane and hydrogen in a heating element formed of graphite, silicon, or silicon carbide. A technique for spraying and converting to trichlorosilane is disclosed. This production technology has the advantage that the generated trichlorosilane is immediately removed from the heating element, so that no precipitation of trichlorosilane into silicon occurs even in the temperature range above 1100 ° C.
  • a reaction gas is obtained by spraying a supply gas to a heating element formed of graphite, silicon, or silicon carbide.
  • a heating element When a heating element is configured using, the mechanical strength is low at room temperature, and the mechanical strength is greatly reduced at a high temperature by heating. Therefore, a heating element with higher strength is desired.
  • hydrogen, chlorosilane, and hydrogen chloride in the supply gas and reaction product gas react with each other to produce methane, methylchlorosilane, silicon carbide, and the like. There was an inconvenience of becoming an impurity.
  • the heating element is composed of silicon carbide, the force to use sintered silicon carbide or crystal-grown Pure silicon carbide.
  • the former is usually made using boron as a sintering aid.
  • hydrogen in the supply gas reacts with boron contained in silicon carbide at high temperatures to become BH, which makes it brittle. In the latter case
  • Patent Document 1 JP-A 53-97996
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a trichlorosilane production apparatus that has high mechanical strength, prevents generation of impurities, and can suppress increase in member cost. To do.
  • the present invention employs the following configuration in order to solve the above problems.
  • An apparatus for producing trichlorosilane according to the present invention includes a reactor formed of quartz, a heating mechanism for heating the reactor, and a gas blowing mechanism for blowing a supply gas containing tetrachlorosilane and hydrogen to the reactor. /!
  • the reactor to which the feed gas can be blown is made of quartz, so the reactor has high mechanical strength and high purity not only at room temperature but also at high temperatures of 800 ⁇ ; 1400 ° C. Can be formed. Further, it is possible to obtain trichlorosilane having a high purity without causing the reactor to react with gas components in the supply gas and the reaction product gas to generate impurities. In addition, quartz is less expensive than pure silicon carband, so it is possible to suppress the increase in material costs.
  • the reactor has an arc-shaped concave surface, and the gas blowing mechanism injects the supply gas toward the arc-shaped concave surface in the reactor.
  • An injection nozzle may be provided.
  • the supply gas is injected from the injection nozzle toward the arc-shaped concave surface of the reactor, so that the supply gas injected and collided with the reactor flows along the arc of the arc-shaped concave surface.
  • the conversion reaction can be more efficiently performed by the heating effect from the arcuate concave surface.
  • a quartz crucible used for pulling and generating single crystal silicon can be suitably used.
  • a reaction product gas containing trichlorosilane and hydrogen chloride generated from the supply gas in the reactor is disposed inside the peripheral edge of the arcuate concave surface in the reactor.
  • a gas recovery mechanism that leads to the outside from the gas outlet may be provided.
  • the reaction product gas is led out to the outside from the gas outlet port arranged on the inner periphery of the reactor, so that it is generated by colliding with the arcuate concave surface in the reactor. The reaction product gas that flows back along the arc can be efficiently recovered.
  • the trichlorosilane production apparatus of the present invention may include a support member that supports the outer surface of the reactor.
  • the support member since the support member covers the outer surface of the reactor, the support member is supported from the surroundings even if the reactor softens at high temperatures. Changes in the shape of the reactor can be prevented.
  • the reactor for blowing the supply gas is formed of stone, the reactor is not only at room temperature but also at a reaction temperature of 800 to 1400 ° C. It is possible to obtain trichlorosilane having high strength and high purity, which can form a reactor with high purity quartz and does not generate impurities.
  • FIG. 1 is a simplified cross-sectional view showing an embodiment of a trichlorosilane production apparatus according to the present invention.
  • FIG. 1 is a simplified cross-sectional view showing an embodiment of a trichlorosilane production apparatus according to the present invention.
  • the trichlorosilane production apparatus of the present embodiment includes a reactor 1 having an arc-shaped concave surface la formed of quartz, a heating mechanism 2 for heating the reactor 1, a tetrachlorosilane and hydrogen.
  • a gas spray mechanism 3 for spraying a feed gas containing 1 to the reactor 1 and a reaction product gas containing trichlorosilane and hydrogen chloride generated from the feed gas in the reactor 1 are arranged inside the periphery of the reactor 1.
  • a gas recovery mechanism 5 that leads out from the gas outlet 4.
  • the reactor 1 uses a quartz crucible used for pulling and generating single crystal silicon, and is arranged with its arcuate concave surface la facing upward, and the arcuate concave surface la force A continuous cylindrical inner surface lb is formed at the top.
  • the gas blowing mechanism 3 includes an injection nozzle 6 that is arranged on the central axis of the upper part of the reactor 1 and that injects the supply gas toward the arcuate concave surface la of the reactor 1. Further, an outer cylinder member 7 arranged coaxially with the injection nozzle 6 is provided on the outer side of the injection nozzle 6, and this outer cylinder member 7 is provided on the inner side of the cylindrical inner surface lb above the reactor 1. Further, it is fixed via a ring-shaped closing member 11. A space between the injection nozzle 6 and the outer cylinder member 7 serves as a reaction product gas outlet channel 8, and a lower end opening serves as a gas outlet 4. That is, the injection nozzle 6 and the outer cylinder member 7 have a double pipe structure. The injection nozzle 6 is arranged so that the tip protrudes from the gas outlet 4 to the inside of the reactor 1.
  • the gas blowing mechanism 3 includes an injection pump P1 connected to the injection nozzle 6 and pressurizing and supplying the supply gas, and includes a preheating mechanism 12 that heats the supply gas before supplying it to the reactor 1.
  • the injection pump P1 is connected to a supply source (not shown) of the supply gas. Yes.
  • the gas recovery mechanism 5 is connected to the gas outlet 4 and is equipped with an exhaust pump P2 that sucks the reaction product gas S. If the reaction product gas can be discharged by a pressure difference, the gas recovery mechanism 5 The pump can be omitted.
  • the quartz reactor 1 is supported at its periphery by a carbon support member 9.
  • the carbon support member 9 includes a support body 9a that covers the periphery of the reactor 1, and a support column 9b that is provided at the lower portion of the support body 9a.
  • the heating mechanism 2 is arranged around the reactor 1 so as to surround the reactor 1, and is connected to the lower part of the heater unit 2a that is a heat generating unit and flows through the heater unit 2a. And an annular bottom heater section 10 disposed below the reactor 1.
  • the electrode portion 2b is connected to a power source (not shown).
  • the bottom heater portion 10 is installed below the support portion main body 9a in a state where the support column portion 9b of the carbon support member 9 is passed through.
  • the bottom heater unit 10 is also connected to an electrode unit (not shown).
  • the heating mechanism 2 performs calorie heat control so that the reactor 1 has a temperature in the range of 800 ° C to 1400 ° C. If reactor 1 is set to 1200 ° C or higher, the conversion rate is improved. Further, disilanes may be introduced into the supply gas and the silanes may be taken out.
  • the reactor 1 to which the supply gas is blown is formed of quartz
  • the reactor 1 has a high mechanical strength not only at room temperature but also at a high temperature of 800 to 1400 ° C.
  • the reactor 1 can be formed of high-purity quartz.
  • the reactor 1 does not react with the gas components in the supply gas and the reaction product gas to generate impurities, and thus high purity trichlorosilane can be obtained.
  • quartz is less expensive than pure silicon carbide, it is possible to suppress an increase in material costs.
  • the supply gas is injected from the injection nozzle 6 toward the arc-shaped concave surface la in the reactor 1, the supply gas that has been injected and collided with the arc-shaped concave surface 1a of the reactor 1 is arc-shaped concave surface 1 a
  • the force S is applied to make the conversion reaction more efficiently by the heating effect from the arcuate concave surface la.
  • reaction product gas is led out from the gas outlet 4 disposed inside the peripheral edge of the reactor 1, it is generated by colliding with the arc-shaped concave surface la of the reactor 1 and from the arc-shaped concave surface la.
  • the reaction product gas that flows back upward along the cylindrical inner surface lb can be efficiently recovered.
  • the carbon support member 9 supports from the periphery, so that the shape of the reactor 1 Changes can be prevented.
  • the heating mechanism 2 may be a power that heats the reactor 1 with radiant heat from the heater 2a.
  • the reactor 1 may be heated by other methods such as high-frequency induction heating.
  • the reactor 1 has a configuration in which the cylindrical inner surface lb is continuously formed from the arc-shaped concave surface la, but at least the surface on which the supply gas is blown may be a circular arc-shaped concave surface. Even if there is no inner surface, the force S can smoothly flow the gas that collides with the arc-shaped concave surface along the surface of the reactor.
  • the arcuate concave surface may not be an arc having the same curvature, but may be a series of arcs having a plurality of curvatures.
  • An arc-shaped concave surface is suitable for recovering the reaction product gas, but in the present invention, a surface shape other than the arc-shaped concave surface is not excluded.
  • the ring-shaped closing member is formed in a tapered plate shape, an arc plate shape, or the like continuous from the cylindrical inner surface. You can do it.
  • the reactor for blowing the supply gas is formed of quartz
  • the reactor has a high mechanical strength even at a reaction temperature of 800 to 1400 ° C
  • the reactor can be formed of high purity quartz. Further, high purity trichlorosilane can be obtained without generating impurities. For this reason, high purity silicon is produced. Therefore, it can be suitably used in the production process of trichlorosilane used as a raw material for the purpose.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

This invention provides an apparatus for producing trichlorosilane, comprising a reactor formed of quartz, a heating mechanism for heating the reactor, and a gas spray mechanism for spraying a supply gas containing tetrachlorosilane and hydrogen against the reactor. The reactor has an arc-shaped recessed face, and the gas spray mechanism may be provided with a jet nozzle for jetting the supply gas toward the arc-shaped recessed face in the reactor.

Description

技術分野  Technical field
[0001] 本発明は、テトラクロロシランをトリクロロシランに転換一  [0001] The present invention relates to conversion of tetrachlorosilane to trichlorosilane.
に関する。  About.
本願は、 2006年 11月 21日に出願された日本国特許出願第 2006— 314897号 及び 2007年 9月 26日に出願された日本国特許出願第 2007— 249626号に対し優  This application is superior to Japanese Patent Application No. 2006-314897 filed on November 21, 2006 and Japanese Patent Application No. 2007-249626 filed on September 26, 2007.
 Light
先権を主張し、その内容をここに援用する。  Insist on priorities and use the contents here.
背景技術  Background art
 book
[0002] 高純度のシリコン(Si :珪素)を製造するための原料として使用されるトリクロロシラン  [0002] Trichlorosilane used as a raw material for producing high-purity silicon (Si: silicon)
(SiHCl )は、テトラクロロシラン(SiCl :四塩化珪素)を水素と反応させて転換するこ (SiHCl 3) is converted by reacting tetrachlorosilane (SiCl: silicon tetrachloride) with hydrogen.
3 4 3 4
とで製造でさる。  And manufacturing.
[0003] すなわち、シリコンは、以下の反応式(1) , (2)によるトリクロロシランの還元反応と熱 分解反応で生成され、トリクロロシランは、以下の反応式(3)による転換反応で生成さ れる。  [0003] That is, silicon is produced by the reduction reaction and thermal decomposition reaction of trichlorosilane by the following reaction formulas (1) and (2), and trichlorosilane is produced by the conversion reaction by the following reaction formula (3). It is.
[0004] SiHCl +H → Si + 3HC1 · · · (1)  [0004] SiHCl + H → Si + 3HC1 (1)
3 2  3 2
4SiHCl → Si + 3SiCl + 2H (2)  4SiHCl → Si + 3SiCl + 2H (2)
3 4 2 …  3 4 2…
SiCl +H → SiHCl +HC1 · · · (3)  SiCl + H → SiHCl + HC1 (3)
4 2 3  4 2 3
このトリクロロシランの製造方法として、種々の手法が提案されているが、例えば特 許文献 1には、グラフアイト、シリコン又はシリコンカーバイドで形成された発熱体にテ トラクロロシランと水素とを含む供給ガスを吹き付けてトリクロロシランへ転換させる技 術が開示されている。この製造技術では、生成したトリクロロシランが発熱体から即座 に取り除かれるため、 1100°C以上の温度範囲でもトリクロロシランからシリコンへの析 出が生じな!/、と!/、うメリットがある。  Various methods have been proposed as methods for producing this trichlorosilane. For example, Patent Document 1 discloses a supply gas containing tetrachlorosilane and hydrogen in a heating element formed of graphite, silicon, or silicon carbide. A technique for spraying and converting to trichlorosilane is disclosed. This production technology has the advantage that the generated trichlorosilane is immediately removed from the heating element, so that no precipitation of trichlorosilane into silicon occurs even in the temperature range above 1100 ° C.
[0005] しかし上記従来の技術には、以下の課題が残されている。 However, the following problems remain in the above conventional technique.
上記特許文献 1の技術では、供給ガスをグラフアイト、シリコン又はシリコンカーバイ ドで形成された発熱体に吹き付けて反応生成ガスを得ている。 を用いて発熱体を構成すると、常温で機械的強度が低ぐさらに加熱による高温状態 で機械的強度が大きく低下してしまうため、より高い強度の発熱体が要望されている 。また、グラフアイトで形成された発熱体を用いた場合、カーボンと供給ガス及び反応 生成ガス中の水素、クロロシラン及び塩化水素とが反応してメタン、メチルクロロシラ ン、炭化珪素等が生成されて不純物となる不都合があった。さらに、シリコンカーバイ ドで発熱体を構成する場合、焼結シリコンカーバイド又は結晶成長させた Pureのシリ コンカーバイドを用いることになる力 前者は、通常、ボロンを焼結助剤に用いて作製 され、 1300°Cが限度であると共に、高温時に供給ガス中の水素とシリコンカーバイド が含有するボロンとが反応して BHとなり、脆くなる不都合がある。また、後者の場合 In the technique disclosed in Patent Document 1, a reaction gas is obtained by spraying a supply gas to a heating element formed of graphite, silicon, or silicon carbide. When a heating element is configured using, the mechanical strength is low at room temperature, and the mechanical strength is greatly reduced at a high temperature by heating. Therefore, a heating element with higher strength is desired. In addition, when a heating element formed of graphite is used, hydrogen, chlorosilane, and hydrogen chloride in the supply gas and reaction product gas react with each other to produce methane, methylchlorosilane, silicon carbide, and the like. There was an inconvenience of becoming an impurity. In addition, when the heating element is composed of silicon carbide, the force to use sintered silicon carbide or crystal-grown Pure silicon carbide. The former is usually made using boron as a sintering aid. In addition to the upper limit of 1300 ° C, hydrogen in the supply gas reacts with boron contained in silicon carbide at high temperatures to become BH, which makes it brittle. In the latter case
3  Three
は、ボロンの影響はないが、非常に高価であり部材コストが高くなりすぎてしまう問題 があった。  Although there was no influence of boron, there was a problem that it was very expensive and the member cost was too high.
特許文献 1 :特開昭 53— 97996号公報  Patent Document 1: JP-A 53-97996
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、前述の課題に鑑みてなされたもので、高い機械的強度を有すると共に 不純物の発生を防ぎ、さらに部材コストの増大を抑制できるトリクロロシラン製造装置 を提供することを目的とする。 [0006] The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a trichlorosilane production apparatus that has high mechanical strength, prevents generation of impurities, and can suppress increase in member cost. To do.
課題を解決するための手段  Means for solving the problem
[0007] 本発明は、前記課題を解決するために以下の構成を採用した。 [0007] The present invention employs the following configuration in order to solve the above problems.
本発明のトリクロロシラン製造装置は、石英で形成された反応器と、前記反応器を 加熱する加熱機構と、テトラクロロシランと水素とを含む供給ガスを前記反応器に吹き 付けるガス吹き付け機構とを備えて!/、る。  An apparatus for producing trichlorosilane according to the present invention includes a reactor formed of quartz, a heating mechanism for heating the reactor, and a gas blowing mechanism for blowing a supply gas containing tetrachlorosilane and hydrogen to the reactor. /!
このトリクロロシラン製造装置では、供給ガスを吹き付けられる反応器が石英で形成 されているので、反応器が常温だけでなく 800〜; 1400°Cの高温下でも高い機械的 強度を有すると共に、高い純度で形成可能である。また、反応器が供給ガス及び反 応生成ガス中のガス成分と反応して不純物を生成することがなぐ純度の高いトリクロ ロシランを得ること力できる。また、石英が Pureのシリコンカーバンドに比べて低価格 であるため、部材コストの増大を抑制できる。 [0008] また、本発明のトリクロロシラン製造装置では、前記反応器が円弧状凹面を有し、前 記ガス吹き付け機構が、前記反応器における前記円弧状凹面に向けて前記供給ガ スを噴射する噴射ノズルを備えてもよい。この場合、このトリクロロシラン製造装置では 、反応器における円弧状凹面に向けて噴射ノズルから供給ガスを噴射するので、反 応器に噴射されて衝突した供給ガスが円弧状凹面の円弧に沿って流れ、該円弧状 凹面からの加熱効果によって、より効率的に転換反応させることができる。円弧状凹 面を有する反応器としては、単結晶シリコンの引き上げ生成に用いられる石英製ルツ ボが好適に使用できる。 In this trichlorosilane production system, the reactor to which the feed gas can be blown is made of quartz, so the reactor has high mechanical strength and high purity not only at room temperature but also at high temperatures of 800 ~; 1400 ° C. Can be formed. Further, it is possible to obtain trichlorosilane having a high purity without causing the reactor to react with gas components in the supply gas and the reaction product gas to generate impurities. In addition, quartz is less expensive than pure silicon carband, so it is possible to suppress the increase in material costs. [0008] Further, in the trichlorosilane production apparatus of the present invention, the reactor has an arc-shaped concave surface, and the gas blowing mechanism injects the supply gas toward the arc-shaped concave surface in the reactor. An injection nozzle may be provided. In this case, in this trichlorosilane production apparatus, the supply gas is injected from the injection nozzle toward the arc-shaped concave surface of the reactor, so that the supply gas injected and collided with the reactor flows along the arc of the arc-shaped concave surface. The conversion reaction can be more efficiently performed by the heating effect from the arcuate concave surface. As a reactor having an arcuate concave surface, a quartz crucible used for pulling and generating single crystal silicon can be suitably used.
[0009] 本発明のトリクロロシラン製造装置では、前記反応器で前記供給ガスから生成され たトリクロロシランと塩化水素とを含む反応生成ガスを前記反応器における前記円弧 状凹面の周縁部内側に配されたガス導出口から外部に導出するガス回収機構を備 えてもよい。この場合、このトリクロロシラン製造装置では、反応生成ガスを反応器の 周縁部内側に配されたガス導出口から外部に導出するので、反応器における円弧 状凹面に衝突して生成され円弧状凹面の円弧に沿って折り返して流れる反応生成 ガスを効率的に回収できる。  [0009] In the trichlorosilane production apparatus of the present invention, a reaction product gas containing trichlorosilane and hydrogen chloride generated from the supply gas in the reactor is disposed inside the peripheral edge of the arcuate concave surface in the reactor. In addition, a gas recovery mechanism that leads to the outside from the gas outlet may be provided. In this case, in this trichlorosilane production apparatus, the reaction product gas is led out to the outside from the gas outlet port arranged on the inner periphery of the reactor, so that it is generated by colliding with the arcuate concave surface in the reactor. The reaction product gas that flows back along the arc can be efficiently recovered.
[0010] 本発明のトリクロロシラン製造装置では、前記反応器の外側表面を覆うように支持 する支持部材を備えてもよい。この場合、このトリクロロシラン製造装置では、支持部 材で反応器の外側表面を覆うように支持しているので、高温時に反応器が軟化して も反応器を支持部材が周囲から支持することで反応器の形状変化等を防ぐことがで きる。 [0010] The trichlorosilane production apparatus of the present invention may include a support member that supports the outer surface of the reactor. In this case, in this trichlorosilane production apparatus, since the support member covers the outer surface of the reactor, the support member is supported from the surroundings even if the reactor softens at high temperatures. Changes in the shape of the reactor can be prevented.
発明の効果  The invention's effect
[0011] 本発明によれば、以下の効果を奏する。  [0011] According to the present invention, the following effects are obtained.
本発明に係るトリクロロシラン製造装置によれば、供給ガスを吹き付ける反応器が石 英で形成されているので、反応器が常温だけでなく 800〜; 1400°Cの反応温度でも 高!/、機械的強度を有し、高!/、純度の石英で反応器が形成可能であると共に不純物 を生成することがなぐ純度の高いトリクロロシランを得ることができる。  According to the trichlorosilane production apparatus according to the present invention, since the reactor for blowing the supply gas is formed of stone, the reactor is not only at room temperature but also at a reaction temperature of 800 to 1400 ° C. It is possible to obtain trichlorosilane having high strength and high purity, which can form a reactor with high purity quartz and does not generate impurities.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1]図 1は、本発明に係るトリクロロシラン製造装置の一実施形態を示す簡略的な断 面図である。 FIG. 1 is a simplified cross-sectional view showing an embodiment of a trichlorosilane production apparatus according to the present invention. FIG.
符号の説明  Explanation of symbols
[0013] 1 · · ·反応器、 la…円弧状凹面、 lb…筒状内面、 2· · ·加熱機構、 3· · ·ガス吹き付け 機構、 4· · ·ガス導出口、 5· · ·ガス回収機構、 6 · · ·噴射ノズル、 8 · · ·導出流路、 9…カー ボン製支持部材、 11 · · ·リング状閉塞部材、 12· · ·予熱機構。  [0013] 1 · · · Reactor, la… arc-shaped concave surface, lb… cylindrical inner surface, 2 ··· Heating mechanism, 3 ··· Gas blowing mechanism, 4 ··· Gas outlet, 5 ··· Gas Recovery mechanism 6 · · · Injection nozzle 8 · · · Outlet flow path 9 · Carbon support member 11 · · · Ring-shaped closing member 12 · · · Preheating mechanism
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0014] 以下、本発明に係るトリクロロシラン製造装置の一実施形態を、図 1を参照しながら 説明する。 Hereinafter, an embodiment of a trichlorosilane production apparatus according to the present invention will be described with reference to FIG.
本実施形態のトリクロロシラン製造装置は、図 1に示すように、石英で形成された円 弧状凹面 laを有する反応器 1と、反応器 1を加熱する加熱機構 2と、テトラクロロシラ ンと水素とを含む供給ガスを反応器 1に吹き付けるガス吹き付け機構 3と、反応器 1内 で供給ガスから生成されたトリクロロシランと塩化水素とを含む反応生成ガスを反応器 1の周縁部内側に配されたガス導出口 4から外部に導出するガス回収機構 5とを備え ている。  As shown in FIG. 1, the trichlorosilane production apparatus of the present embodiment includes a reactor 1 having an arc-shaped concave surface la formed of quartz, a heating mechanism 2 for heating the reactor 1, a tetrachlorosilane and hydrogen. A gas spray mechanism 3 for spraying a feed gas containing 1 to the reactor 1 and a reaction product gas containing trichlorosilane and hydrogen chloride generated from the feed gas in the reactor 1 are arranged inside the periphery of the reactor 1. And a gas recovery mechanism 5 that leads out from the gas outlet 4.
[0015] 図示例の場合、反応器 1は、単結晶シリコンの引き上げ生成に用いられる石英製ル ッボが使用されており、その円弧状凹面 laを上向きにして配置され、円弧状凹面 la 力 連続する筒状内面 lbが上部に形成されている。  [0015] In the case of the illustrated example, the reactor 1 uses a quartz crucible used for pulling and generating single crystal silicon, and is arranged with its arcuate concave surface la facing upward, and the arcuate concave surface la force A continuous cylindrical inner surface lb is formed at the top.
[0016] 上記ガス吹き付け機構 3は、反応器 1上部の中心軸上に配され反応器 1の円弧状 凹面 laに向けて供給ガスを噴射する噴射ノズル 6を備えている。また、噴射ノズル 6 の外側には、この噴射ノズル 6と同軸に配された外筒部材 7が設けられており、この外 筒部材 7は、上記反応器 1の上部の筒状内面 lbの内側に、リング状閉塞部材 11を 介して固定されている。そして、噴射ノズル 6と外筒部材 7との間は、反応生成ガスの 導出流路 8とされ、下端開口部がガス導出口 4となる。すなわち、噴射ノズル 6と外筒 部材 7とは、 2重管構造となっている。また、噴射ノズル 6は、ガス導出口 4よりも先端 が反応器 1の内部まで突出して配されている。  The gas blowing mechanism 3 includes an injection nozzle 6 that is arranged on the central axis of the upper part of the reactor 1 and that injects the supply gas toward the arcuate concave surface la of the reactor 1. Further, an outer cylinder member 7 arranged coaxially with the injection nozzle 6 is provided on the outer side of the injection nozzle 6, and this outer cylinder member 7 is provided on the inner side of the cylindrical inner surface lb above the reactor 1. Further, it is fixed via a ring-shaped closing member 11. A space between the injection nozzle 6 and the outer cylinder member 7 serves as a reaction product gas outlet channel 8, and a lower end opening serves as a gas outlet 4. That is, the injection nozzle 6 and the outer cylinder member 7 have a double pipe structure. The injection nozzle 6 is arranged so that the tip protrudes from the gas outlet 4 to the inside of the reactor 1.
[0017] また、ガス吹き付け機構 3は、噴射ノズル 6に接続され供給ガスを加圧供給する噴 射用ポンプ P1を備えるとともに、供給ガスを反応器 1に供給する前に加熱する予熱 機構 12を備えており、噴射用ポンプ P1は供給ガスの供給源(図示略)に接続されて いる。また、上記ガス回収機構 5は、ガス導出口 4に接続され反応生成ガスを吸引す る排気用ポンプ P2を備えている力 S、この反応生成ガスを圧力差で排出可能な場合に は排気用ポンプは省略可能である。 [0017] The gas blowing mechanism 3 includes an injection pump P1 connected to the injection nozzle 6 and pressurizing and supplying the supply gas, and includes a preheating mechanism 12 that heats the supply gas before supplying it to the reactor 1. The injection pump P1 is connected to a supply source (not shown) of the supply gas. Yes. The gas recovery mechanism 5 is connected to the gas outlet 4 and is equipped with an exhaust pump P2 that sucks the reaction product gas S. If the reaction product gas can be discharged by a pressure difference, the gas recovery mechanism 5 The pump can be omitted.
[0018] 上記石英製の反応器 1は、その周囲がカーボン製支持部材 9によって支持されて いる。このカーボン製支持部材 9は、反応器 1の周囲を覆う支持部本体 9aと、該支持 部本体 9aの下部に設けられた支持柱部 9bを備えている。  [0018] The quartz reactor 1 is supported at its periphery by a carbon support member 9. The carbon support member 9 includes a support body 9a that covers the periphery of the reactor 1, and a support column 9b that is provided at the lower portion of the support body 9a.
[0019] 上記加熱機構 2は、反応器 1の周囲に反応器 1を囲うように配され発熱部であるヒー タ部 2aと、該ヒータ部 2aの下部に接続されヒータ部 2aに電流を流すための電極部 2b と、反応器 1の下方に配された円環状の底部ヒータ部 10とを備えている。この電極部 2bは、図示しない電源に接続されている。上記底部ヒータ部 10は、カーボン製支持 部材 9の支持柱部 9bが揷通された状態で支持部本体 9aの下方に設置されている。 なお、底部ヒータ部 10にも、図示しない電極部が接続されている。  [0019] The heating mechanism 2 is arranged around the reactor 1 so as to surround the reactor 1, and is connected to the lower part of the heater unit 2a that is a heat generating unit and flows through the heater unit 2a. And an annular bottom heater section 10 disposed below the reactor 1. The electrode portion 2b is connected to a power source (not shown). The bottom heater portion 10 is installed below the support portion main body 9a in a state where the support column portion 9b of the carbon support member 9 is passed through. The bottom heater unit 10 is also connected to an electrode unit (not shown).
[0020] また、加熱機構 2は、反応器 1が 800°C〜; 1400°Cの範囲内の温度になるようにカロ 熱制御を行う。なお、反応器 1を 1200°C以上に設定すれば、転換率が向上する。ま た、供給ガスにジシラン類を導入し、シラン類を取り出してもよい。  [0020] In addition, the heating mechanism 2 performs calorie heat control so that the reactor 1 has a temperature in the range of 800 ° C to 1400 ° C. If reactor 1 is set to 1200 ° C or higher, the conversion rate is improved. Further, disilanes may be introduced into the supply gas and the silanes may be taken out.
[0021] このトリクロロシラン製造装置では、噴射ノズル 6から供給ガスを反応器 1の円弧状 凹面 laに吹き付けると、高温状態に加熱された反応器 1に衝突した供給ガスが転換 反応して反応生成ガスが生成される。この反応生成ガスは、反応器 1の円弧状凹面 1 aの円弧に沿って上方の筒状内面 lbに流れてガス導出口 4から外部に導出されて回 収される。なお、図中において、ガスの流れ方向を矢印で示している。  [0021] In this trichlorosilane production apparatus, when the supply gas is blown from the injection nozzle 6 onto the arc-shaped concave surface la of the reactor 1, the supply gas colliding with the reactor 1 heated to a high temperature is converted and reacted. Gas is generated. This reaction product gas flows to the upper cylindrical inner surface lb along the arc of the arcuate concave surface 1a of the reactor 1, and is led out from the gas outlet 4 to be collected. In the figure, the direction of gas flow is indicated by arrows.
[0022] このように本実施形態では、供給ガスを吹き付けられる反応器 1が石英で形成され ているので、反応器 1が常温だけでなく 800〜; 1400°Cの高温下でも高い機械的強 度を有していると共に、高い純度の石英で反応器 1を形成可能である。また、反応器 1が供給ガス及び反応生成ガス中のガス成分と反応して不純物を生成することがなく 、純度の高いトリクロロシランを得ることができる。さらに、石英が Pureのシリコンカー バイド等に比べて低価格であるため、部材コストの増大を抑制することができる。  [0022] Thus, in this embodiment, since the reactor 1 to which the supply gas is blown is formed of quartz, the reactor 1 has a high mechanical strength not only at room temperature but also at a high temperature of 800 to 1400 ° C. In addition, the reactor 1 can be formed of high-purity quartz. Further, the reactor 1 does not react with the gas components in the supply gas and the reaction product gas to generate impurities, and thus high purity trichlorosilane can be obtained. Furthermore, since quartz is less expensive than pure silicon carbide, it is possible to suppress an increase in material costs.
[0023] また、反応器 1における円弧状凹面 laに向けて噴射ノズル 6から供給ガスを噴射す るので、反応器 1の円弧状凹面 1 aに噴射されて衝突した供給ガスが円弧状凹面 1 a の円弧に沿って流れ、円弧状凹面 laからの加熱効果によって、より効率的に転換反 応させること力 Sでさる。 [0023] Further, since the supply gas is injected from the injection nozzle 6 toward the arc-shaped concave surface la in the reactor 1, the supply gas that has been injected and collided with the arc-shaped concave surface 1a of the reactor 1 is arc-shaped concave surface 1 a The force S is applied to make the conversion reaction more efficiently by the heating effect from the arcuate concave surface la.
[0024] さらに、反応生成ガスを反応器 1の周縁部内側に配されたガス導出口 4から外部に 導出するので、反応器 1の円弧状凹面 laに衝突して生成され円弧状凹面 laから筒 状内面 lbに沿って上方に折り返して流れる反応生成ガスを効率的に回収できる。  [0024] Further, since the reaction product gas is led out from the gas outlet 4 disposed inside the peripheral edge of the reactor 1, it is generated by colliding with the arc-shaped concave surface la of the reactor 1 and from the arc-shaped concave surface la. The reaction product gas that flows back upward along the cylindrical inner surface lb can be efficiently recovered.
[0025] また、カーボン製支持部材 9で反応器 1の周囲を支持しているので、高温時に反応 器 1が軟化してもカーボン製支持部材 9が周囲から支持することで反応器 1の形状変 化等を防ぐことができる。  [0025] Further, since the periphery of the reactor 1 is supported by the carbon support member 9, even if the reactor 1 is softened at a high temperature, the carbon support member 9 supports from the periphery, so that the shape of the reactor 1 Changes can be prevented.
[0026] なお、本発明の技術範囲は上記実施形態に限定されるものではなぐ本発明の趣 旨を逸脱しない範囲において種々の変更を加えることが可能である。  [0026] It should be noted that the technical scope of the present invention is not limited to the embodiment described above, and various modifications can be made without departing from the spirit of the present invention.
[0027] 例えば、上記実施形態では、加熱機構 2としてヒータ部 2aによる輻射熱で反応器 1 を加熱している力 高周波誘導加熱等の他の方法で反応器 1を加熱しても構わない  [0027] For example, in the above embodiment, the heating mechanism 2 may be a power that heats the reactor 1 with radiant heat from the heater 2a. The reactor 1 may be heated by other methods such as high-frequency induction heating.
[0028] また、反応器 1として、円弧状凹面 laから筒状内面 lbが連続して形成された構成と したが、少なくとも、供給ガスが吹き付けられる表面を円弧状凹面としておけばよぐ 筒状内面がなくても、円弧状凹面に衝突したガスを反応器の表面に沿って円滑に流 すこと力 Sできる。この場合、円弧状凹面は、同一曲率の円弧でなくても、複数の曲率 を有する円弧の連続でもよい。なお、反応生成ガスを回収するには円弧状凹面が好 適であるが、本発明においては、円弧状凹面以外の表面形状を除外するものではな い。 [0028] Further, the reactor 1 has a configuration in which the cylindrical inner surface lb is continuously formed from the arc-shaped concave surface la, but at least the surface on which the supply gas is blown may be a circular arc-shaped concave surface. Even if there is no inner surface, the force S can smoothly flow the gas that collides with the arc-shaped concave surface along the surface of the reactor. In this case, the arcuate concave surface may not be an arc having the same curvature, but may be a series of arcs having a plurality of curvatures. An arc-shaped concave surface is suitable for recovering the reaction product gas, but in the present invention, a surface shape other than the arc-shaped concave surface is not excluded.
[0029] さらに、反応器の筒状内面から導出流路 8へのガスの流れを円滑にするために、リ ング状閉塞部材を筒状内面から連続するテーパ板状や円弧板状等に形成してもよ い。  [0029] Further, in order to facilitate the flow of gas from the cylindrical inner surface of the reactor to the outlet flow path 8, the ring-shaped closing member is formed in a tapered plate shape, an arc plate shape, or the like continuous from the cylindrical inner surface. You can do it.
産業上の利用可能性  Industrial applicability
[0030] 本発明のトリクロロシラン製造装置によれば、供給ガスを吹き付ける反応器が石英 で形成されているので、反応器が 800〜; 1400°Cの反応温度でも高い機械的強度を 有し、高い純度の石英で反応器が形成可能である。また不純物を生成することがなく 、純度の高いトリクロロシランを得ることができる。このため高純度のシリコンを製造す るための原料として使用されるトリクロロシランの製造工程に好適に利用できる。 [0030] According to the trichlorosilane production apparatus of the present invention, since the reactor for blowing the supply gas is formed of quartz, the reactor has a high mechanical strength even at a reaction temperature of 800 to 1400 ° C, The reactor can be formed of high purity quartz. Further, high purity trichlorosilane can be obtained without generating impurities. For this reason, high purity silicon is produced. Therefore, it can be suitably used in the production process of trichlorosilane used as a raw material for the purpose.

Claims

請求の範囲 The scope of the claims
[1] 石英で形成された反応器と、  [1] a reactor formed of quartz;
前記反応器を加熱する加熱機構と、  A heating mechanism for heating the reactor;
テトラクロロシランと水素とを含む供給ガスを前記反応器に吹き付けるガス吹き付け 機構とを備えていることを特徴とするトリクロロシラン製造装置。  An apparatus for producing trichlorosilane, comprising: a gas spraying mechanism for spraying a supply gas containing tetrachlorosilane and hydrogen to the reactor.
[2] 前記反応器が円弧状凹面を有し、  [2] The reactor has an arcuate concave surface,
前記ガス吹き付け機構が、前記反応器における前記円弧状凹面に向けて前記供 給ガスを噴射する噴射ノズルを備えて!/ヽる請求項 1に記載のトリクロロシラン製造装置  2. The apparatus for producing trichlorosilane according to claim 1, wherein the gas blowing mechanism includes an injection nozzle that injects the supply gas toward the arcuate concave surface in the reactor.
[3] 前記反応器で前記供給ガスから生成されたトリクロロシランと塩化水素とを含む反 応生成ガスを前記反応器における前記円弧状凹面の周縁部内側に配されたガス導 出口から外部に導出するガス回収機構を備えている請求項 2に記載のトリクロロシラ ン製造装置。 [3] A reaction product gas containing trichlorosilane and hydrogen chloride generated from the supply gas in the reactor is led out from a gas outlet disposed inside the peripheral edge of the arcuate concave surface in the reactor. The trichlorosilane production apparatus according to claim 2, further comprising a gas recovery mechanism.
[4] 前記反応器の外側表面を覆うように支持する支持部材を備えている請求項 2に記 載のトリクロロシラン製造装置。  4. The apparatus for producing trichlorosilane according to claim 2, further comprising a support member that supports the outer surface of the reactor so as to cover the outer surface.
[5] 前記反応器の外側表面を覆うように支持する支持部材を備えている請求項 3に記 載のトリクロロシラン製造装置。  [5] The trichlorosilane production apparatus according to [3], further comprising a support member that supports the outer surface of the reactor so as to cover the outer surface.
PCT/JP2007/070735 2006-11-21 2007-10-24 Apparatus for producing trichlorosilane WO2008062629A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-314897 2006-11-21
JP2006314897 2006-11-21
JP2007-249626 2007-09-26
JP2007249626A JP2008150273A (en) 2006-11-21 2007-09-26 Apparatus for producing trichlorosilane

Publications (1)

Publication Number Publication Date
WO2008062629A1 true WO2008062629A1 (en) 2008-05-29

Family

ID=39429568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070735 WO2008062629A1 (en) 2006-11-21 2007-10-24 Apparatus for producing trichlorosilane

Country Status (1)

Country Link
WO (1) WO2008062629A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103153857A (en) * 2010-08-12 2013-06-12 赢创德固赛有限公司 Use of a reactor having an integrated heat exchanger in a method for hydrodechlorinating silicon tetrachloride

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847500A (en) * 1971-10-21 1973-07-05
JPS5397996A (en) * 1977-02-09 1978-08-26 Mitsubishi Metal Corp Production of trichlorosilane
JPS6325211A (en) * 1986-07-10 1988-02-02 Chiyoda Chem Eng & Constr Co Ltd Production of trichlorosilane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4847500A (en) * 1971-10-21 1973-07-05
JPS5397996A (en) * 1977-02-09 1978-08-26 Mitsubishi Metal Corp Production of trichlorosilane
JPS6325211A (en) * 1986-07-10 1988-02-02 Chiyoda Chem Eng & Constr Co Ltd Production of trichlorosilane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103153857A (en) * 2010-08-12 2013-06-12 赢创德固赛有限公司 Use of a reactor having an integrated heat exchanger in a method for hydrodechlorinating silicon tetrachloride

Similar Documents

Publication Publication Date Title
JP5488777B2 (en) Trichlorosilane production method and trichlorosilane production apparatus
JP5119856B2 (en) Trichlorosilane production equipment
WO2003040036A1 (en) Method for producing silicon
JPS6228083B2 (en)
KR101644239B1 (en) Process for producing trichlorosilane
JP2013517210A (en) A "closed loop" method for the production of trichlorosilane from metallic silicon
JPS62123011A (en) Method for producing trichlorosilane and apparatus therefor
WO2005019106A1 (en) Silicon manufacturing apparatus
CA2822778C (en) Process and apparatus for conversion of silicon tetrachloride to trichlorosilane
WO2008062629A1 (en) Apparatus for producing trichlorosilane
JP4390819B2 (en) Cyclone reactor
CN107074561B (en) Use the poly plant and method of high-efficiency hybrid horizontal reactor
JP4805155B2 (en) Silicon production equipment
KR20130105160A (en) Manufacturing method for trichlorosilane from silicon tetrachloride and trickle bed reactor for the method
JP2008150273A (en) Apparatus for producing trichlorosilane
WO2008065829A1 (en) Apparatus for production of trichlorosilane
CN102060298B (en) Polycrystalline silicon production device and method
WO2008066027A1 (en) Apparatus for producing trichlorosilane
CN106458607B (en) Use the device of horizontal reactor manufacture polysilicon and the manufacturing method of the polysilicon
JP2003002628A (en) Apparatus and method for manufacturing silicon
JPH01100011A (en) Industrial production of trichlorosilane
KR101952731B1 (en) Apparatus and method for producing polycrystalline silicon using horizontal reactor
JPS59121109A (en) Production of high purity silicon
US9059220B2 (en) Polysilicon manufacturing device
CN115215344A (en) Preparation method and preparation device of trichlorosilane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830469

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830469

Country of ref document: EP

Kind code of ref document: A1